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It is well known that the source-free Maxwell equations are invariant under electric-magnetic duality
rotations, F → F cos θ þ ⋆F sin θ. These transformations are indeed a symmetry of the theory in the Noether
sense. The associated constant of motion is the difference in the intensity between self-dual and anti-self-
dual components of the electromagnetic field or, equivalently, the difference between the right and left
circularly polarized components. This conservation law holds even if the electromagnetic field interacts
with an arbitrary classical gravitational background. After reexamining these results, we discuss whether
this symmetry is maintained when the electromagnetic field is quantized. The answer is in the affirmative in
the absence of gravity but not necessarily otherwise. As a consequence, the net polarization of the quantum
electromagnetic field fails to be conserved in curved spacetimes. This is a quantum effect, and it can be
understood as the generalization of the fermion chiral anomaly to fields of spin one.
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I. INTRODUCTION

Symmetries play an important role in many areas of
science. They are widely considered as guiding principles
for constructing physical theories, and their connection with
conservation laws found by Noether one century ago [1] is a
cornerstone of modern physics. An interesting example is
given by Maxwell’s theory of electrodynamics, whose
invariance under Poincaré transformations leads to conser-
vation of energy, linear, and angular momentum. (The
invariance extends, in fact, to the full conformal group.)
The theory is also invariant under gauge transformations
when the electromagnetic potential is introduced, and when
it is coupled to matter fields, the symmetry is related to the
conservation of electric charge. Furthermore, in the absence
of charges and currents, this theory enjoys a peculiar
symmetry (in four spacetime dimensions). It is a simple
exercise to check that Maxwell’s equations, and also the
stress-energy tensor, are invariant under the “exchange”
of the electric and magnetic fields E⃗ → B⃗, B⃗ → −E⃗, as first
noticed after the introduction of Maxwell’s equations.
This discrete Z2 operation is commonly known as a duality
transformation. But the invariance of Maxwell’s equations

extends to SOð2Þ rotations E⃗ → E⃗ cos θ þ B⃗ sin θ, B⃗ →
B⃗ cos θ − E⃗ sin θ, of which the duality transformation is just
the particular case with θ ¼ π=2. Although apparently
innocuous, this continuous transformation has revealed,
in more recent times, interesting consequences.
In the mid-1960s, Calkin pointed out that these trans-

formations leave Maxwell’s action invariant, and he iden-
tified the associated conserved charge as the difference
between the intensity of the right- and left-handed circu-
larly polarized components of the electromagnetic field [2].
This conservation law was studied in more detail by Deser
and Teitelboim in [3,4], and proved to remain true in curved
spacetimes. This quantity is sometimes known as the
optical helicity [5], and it also agrees with the V-Stokes
parameter. Henceforth, besides conservation of energy and
momentum, the polarization of electromagnetic radiation
will also be a constant of motion as long as no electro-
magnetic sources are present, courtesy of the symmetry
under electric-magnetic rotations.
A natural question now is to analyze whether this

symmetry continues to hold in quantum electrodynamics.
If jμD is the Noether current associated with electric-
magnetic rotations, this task reduces to checking if the
vacuum expectation value h∇μj

μ
Di vanishes. In contrast to

the classical theory, this is a nontrivial calculation that
involves appropriate renormalization of ultraviolet diver-
gences. It is well known that quantum fluctuations produce
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off-shell contributions to physical quantities that might
spoil classical symmetries. When this occurs, one says that
there is a quantum anomaly in the theory.
Historically, the issue of quantum anomalies first

appeared in the seminal works by Adler, Bell, and
Jackiw, as a result of solving the pion decay puzzle [6,7].
They found that the chiral symmetry of the action of a
massless Dirac field breaks down at the quantum level when
the fermionic field interacts with an electromagnetic back-
ground. Namely, they obtained the celebrated chiral or axial
anomaly h∇μj

μ
Ai ¼ − ℏq2

8π2
Fμν⋆Fμν, where jμA is the fermionic

chiral current, Fμν the field strength of the background
electromagnetic field, ⋆Fμν its dual, and q the charge of the
fermion. Later, a similar anomaly was found when the
massless Dirac field is immersed in a classical gravitational
background [8–10], h∇μj

μ
Ai¼ ℏ

192π2
Rμναβ

⋆Rμναβ, where Rμναβ

is the Riemann tensor. These discoveries led to an outbreak
of interest in anomalies both in quantum field theory and
mathematical physics, leading to further examples and a
connection with the well-known index theorems in geo-
metric analysis [11–13]. The existence of anomalies has
important physical implications. Besides the prediction of
the neutral pion decay rate to two photons, these anomalies
have applications in studies of the matter-antimatter asym-
metry of the Universe, the U(1) and strong CP problems in
QCD, and provide a deeper understanding of the Standard
Model via anomaly cancelation [14]. These cancelations
have played a major role in string theories and supergravity
too (for a detailed account see, for instance, Ref. [12] and
references therein). A decade after the discovery of the chiral
anomaly, the nature of quantum anomalies was further
clarified by Fujikawa, using the language of path integrals
[15,16]. He found that the existence of anomalies can also be
understood as the failure of the measure of the path integral
to respect the symmetries of the action. Fujikawa’s argu-
ments provided an alternative and elegant way of computing
anomalies.
In this paper, we prove that electric-magnetic rotations

are also anomalous, provided the electromagnetic field
propagates in a sufficiently nontrivial spacetime. To meet
our goal, we write Maxwell’s theory in terms of self-dual
and anti-self-dual variables, which will make the structure
of the theory significantly more transparent, particularly in
the absence of charges and currents. In fact, in these
variables duality rotations look mathematically—and
physically—similar to chiral transformations of massless
spin-1=2 Dirac fields, and in this sense, our result can be
understood as the spin-1 generalization of the fermionic
chiral anomaly. We derive our result by using two
complementary methods, namely, by directly computing
h∇μj

μ
Di using the method of heat-kernel renormalization

and by Fujikawa’s path-integral approach.
This paper is organized as follows. In Sec. II we review

the analysis of the classical duality symmetry in source-
free electrodynamics and derive the associated Noether

charge and current, both in the Lagrangian and
Hamiltonian frameworks. In Sec. III we introduce self-
dual and anti-self-dual variables and emphasize their
advantages in the source-free theory. We show how
Maxwell’s equations can be conveniently written as
first-order equations, either for fields or potentials, that
are analogous to Weyl’s equations for spin-1=2 fields. In
Sec. IV, we derive a first-order action for Maxwell
electrodynamics in self-dual and anti-self-dual variables,
which makes the theory formally analogous to Dirac’s
theory of massless fermions. Section V discusses the
quantum theory and the derivation of the quantum electro-
magnetic duality anomaly by using the two methods
mentioned above. We finally give some concluding
remarks in Sec. VI. To simplify the main text of the
article, we have moved many of the mathematical details
and calculations to Appendices A–G.
A shorter version of this work appeared in [17]. Here we

provide further details and alternative avenues for arriving
at the final result, and correct some minor errors that
translate into a different numerical factor in the result
for h∇μj

μ
Di.

We follow the convention ϵ0123 ¼ 1=
ffiffiffiffiffiffi−gp

and metric
signature ðþ;−;−;−Þ. More specifically, we follow the
ð−;−;−Þ convention of [18]. We restrict ourselves to four-
dimensional spacetimes and assume the Levi-Civita con-
nection. We use Greek indices μ; ν; α;… for tensors in
curved spacetimes, while Latin indices a; b; c;… are used
for tensors in Minkowski spacetime. Indices I; J; K;… or
_I; _J; _K;… refer to tensors in an internal space associated
with the spin-1 complex Lorentz representations. Unless
otherwise stated, we assume all fields to be smooth and to
have standard fall-off conditions at infinity. We use units
for which c ¼ 1.

II. CLASSICAL THEORY AND
ELECTRIC-MAGNETIC ROTATIONS

A. Lagrangian formalism

In this paper we focus on free Maxwell’s theory, i.e.,
electromagnetic fields in the absence of electric charges and
currents, formulated on a globally hyperbolic spacetime
ðM; gμνÞ with metric tensor gμν. The classical theory is
described by the action

S½Aμ� ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν; ð2:1Þ

where F is a closed two-form (dF ¼ 0) defined in terms of its
potentialA asF ¼ dA, ormoreexplicitly, Fμν¼∇μAν−∇νAμ.
Maxwell’s equations read □Aν −∇μ∇νAμ ¼ 0, where
∇ is the covariant derivative associated with gμν and
□≡ gμν∇μ∇ν. When written in terms of the dual tensor ⋆F,
these equations take the compact form d⋆F ¼ 0 and, together
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with dF ¼ 0, make manifest that the field equations are
invariant under electric-magnetic rotations

F → F cos θ þ ⋆F sin θ;
⋆F → ⋆F cos θ − F sin θ: ð2:2Þ

For θ ¼ π=2 one has themore familiar duality transformation
F → ⋆F and ⋆F → −F. If this one-parameter family of
transformations is a true symmetry of the action, then
Noether’s analysis must provide a conserved charge associ-
ated with it. We now analyze this problem. Our presentation
simply rephrases, in a manifestly covariant way, the results
of Ref. [3].
For the transformation (2.2) to be a symmetry, its

infinitesimal version ðδF ¼ ⋆FδθÞ must leave the action
invariant or, equivalently, the Lagrangian density L ¼
−1=4 ffiffiffiffiffiffi−gp

FμνFμν must change by a total derivative,
δL ¼ ffiffiffiffiffiffi−gp ∇μhμ, for some current hμ. This must be true
even off shell, i.e., when F and ⋆F do not satisfy the
equations of motion. In analyzing if this is the case, one
faces two issues. On the one hand, since F is a closed two-
form (i.e., dF ¼ 0), for the transformation δF ¼ ⋆Fδθ to be
consistent, ⋆F must also be closed, but this amounts to
saying that equations of motion hold. In other words, the
transformation (2.2) can only be consistently defined on
shell.1 Second, since the usual configuration variables of
Maxwell’s action are the vector potential A rather than the
field F, to apply Noether’s techniques we first need to
rewrite (2.2) in terms of A. A convenient strategy to deal
with these two issues is to define a more general trans-
formation, which will agree with electric-magnetic rota-
tions only on shell, as follows:

δAμ ¼ Zμδθ; ð2:3Þ

where Zμ is implicitly defined by dZ≡ ⋆Fþ G, and G is a
two-form that is subject to the following conditions, but
arbitrary otherwise:
(1) G vanishes only when Aμ satisfies the equations of

motion, Gjon shell ¼ 0. This ensures that dZ ¼ ⋆F on
shell, and then (2.3) reduces to the usual electric-
magnetic transformation.

(2) G is not closed, dG ≠ 0—unless the equations of
motion hold. This guarantees that ⋆F is not closed
(off shell).

(3) G has zero magnetic part relative to an arbitrary
observer, i.e., nν⋆Gμν ¼ 0, where nν is a timelike
vector field, and ⋆G is the dual of G. (This condition

is equivalent to saying that the electric field relative
to the observer satisfies Gauss’s law.)

Note that Zμ is a nonlocal functional of Aμ. However, as
discussed in [3], this is not an impediment to applying
Noether’s formalism.
Under the transformation (2.3), we obtain (see

Appendix A for more details)

δL¼−δθ
ffiffiffiffiffiffi−gp
2

∇μ½Aν
⋆Fμν−ZνðdZÞμν�≡ ffiffiffiffiffiffi

−g
p ∇μhμ; ð2:4Þ

confirming that electric-magnetic rotations are a symmetry
of source-free Maxwell’s theory. The conserved Noether
current jμD associated with this symmetry is

jμD ¼ 1ffiffiffiffiffiffi−gp ∂L
∂∇μAν

δAν − hμ

¼ 1

2
½Aν

⋆Fμν − ZνFμν − Zν
⋆Gμν� ð2:5Þ

(we have dropped δθ from the definition of jμD). This
current is gauge dependent. But this is not a problem either,
as long as the associated conserved charge is gauge
invariant, which is in fact the case. When evaluated on
shell (i.e., when G ¼ 0, and therefore dZ ¼ ⋆F)

jμDjon shell ¼
1

2
½Aν

⋆Fμν − ZνFμν�: ð2:6Þ

Now, if we foliate the spacetime using a one-parameter
family of Cauchy hypersurfaces Σt, the quantity

QD ¼
Z
Σt

dΣμj
μ
D ¼ −

1

2

Z
Σt

dΣ3ðAμBμ − ZμEμÞ ð2:7Þ

is a conserved charge, in the sense that it is independent of
the choice of “leaf” Σt. In this expression, dΣ3 is the volume
element in Σt, and Eμ ¼ nνFμν and Bμ ¼ nν⋆Fμν are the
electric and magnetic parts, respectively, of the electro-
magnetic tensor field F relative to the foliation Σt. The same
expression forQD is obtained if jμDjon shell is used in place of
jμD in (2.7); hence, the conserved charge is insensitive to the
extension of the transformation done above by the intro-
duction of G.
One can check, by explicit computation, that ∇μj

μ
D ¼

−Zν∇μFμν, and therefore ∇μj
μ
D ¼ 0 when the equations of

motion ∇μFμν ¼ 0 hold. In the quantum theory, however,
off-shell contributions of quantum origin may spoil the
conservation of the current. The calculation of the expect-
ation value of ∇μj

μ
D using the formalism derived in this

section is complicated since it would involve the operator
Zμ, which is a (nonlocal) functional of the configuration

1This “difficulty” appears only in the second order formalism.
If one uses a first-order Lagrangian, or a Hamiltonian formu-
lation, the usual electric-magnetic rotations can be implemented
off shell. This point has been emphasized in [4] and will be made
explicit in the next subsection and in Sec. IV.
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variable Aμ.
2 This difficulty can be alleviated by working in

phase space, where one can treat Zμ and Aμ as independent
fields. This motivates the Hamiltonian analysis of the next
subsection and the use of a first-order formalism in the rest
of the paper. In particular, in Secs. III and IV we rederive jμD
in a first-order Lagrangian formalism using self-dual and
anti-self-dual variables. This will make the derivation
significantly more transparent. The physical interpretation
of QD will also become more clear, and we postpone the
discussion until then.

