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It is well known that the source-free Maxwell equations are invariant under electric-magnetic duality
rotations, F — Fcos 6 + *F sin 8. These transformations are indeed a symmetry of the theory in the Noether
sense. The associated constant of motion is the difference in the intensity between self-dual and anti-self-
dual components of the electromagnetic field or, equivalently, the difference between the right and left
circularly polarized components. This conservation law holds even if the electromagnetic field interacts
with an arbitrary classical gravitational background. After reexamining these results, we discuss whether
this symmetry is maintained when the electromagnetic field is quantized. The answer is in the affirmative in
the absence of gravity but not necessarily otherwise. As a consequence, the net polarization of the quantum
electromagnetic field fails to be conserved in curved spacetimes. This is a quantum effect, and it can be
understood as the generalization of the fermion chiral anomaly to fields of spin one.
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I. INTRODUCTION

Symmetries play an important role in many areas of
science. They are widely considered as guiding principles
for constructing physical theories, and their connection with
conservation laws found by Noether one century ago [1] is a
cornerstone of modern physics. An interesting example is
given by Maxwell’s theory of electrodynamics, whose
invariance under Poincaré transformations leads to conser-
vation of energy, linear, and angular momentum. (The
invariance extends, in fact, to the full conformal group.)
The theory is also invariant under gauge transformations
when the electromagnetic potential is introduced, and when
it is coupled to matter fields, the symmetry is related to the
conservation of electric charge. Furthermore, in the absence
of charges and currents, this theory enjoys a peculiar
symmetry (in four spacetime dimensions). It is a simple
exercise to check that Maxwell’s equations, and also the
stress-energy tensor, are invariant under the “exchange”
of the electric and magnetic fields E— B B — —E, as first
noticed after the introduction of Maxwell’s equations.
This discrete Z, operation is commonly known as a duality
transformation. But the invariance of Maxwell’s equations
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extends to SO(2) rotations £ — E cos @ + B sin 6, B —

B cos 6 — E sin 0, of which the duality transformation is just
the particular case with @ = z/2. Although apparently
innocuous, this continuous transformation has revealed,
in more recent times, interesting consequences.

In the mid-1960s, Calkin pointed out that these trans-
formations leave Maxwell’s action invariant, and he iden-
tified the associated conserved charge as the difference
between the intensity of the right- and left-handed circu-
larly polarized components of the electromagnetic field [2].
This conservation law was studied in more detail by Deser
and Teitelboim in [3,4], and proved to remain true in curved
spacetimes. This quantity is sometimes known as the
optical helicity [5], and it also agrees with the V-Stokes
parameter. Henceforth, besides conservation of energy and
momentum, the polarization of electromagnetic radiation
will also be a constant of motion as long as no electro-
magnetic sources are present, courtesy of the symmetry
under electric-magnetic rotations.

A natural question now is to analyze whether this
symmetry continues to hold in quantum electrodynamics.
If ji is the Noether current associated with electric-
magnetic rotations, this task reduces to checking if the
vacuum expectation value (V,j7,) vanishes. In contrast to
the classical theory, this is a nontrivial calculation that
involves appropriate renormalization of ultraviolet diver-
gences. It is well known that quantum fluctuations produce

© 2018 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.125001&domain=pdf&date_stamp=2018-12-04
https://doi.org/10.1103/PhysRevD.98.125001
https://doi.org/10.1103/PhysRevD.98.125001
https://doi.org/10.1103/PhysRevD.98.125001
https://doi.org/10.1103/PhysRevD.98.125001

AGULLO, DEL RIO, and NAVARRO-SALAS

PHYS. REV. D 98, 125001 (2018)

off-shell contributions to physical quantities that might
spoil classical symmetries. When this occurs, one says that
there is a quantum anomaly in the theory.