B. Hamiltonian formalism

The Hamiltonian formalism provides a complementary
approach to the study of the electric-magnetic symmetry,
and in this subsection we briefly summarize the derivation
of QD following this framework. We restrict ourselves
to Minkowski spacetime since the generalization to
curved geometries using the standard vector potential
and electric field as canonical coordinates becomes
cumbersome.
Given an inertial frame in Minkowski spacetime,

Maxwell’s Lagrangian (2.1) takes the form

L¼
Z
R3

d3xL¼
Z
R3

d3x
1

2

h
ð _⃗A− ∇⃗A0Þ2− ð∇⃗× A⃗Þ2

i
; ð2:8Þ

where ∇⃗ is the usual three-dimensional derivative operator.
Our conventions are A⃗≡ ðA1; A2; A3Þ, E⃗≡ ðE1; E2; E3Þ,
Ei ≡ Fi0, and E⃗2 ≡ E2

1 þ E2
2 þ E2

3. From this, we see that

the canonically conjugate variable of A⃗ is the electric field
δL
δ _Ai

¼ Ei, and the conjugate variable of A0 vanishes since

the Lagrangian does not involve _A0. Then, A0 is a Lagrange
multiplier, and from its equation of motion, one obtains a

constraint, the familiar Gauss’s law ∇⃗ · E⃗ ¼ 0. Then, the
canonical phase space is made of pairs ðA⃗ðx⃗Þ; E⃗ðx⃗ÞÞ, with a
symplectic or Poisson structure given by fAiðx⃗Þ; Ejðx⃗0Þg ¼
δjiδ

ð3Þðx⃗ − x⃗0Þ. A Legendre transformation produces the
Hamiltonian

H ¼
Z
R3

d3x
1

2
½E⃗2 þ ð∇⃗ × A⃗Þ2 − A0ð∇⃗ · E⃗Þ�; ð2:9Þ

where we have disregarded a boundary term. In Dirac’s

terminology, ∇⃗ · E⃗ ¼ 0 is a first-class constraint, and it tells
us that there is gauge freedom in the theory, given precisely

by the canonical transformations generated by ∇⃗ · E⃗.
Hamilton’s equations read

_A⃗ ¼ fA⃗; Hg ¼ −E⃗ − ∇⃗A0

_E⃗ ¼ fE⃗; Hg ¼ ∇⃗ × ð∇⃗ × A⃗Þ; ð2:10Þ

where A0ðx⃗Þ is now interpreted as an arbitrary function
without dynamics, and the term proportional to it in the

expression for _A⃗ corresponds precisely to the gauge flow.
These six equations, together with the Gauss constraint, are
equivalent to standard Maxwell’s equations (once we

define B⃗≡ ∇⃗ × A⃗).
Electric-magnetic rotations in phase space are given by

δE⃗ ¼ ð∇⃗ × A⃗Þ≡ B⃗; δA⃗ ¼ −ð∇⃗×Þ−1E⃗≡ Z⃗; ð2:11Þ

where ð∇⃗×Þ−1 is the inverse of the curl; when acting on
traverse fields—such as E⃗—it can be easily computed by

using the relation ð∇⃗×Þ−1 ¼ −∇−2∇⃗×. The presence of the
operator ð∇⃗×Þ−1 in (2.11) makes it evident that we are
dealing with a transformation that is nonlocal in space.
Now, the generator of the transformation (2.11) can be

easily obtained by computing the symplectic product of
ðA⃗; E⃗Þ and ðδA⃗; δE⃗Þ:

QD ¼ Ω
h
ðA⃗; E⃗Þ; ðδA⃗; δE⃗Þ

i

¼ −
1

2

Z
R3

d3x
h
E⃗ · δA⃗ − A⃗ · δE⃗

i

¼ 1

2

Z
R3

d3x
h
A⃗ · B⃗ − Z⃗ · E⃗

i
: ð2:12Þ

Here, QD is independent of A0, and by integrating by parts,
it is easy to show that only the transverse part of A⃗ and Z⃗
contributes to QD; hence, it is gauge invariant. It is also
straightforward to check that QD is indeed the correct
generator since δA⃗ ¼ fA⃗; QDg and δE⃗ ¼ fE⃗; QDg repro-
duce expressions (2.11). To finish, one can now check
that _QD ¼ fQD;Hg ¼ 0. Therefore, QD is a constant of
motion. This implies that the canonical transformation
generated by QD is a symmetry of the theory.

III. ELECTRODYNAMICS IN TERMS OF
SELF-DUAL AND ANTI-SELF-DUAL VARIABLES

Many aspects of Maxwell’s theory in the absence of
charges and currents become more transparent when self-
dual and anti-self-dual variables are used (see, e.g.,
Refs. [22–24]). Some of the advantages of these variables

2The first term in (2.5) and its quantum aspects have previously
been discussed in [19] (see also [20]). However, this term by itself
is not conserved classically (something that cannot be fixed by any
gauge transformation), and in fact, its associated “charge” does not
generate duality rotations in phase space (see Sec. II B). Therefore,
the first term in (2.5) alone is not associated with the symmetry
under electric-magnetic rotations. The fact that its vacuum
expectation value does not vanish, although this is of physical
interest in its own right, does not really prove the existence of an
anomaly, as claimed in [19]. Other vacuum expectation values of
physical interest have been computed in [21].
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are well known and, in particular, they are commonly used
in the spinorial formulation of electrodynamics [25]. For
the sake of clarity, we introduce these variables first in
Minkowski spacetime and extend the formalism later to
curved geometries.

A. Minkowski spacetime

The self-dual and anti-self-dual components of the
electromagnetic field are defined as H⃗� ≡ 1ffiffi

2
p ðE⃗� iB⃗Þ.

We now enumerate the properties and interesting aspects of
these complex variables.
(1) Electric-magnetic rotations.—The transformation

rule of the electric and magnetic fields under electric-
magnetic rotations,

E⃗ → E⃗ cos θ þ B⃗ sin θ;

B⃗ → B⃗ cos θ − E⃗ sin θ; ð3:1Þ

translates to

H⃗� ¼ 1ffiffiffi
2

p ðE⃗� iB⃗Þ → e∓iθH⃗�: ð3:2Þ

An ordinary duality transformation E⃗ → B⃗, B⃗ → −E⃗
corresponds to θ ¼ π=2. Then, this operation pro-
duces3 iH⃗� → �H⃗�. It is for this reason that H⃗þ and
H⃗− are called the self-dual and anti-self-dual com-
ponents of the electromagnetic field, respectively.

(2) Lorentz transformations.—The components of E⃗
and B⃗ mix with each other under a Lorentz trans-
formation. For instance, under a boost of velocity v
in the x direction,

E⃗¼ðEx;Ey;EzÞ→ ½Ex;γðEy−vBzÞ;γðEzþvByÞ�;
B⃗¼ðBx;By;BzÞ→ ½Bx;γðByþvEzÞ;γðBz−vEyÞ�;

ð3:3Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. This transformation does not

correspond to any irreducible representation of the
Lorentz group. However, when E⃗ and B⃗ are com-
bined into H⃗�, it is easy to see that the components
of H⃗þ and H⃗− no longer mix,

H⃗� ¼ ðHx
�;H

y
�;H

z
�Þ

→ ½Hx
�;γðHy

�� ivHz
�Þ;γðHz

� ∓ ivHy
�Þ�: ð3:4Þ

These are the transformation rules associated with
the two irreducible representations of the Lorentz

group for fields of spin s ¼ 1. They are the so-called
(0,1) representation for H⃗þ and the (1,0) one for H⃗−.
More generally, for any element of the restricted
Lorentz group SOþð1; 3Þ (rotationsþ boots), the
infinitesimal transformation reads

HJ
�→ ½DðϵabÞ�IJHJ

�¼
�
δIJ−

1

2
ϵab

�Σab
IJ

�
HJ

� ð3:5Þ

(uppercase Latin indices I; J; K;… take values from
1 to 3), where δIJ is the Kronecker delta, �Σab

IJ are
the generators of the (0,1) and (1,0) representations,4

and the antisymmetric matrix ϵab ¼ ϵ½ab� contains
the parameters of the transformation. The use of self-
dual and anti-self-dual fields H⃗� makes it more
transparent that electrodynamics describes massless
fields of spin s ¼ 1.

(3) Maxwell’s equations.—The equations of motions
for E⃗ and B⃗,

∇⃗ · E⃗ ¼ 0; ∇⃗ · B⃗ ¼ 0;

∇⃗ × E⃗ ¼ −∂tB⃗; ∇⃗ × B⃗ ¼ ∂tE⃗; ð3:6Þ

when written in terms of H⃗�, take the form

∇⃗ · H⃗� ¼ 0; ∇⃗ × H⃗� ¼ �i∂tH⃗�: ð3:7Þ

Notice that, in contrast to E⃗ and B⃗, the self-dual and
anti-self-dual fields are not coupled by the dynamics.
The equations for H⃗− and H⃗þ are related by
complex conjugation.
Equations (3.7) are linear, and therefore the

space of solutions has structure of vector space. It
is spanned by positive- and negative-frequency
solutions:

H⃗�ðt; x⃗Þ ¼
Z
R3

d3k
ð2πÞ3 ½h�ðk⃗Þe

−iðkt−k⃗·x⃗Þ

þ h̄∓ðk⃗Þeiðkt−k⃗·x⃗Þ�ϵ̂�ðk⃗Þ; ð3:8Þ

where k ¼ jk⃗j and h�ðk⃗Þ are complex numbers that
indicate the amplitude of the positive and negative
frequency components of a particular solution (the
“bar” denotes complex conjugation). The polariza-
tion vectors are given by ϵ̂� ¼ 1ffiffi

2
p ðê1 � iê2Þ, where

ê1ðk⃗Þ and ê2ðk⃗Þ are two unit vectors that, together
with k̂, form an orthonormal triad of spacelike
vectors, with orientation ê1 × ê2 ¼ k̂.

3It is common to add the imaginary unit i because, in that way,
this operation has real eigenvalues, and it can be represented by a
self-adjoint operator in the quantum theory.

4They satisfy the algebra ½�Σab; �Σcd� ¼ ðηac�Σbd− ηad�Σbcþ
ηbd�Σac− ηbc�ΣadÞ.
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The explicit form (3.8) of a generic solution helps
us to understand the relation between self-duality or
anti-self-duality and helicity in Minkowski space-
time. By paying attention to the way the electric and
magnetic parts (i.e., the real and imaginary parts of
H⃗�, respectively) rotate with respect to the direction
of propagation k̂ during the course of time, one finds
the following relation:
(i) Positive-frequencyFouriermodes e−iðkt−k⃗·x⃗Þϵ̂�ðk⃗Þ

have positive helicity (that corresponds to left-
handed circular polarization) for self-dual fields
and negative helicity for anti-self-dual fields.

(ii) For negative-frequency modes eiðkt−k⃗·x⃗Þϵ̂�ðk⃗Þ,
the relation is inverse: They have negative
helicity (right-handed circular polarization)
for self-dual fields and positive helicity for
anti-self-dual fields.

We see that duality and helicity are closely related concepts
in Minkowski spacetime, although the relation is not trivial;
one needs to distinguish between self-dual and anti-self-
dual fields and positive and negative frequencies [26]. This
is the analog of the familiar relation between chirality and
helicity for massless spin-1=2 fermions. In this sense,
duality is the chirality of photons.
Furthermore, in more general spacetimes where neither

Fourier modes nor the notion of positive and negative
frequency are useful, self-duality or anti-self-duality gen-
eralizes the concept of helicity, or handedness, of electro-
magnetic waves.
(4) Self-dual and anti-self-dual potentials.—The con-

straints ∇⃗ · H⃗� ¼ 0 allow us to define the potentials
A⃗� by

H⃗� ¼ �i∇⃗ × A⃗�: ð3:9Þ

It is clear from this definition that the longitudinal
part of A⃗� contains a gauge ambiguity consisting in
adding the divergence of an arbitrary scalar function.
Note also that no time derivatives have been involved
in the definition of these potentials.

(5) Maxwell’s equations for potentials.—Substituting
(3.9) in the field equations (3.7) produces

�i∇⃗ × A⃗� ¼ −∂tA⃗� þ ∇⃗A0
�: ð3:10Þ

These equations by themselves are equivalent to
Maxwell’s equations. It may be surprising at first
that Maxwell’s theory can be written as first-order
equations for potentials. This comes from the fact
that in—and only in—the source-free theory, in
addition to the standard potential A⃗ defined from

B⃗ ¼ ∇⃗ × A⃗, Gauss’s law ∇⃗ · E⃗ ¼ 0 allows us to

define a second potential Z⃗, as E⃗≡ −∇⃗ × Z⃗. Then,
the first-order equations

_A⃗ ¼ ∇⃗ × Z⃗ þ ∇⃗A0;

_Z⃗ ¼ −∇⃗ × A⃗þ ∇⃗Z0 ð3:11Þ

are equivalent to Maxwell’s equations (to see this,
take the curl and use the relation between potentials
and fields). Therefore, Maxwell’s equations can be
written as first-order equations for potentials at the
expense of duplicating the number of potentials.
The relation between the two sets of potentials is
A�
a ¼ 1ffiffi

2
p ðAa � iZaÞ.

(6) Manifestly Lorentz-covariant equations.—Equa-
tions (3.7) and (3.10) for fields and potentials can
be rewritten in a more compact way as

αabI ∂aHIþ ¼ 0; ᾱabI ∂aA
þ
b ¼ 0: ð3:12Þ

The equations for H− and A− are obtained by
complex conjugation. In these expressions αabI are
three 4 × 4matrices, for I ¼ 1, 2, 3, and the bar over
αabI indicates complex conjugation. The components
of these matrices in an inertial frame can be identified
by comparing these equations with (3.7) and (3.10):

αab1 ¼

0
BBB@
0 −1 0 0

1 0 0 0

0 0 0 i

0 0 −i 0

1
CCCA; αab2 ¼

0
BBB@
0 0 −1 0

0 0 0 −i
1 0 0 0

0 i 0 0

1
CCCA;

αab3 ¼

0
BBB@
0 0 0 −1
0 0 i 0

0 −i 0 0

1 0 0 0

1
CCCA: ð3:13Þ

These matrices are antisymmetric (αabI ¼ α½ab�I ),
invariant under Lorentz transformations, and self-
dual (i⋆αabI ¼ αabI )—hence, ᾱabI is anti-self-dual. As
mentioned above, the equations for the potentials can
be derived from the equations for the fields. The
reverse is also true. Therefore, either set of equations
completely describes the theory. Field equations
similar to αabI ∂aHIþ ¼ 0 have been written before
in [22,23]; our equations αabI ∂aHIþ ¼ 0 are also
equivalent to Maxwell’s equations in spinorial lan-
guage [25].

(7) Relation between H⃗� and the field strength Fab.—
From the field strength F and its dual ⋆F, we define
the self-dual and anti-self-dual two-forms F� ¼
1ffiffi
2

p ðF� i⋆FÞ, which satisfy i⋆F�¼�F�. The relation

between the field strength and H⃗� is then given by

Fabþ ¼ αabI HIþ; Fab− ¼ ᾱab_I H _I
−: ð3:14Þ
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These relations imply that one can understand
the three αabI matrices as a basis for the three-
dimensional complex vector space of self-dual
tensors in Minkowski spacetime (see Appendix B).
Then, HIþ are simply the components of Fabþ in this
basis. Similarly, ᾱabI provides a basis for anti-self-
dual tensors.
On the other hand, by using the relations (3.14)—

and the fact that the αI-matrices are constant in
spacetime, so they are transparent to derivatives—
the field equations αabI ∂aHIþ ¼ 0 and ᾱabI ∂aHI

− ¼ 0

can be written as ∂aFabþ ¼ 0 and ∂aFab− ¼ 0, which
are equivalent Maxwell’s equations in their more
standard form.

(8) Properties of αabI matrices.—Using the form of the
αI matrices (3.13), it is straightforward to check that
they have the following properties:
(i) Anticommutation relations: fαI;αJg≡αabIα

bc
Jþ

αabJα
bc

I¼δIJη
ac.

(ii) Commutation relations: ½αI; αJ�≡ αabIα
bc

J −
αabJα

bc
I ¼ þΣac

IJ.
These properties can be thought of as the

spin-1 analog of the familiar properties of the
Pauli matrices σA _A

i .
To better understand these properties, and to

generalize them to curved spacetimes (see next
section), it is convenient to take a more geo-
metric viewpoint and think about the field HIþ
as belonging to a complex, three-dimensional
vector space V, which supports a (0,1) irreduc-
ible representation of the Lorentz group. This
space is isomorphic to the space of self-dual
tensors Fþ in Minkowski spacetime, and αabI
provides an isomorphism.

Furthermore, αabI equips V with a product
hIJ, the image of the Minkowski metric5

hIJ ¼ 1
4
ηabηcdα

ac
I αbdJ , whose value turns out

to be hIJ ¼ −δIJ in a Cartesian frame, and is
obviously invariant under Lorentz transforma-
tions in V. This viewpoint makes clearer the
analogy between the αabI and the Pauli matrices
σA _A
i (recall that σA _A

i provides an isometry
between spatial vectors and spinors).

If H⃗þ is an element of the complex vector
space V, then H⃗− is an element of V̄, the
complex-conjugate space. Although naturally
isomorphic, these two spaces are different, and
from now on, we use dotted indices on elements
of V̄ ∋ H _I

−. The properties of ᾱab_I are obtained

by complex conjugating the properties of αabI
written above. The anticommutation relations
are identical. However, the conjugation changes
the commutation relation to ½ᾱ _I; ᾱ _J� ¼ −Σab

_I _J,
where now it is the generator of the (1,0)
representation of the Lorentz group that enters
in the equation. Appendix B contains further
information about the properties of these tensors.

(9) Second-order equations for the potentials Aþ
a .—We

focus on Aþ
a since the derivation for A−

a can be
obtained from it by complex conjugation. The fastest
way to obtain the familiar second-order differential
equation for Aþ

a is to take the time derivative of
(3.10), use commutativity between spatial and time
derivatives, and then again (3.10) use to eliminate
the first time derivative in favor of the curl. The
result can then be written in covariant form as
□Aþ

a − ∂b∂aA
þ
b ¼ 0.

Alternatively, we can use the following argument,
which can be straightforwardly generalized to
curved spacetimes. Notice that the equations of
motion ᾱab_I ∂aA

þ
b ¼ 0 imply that the two-form

∂ ½aAþ
b� is self-dual. This is because, on the one hand,

the antisymmetry of ᾱab_I means that only the anti-
symmetric part of ∂aA

þ
b contributes to the equations

and, on the other, because contraction with ᾱab_I
extracts the anti-self-dual component of ∂ ½aAþ

b�.
Therefore, when the equations of motion hold, Aþ

a
is the potential of a self-dual form, Fþ ¼ dAþ. But if
dAþ is self-dual, then the identity ∂ ½a∂bA

þ
c� ¼ 0

implies that ∂a∂ ½aAþ
c� ¼ 0. These last equations are

obviously equivalent to

□Aþ
c − ∂a∂cAþ

a ¼ 0: ð3:15Þ

Therefore, the self-dual and anti-self-dual poten-
tials A�

a satisfy the same second-order equations as
the ordinary vector potential.

(10) Conserved current and charge.—In terms of self-
dual and anti-self-dual variables, electric-magnetic
rotations take the simple form

HI
�ðxÞ → e∓iθHI

�ðxÞ;
A�
a ðxÞ → e∓iθA�

a ðxÞ: ð3:16Þ

And the on-shell current (2.6) takes the form

jaDjon shell ¼ −
i
2
½HIþαabI A−

b −H _I
−ᾱ

ab
_I
Aþ
b � ð3:17Þ

(note that this current is manifestly real). By using
the form of the generic solution to the field
equations (3.8), we find that the conserved charge

5In other words, given any two self-dual tensors ð1ÞFabþ and ð2ÞFabþ ,
the isomorphism satisfies ð1ÞFabþ ð2ÞFcdþηacηbd ¼ ð1ÞHIþ ð2ÞHJþ4hIJ ,
where ðiÞFabþ ¼ αabI

ðiÞHIþ for i ¼ 1, 2.
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QD ¼
Z
R3

d3xj0Djon shell

¼
Z
R3

d3k
ð2πÞ3k ½jhþðk⃗Þj

2 − jh−ðk⃗Þj2� ð3:18Þ

is proportional to the difference in the intensity of
the self-dual and anti-self-dual parts of the field or,
equivalently, the difference between the right and
left circularly polarized components—i.e., the net
helicity. (QD has dimensions of angular momen-
tum.) For this reason QD is often called the optical
helicity or V-Stokes parameter.

B. Curved spacetimes

The generalization to curved spacetimes of the formal-
ism just presented follows the strategy commonly used for
Dirac spin-1=2 fields. Namely, one first introduces an
orthonormal tetrad field, or vierbein, in spacetime
eμaðxÞ.6 With it, the curved spacetime αI-matices are
obtained from the flat space ones αabI by

αμνI ðxÞ ¼ eμaðxÞeνbðxÞαabI : ð3:19Þ

Furthermore, the Minkowski metric ηab is replaced by
gμνðxÞ; ηab is used to raise and lower flat-space indices
a; b; c;…; gμνðxÞ for indices in the tangent space of the
spacetime manifold μ; ν; β;…, and hIJ and h _I _J for spin-1
indices. The matrices αμνI ðxÞ satisfy algebraic properties
analogous to the ones derived in Minkowski space

fαI; αJg≡ αμνIα
νβ

J þ αμνJα
νβ

I ¼ −hIJgμβ; ð3:20Þ

½αI; αJ�≡ αμνIα
νβ

J − αμνJα
νβ

I ¼ þΣμβ
IJ; ð3:21Þ

where þΣμβ
IJ ¼ eμae

β
b
þΣab

IJ. The extension of the covariant
derivative ∇μ is also obtained by using standard arguments
(see, e.g., Appendix A of [28]). Namely, the action of∇μ on
indices I of fields HIþ ∈ V is uniquely determined by
demanding compatibility with the isomorphism αμνI ðxÞ,
∇βα

μν
I ðxÞ ¼ 0 (see Appendix B 2). The result, as one

would expect, agrees with the usual expression for the
covariant derivative acting on fields of spin s derived using
group-theoretic methods, particularized to s ¼ 1,

∇μHIþ ¼ ∂μHIþ −
1

2
ðwμÞabþΣabI

JHJþ;

∇μH
_I
− ¼ ∂μH

_I
− −

1

2
ðwμÞab−Σab _I

_JH
_J
−; ð3:22Þ

where �Σ are the generators of the (0,1) and (1,0)
representations of the Lorentz algebra introduced in the
previous section, and ðwμÞab is the standard one-form spin
connection

ðwμÞab ¼ eaα∂μeαb þ eaαe
β
bΓα

μβ; ð3:23Þ

where Γα
μβ are the Christoffel symbols.

With this in hand, the generalization is straightforward.
(1) Maxwell’s equations for the fields.—

αμνI ∇μHIþ ¼ 0; ᾱμν_I ∇μH
_I
− ¼ 0: ð3:24Þ

Note the similarity with Dirac’s equation. The
relation between H� and the self-dual and anti-
self-dual parts of the field strength F is given by
Fμνþ ¼ αμνI HIþ and Fμν− ¼ ᾱμν_I H _Iþ. With this, and

keeping in mind that ∇μα
βν
I ðxÞ ¼ 0, Eqs. (3.24)

become ∇μF
μν
þ ¼ 0 ¼ ∇μFμν− , which is manifestly

equivalent to Maxwell’s equations ∇μFμν ¼ 0 by
recalling that F� ¼ 1ffiffi

2
p ½F� i⋆F�

(2) Potentials A�
μ .—The self-dual and anti-self-dual

potentials satisfy the first-order equations:

ᾱμν_I ∇μAþ
ν ¼ 0; αμνI ∇μA−

ν ¼ 0: ð3:25Þ

These are equivalent to Maxwell’s equations. This
can be easily seen by using the same argument as we
used in Minkowski spacetime, namely, by noticing
that, becauseαμνI and ᾱμν_I project on self-dual and anti-
self-dual forms, respectively, these two equations are
simply the self-dual and anti-self-duality condition
for the forms Fþμν ≡ 2∇½μAþ

ν� and F−μν ≡ 2∇½μA−
ν�,

respectively. This, in turns, implies that the identities
dFþ ¼ 0, dF− ¼ 0 are equivalent to Maxwell’s
equations ∇μF

μν
þ ¼ 0, ∇μFμν− ¼ 0 (see footnote in

Appendix C). Additionally, ∇μF
μν
� ¼ 0 is equivalent

to the second-order equations ∇μ∇½μAν�
� ¼ 0.