Historically, the issue of quantum anomalies first
appeared in the seminal works by Adler, Bell, and
Jackiw, as a result of solving the pion decay puzzle [6,7].
They found that the chiral symmetry of the action of a
massless Dirac field breaks down at the quantum level when
the fermionic field interacts with an electromagnetic back-
ground. Namely, they obtained the celebrated chiral or axial
anomaly (V, /) = —%FMD*FW, where j is the fermionic
chiral current, F,, the field strength of the background
electromagnetic field, *F,, its dual, and g the charge of the
fermion. Later, a similar anomaly was found when the
massless Dirac field is immersed in a classical gravitational
background [8-10], (V,,/4) =15 R s *R¥* Y, where R, 45
is the Riemann tensor. These discoveries led to an outbreak
of interest in anomalies both in quantum field theory and
mathematical physics, leading to further examples and a
connection with the well-known index theorems in geo-
metric analysis [11-13]. The existence of anomalies has
important physical implications. Besides the prediction of
the neutral pion decay rate to two photons, these anomalies
have applications in studies of the matter-antimatter asym-
metry of the Universe, the U(1) and strong CP problems in
QCD, and provide a deeper understanding of the Standard
Model via anomaly cancelation [14]. These cancelations
have played a major role in string theories and supergravity
too (for a detailed account see, for instance, Ref. [12] and
references therein). A decade after the discovery of the chiral
anomaly, the nature of quantum anomalies was further
clarified by Fujikawa, using the language of path integrals
[15,16]. He found that the existence of anomalies can also be
understood as the failure of the measure of the path integral
to respect the symmetries of the action. Fujikawa’s argu-
ments provided an alternative and elegant way of computing
anomalies.

In this paper, we prove that electric-magnetic rotations
are also anomalous, provided the electromagnetic field
propagates in a sufficiently nontrivial spacetime. To meet
our goal, we write Maxwell’s theory in terms of self-dual
and anti-self-dual variables, which will make the structure
of the theory significantly more transparent, particularly in
the absence of charges and currents. In fact, in these
variables duality rotations look mathematically—and
physically—similar to chiral transformations of massless
spin-1/2 Dirac fields, and in this sense, our result can be
understood as the spin-1 generalization of the fermionic
chiral anomaly. We derive our result by using two
complementary methods, namely, by directly computing
(V,.ji) using the method of heat-kernel renormalization
and by Fujikawa’s path-integral approach.

This paper is organized as follows. In Sec. II we review
the analysis of the classical duality symmetry in source-
free electrodynamics and derive the associated Noether

charge and current, both in the Lagrangian and
Hamiltonian frameworks. In Sec. III we introduce self-
dual and anti-self-dual variables and emphasize their
advantages in the source-free theory. We show how
Maxwell’s equations can be conveniently written as
first-order equations, either for fields or potentials, that
are analogous to Weyl’s equations for spin-1/2 fields. In
Sec. IV, we derive a first-order action for Maxwell
electrodynamics in self-dual and anti-self-dual variables,
which makes the theory formally analogous to Dirac’s
theory of massless fermions. Section V discusses the
quantum theory and the derivation of the quantum electro-
magnetic duality anomaly by using the two methods
mentioned above. We finally give some concluding
remarks in Sec. VI. To simplify the main text of the
article, we have moved many of the mathematical details
and calculations to Appendices A-G.

A shorter version of this work appeared in [17]. Here we
provide further details and alternative avenues for arriving
at the final result, and correct some minor errors that
translate into a different numerical factor in the result
for (V,.jp).

We follow the convention €”'* =1/,/=g and metric
signature (+,—,—, —). More specifically, we follow the
(—, —, —) convention of [18]. We restrict ourselves to four-
dimensional spacetimes and assume the Levi-Civita con-
nection. We use Greek indices u,v,a, ... for tensors in
curved spacetimes, while Latin indices a, b, c, ... are used
for tensors in Minkowski spacetime. Indices 1, J, K, ... or
I,J,K, ... refer to tensors in an internal space associated
with the spin-1 complex Lorentz representations. Unless
otherwise stated, we assume all fields to be smooth and to
have standard fall-off conditions at infinity. We use units
for which ¢ = 1.

II. CLASSICAL THEORY AND
ELECTRIC-MAGNETIC ROTATIONS

A. Lagrangian formalism

In this paper we focus on free Maxwell’s theory, i.e.,
electromagnetic fields in the absence of electric charges and
currents, formulated on a globally hyperbolic spacetime
(M., g,,) with metric tensor g,,. The classical theory is
described by the action

1
SIA] = —Z/d“x —gF“F,,. (2.1)

where F is a closed two-form (dF = 0) defined in terms of its
potential A as F = dA, ormore explicitly, F,, =V,A, =V A,
Maxwell’s equations read [JA, —V#V,A, =0, where
V is the covariant derivative associated with g, and
O= g/‘”Vﬂ V,. When written in terms of the dual tensor *F,
these equations take the compact form d*F = 0 and, together
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with dF = 0, make manifest that the field equations are
invariant under electric-magnetic rotations

F - Fcos®d + *Fsin 6,

*F —» *Fcos @ — Fsind. (2.2)
For 6 = /2 one has the more familiar duality transformation
F - *F and *F — —F. If this one-parameter family of
transformations is a true symmetry of the action, then
Noether’s analysis must provide a conserved charge associ-
ated with it. We now analyze this problem. Our presentation
simply rephrases, in a manifestly covariant way, the results
of Ref. [3].