The relation betweenA�
μ andHI

� (before involving
any equation of motion) requires foliation of space-
time in spatial Cauchy hypersurfaces Σt, in the same
way as the relation between the electric and magnetic
fields and the standard vector potential does. Given
the foliation associatedwith the definition of αμνI ,Aþμ

and HIþ are related by means of the “curl”:7

HIþ ¼ iϵIμν∇μAþ
ν ð3:26Þ

6This noncoordinate orthonormal basis is defined by gμνðxÞ ¼
ηabeaμðxÞebνðxÞ, with ηab ¼ diagfþ1;−1;−1;−1g. We assume
our spacetime admits such structure globally [27].

7Notice that this curl is independent of the connection ∇μ, due
to the antisymmetry of ϵIμν in μ and ν. It is useful to keep this in
mind in manipulating expressions involving HI

� and A�
μ .
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(and similarly for A−
μ and H _I

−), where ϵIμν is a
“purely spatial” antisymmetric mixed tensor (see
Appendix B 3 for its precise definition). As shown
in Appendix C, one can easily see that if Aþ

ν is a
solution of (3.25), thenHIþ defined by (3.26) satisfies
the field equations (3.24). The reverse is also true.

IV. FIRST-ORDER LAGRANGIAN FORMALISM:
DIRAC-TYPE FORMULATION

The goal of this section is to write a Lagrangian for
electrodynamics in terms of self-dual and anti-self-dual
variables. The similarity of Eqs. (3.24) and (3.25) to Dirac’s
equation motivates us to look for a first-order Lagrangian
(i.e., linear in time derivatives) and write it in a form that
will make Maxwell’s theory manifestly analogous to
Dirac’s theory, where the mathematical structures associ-
ated with spin s ¼ 1=2 will be replaced by their s ¼ 1
analogs. This formulation will become very useful in the
study of the electric-magnetic rotations in the quantum
theory.

A. First-order Lagrangian

Consider the action

S½Aþ;A−�¼−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p h
H _I

−ᾱ
μν

_I∇μAþ
ν þHIþαμνI∇μA−

ν

i
:

ð4:1Þ

The Lagrangian density defined by the integrand differs in a
total derivative from the standard Lagrangian− 1

4

ffiffiffiffiffiffi−gp
FμνFμν

(after passing from first to second-order formalism), thus
leading to the same dynamics. The independent variables in
this action are A�

ν , and thereforeHIþ andH _I
− are understood

as short-hand notation for iϵIμν∇μAþ
ν and −iϵ _Iμν∇μA−

ν ,
respectively. Note that this action is first order in time
derivatives of A�

μ , and second order in spatial derivatives.
Extremizing the action with respect to Aþ

ν produces the
desired equations of motion (see Appendix D for more
details)

δS
δAþ

μ
¼ 0 → ᾱμν_I ∇μH

_I
− ¼ 0; ð4:2Þ

and, as discussed above and proved inAppendixC, these last
equations are equivalent to αμνI ∇μA−

ν ¼ 0. Similarly, from
δS
δA−

μ
¼ 0 one obtains ᾱμν_I ∇μAþ

ν ¼ 0.

For the computations presented in the next section, it is
convenient to fix the Lorenz gauge, ∇μA

μ
� ¼ 0. There is a

remarkably simple way of incorporating this condition in
the action (4.1). All we need to do is extend the domain of
the indices I and _I from f1; 2; 3g to f0; 1; 2; 3g, and define
αμν0 ¼ ᾱμν0 ≡ −gμν. This is analogous to the familiar

extension of the Pauli matrices σ⃗ by adding σ0 (the
identity), which commutes with all σi, i ¼ 1, 2, 3.
Algebraic properties of the αμνI -matrices extended in this
way appear in Appendix B 4.
To simplify the notation, we use the same name for the

action and the tensors αμνI , although from now on the index
I is understood to run from 0 to 3. The equations of motion
still take the same form,

ᾱμν _I∇μAþ
ν ¼ 0; αμνI∇μA−

ν ¼ 0; ð4:3Þ

but they now include the Lorenz condition as the equation
for I ¼ 0 ( _I ¼ 0),

gμν∇μAþ
ν ¼ 0; gμν∇μA−

ν ¼ 0: ð4:4Þ

Note that the action now depends on two new variablesH0
�,

but they have the sole role of acting as Lagrange multipliers
to enforce Lorenz’s condition.
Inspection of the action (4.1) reveals that, contrary to the

standard Maxwell’s Lagrangian, the Lagrangian density
in (4.1) is manifestly invariant, δL ¼ 0, under electric-
magnetic rotations Aμ

� → e∓iθAμ
�. It is now straightforward

to derive the Noether’s current (see Appendix E),

jμDjon shell¼ð−gÞ−1=2
�

δL
δ∇μAþν

δAþνþ
δL

δ∇μA−ν
δA−ν

�����
on shell

¼ i
2

h
H _I

−ᾱ
μν

_IA
þ
ν −HIþαμνIA−

ν

i
: ð4:5Þ

Using the relation between self-dual and anti-self-dual
variables, and ordinary variables Aμ and Fμν, it is straight-
forward to check that this expression agrees with jμDjon shell
obtained in Sec. II, Eq. (2.6).

B. Dirac-type Lagrangian

The goal of this section is to rewrite the action (4.1)
(including the Lorenz-gauge-fixing term) in a more con-
venient form that will make the theory formally similar to
Dirac’s theory of spin-1=2 fermions and will facilitate the
computations in the next sections.
We first integrate by parts (4.1), so A� and H� appear in

a more symmetric form,

S½Aþ; A−� ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p ½H _I
−ᾱ

μν
_I∇μAþ

ν − Aþ
ν ᾱ

μν
_I∇μH

_I
−

þHIþαμνI∇μA−
ν − A−

ν α
μν

I∇μHIþ�: ð4:6Þ

This action can now be written as

S½Aþ; A−� ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
Ψ̄iβμ∇μΨ ð4:7Þ
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where we have defined8

Ψ ¼

0
BBB@

Aþ

Hþ
A−

H−

1
CCCA; Ψ̄ ¼ ðAþ; Hþ; A−; H−Þ;

βμ ¼ i

0
BBB@

0 0 0 ᾱμ

0 0 −αμ 0

0 αμ 0 0

−ᾱμ 0 0 0

1
CCCA: ð4:8Þ

It is convenient to include, in the definition ofΨ, an arbitrary
parameter l−1 with dimensions of inverse length multiply-
ing A�, and compensate it by adding a global factor l to the
action. The action remains invariant, but the replacement
A� → l−1A� makes all the components of Ψ and Ψ̄ have
the same dimensions (namely,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
energy=length3

p
). To sim-

plify the notation, wewill not write l explicitly, but it should
be taken into account in evaluating the dimensions of
expressions containing Ψ and Ψ̄.
The exact position of the indices in the components of Ψ

and Ψ̄ can be easily obtained by comparing (4.6)–(4.8). We
have omitted them in the main body of this paper to
simplify the notation, but the details can be found in
Appendix F. Equation (4.7) is formally analogous to the
action of a Majorana 4-spinor describing a field with zero
electric charge, whose lower two components are complex
conjugate from the upper ones.
From the algebraic properties of the extended α-matrices,

(B31) and (B33), it is straightforward to check that βμ

satisfies the Clifford algebra Cliff (3,1),

fβμ; βνg ¼ 2gμνI: ð4:9Þ

We also have that ∇νβ
μðxÞ ¼ 0. These matrices can there-

fore be thought of as the spin-1 analog of the Dirac γμ

matrices.
We now define the “chiral” matrix

β5 ≡ i
4!
ϵαβγδβ

αβββγβδ ¼

0
BBB@

−I 0 0 0

0 −I 0 0

0 0 I 0

0 0 0 I

1
CCCA: ð4:10Þ

Some properties can be immediately checked:

fβμ; β5g ¼ 0; β25 ¼ I: ð4:11Þ

Further details and properties can be found in Appendix F.
Although the basic variables in the action are the

potentials A�
μ , at the practical level one can work by

considering Ψ and Ψ̄ as independent fields—note that this
is the same as what one does when working with Majorana
spinors. The equations of motion take the form

δS

δΨ̄
¼ 0 → iβμ∇μΨ ¼ 0: ð4:12Þ

They contain four equations, one for each of the four
components of Ψ. The upper two are the equations
ᾱμν _I∇μAþ

ν ¼ 0 and αμνI ∇μHIþ ¼ 0. The lower two are
complex-conjugated equations.
Now, by acting on (4.12) with ð−iβα∇αÞ, we obtain a

second-order equation for Ψ:

ð−iβα∇αÞiβμ∇μΨ ¼ ðβðαβμÞ þ β½αβμ�Þ∇α∇μΨ

¼ ð□þQÞΨ ¼ 0; ð4:13Þ

where we have used (4.9) and defined

QΨ≡ 1

2
β½αβμ�WαμΨ ð4:14Þ

with

WαμΨ≡ ½∇α;∇μ�Ψ

¼ 1

2
Rαμσρ

0
BBB@

Σσρ 0 0 0

0 þΣσρ 0 0

0 0 Σσρ 0

0 0 0 −Σσρ

1
CCCAΨ; ð4:15Þ

where Σσρ
αβ ¼ δραδσβ − δρβδ

σ
α is the generator of the

ð1=2; 1=2Þ (real) representation of the Lorentz group, while
þΣσρ

IJ and
−Σσρ

_I _J
are the generators of the ð0; 1Þ ⊕ ð0; 0Þ and

ð1; 0Þ ⊕ ð0; 0Þ representations, respectively.
Looking at the expression for WαμΨ, we see that it

contains real terms, RαμσρΣσρ, as well as complex ones,
Rαμσρ

�Σσρ. The real terms come from the action of covariant
derivatives on Aμ

�. Since A
μ
� are vectors in spacetime, their

covariant derivative includes a connection associated with
the ð1=2; 1=2Þ representation of the Lorentz group.9 The8We could alternatively have defined a couple of fields with

two “components,” ðAþ
H−
Þ and ðA−

Hþ
Þ. Physical predictions would

obviously be the same since we are just writing the same theory in
different variables. However, the formal analogy with Dirac’s
theory is cleaner if we use the four-component object Ψ defined
in (4.8).

9This does not mean, however, that Aμ
� transform according to

the ð1=2; 1=2Þ representation of the Lorentz group; They do so
only up to a gauge transformation [22]. See [29] for a more
precise account of this issue.
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complex terms in WμνΨ originate from the (0,1) and (1,0)

representations, with which H⃗� are associated.
The Poisson brackets for Ψ and Ψ̄ can be easily derived

from the canonical relations fAþ
μ ; H

_I
−g ¼ γ _Iμδðx⃗; x⃗0Þ, in an

analogous way as is usually done for Majorana spinors,
with the being difference that, in the situation under
consideration in this paper, the Poisson brackets must be
promoted to commutation relations in the quantum theory.
If anticommutators are used instead, one would find the
quantum propagator to violate causality, as expected from
the spin-statistics theorem. Therefore, in spite of the
fermionlike appearance of the formulation used in this
section, we are describing a theory of bosons.

1. Axial current

We now describe how the electric-magnetic symmetry
and its associated conservation law look in the language
introduced in this section. By using the chiral matrix β5, the
transformation reads

Ψ → eiθβ5Ψ; Ψ̄ → Ψ̄eiθβ5 : ð4:16Þ

Notice that this has the same form as a chiral transformation
for fermions. Looking at the form of β5 in Eq. (4.10), it is
clear that the upper two components of Ψ, i.e., ðAþ; HþÞ,
represent the self-dual or positive chirality part of the field,
while the lower two components ðA−; H−Þ contain the anti-
self-dual or the negative chiral part. The Lagrangian density
(4.7) is manifestly invariant under these transformation, and
in terms of Ψ the conserved current reads

jμD ¼ 1

4
Ψ̄βμβ5Ψ: ð4:17Þ

The associated Noether charge is

QD ¼
Z
Σt

dΣμj
μ
D ¼ 1

4

Z
Σt

dΣ3Ψ̄β0β5Ψ; ð4:18Þ

where dΣ3 is the volume element of a spacelike Cauchy
hypersurface Σt. This expression forQD is equivalent to the
one obtained in previous sections [see Eq. (2.7)].

V. QUANTUM ANOMALY

In this section we analyze whether the classical sym-
metry under electric-magnetic rotations persists in the
quantum theory. The most direct avenue to meet this goal
is to compute the vacuum expectation value of the
divergence ∇μj

μ
D. A nonvanishing result would imply that

the vacuum expectation value of the charge QD is not a
constant of motion. For the sake of clarity, we perform the
calculation using two different methods. First, we provide a
direct computation of h∇μj

μ
Di, in which the ultraviolet

divergences are identified and subtracted in a covariant and

self-consistent way, and then we reproduce the same result
using Fujikawa’s approach to anomalies based on path
integrals. These two methods illuminate complementary
aspects of the calculation.

A. Direct computation

Both jμD and ∇μj
μ
D are operators quadratic in fields, and

therefore the computation of their expectation values must
include renormalization subtractions to eliminate potential
divergences:

h∇μj
μ
Diren ¼ h∇μj

μ
Di − h∇μj

μ
DiAdð4Þ: ð5:1Þ

In this expression, h∇μj
μ
DiAdð4Þ indicates renormalization

terms of fourth adiabatic order that we will compute
using the DeWitt-Schwinger asymptotic expansion. More
precisely, this renormalization scheme works by writing
h∇μj

μ
Di in terms of the Feymann two-point function

Sðx; x0Þ ¼ −ihTΨðxÞΨ̄ðx0Þi, and then by replacing it by
½Sðx; x0Þ − Sðx; x0ÞAdð4Þ�, where Sðx; x0ÞAdð4Þ denotes the
DeWitt-Schwinger subtractions up to fourth adiabatic
order, and then taking the limit x → x0.
A convenient way to regularize potential infrared diver-

gences is by introducing a parameter s > 0 in the theory
(that will be sent to zero at the end of the calculation),
replacing the wave equation DΨ ¼ 0 by ðDþ sÞΨ ¼ 0,
where D≡ iβμ∇μ [30]. Therefore,

∇μj
μ
DðxÞ ¼ ∇μ

�
1

4
Ψ̄ðxÞβμβ5ΨðxÞ

�

¼ −i
4
½Ψ̄ðxÞD⃖β5ΨðxÞ − Ψ̄ðxÞβ5D⃗ΨðxÞ�

¼ lim
s→0
x→x0

−i
2
sΨ̄ðxÞβ5Ψðx0Þ

¼ lim
s→0
x→x0

−i
2
sTr½β5ΨðxÞΨ̄ðx0Þ�; ð5:2Þ

where we have used fβμ; β5g ¼ 0. If we now make a choice
of vacuum state j0i, we obtain10

h∇μj
μ
Di ¼ lim

s→0
x→x0

1

2
sTr½β5Sðx; x0; sÞ�: ð5:3Þ

The renormalized expectation value is then given by

h∇μj
μ
Diren¼ lim

s→0
x→x0

1

2
sTr½β5ðSðx;x0;sÞ−Sðx;x0;sÞAdð4ÞÞ�: ð5:4Þ

In this expression, Sðx; x0; sÞ contains the information about
the vacuum state, while the role of Sðx; x0; sÞAdð4Þ is to

10We choose x0 > x00 without loss of generality, so that
TΨðxÞΨ̄ðx0Þ ¼ ΨðxÞΨ̄ðx0Þ.
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remove the potential ultraviolet divergences, which are
the same for all vacua. It is convenient to write
Sðx; x0; sÞAdð4Þ ¼ ½ðD − sÞGðx; x0; sÞ�Adð4Þ (D acts on the
x-argument), where11

Gðx; x0; sÞ ∼ ℏΔ1=2ðx; x0Þ
16π2

×
X∞
k¼0

Ekðx; x0Þ
Z

∞

0

dτe−iðτs2þ
σðx;x0Þ
2τ ÞðiτÞðk−2Þ

ð5:5Þ

where σðx; x0Þ is half of the geodesic distance squared
between x and x0, Δ1=2ðx; x0Þ is the Van Vleck-Morette
determinant, and the functions Ekðx; x0Þ are the DeWitt
coefficients, which are geometric quantities, built from the
metric and its first 2kth derivatives. We only need the value
of these coefficients when x ¼ x0. For manifolds without
boundaries, they are [31,32]

E0ðxÞ ¼ I;

E1ðxÞ ¼
1

6
RI−Q;

E2ðxÞ ¼
�
1

72
R2 −

1

180
RμνRμν þ 1

180
RαβμνRαβμν −

1

30
□R

�
I

þ 1

12
WμνWμν þ 1

2
Q2 −

1

6
RQþ 1

6
□Q;

where the expressions for Wμν ≡ ½∇μ;∇ν� and QðxÞ are
given in (4.15) and (4.14), respectively. Here, R, Rμν, and
Rαβμν are the Ricci scalar, Ricci tensor, and Riemann
curvature tensor.
Because of the symmetry of the classical action, the

contribution of Sðx; x0; sÞ to (5.4) vanishes for all choices
of vacuum state. Therefore, h∇μj

μ
Diren arises entirely from

the subtraction terms, Sðx; x0; sÞAdð4Þ. This implies that
h∇μj

μ
Diren is independent of the choice of vacuum. Notice

that the same occurs in the calculation of other anomalies,
such as the fermionic chiral anomaly or the trace anomaly.
It turns our that only the terms with k ¼ 2 in (5.5)

produce a nonvanishing contribution. Furthermore, we do
not need to consider terms involving derivatives of
E2ðx; x0Þ since they involve five derivatives of the metric
and hence are of fifth adiabatic order. Taking into account
that

Tr½β5E2ðx; xÞÞ� ¼ i
1

3
Rαβμν

⋆Rαβμν ð5:6Þ

where ⋆Rαβμν ¼ 1
2
ϵαβσρRσρ

μν is the dual of the Riemann
tensor, Eq. (5.4) produces

h∇μj
μ
Diren ¼ −

ℏ
96π2

Rαβμν
⋆Rαβμν: ð5:7Þ

Appendix G contains details of the intermediate steps in
this computation. A few comments are in order now:
(1) This result reveals that quantum fluctuations spoil

the conservation of the axial current jμD and break
the classical symmetry under electric-magnetic (or
chiral) transformations.

(2) The pseudoscalar Rαβμν
⋆Rαβμν is known as the

Chern-Pontryagin density (its integral across the
entire spacetime manifold is the Chern-Pontryagin
invariant).

(3) It is important to notice the parallelism with the
chiral anomaly for spin-1=2 fermions. The compu-
tations in that case would be very similar, except that
one would have to use structures associated with
spin-1=2 fields, rather than spin 1. This would
change only the numerical coefficient in (5.7).

B. Path integral formalism

The functional integral for the theory under consider-
ation is12

Z ¼
Z

DΨ̄DΨei=ℏS½Ψ;Ψ̄�: ð5:8Þ

The strategy of Fujikawa’s approach to the computation
of anomalies using path integrals is the following. The
generating functional Z is invariant under the replacement
ðΨ; Ψ̄Þ → ðΨ0 ¼ eiβ5θΨ; Ψ̄0 ¼ Ψ̄eiβ5θÞ since this is just a
change of variables and the path integral remains invariant
under such a change. However, the two components of the
integrand, the measure and the action, could change under
the transformation. Noether’s theorem—in the version in
which one considers the parameter of the transformation
θðxÞ to be a spacetime function of compact support—tells
us that δS ¼ −

R
d4x

ffiffiffiffiffiffi−gp
θðxÞ∇μj

μ
D. On the other hand, the

integral measure DΨ̄DΨ could change by a nontrivial
Jacobian, DΨ̄DΨ → JDΨ̄0DΨ0. Then, the invariance of Z
implies that these two changes must compensate each

other; i.e., J · e−i=ℏ
R

d4x
ffiffiffiffi−gp

θðxÞh∇μj
μ
Di must be equal to 1.

From this we see that quantum anomalies appear for those

11This expression for Gðx; x0; sÞAdð4Þ is obtained by writing
Gðx; x0; sÞAd first in terms of its heat kernel Kðτ; x; x0Þ,
Gðx; x0; sÞAd ¼ iℏΔ1=2ðx; x0Þ R∞

0 dτe−iðτs2þ
σðx;x0 Þ

2τ ÞKðτ; x; x0Þ, and
then by using the asymptotic expansion Kðτ; x; xÞ ∼
−i
16π2

P∞
k¼0ðiτÞk−2EkðxÞ for τ → 0. See e.g., [31] for further details.

12As usual, the inclusion of the Lorentz gauge introduces two
ghost scalar fields. These fields contribute to certain observables,
such as the trace anomaly. However, one can check explicitly that
they do not affect the computation of h∇μj

μ
Di. It is for this reason

that we have not written their contribution to the path integral.
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classical symmetries that do not leave the measure of the
path integral invariant, i.e., J ≠ 1. The value of h∇μj

μ
Di can

then be determined from J. The goal of this section is to
compute these quantities.
The Jacobian J can be determined by using standard

functional analysis techniques applied to the wave
operator D2, where D ¼ βμ∇μ. Consider the space of
square-integrable fields ΨðxÞ with respect to the product
hΨ1;Ψ2i ¼ α

R
d4x

ffiffiffiffiffiffi−gp Ψ†
1Ψ2 [see Appendix F for

further details, particularly the discussion around expres-
sions (F8)], and α > 0 is an arbitrary real parameter
with dimensions of inverse action.13 In terms of the
original variables A� and H�, the norm of ΨðxÞ
reads hΨ;Ψi ¼ α

R
d4x

ffiffiffiffiffiffi−gp ½2jAþj2 þ 2jHþj2� ≥ 0.
It is easy to check that the operatorD2 is self-adjoint with

respect to the product hΨ1;Ψ2i. The self-adjointness of D2

guarantees the existence of an orthonormal basis fΨng
made of eigenfunctions, D2Ψn ¼ λ2nΨn. We will denote by
an the components of a vector Ψ in this basis. An electric-
magnetic rotation Ψ → Ψ0 ¼ eiθβ5Ψ can now be expressed
as a change of the components an → a0n ¼

P
m Cnmam,

with Cnm ¼ hΨn; eiθβ5Ψmi. With this, the Jacobian of the
transformation reads

DΨ̄DΨ → JDΨ̄0DΨ0; with

J ¼ ðdetCÞ2 ¼ e2Tr½lnC� ¼ ei2
P

n
hΨn;β5θΨni: ð5:9Þ

Then, the invariance of the path integral implies that,
quantum mechanically,

h∇μj
μ
Diren ¼ 2ℏα

X∞
n¼0

Ψ̄nβ5Ψn: ð5:10Þ

To evaluate this expression we again use the heat-kernel
approach. The kernel of the equation, D2Ψ ¼ 0, is [31]14

Kðτ; x; x0Þ ¼ −4α
X∞
n¼0

e−iτλ
2
nΨnðxÞΨ̄nðx0Þ: ð5:11Þ

Then

h∇μj
μ
Diren ¼

−1
2

ℏlim
τ→0

Tr½β5Kðτ; x; xÞ� ¼ i
ℏ

32π2
Tr½β5E2�

¼ −
ℏ

96π2
Rαβμν

⋆Rαβμν; ð5:12Þ

where in the second equality we have used the expansion of
Kðτ; x; x0Þ for τ → 0, written in footnote, and in the last
equality we have used (5.6).
Recall that the path integral produces transition ampli-

tudes for time-ordered products of operators between the
“in” and “out” vacuum. However, the result for h∇μj

μ
Diren

comes entirely from the asymptotic terms in the heat kernel,
which are the same for all vacua. Therefore, the result
(5.12) agrees with the expectation value of ∇μj

μ
D in any

vacuum state.

VI. CONCLUSIONS

The apparently trivial invariance of the source-free
Maxwell’s equations under duality transformations
Fμν → ⋆Fμν has interesting physical consequences. This
mapping can be extended to a continuous “rotation”
Fμν → cos θFμν þ sin θ⋆Fμν, which can be proven to be a
symmetry of Maxwell’s action both in flat and curved
spacetimes. Noether’s theorem then provides the existence
of a conserved current and the associated constant of
motion, which describes the polarization state of electro-
magnetic radiation. The main goal of this paper is to show
that this conservation law does not survive the quantization
in curved spacetimes, and an anomaly arises in the form
of (5.12).
To meet our goal, we have rewritten Maxwell’s theory by

using self-dual and anti-self-dual variables. These fields
transform under irreducible representations of the Lorentz
group and describe the two chiral sectors of the theory. In
this language, Maxwell’s electric-magnetic rotations reduce
to an ordinary chiral transformation, which in the absence
of charges and currents becomes a symmetry of the
classical theory. In this sense, our result can be understood
as the spin-1 generalization of the spin-1=2 chiral anomaly.
Although anomalies arise mathematically as a conse-

quence of taming ultraviolet divergences via regularization
and renormalization, they have low-energy implications, as
stressed, e.g., in [33]. To give some examples, in two-
dimensional spacetimes the trace anomaly implies the
Hawking effect [34], and the fermionic axial anomaly is
closely related to the Schwinger pair creation effect [35].
Similarly, the electric-magnetic duality anomaly found in
this paper is expected to have interesting physical appli-
cations in astrophysics, cosmology, and condensed matter
systems. This paper has been devoted to discussing the
details of theoretical formalism underlying the computation
of this anomaly. A detailed analysis of its physical
consequences will be the focus of future publications. In
particular, we expect that gravitational dynamics will be
able to produce net circular polarization on photons
through asymmetric creation of right and left quanta.
Some preliminary ideas were summarized in [36], where
applications related to gravitational collapse and mergers in
astrophysics were suggested.