For the transformation (2.2) to be a symmetry, its
infinitesimal version (6F = *F56) must leave the action
invariant or, equivalently, the Lagrangian density £ =
—-1/4,/=gF, F* must change by a total derivative,
oL = \/—_gvﬂh”, for some current 4##. This must be true
even off shell, i.e., when F and *F do not satisfy the
equations of motion. In analyzing if this is the case, one
faces two issues. On the one hand, since F is a closed two-
form (i.e., dF = 0), for the transformation 6F = *F6 to be
consistent, *F must also be closed, but this amounts to
saying that equations of motion hold. In other words, the
transformation (2.2) can only be consistently defined on
shell.! Second, since the usual configuration variables of
Maxwell’s action are the vector potential A rather than the
field F, to apply Noether’s techniques we first need to
rewrite (2.2) in terms of A. A convenient strategy to deal
with these two issues is to define a more general trans-
formation, which will agree with electric-magnetic rota-
tions only on shell, as follows:

oA, = 7,60, (2.3)
where Z, is implicitly defined by dZ ="*F + G, and G is a
two-form that is subject to the following conditions, but
arbitrary otherwise:

(1) G vanishes only when A, satisfies the equations of
motion, G|, ey = 0. This ensures that dZ = *F on
shell, and then (2.3) reduces to the usual electric-
magnetic transformation.

(2) G is not closed, dG # O—unless the equations of
motion hold. This guarantees that *F is not closed
(off shell).

(3) G has zero magnetic part relative to an arbitrary
observer, ie., n"*G,, =0, where n” is a timelike
vector field, and *G is the dual of G. (This condition

"This “difficulty” appears only in the second order formalism.
If one uses a first-order Lagrangian, or a Hamiltonian formu-
lation, the usual electric-magnetic rotations can be implemented
off shell. This point has been emphasized in [4] and will be made
explicit in the next subsection and in Sec. IV.

is equivalent to saying that the electric field relative
to the observer satisfies Gauss’s law.)

Note that Z, is a nonlocal functional of A,,. However, as
discussed in [3], this is not an impediment to applying
Noether’s formalism.

Under the transformation (2.3),
Appendix A for more details)

we obtain (see

_g * v V]| —
5= 00"V, A, P~ Z,(dZ)"]) = =gV, ¥, (2.4)

confirming that electric-magnetic rotations are a symmetry
of source-free Maxwell’s theory. The conserved Noether
current ji, associated with this symmetry is

1 oL
V=90V,A,
1
=3P~ 2~ 7,'G]

ip=

SA, — b
(2.5)

(we have dropped 50 from the definition of j7). This
current is gauge dependent. But this is not a problem either,
as long as the associated conserved charge is gauge
invariant, which is in fact the case. When evaluated on
shell (i.e., when G = 0, and therefore dZ = *F)

’) 1 * v v
]llf)|0n shell — E [Av B —ZF ] (26)

Now, if we foliate the spacetime using a one-parameter
family of Cauchy hypersurfaces %, the quantity

1
Op :/ dz, ji = —5/ dZ3(A, B — Z,E*)  (2.7)
T, T,

is a conserved charge, in the sense that it is independent of
the choice of “leaf” Z,. In this expression, dZ5 is the volume
element in %,, and E* = n /F* and B* = n,*F*" are the
electric and magnetic parts, respectively, of the electro-
magnetic tensor field F relative to the foliation Z,. The same
expression for Qj, is obtained if ji |, ¢herr 1S used in place of
/1, in (2.7); hence, the conserved charge is insensitive to the
extension of the transformation done above by the intro-
duction of G.

One can check, by explicit computation, that V, ip=
-2,V F*, and therefore V,, j, = 0 when the equations of
motion V,F* = 0 hold. In the quantum theory, however,
off-shell contributions of quantum origin may spoil the
conservation of the current. The calculation of the expect-
ation value of V,j, using the formalism derived in this
section is complicated since it would involve the operator
Z,, which is a (nonlocal) functional of the configuration
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variable Aﬂ.2 This difficulty can be alleviated by working in
phase space, where one can treat Z, and A, as independent
fields. This motivates the Hamiltonian analysis of the next
subsection and the use of a first-order formalism in the rest
of the paper. In particular, in Secs. IIl and IV we rederive j,
in a first-order Lagrangian formalism using self-dual and
anti-self-dual variables. This will make the derivation
significantly more transparent. The physical interpretation
of Qp will also become more clear, and we postpone the
discussion until then.