13It is introduced in order to make the product dimensionless
and, although α ¼ ℏ−1 would be a natural choice, we leave it
unspecified to make manifest that physical observables are inde-
pendent of it; it cancels out in intermediate steps.

14The factor −4 appears as a consequence of the fact that the
pair of spinor fields that are canonically conjugated are Ψ and
Ψ̄—and not Ψ and ∂L

∂∂ tΨ
¼ − 1

4
Ψ̄.
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APPENDIX A: NOETHER CURRENT

Here we provide a few more details about the variation of
the Lagrangian density (2.4) under the infinitesimal trans-
formation (2.3). We obtain

δL ¼ ∂L
∂Aν

δAν þ
∂L

∂∇μAν
δ∇μAν ¼ −

ffiffiffiffiffiffi
−g

p
Fμν∇μδAν

¼ −
ffiffiffiffiffiffi
−g

p
Fμν∇μZν: ðA1Þ

The equality ⋆F¼dZþG leads to F¼−⋆dZ−⋆G. Then
⋆GμνGμν ¼ ð⋆Fμν−dZμνÞð−ð⋆dZÞμν−FμνÞ ¼ dZμνð⋆dZÞμν−
Fμν⋆Fμνþ2dZμνFμν, from which we get

δL ¼ −
ffiffiffiffiffiffi
−g

p 1

2
∇μðAν

⋆Fμν− Zν
⋆dZμνÞ

−
1

4

ffiffiffiffiffiffi
−g

p ⋆GμνGμν: ðA2Þ

The last term is equal to the product of the electric and
magnetic parts of G and, since the latter vanishes in one
frame, ⋆GμνGμν ¼ 0 in any frame. Then δL is the diver-
gence of a current, δL ¼ ffiffiffiffiffiffi−gp ∇μhμ, which implies that the
action remains invariant.
The Noether current is then given by

jμD ¼ 1ffiffiffiffiffiffi−gp ∂L
∂∇μAν

δAν − hμ

¼ 1

2
½Aν

⋆Fμν− Zν2Fμν − Zνð⋆dZÞμν�; ðA3Þ

which agrees with (2.5) after using dZ ¼ ⋆Fþ G. Acting
now with the derivative operator on (A3), one finds

∇μj
μ
D ¼ 1

2
½∇μAν

⋆Fμν − 2∇μZνFμν

− 2Zν∇μFμν −∇μZνð⋆dZÞμν�

¼ 1

2
½∇μAν

⋆Fμν − ð⋆Fμν þ GμνÞFμν − 2Zν∇μFμν

−
1

2
ð⋆Fμν þ GμνÞð−Fμν þ ⋆GμνÞ�

¼ −Zν∇μFμν

(the Bianchi identity was used in the first equality) which
vanishes on shell.

APPENDIX B: THE αab
I TENSOR

This Appendix contains additional properties of the αabI
tensors used in the main body of this paper. The properties
for the tensors ᾱabI are obtained by complex conjugation.

1. Definition and properties

Let fta; xa; ya; zag be an inertial coordinate frame of
contravariant vectors in 4D Minkowski spacetime.
Consider the following set of complex, antisymmetric
tensors:

αab1 ¼ −2ðt½axb� þ iy½azb�Þ; ðB1Þ

αab2 ¼ −2ðt½ayb� þ iz½axb�Þ; ðB2Þ

αab3 ¼ −2ðt½azb� þ ix½ayb�Þ; ðB3Þ

where the square brackets indicate antisymmetrization of
indices. It is straightforward to check that they are self-dual,
i.e., i⋆αabI ≡ i 1

2
ϵabcdα

cd
I ¼ αabI . These three tensors form an

orthogonal basis in the space of self-dual (complex) tensors
in Minkowski spacetime. Given any such tensor Fabþ , we
can write it as

Fabþ ¼ HIþαabI ; ðB4Þ

where HIþ indicates the components of Fabþ in this basis.
This last equation can alternatively read as follows. Let V
be a three-dimensional complex vector space, made of
vectors HIþ. Let fXI; YI; ZIg be a basis of one-forms in the
dual space V�. Equation (B4) tells us that αabI is an
isomorphism between V and the space of self-dual tensors.
An isomorphism can be obtained by the identifying basis

αabI ≡ αab1 XI þ αab2 YI þ αab3 ZI: ðB5Þ

This isomorphism can be used to endow V with a product
hIJ ¼ 1

4
ηabηcdα

ac
I αbdJ , which, in the basis we started with,

has components equal to minus the Kronecker delta, −δIJ.
Spacetime indices a; b; c; � � � are raised and lowered with
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Minkowski metric ηab, while “internal” indices I; J; K; � � �
are raised and lowered with hIJ.
We collect here some useful properties of the tensors αabI ,

which can be checked by direct computation:

αabIα
ab

J ¼ 4hIJ; ðB6Þ

αab
IαcdI ¼ 4þPabcd; ðB7Þ

αabIᾱ
ab

_J ¼ 0; ðB8Þ

αabIα
cb

J ¼ hIJηac − ½þΣIJ�ac: ðB9Þ

In property (B7), þPabcd ¼ 1
4
ðηacηbd − ηadηbc þ iϵabcdÞ is

the projector on self-dual tensors in Minkowski spacetime,
and ½þΣIJ�ac is the generator of the (0,1) representation of
the Lorentz group, whose explicit form is ½þΣIJ�ab ¼
−iϵIJKαabK . Recall that, according to our sign conventions,
we have ηab ¼ tatb − xaxb − yayb − zazb and ϵabcd ¼
−4!t½axbyczd� in this basis. On the other hand, taking the
symmetric and antisymmetric parts of (B9) yields the
“commutation” and “anticommutation” properties of αabI :

α½abIαc�bJ ¼ −½þΣac�IJ; ðB10Þ

αðabIαcÞbJ ¼ ηachIJ: ðB11Þ

In a similar manner, the tensor

ᾱab_I ≡ ᾱab1 X _I þ ᾱab2 Y _I þ ᾱab3 Z _I ðB12Þ

provides an isomorphism between the vector space V̄, the
complex conjugate of V, and the space of anti-self-dual
tensors in Minkowski spacetime,

Fab− ¼ H _I
−ᾱ

ab
_I
: ðB13Þ

The analogs of the properties (B6)–(B9) hold, replacing
þPabcd by the anti-self-dual projector −Pabcd, which is
simply the complex conjugate of þPabcd, and ½þΣIJ�ac by
the generator of the (1,0) representations ½−Σ _I _J�ac.
The generalization to curved spacetimes is straightfor-

ward. Given a field of vierbeins eμaðxÞ, i.e., a field of
orthonormal basis of tangent vectors in the spacetime
manifold ðM; gμνÞ, the αμνI tensor is constructed from the
Minkowski space tensor αabI by

αμνI ðxÞ ¼ eμaðxÞeνbðxÞαabI : ðB14Þ

This makes it obvious that the properties (B6)–(B9)
generalize to curved spacetimes by simply replacing the
tensors ηab and ϵabcd by their counterparts in curved
geometries, gμν and ϵμναβ.

2. Covariant derivative operator

In this Appendix we provide some details regarding the
extension of the action of the covariant derivative to
indices I; J; K;….
Recall that the vierbein eμaðxÞ at a given point of the

spacetime manifold ðM; gμνÞ provides an isometry between
the tangent space at x and Minkowski spacetime. The
extension of the action of the covariant derivative ∇μ on
“internal” indices a; b; c;… is obtained by demanding
∇μeaνðxÞ ¼ 0. This defines the connection one-form ωμ,

ωab
μ ¼ eaν∂μebν þ Γν

μαeaνeαb; ðB15Þ

where Γν
μα are the Christoffel symbols. Recall that ωab

μ is

antisymmetric,ωab
μ ¼ω½ab�

μ (as a consequence of∇μgαβ ¼ 0).
To further extend the action of ∇μ to the complex vector
space V, we follow the standard strategy. Namely, by
linearity the difference between any two possible extensions
is characterized by

ð∇μ − ∇̄μÞHI ¼ −CμI
JHJ; HI ∈ V�: ðB16Þ

If we choose ∇̄μ to be the ordinary derivative associated with
a system of coordinates, ∇̄μ ¼ ∂μ, we see that there are as
many derivative operators as mixed tensors CμI

J. The most
natural condition to single out one of them is to demand that
∇μ annihilates the isomorphism ααβI ðxÞ,

0≡∇μα
αβ
I ¼ ∂μα

αβ
I þ Γα

μρα
ρβ
I þ Γβ

μρα
αρ
I − CμI

JααβJ :

Now using ααβIðxÞ ¼ eαaðxÞeβbðxÞαabI , together with the
properties of αabI , we obtain from the previous equation
the form of CμI

J,

CμI
J ¼ 1

2
eaαð∂μeαcÞαJabαcbI þ 1

2
αJαβΓα

μρα
ρβ
I

¼ 1

2
αJab½eaαð∂μeαcÞ þ Γν

μαeaνeαc �αcbI

¼ 1

2
αJabαIc

bωac
μ ¼ 1

2
α½abJαc�bIωμac

¼ 1

2
ωμ

ab½þΣab�IJ ðB17Þ

where ½þΣab�IJ is the generator of the (0,1) representation of
the Lorentz group. Therefore, the covariant derivative acting
on the field Hþ

I is given by

∇μH
þ
I ¼ ∂μH

þ
I −

1

2
ωab
μ ½þΣab�IJHþ

J : ðB18Þ

Using the curved-space version of property (B7), one
concludes that the condition ∇μα

αβ
I ¼ 0 in turn leads to

the condition ∇μα
I
αβ ¼ 0 for the dual space, yielding
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∇μHIþ ¼ ∂μHIþ −
1

2
ωab
μ ½þΣab�IJHJþ: ðB19Þ

Further useful equalities can be found. Looking at
property (B6) in curved space, the above conditions imply
that ∇μhIJ ¼ 0. A similar derivation shows that the
covariant derivative of the tensors hIJ or hIJ ¼ hIKhKJ also
vanishes. Finally, the covariant derivative of the totally
antisymmetric tensors ϵIJK is zero. This is readily seen
by noting from (B9) that ∇μ

þΣαβ
IJ ¼ 0. Recalling that

½þΣIJ�αβ ¼ −iϵIJKααβK , then one concludes ∇μϵIJK ¼ 0.
By complex conjugating (B18), we obtain

∇μH
_I
− ¼ ∂μH

_I
− −

1

2
ωab
μ ½−Σab� _I _JH _J

−; ðB20Þ

where ½−Σab� _I _J is the generator of the (1,0) representation of
the Lorentz group. The tensors h _I _J, h

_I _J, δ _I_J, and ϵ _I _J _K are
also annihilated by ∇μ.

3. 3 + 1 spacetime decomposition

A globally hyperbolic spacetime can always be foliated
by a one-parameter family of spatial hypersurfaces Σt,M ≃
R × Σt [37]. If we denote by nμ the unit timelike vector
field everywhere orthogonal to Σt, then hμν ¼ gμν − nμnν is
the induced spatial metric on Σt.
We can now use the isomorphism αμνI defined in (B5) to

build the following mixed tensors:
(i) γμI ≔ nναμνI provides an isomorphism between com-

plex vectors in V and (spatial) vectors in the tangent
space of Σt.

(ii) γμ_I ≔ nνᾱμν _I is similar to the previous map replacing
V by its complex-conjugated space V̄.

(iii) γ _II ≔ γμI γ
_I
μ provides an isomorphism between V

and V̄.
(iv) ϵIμν ≔ γIβnαϵ

αβμν defines a totally antisymmetric,
“purely spatial” tensor with mixed indices.