B. Hamiltonian formalism

The Hamiltonian formalism provides a complementary
approach to the study of the electric-magnetic symmetry,
and in this subsection we briefly summarize the derivation
of Qp following this framework. We restrict ourselves
to Minkowski spacetime since the generalization to
curved geometries using the standard vector potential
and electric field as canonical coordinates becomes
cumbersome.

Given an inertial frame in Minkowski spacetime,
Maxwell’s Lagrangian (2.1) takes the form

= / dBxL= d3
R R

where V is the usual three-dimensional derivative operator.
Our conventions are A = (A,A5,A3), E= (E|, E», E3),
E; = Fy, and E* = E2 + E% + E2. From this, we see that
the canonically conjugate variable of A is the electric field
= E', and the conjugate variable of A, vanishes since

x% [(X VAP -(VxAP], (238)

5A
the Lagrangian does not involve Ag. Then, Ay is a Lagrange
multiplier, and from its equation of motion, one obtains a
constraint, the familiar Gauss’s law 6 E=0. Then, the
canonical phase space is made of pairs (A (%), E(¥)), with a
symplectic or Poisson structure given by {A;(X), E/(¥')} =

8/60) ()_c'—;’ ). A Legendre transformation produces the
Hamiltonian
H= [ &x 2[E +(VxA2-AyV-E). (2.9

R3

*The first term in (2.5) and its quantum aspects have previously
been discussed in [19] (see also [20]). However, this term by itself
is not conserved classically (something that cannot be fixed by any
gauge transformation), and in fact, its associated “‘charge’” does not
generate duality rotations in phase space (see Sec. II B). Therefore,
the first term in (2.5) alone is not associated with the symmetry
under electric-magnetic rotations. The fact that its vacuum
expectation value does not vanish, although this is of physical
interest in its own right, does not really prove the existence of an
anomaly, as claimed in [19]. Other vacuum expectation values of
physical interest have been computed in [21].

where we have disregarded a boundary term. In Dirac’s

terminology, V - E = 0is a first-class constraint, and it tells
us that there is gauge freedom in the theory, g1ven prec1se1y

by the canonical transformations generated by V-E
Hamilton’s equations read

-

A={A H}=-E-VA,

E={E.H}=Vx (VxA), (2.10)
where Ay(X) is now interpreted as an arbitrary function
without dynamics, and the term proportional to it in the

expression for A corresponds precisely to the gauge flow.
These six equations, together with the Gauss constraint, are
equivalent to standard Maxwell’s equations (once we
define B =V x X).

Electric-magnetic rotations in phase space are given by

= (VxA)= ~(Vx)'E=Z, (2.11)
where (§x)“ is the inverse of the curl; when acting on
traverse fields—such as E—it can be easily computed by
= —V~2Vx. The presence of the
operator (Vx)~! in (2.11) makes it evident that we are
dealing with a transformation that is nonlocal in space.
Now, the generator of the transformation (2.11) can be
easily obtained by computing the symplectic product of

(A.E) and (5A,SE

using the relation (Vx)™!

):
Q[Z{,
B

S dx[E'éﬁ—A-(SE]

t\)
z

(2.12)

Here, Q) is independent of A, and by integrating by parts,

it is easy to show that only the transverse part of Aand Z
contributes to Qp; hence, it is gauge invariant. It is also
straightforward to check that Qp is indeed the correct

generator since A = {A Op} and 6E = {E, Qp} repro-
duce expressions (2.11). To finish, one can now check
that QD = {0p,H} = 0. Therefore, Qp is a constant of
motion. This implies that the canonical transformation
generated by Qp is a symmetry of the theory.

III. ELECTRODYNAMICS IN TERMS OF
SELF-DUAL AND ANTI-SELF-DUAL VARIABLES

Many aspects of Maxwell’s theory in the absence of
charges and currents become more transparent when self-
dual and anti-self-dual variables are used (see, e.g.,
Refs. [22-24]). Some of the advantages of these variables
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are well known and, in particular, they are commonly used
in the spinorial formulation of electrodynamics [25]. For
the sake of clarity, we introduce these variables first in
Minkowski spacetime and extend the formalism later to
curved geometries.

A. Minkowski spacetime

The self-dual and anti-self-dual components of the
electromagnetic field are defined as H, = \/— (E +iB).
We now enumerate the properties and interesting aspects of
these complex variables.

(1) Electric-magnetic rotations.—The transformation

rule of the electric and magnetic fields under electric-
magnetic rotations,

E — Ecosf + Bsin6,
B — Bcosf — Esin®, (3.1)

translates to

-

1 - = -
H,=-—=(E+iB)—> eTH,.. (3.2

V2
An ordinary duality transformation E—B,B—-E
corresponds to @ = z/2. Then, this operation pro-
duces® iH L - +H .. Itis for this reason that H L and
H_ are called the self-dual and anti-self-dual com-
ponents of the electromagnetic field, respectively. _

(2) Lorentz transformations.—The components of E
and B mix with each other under a Lorentz trans-

formation. For instance, under a boost of velocity v
in the x direction,

E}:(EME)HEJ_)[EXJ/(E)f_UBz) (E +UB )]7
E:(BX’B)"Bz)_)[Bx’y(By+sz)v ( )]7
(3 3)

where y = 1/V/1 — v%. This transformation does not
correspond to any irreducible representation of the

Lorentz group. However, when E and B are com-
bined into H, it is easy to see that the components
of H, and H_ no longer mix,

Hy = (H, HY, H)
- [H;C[,y(H'L +ivHY).y(HL F ivaE)]. (3.4)
These are the transformation rules associated with

the two irreducible representations of the Lorentz

*It is common to add the imaginary unit i because, in that way,
this operation has real eigenvalues, and it can be represented by a
self-adjoint operator in the quantum theory.
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group for fields of spin s = 1. They are the so-called
(0,1) representation for H - and the (1,0) one for H._.
More generally, for any element of the restricted
Lorentz group SO'(1,3) (rotations + boots), the
infinitesimal transformation reads

1
Hi - [D(eab)]uHi = [511 —Eeabizabu] Hi (3.5)

(uppercase Latin indices I, /J, K, ... take values from
1 to 3), where &, is the Kronecker delta, ¥, are
the generators of the (0,1) and (1,0) representations,4
and the antisymmetric matrix €,, = €|, contains
the parameters of the transformation. The use of self-
dual and anti-self-dual fields H 4 makes it more
transparent that electrodynamics describes massless
fields of spin s = 1.

(3) Maxwell’s equations.—The equations of motions

for E and B

V.E=0, V-B=o0,

when written in terms of H ., take the form
V-H.=0,  VxH,=+id,H.. (3.7)

Notice that, in contrast to E and B, the self-dual and
anti-self-dual fields are not coupled by the dynamics.
The equations for H_ and H . are related by
complex conjugation.

Equations (3.7) are linear, and therefore the
space of solutions has structure of vector space. It
is spanned by positive- and negative-frequency
solutions:

+ h:F(k) ek D]a (k). (3.8)

where k = |k| and h (k) are complex numbers that
indicate the amplitude of the positive and negative
frequency components of a particular solution (the
“bar” denotes complex conjugation). The polariza-
tion vectors are given by &, = % (e + ié,), where

él(%) and é2(l_<') are two unit vectors that, together
with k, form an orthonormal triad of spacelike
vectors, with orientation &, X &, = k.

“They satisfy the algebra [FZe?, £5cd) = (pactgbd — padEybe .
’,Ibdizac _ nbc:\:zad)'
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The explicit form (3.8) of a generic solution helps
us to understand the relation between self-duality or
anti-self-duality and helicity in Minkowski space-
time. By paying attention to the way the electric and
magnetic parts (i.e., the real and imaginary parts of
H -+, respectively) rotate with respect to the direction
of propagation k during the course of time, one finds
the following relation: .
(i) Positive-frequency Fourier modes e~/k*=¥%)¢_ (k)

have positive helicity (that corresponds to left-
handed circular polarization) for self-dual fields
and negative helicity for anti-self-dual fields,
(ii) For negative-frequency modes e/*—¥¥)¢, (k),
the relation is inverse: They have negative
helicity (right-handed circular polarization)
for self-dual fields and positive helicity for
anti-self-dual fields.
We see that duality and helicity are closely related concepts
in Minkowski spacetime, although the relation is not trivial;
one needs to distinguish between self-dual and anti-self-
dual fields and positive and negative frequencies [26]. This
is the analog of the familiar relation between chirality and
helicity for massless spin-1/2 fermions. In this sense,
duality is the chirality of photons.