From the last definition one can derive an identity that will
be useful in later calculations,

i2ϵIμν ¼ αμνI − ᾱμν _JγI_J: ðB21Þ

As we have already mentioned, αμνI provides a one-to-
one correspondence between self-dual tensors Fμνþ and
elements HIþ ∈ V. We can now also build an isomorphism
between self-dual tensors Fμνþ and purely spatial vectors in
spacetime constructed as Hμ

þ ≡ nνF
μν
þ . Indeed,

Hμ
þ ≡ nνF

μν
þ ¼ nνα

μν
I HIþ ¼ γμIH

Iþ: ðB22Þ

From the above definitions, and using (B7) and (B9), one
can easily verify the following properties,

γνIγ
βI ¼ αμνI nμαρβInρ ¼ −nνnβ þ gνβ ¼ hνβ; ðB23Þ

γνIγνJ ¼ αμνInμαρνJnρ ¼ αðμνInμαρÞνJnρ ¼ hIJ: ðB24Þ

This shows that γνI indeed provides an isometry between
spatial complex vectors in Σt and elements of V. Notice that
∇μγ

ν
I ≠ 0, but the spatial derivative of HIþ satisfies

DμH
μ
þ ¼ DIHIþ:

DμH
μ
þ ¼ hμν∇μHþ

ν ¼ hμν∇μðγIνHþ
I Þ

¼ γμI∇μH
þ
I þ hμνð∇μγ

I
νÞHþ

I

¼ γμI∇μH
þ
I þ hμνασνIðnμaσ þ KμσÞHþ

I

¼ γμI∇μH
þ
I ≡DIHIþ; ðB25Þ

where we have used ∇μnσ ¼ nμaσ þ Kμσ , aσ is the
4-acceleration of the vector field nν, and Kμν ¼ KðμνÞ is
the extrinsic curvature of the three-dimensional submanifold
Σt. Furthermore, ifDIHIþ¼0, thenHIþ can be written as the
“curl” of a complex potential, HIþ¼ iϵIμν∇μAþ

ν . Indeed,

DIHIþ ¼ DαHαþ ¼ iDαϵ
αμν∇μAþ

ν ¼ iϵαμνDα∇μAþ
ν

¼ iϵαμν∇α∇μAþ
ν

∝ ϵαμνRαμνβA
β
þ ¼ 0; ðB26Þ

whereRαμνβ is the Riemann tensor, and we have used (B25),
(B22), and (B23).

4. Extended αI
ab and its algebraic properties

This section provides some details regarding the
“extended αμνI -tensors,” defined by extending the range
of the index I to run from 0 to 3, and setting αμν0 ¼ −gμν.
We begin by defining α in Minkowski spacetime. Let

V̂ ≡ V ⊕ C, equipped with a Lorentzian flat metric ηIJ, be
our “internal” vector space, where the indices I, J run from
0 to 3. The complex three-dimensional vector space V,
defined in Appendix B 1, is now a subspace of V̂. Let nI
denote a unit timelike vector (ηIJnInJ ¼ 1) orthogonal to
the V subspace (i.e., nImIηIJ ¼ 0, for all mJ ∈ V). It spans
a one-dimensional vector space. The metric tensor in V̂ can
be written as ηIJ ¼ nInJ þ hIJ, where hIJ is the metric
tensor in V used in Appendix B 1. Let XI, YI , ZI , nI be an
orthonormal basis of V̂�, the dual space of V̂, with
nI ¼ ηIJnJ. We now define the extended tensor αμνI by
extending expression (B5) as follows:

αabI ≡ αab1 XI þ αab2 YI þ αab3 ZI − ηabnI: ðB27Þ

Therefore, we have

αabI ¼ αabJ hJI − nIηab; ðB28Þ
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where αabJ hJI (the projection of αabI on V) is simply the αabI
tensor used in the previous subsection, before extending the
range of indices I; J; K;….
The tensor αabI defined in (B27) maps vectors in V̂ to

tensors in Minkowski spacetime of the form

αI∶ HIþ → αabI HIþ ¼ Fabþ −H0þηab: ðB29Þ

Here, Fabþ is an antisymmetric self-dual tensor that in
Minkowski spacetime transforms under the (0,1) irreduc-
ible representation of the Lorentz group, while H0þ is a
scalar function.
Thus, the extended tensors αabI map vectors in V̂ to

tensors in Minkowski spacetime that transform under
Lorentz under the ð0; 1Þ ⊕ ð0; 0Þ representation.
The properties (B6)–(B9) must be replaced by

αabIα
ab

J ¼ 4ηIJ; ðB30Þ

αab
IαcdI ¼ 4þPabcdþ ηabηcd ¼ 4−Pacbdþ ηacηbd; ðB31Þ

αabIᾱ
ab

_J ¼ 4nIn _J; ðB32Þ

αabIα
cb

J ¼ ηIJη
ac − þMac

IJ; ðB33Þ

where þMac
IJ ≡ þΣac

IJ þ 2αabKhKðInJÞ ¼ −4þPac
bdγ

b
ðIγ

d
JÞ,

15

and þΣac
IJ is the generator of the ð0; 1Þ ⊕ ð0; 0Þ representa-

tion of the Lorentz group.16 From (B33), we obtain the
commutation and anticommutation relations

α½abIαc�bJ ¼ −þMab
IJ; ðB34Þ

αðabIαcÞbJ ¼ ηabηIJ: ðB35Þ

The generalization of these properties to curved space-
times is done, again, by using a vierbein or orthonormal
tetrad eμaðxÞ, to write the relation between the curved
spacetime αI-matrices and the flat spacetime ones,

αμνI ðxÞ ¼ eμaðxÞeνbðxÞαabI : ðB36Þ

The covariant derivative acting on the extended indices
I; J; K;… can be determined following the arguments in
Appendix B 2, but now we demand that ∇μ annihilates the
extended tensor αμνI , ∇αα

μν
I ¼ 0. As expected, the result is

∇μH
þ
I ¼ ∂μH

þ
I −

1

2
ωab
μ

þΣabI
JHþ

J ; ðB37Þ

where þΣabI
J is the generator of the ð0; 1Þ ⊕ ð0; 0Þ Lorentz

representation. The properties of the conjugate tensors ᾱab
_I

are obtained in a similar way.
We finish this Appendix by deriving a few useful

relations. First, from (B30) we obtain ∇μηIJ ¼ 0.
Second, by acting with gμν∇α on Eq. (B28), and by using
∇αα

μν
I ¼ 0, we obtain ∇ρnI ¼ 0 (since ηIJ ¼ nInJ þ hIJ,

we also conclude that ∇μhIJ ¼ 0). Recalling (B28) again,
this last property implies that the covariant derivative
defined in this section also annihilates the projection of
αμνI into V, namely, ∇αðαμνI hIJÞ ¼ 0.

APPENDIX C: MAXWELL EQUATIONS
IN CURVED SPACETIME

This Appendix shows the equivalence between the
equations of motion for the potentials (3.25) and the
fields (3.24).
First, we show that the equation for the potential

ᾱμν_I ∇μAþν ¼ 0 implies the equation for the field
αμνI ∇μHIþ ¼ 0. (We focus on self-dual fields; the derivation
for anti-self-dual fields can be obtained by complex
conjugation.) To prove this, notice first that using the
identity (B21), the equation for the potential implies
that 2iϵIαβ∇αAþβ ¼ αμνI∇μAþν. Then, recalling that
HIþ ≡ iϵIμν∇μAþ

ν , we see that when Aþν satisfies the
equations of motion, the relation between the field and
the potential can be rewritten asHIþ ¼ 1

2
αμνI∇μAþν. Acting

now with αδρI ∇ρ, we obtain

αδρI ∇ρHIþ ¼ 1

2
∇ρα

δρ
I αμνI∇μAþν¼−2∇ρ∇½δAρ�

þ ¼ 0; ðC1Þ

where we have used the fact that −4αδρI αμνI is a projector on
self-dual fields and, in the last equality, all solutions of
ᾱμν_I ∇μAþν ¼ 0 are also solutions of the second-order

equations ∇ρ∇½δAρ�
þ ¼ 0 [remember the discussion below

Eq. (3.25)].
Next, we want to show the reverse; i.e., starting from

αμνI ∇μHIþ ¼ 0, we want to show that there exists a potential
Aþν, related to HIþ by HIþ ¼ iϵIμν∇μAþν, that satisfies
ᾱμν_I ∇μAþν ¼ 0.
We begin by noticing that the identity ∇μα

αβ
I ¼ 0 allows

us to write the field equations as ∇μðαμνI HIþÞ ¼ 0. Because
αμνI HIþ is a self-dual tensor, this equation implies that the
two-form defined by Fþμν ≡ αμνIHIþ is closed,17 dFþ ¼ 0.

15We use the same notation for γμI ≔ nνα
μν
I with the extended

alpha tensors, as well as the rest of the mixed tensors
in Appendix B 3. Its distinction is clear from the context.

16Note that we denote the generator of the ð0; 1Þ ⊕ ð0; 0Þ
representation with the same symbol as the (0,1) generator that
we used in the previous subsections; the ð0; 1Þ ⊕ ð0; 0Þ generator
has more components than the (0,1) one; namely, the components
corresponding to I or J equal 0. However, these components are
all equal to zero; hence, we find it appropriate to use the same
name for the two generators.

17Notice that for self-dual or anti-self-dual two-forms,
∇μwμν ¼ 0 if and only if ∇μ

⋆wμν ¼ 0, the latter formula being
equivalent to dw ¼ 0.
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This allows the introduction of a potential one-form Aþμ,
Fþ ¼ dAþ. Then, dAþ is self-dual; that is to say, the
contraction of ᾱαβ_I and dAþ vanishes. But this is precisely

the equation of motion we are looking for, ᾱαβ_I ∇αAþβ ¼ 0.
What remains is to prove that HIþ and Aþμ are related by
means of a curl. To see this, we notice that since
Fþμν ≡ αμνIHIþ, we have αμνIHIþ ¼ 2∇½μAþν�. Multiplying
both sides by αμνJ producesHJþ ¼ 1

2
αμνJ∇½μAþν�. Now using

the relation (B21) and the equation for Aþβ, this relation
reduces to HJþ ¼ iϵJμν∇μAþν, which is what we wanted
to prove.

APPENDIX D: DERIVING EQUATIONS OF
MOTION FROM FIRST-ORDER ACTION

In this Appendix we derive the equation of motion from
the first-order action, described in Sec. IVA. We begin with
the derivation of Eq. (4.2) from the action (4.1). Recall that
in this action we have not yet introduced the Lorentz gauge,
and the indices I; J;… and _I; _J;… take values 1,2,3.
From the form of the action (4.1),

SM½Aþ;A−�

¼−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½H _I
−ᾱ

μν
_I∇μAþ

ν þHIþαμνI∇μA−
ν �; ðD1Þ

we have

0 ¼ δSM
δAþ

ν
¼ 1

2
ᾱμν _I∇μH

_I
− þ∇μ

i
2
ϵIμνααβI∇αA−

β : ðD2Þ

We now use the identity (B21) (note that ∇μϵ
Iμν ≠ 0) and

(B7) to write

0 ¼ 1

2
ᾱμν _I∇μH

_I
− þ 1

4
αμνIααβI∇μ∇αA−

β

−
i
2
∇μᾱ

μν _Iϵαβ _I∇αA−
β −

1

4
ᾱμν _Iᾱαβ _I∇μ∇αA−

β

¼ 1

2
ᾱμν _I∇μH

_I
− −

i
2
∇μᾱ

μν _Iϵαβ _I∇αA−
β

þ ½þPμν�αβ∇μ∇αA−
β − ½−Pμν�αβ∇μ∇αA−

β : ðD3Þ

Recalling that H _I
− ¼ −iϵ _Iμν∇μA�

ν , and using the Bianchi
identity ϵabcdRbcde ¼ 0, we get

0 ¼ ᾱμν _I∇μH
_I
− þ i

2
ϵμναβ∇μ∇αA−

β

¼ ᾱμν _I∇μH
_I
− þ i

4
ϵμναβRμαβσAσ

−

¼ ᾱμν _I∇μH
_I
−: ðD4Þ

Finally, as shown in Appendix C, these equations are
equivalent to αμνI ∇μA−

ν ¼ 0. Similarly, by differentiating

the action with respect to A−, we obtain αμνI∇μHIþ ¼ 0,
which implies ᾱμν_I ∇μAþ

ν ¼ 0.
Now we again derive the equations of motion, but

starting from the action that incorporates the Lorenz-gauge
condition. As explained in Sec. IVA, this gauge condition
is incorporated by extending the range of the indices
I; J;… and _I; _J;… to take values 0,1,2,3, by introducing
Lagrange multipliers H0

�, and defining αμν0 ¼ −gμν. In
order to take advantage of the calculation done a few lines
above, we now keep the indices I; J;… and _I; _J;… running
from 1 to 3, and explicitly write the Lorenz-gauge fixing
term in the action:

S½A�;H0
�� ¼−

1

2

Z
dx4

ffiffiffiffiffiffi
−g

p ½H _I
−ᾱ

μν
_I∇μAþ

ν þHIþαμνI∇μA−
ν

−H0
−∇μA

μ
þ −H0þ∇μAμ

−�: ðD5Þ

Variation with respect to H0
� provides the Lorenz-gauge

condition: ∇μA
μ
� ¼ 0. Variation with respect to Aþ

ν yields

0 ¼ δS
δAþ

ν
¼ ᾱμν_I ∇μH

_I
− −

1

2
∇νH0

−: ðD6Þ

Let us first focus on the 0-component of this equation with
respect to the (arbitrary) spacetime decomposition used to
relateH� and Aμ

�. This is done by contracting (D6) with the
timelike vector nν. The term involving H _I

− vanishes
[D _IH

_I
− ¼ 0 by construction, see (B26)], and we obtain

nμ∇μH0
− ≡ ∂tH0

− ¼ 0. On the other hand, acting with ∇ν

on Eq. (D6), we get□H0
− ¼ 0; the term involvingH _I

− again
vanishes because ᾱμν_I ∇ν∇μH

_I
− ¼ 0.18 Now, if both

□H0
− ¼ 0 and ∂tH0

− ¼ 0 hold, then DIDIH0
− ¼ 0 holds.