Furthermore, in more general spacetimes where neither
Fourier modes nor the notion of positive and negative
frequency are useful, self-duality or anti-self-duality gen-
eralizes the concept of helicity, or handedness, of electro-
magnetic waves.

(4) Self-dual and anti-self-dual potentials—The con-

straints V - H, = 0 allow us to define the potentials

;{i by
He=+iVxA,. (3.9)

It is clear from this definition that the longitudinal
part of Zi contains a gauge ambiguity consisting in
adding the divergence of an arbitrary scalar function.
Note also that no time derivatives have been involved
in the definition of these potentials.

(5) Maxwell’s equations for potentials.—Substituting
(3.9) in the field equations (3.7) produces

+iVx A, =—-0,A, +VAL.  (3.10)

These equations by themselves are equivalent to
Maxwell’s equations. It may be surprising at first
that Maxwell’s theory can be written as first-order
equations for potentials. This comes from the fact
that in—and only in—the source-free theory, in
addition to the standard potennal A defined from

B = VxA Gauss’s law V-E =0 allows us to

define a second potential Z, as E = -V x 7. Then,
the first-order equations
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(6)

)

- —

x Z + VA,
+

N}
Il
<

—V x 6 (3.11)

Ni-
H

are equivalent to Maxwell’s equations (to see this,
take the curl and use the relation between potentials
and fields). Therefore, Maxwell’s equations can be
written as first-order equations for potentials at the
expense of duplicating the number of potentials.
The relation between the two sets of potentials is
AF = %(Aa +iz,).

Manifestly Lorentz-covariant equations.—Equa-
tions (3.7) and (3.10) for fields and potentials can
be rewritten in a more compact way as

a9, ,H! =0, av0,A) = 0. (3.12)

The equations for H_ and A_ are obtained by
complex conjugation. In these expressions a4? are
three 4 x 4 matrices, for I = 1, 2, 3, and the bar over
a$? indicates complex conjugation. The components
of these matrices in an inertial frame can be identified
by comparing these equations with (3.7) and (3.10):

0-10 0 00-10
W10 00 W |00 0 i
ai’ = |, = ,

00 0 i 100 0

00 —i0 0i 0 0

000 -1
L |00 o
=0, (3.13)

1000

These matrices are antisymmetric (a9® = al*”)),
invariant under Lorentz transformations, and self-
dual (i*a4® = a4?)—hence, @* is anti-self-dual. As
mentloned above, the equations for the potentials can
be derived from the equations for the fields. The
reverse is also true. Therefore, either set of equations
completely describes the theory. Field equations
similar to a¢?9,H! = 0 have been written before
in [22,23]; our equations a¢?0,H’. =0 are also
equivalent to Maxwell’s equations in spinorial lan-
guage [25].

Relation between Hi and the field strength F,;,.—
From the field strength F and its dual *F, we define
the self-dual and anti-self-dual two-forms F, =

% (F £ i*F), which satisfy i*F, ==+F. . The relation
between the field strength and H - is then given by

F = aftHY, PO =g’ HL.  (3.14)
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These relations imply that one can understand
the three af® matrices as a basis for the three-
dimensional complex vector space of self-dual
tensors in Minkowski spacetime (see Appendix B).
Then, H’, are simply the components of F? in this
basis. Similarly, @* provides a basis for anti-self-
dual tensors.

On the other hand, by using the relations (3.14)—

by complex conjugating the properties of a4”
written above. The anticommutation relations
are identical. However, the conjugation changes
the commutation relation to [a;, a;] = "X ;,
where now it is the generator of the (1,0)
representation of the Lorentz group that enters
in the equation. Appendix B contains further
information about the properties of these tensors.

and the fact that the a;-matrices are constant in (9) Second-order equations for the potentials A} .—We
spacetime, so they are transparent to derivatives— focus on A since the derivation for A, can be
the field equations a¢’9,H". = 0 and a¢*9,H. =0 obtained from it by complex conjugation. The fastest
can be written as 9,F% = 0 and 9,F*’ = 0, which way to obtain the familiar second-order differential
are equivalent Maxwell’s equations in their more equation for A is to take the time derivative of
standard form. (3.10), use commutativity between spatial and time
(8) Properties of a4* matrices.—Using the form of the derivatives, and then again (3.10) use to eliminate
a; matrices (3.13), it is straightforward to check that the first time derivative in favor of the curl. The
they have the following properties: result can then be written in covariant form as
(i) Anticommutation relations: {a;,a,} =a“,a" ;+ OAf - 09,Af = 0.

a®y,ab¢ =68, . Alternatively, we can use the following argument,
(i) Commutation relations: [a,a;] = a®,a?, — which can be straightforwardly generalized to
be _ +yac curved spacetimes. Notice that the equations of

a’pa’y - . b N .