Choosing that H0
− vanishes at spatial infinity, one gets

H0
− ¼ 0. With this, Eq. (D6) reduces to ᾱμν_I ∇μH

_I
− ¼ 0,

which is the correct equation of motion. An identical
reasoning can be applied for H0þ. Following the same
arguments as in Appendix C, we can write the (extended)
first-order equations of motion for the potentials as

αμνI ∇μA−
ν ¼ 0; ðD8Þ

with I ¼ 0, 1, 2, 3, the 0 component being the Lorentz-
gauge fixing.

18This last formula can be checked as follows:

ᾱμν_I ∇ν∇μH
_I
− ¼ ∇μ∇νᾱ

μν
_I
H _I

− ¼ ∇μ∇νFμν
−

¼ 1

2
Rμνα

μFαν
− þ 1

2
Rμνα

νFμα
−

¼ 1

2
RναFαν

− −
1

2
RμαFμα

− ¼ 0: ðD7Þ
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APPENDIX E: DERIVING THE NOETHER
CURRENT FROM FIRST-ORDER ACTION

In this section we derive the Noether current in first-order
formalism by working directly with the variables Aþ and
A− and the action functional (4.1).
The variations of the Lagrangian density L ¼ L½Aþ; A−�

under an infinitesimal electric-magnetic rotation of the
potentials, δA� ¼ ∓iδθA�, produces

δL¼ ∂L
∂Aþ

μ
δAþ

μ þ
∂L

∂∇μAþ
ν
δ∇μAþ

ν þc:c:

¼−
1

2
H _I

−ᾱ
μν

_Ið−iδθÞ∇μAþ
ν

−
1

2
iϵIμναρσI∇ρA−

σ ð−iδθÞ∇μAþ
ν þc:c:

¼ iδθ
2
H _I

−ᾱ
μν

_I∇μAþ
ν þ

iδθ
2
HIþαρσI∇ρA−

σ þc:c:¼0: ðE1Þ

We find that, unlike in second-order formalism, the duality
rotation leaves the Lagrangian invariant. The Noether
current is now constructed as

jμD ¼ ∂L
∂∇μAþ

ν
δAþ

ν þ c:c:

¼ −
1

2
H _I

−ᾱ
μν

_Ið−iδθÞAþ
ν

−
1

2
iϵIμναρσI∇ρA−

σ ð−iδθÞAþ
ν þ c:c:

¼ iδθ
2

½H _I
−ᾱ

μν
_IA

þ
ν −HIþαμνIA−

ν �

þ
�
−
δθ

2
ϵIμνAþ

ν α
ρσ

I∇ρA−
σ þ c:c:

�
: ðE2Þ

This expression agrees with the result obtained in Sec. II,
Eq. (2.5). Note that the last term in (E2) does not contribute
to the associated Noether charge, and it is proportional to
the equations of motion, vanishing on shell. It is not
difficult to find that it agrees exactly with the last term
in (2.5).

APPENDIX F: DEFINITION OF Ψ AND βμ AND
THEIR PROPERTIES

In this Appendix we define the fields Ψ introduced in
Sec. IV B, as well as the matrices βμ and β5, and discuss
their properties.
Given the complex potentials A�

μ and the self-dual and
anti-self-dual fields, HIþ and H _I

−, we define the object

Ψ ¼

0
BBB@

Aþν

HIþ
Aν
−

H− _I

1
CCCA: ðF1Þ

Note that all four components of this object are related: A−
μ

is the complex conjugate of Aþ
μ , and HIþ ¼ iϵIμν∇μAþ

ν , H
_I
−

is the conjugate ofHIþ. Therefore,Ψ is the spin-1 analog of
a Majorana spinor, whose upper and lower components are
related by complex conjugation (Majorana fields represent
real spinors with zero electric charge).
If we denote by X the vector space of allΨ, we define the

linear map βμ∶X → X by

βμΨ ¼ i

0
BBB@

ᾱμν _IH
_I
−

−αμνIAν
−

αμνI HIþ
−ᾱμν_I Aþ

ν

1
CCCA; ðF2Þ

which is well defined for all Ψ. In matrix notation

βμ ¼ i

0
BBB@

0 0 0 ᾱμν _I
0 0 −αμνI 0

0 αμνI 0 0

−ᾱμν_I 0 0 0

1
CCCA: ðF3Þ

Now define the product of two βμ as the composite
operation βμβν∶X → X, defined by ðβμβνÞΨ ¼ βμðβνΨÞ.
This is linear, and it leads to

βμβν ¼

0
BBBBB@

ᾱμα
_Jᾱνβ_J 0 0 0

0 αμα
IαναJ 0 0

0 0 αμαI ανβ
I 0

0 0 0 ᾱμα_I ᾱνα
_J

1
CCCCCA
: ðF4Þ

Using the properties (B34) and (B35) of the αI matrices,
one can easily write the symmetric and antisymmetric parts
of this expression in μ and ν; in particular, the symmetric
part produces the anticommutation relations written
in Eq. (4.9).
Define the “chiral” matrix β5 as a linear map β5∶X → X

by β5 ≡ i
4!
ϵμναββ

μβνβαββ. Manipulating this expression we
obtain
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β5 ¼
i
4!
ϵμναββ

½μβν�β½αββ�

¼ i
6
ϵμναβ

0
BBBBB@

4½þPμν�σρ½þPαβ�ρδ 0 0 0

0 1
4
½þMμν�IK½þMαβ�KJ 0 0

0 0 4½−Pμν�σρ½−Pαβ�ρδ 0

0 0 0 1
4
½−Mμν� _I _K½−Mαβ� _K _J

1
CCCCCA

¼

0
BBB@

−gσρ 0 0 0

0 −hIJ 0 0

0 0 gσρ 0

0 0 0 h _I
_J

1
CCCA: ðF5Þ

The tensor �P is the projector on (anti-)self-dual tensors
defined below (B9), and the tensors ½�Mαβ� were defined
below Eq. (B33). In the above calculation, we have used the
self-duality property, �i⋆P� ¼ P�. The map β5 has the
following properties:

β25 ¼

0
BBB@

gσρ 0 0 0

0 hIJ 0 0

0 0 gσρ 0

0 0 0 h _I
_J

1
CCCA; fβ5; βμg ¼ 0: ðF6Þ

A duality transformation can be implemented by means of
the linear operation Tθ∶X → X, with Tθ ¼ eiθβ5 , θ ∈ R.
Let X� be the dual space, the space of linear functionals

over X. Given Ψ ∈ X as in (F1), we define Ψ̄ ∈ X� by

Ψ̄ ≔ ðAνþ Hþ
I A−

ν H _I
− Þ: ðF7Þ

The action functional (4.7) is thus a well-defined quantity.
To construct a Hilbert space from X, we need to endow it
with an inner product. Note that, while the product Ψ̄Ψ ∈ C
is well defined, it does not produce a positive real number.
We can define a (positive-definite) inner product as follows:

hΨ1;Ψ2i ¼ α

Z
d4x

ffiffiffiffiffiffi
−g

p
Ψ̄1δΨ2; ðF8Þ

where α is an arbitrary positive real constant with dimen-
sions of inverse action (see footnote 13), and δ∶X → X is a
linear application defined by

δΨ ¼

0
BBBBB@

A−
ν

HI
−

Aνþ
Hþ

_I

1
CCCCCA

ðF9Þ

which in matrix notation reads

δ ¼

0
BBBBB@

0 0 δμν 0

0 0 0 γI_I
δνμ 0 0 0

0 γI_I 0 0

1
CCCCCA

ðF10Þ

(γI _I was defined in Appendix B 3). This operation is useful
since Ψ̄δΨ ≥ 0. By expanding the fields as in (F7) and (F9),
one checks that expression (F8) is real, and in particular
hΨ1;Ψ2i ¼ hΨ2;Ψ1i. Linearity with the second variable is
trivial.
The analog of this product for theDirac field is commonly

written simply as hΨ1;Ψ2i ¼ α
R
d4x

ffiffiffiffiffiffi−gp Ψ†
1Ψ2, where

the matrix δð¼ γ0Þ is implicit in Ψ† ≡ Ψ̄δ to simplify the
notation (see, e.g., Ref. [16]). Note, however, that the
presence of δ is required in order to make the operation
well defined regarding the position of indices. We use the
product (F8) in Sec. V B.

APPENDIX G: DETAILS IN THE CALCULATION
OF THE ELECTROMAGNETIC

DUALITY ANOMALY

This Appendix provides details of the intermediate
steps summarized in Sec. V regarding the computation
of h∇μj

μ
Diren. In that section we needed to compute

h∇μj
μ
Di ¼ lim

s→0
x→x0

1

2
sTr½β5Sðx; x0; sÞ�; ðG1Þ

where Sðx; x0; sÞAdð4Þ ¼ ½ðDx − sÞGðx; x0; sÞ�Adð4Þ, and with
the asymptotic expansion in (5.5). There is no need to
explicitly find the asymptotic expansion of Δ1=2ðx; x0Þ,
σðx; x0Þ, and Ekðx; x0Þ in the short-distance limit.
We show first that the derivative term, DxGðx; x0; sÞ,

does not contribute to h∇μj
μ
Di. From this contribution one
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only has to consider the k ¼ 0, 1 terms in the sum (5.5)
since the term with k ¼ 2 is of adiabatic order five. The
action of the derivative on Gðx; x0; sÞ produces three
contributions: one that goes with ∇x

μΔ1=2ðx; x0Þ, another
with∇x

μσðx; x0Þ, and another with∇x
μEkðx; x0Þ. The first two

are multiplied by Trfβμβ5EkðxÞg, and this quantity van-
ishes for both k ¼ 0, 1. Regarding the contribution of
∇x

μEkðx; x0Þ, it vanishes because of the limit s → 0. To see
this, notice that for k ¼ 0, 1, the factor ∇x

μEkðx; x0Þ appears
multiplied in the sum (5.5) by the following contributions,
respectively,

Z
∞

0

dτe−iðτs2þ
σðx;x0Þ
2τ ÞðiτÞ2 ¼ 2i

σðx; x0Þ þOðs2Þ ðG2Þ

Z
∞

0

dτe−iðτs2þ
σðx;x0Þ
2τ ÞðiτÞ ¼ 2i log sþOðs0Þ ðG3Þ

so the limit s → 0 in (G1) vanishes.
We show now that the other term contributing to

Sðx; x0; sÞAdð4Þ, sGðx; x0; sÞAdð4Þ, only provides a nonzero
result by means of the k ¼ 2 term in the asymptotic sum
(5.5). First notice that the limit x → x0 can be safely taken.

On the other hand, higher values of k in (5.5) provide
contributions of more than 4 derivatives of the metric to
Sðx; x0; sÞ, so they are of higher adiabatic order. The k ¼ 0
case vanishes because it is proportional to Trfβ5E0ðxÞg ¼
Trfβ5g ¼ 0. The k ¼ 1 term does not contribute either
because it is proportional to Trfβ5E1ðxÞg ¼ Trfβ5Qg,
and19

Trðβ5QÞ ¼ −2iRμναβTrIm

�
þPμνΣαβ − 1

4
þMμν−Σαβ

�

¼ 1

2
iRμναβTrIm½þMμν−Σαβ�

¼ −2iRμνIJεμναI ¼ 2iRμναρεμνασnρnσ ¼ 0:

Then, it only remains to calculate the k ¼ 2 term in the
asymptotic sum (5.5),

h∇μj
μ
Di ¼

iℏ
32π2

Trðβ5E2Þ

¼ iℏ
32π2

�
1

12
Trðβ5WμνWμνÞ þ 1

2
Trðβ5Q2Þ

�
ðG4Þ

with Wμν ≡ ½∇μ;∇ν� given in (4.15) and

QΨ≡ 1

2
β½αβμ�WαμΨ

¼ −
1

2
Rμναβ

0
BBB@

−2þPμνΣαβ 0 0 0

0 1
2
þMμνþΣαβ 0 0

0 0 −2−PμνΣαβ 0

0 0 0 1
2
−Mμν−Σαβ

1
CCCAΨ

where Σαβ
μν is the generator of the ð1=2; 1=2Þ representa-

tion of the Lorentz group, þΣαβ
IJ is the generator of the

ð0; 1Þ ⊕ ð0; 0Þ representation, −Σαβ
_I _J is the generator of

ð1; 0Þ ⊕ ð0; 0Þ, and �Pabcd ¼ 1
4
ðηacηbd − ηadηbc � iϵabcdÞ.

A lengthy but straightforward computation produces

Trðβ5WμνWμνÞ ¼ −2iRμναβ
⋆Rμναβ; ðG5Þ

Trðβ5Q2Þ ¼ iRμναβ⋆Rμναβ: ðG6Þ

With this, we obtain

Trðβ5E2Þ ¼ i
1

3
Rμναβ⋆Rμναβ: ðG7Þ
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