These properties can be thought of as the motion a;”9,A, =0 imply that the two-form
spin-1 analog of the familiar properties of the 8[(114-;] is self-dual. This is because, on the one hand,
Pauli matrices /4. the antisymmetry of &;” means that only the anti-

To be;tter understand these propel'UeS, and to symmetric part of 6¢1A;r contributes to the equations
generalize them to curved spacetimes (see next . 0 —ab

) L . and, on the other, because contraction with ¢
section), it is convenient to take a more geo- b +_selfdual 9 AI
metric viewpoint and think about the field H.. extracts the anti-seli- ua. comp onen.t Ob Flaly
as belonging to a complex, three-dimensional Therefore, vyhen the equations of motion hold, A;
vector space V, which supports a (0,1) irreduc- is the potentlal of a self-dual form, F+ = dA+ But if
ible representation of the Lorentz group. This dA, is self-dual, then the identity a[aabA+ =0
space is isomorphic to the space of self-dual implies that 0?0, A ] = 0. These last equations are
tensors F, ip Minkowski spacetime, and a4® obviously equivalent to
provides an 1s0morph1sm

Furthermore, a equips V with a product DA — 990,AF = 0. (3.15)
hy;, the image of the Minkowski metric’

bd .
hiy = 477ab’7cda7caj ) whoselvalue turns Ol_lt Therefore, the self-dual and anti-self-dual poten-
to be hij; = =6, in a Cartesian frame, and is tials A satisfy the same second-order equations as
o.bV101.lsly 1nva{1ant. unde'r Lorentz transforma- the ordinary vector potential.
tions in V. This viewpoint makes clearer the (10) Conserved current and charge.—In terms of self-

*In other words, given any two self-dual tensors (

analogy between the a¢” and the Pauli matrices

o4 (recall that ¢%4 provides an isometry
between spatial vectors and spinors).

If H . is an element of the complex vector

space V, then H_ is an element of V, the
complex-conjugate space. Although naturally
isomorphic, these two spaces are different, and
from now on, we use dotted indices on elements

of V3 HL. The properties of c’(;’b are obtained

VR4l and ?JFeb,

dual and anti-self-dual variables, electric-magnetic
rotations take the simple form

H (x) — eT?HL (x),
AF(x) - eT9AE(x). (3.16)

And the on-shell current (2.6) takes the form

(3.17)

i .
14 p— I ab A— I ~ab A+
JDlon shen = _E[HJral Ay —H_a[. A}l

(note that this current is manifestly real). By using

WAL UHJ 4h,, the form of the generic solution to the field

equations (3.8), we find that the conserved charge

the isomorphism satisfies (VFe*2Fy, 1y, , =
where (JFe? = o@*(H!L fori =1, 2.
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— 3,50
QD - A3 d xJD|0n shell

Pk 2 |2

= | gt ®P =B (.18)

is proportional to the difference in the intensity of

the self-dual and anti-self-dual parts of the field or,

equivalently, the difference between the right and

left circularly polarized components—i.e., the net

helicity. (Qp has dimensions of angular momen-

tum.) For this reason Q, is often called the optical
helicity or V-Stokes parameter.

B. Curved spacetimes

The generalization to curved spacetimes of the formal-
ism just presented follows the strategy commonly used for
Dirac spin-1/2 fields. Namely, one first introduces an
orthonormal tetrad field, or vierbein, in spacetime
i(x).® With it, the curved spacetime ;-matices are
obtained from the flat space ones a® by

o (x) = el(x)eb(x)agh. (3.19)
Furthermore, the Minkowski metric #,, is replaced by
Guw(X); Map 1s used to raise and lower flat-space indices
a,b,c,...,g,(x) for indices in the tangent space of the
spacetime manifold p, v, §, ..., and h;; and h; ; for spin-1
indices. The matrices o4 (x) satisfy algebraic properties
analogous to the ones derived in Minkowski space

{aj. a5} = o ja? ) + o jaP | = —hyy97, (3.20)

@, a)) = o0y — ot yyatl = T2, (3.21)
where "3/, = ¢lie) T2 ;. The extension of the covariant
derivative V, is also obtained by using standard arguments
(see, e.g., Appendix A of [28]). Namely, the action of Vﬂ on
indices 1 of fields H), € V is uniquely determined by
demanding compatibility with the isomorphism o} (x),
V)" (x) =0 (see Appendix B2). The result, as one
would expect, agrees with the usual expression for the
covariant derivative acting on fields of spin s derived using
group-theoretic methods, particularized to s = 1,

1

. | .
V,H. =0,H. —E(Wﬂ)ab—za“ JHL,

W,u)ab+zabIJH~JF ’
(3.22)
®This noncoordinate orthonormal basis is defined by Gu(X) =

napel(x)el(x), with n,, = diag{+1,-1,-1,-1}. We assume
our spacetime admits such structure globally [27].

where *X are the generators of the (0,1) and (1,0)
representations of the Lorentz algebra introduced in the
previous section, and (w,),, is the standard one-form spin
connection

(w,)), = eq0,ef + e ehFﬂﬁ, (3.23)
where I'j; are the Christoffel symbols.

With this in hand, the generalization is straightforward.

(1) Maxwell’s equations for the fields.—

o'V, H' =0, &’;”VﬂH’_ =0. (3.24)
Note the similarity with Dirac’s equation. The
relation between H, and the self-dual and anti-
self-dual parts of the field strength F is given by
FY =o)’H, and F* =& H'. With this, and
keeping in mind that V, o 7 (x) =0, Egs. (3.24)
become V,F} =0 = V”F’i”, which is manifestly
equivalent to Maxwell’s equations V,F* =0 by
recalling that F, = \/Lj [F £ i*F
(2) Potentials Aﬂi —The self-dual and anti-self-dual
potentials satisfy the first-order equations:
a’l.’”V”Aj =0, oa'V,A; =0 (3.25)
These are equivalent to Maxwell’s equations. This
can be easily seen by using the same argument as we
used in Minkowski spacetime, namely, by noticing
that, because o and &;" project on self-dual and anti-
self-dual forms, respectively, these two equations are
simply the self-dual and anti-self-duality condition
for the forms F,,, = 2V[”AD+] and F_, =2V, A},
respectively. This, in turns, implies that the identities
dF, =0, dF_ =0 are equivalent to Maxwell’s
equations V,F¥ =0, V,F* =0 (see footnote in
Appendix C). Additionally, V,F}¥ = 0 is equivalent
to the second-order equations VMV[”A;] =0.

The relation between A;- and H, (before involving
any equation of motion) requires foliation of space-
time in spatial Cauchy hypersurfaces ,, in the same
way as the relation between the electric and magnetic
fields and the standard vector potential does. Given
the foliation associated with the definition of ], A, ,

and H', are related by means of the “curl™:’

Hl = ielV Af (3.26)

"Notice that this curl is independent of the connection V,,, due
to the antisymmetry of ¢/# in y and v. It is useful to keep thls in
mind in manipulating expressions involving H’, and Ai
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(and similarly for A; and HL), where ¢/* is a
“purely spatial” antisymmetric mixed tensor (see
Appendix B 3 for its precise definition). As shown
in Appendix C, one can easily see that if A; is a
solution of (3.25), then Hi defined by (3.26) satisfies
the field equations (3.24). The reverse is also true.

IV. FIRST-ORDER LAGRANGIAN FORMALISM:
DIRAC-TYPE FORMULATION

The goal of this section is to write a Lagrangian for
electrodynamics in terms of self-dual and anti-self-dual
variables. The similarity of Egs. (3.24) and (3.25) to Dirac’s
equation motivates us to look for a first-order Lagrangian
(i.e., linear in time derivatives) and write it in a form that
will make Maxwell’s theory manifestly analogous to
Dirac’s theory, where the mathematical structures associ-
ated with spin s = 1/2 will be replaced by their s =1
analogs. This formulation will become very useful in the
study of the electric-magnetic rotations in the quantum
theory.

A. First-order Lagrangian

Consider the action

1 .
SiAA) =3 / Q=g [T @;9,A7 + HY o, 9,47
(4.1)

The Lagrangian density defined by the integrand differs in a
total derivative from the standard Lagrangian — % /—9F, B
(after passing from first to second-order formalism), thus
leading to the same dynamics. The independent variables in
this action are A, and therefore H!, and H I are understood
as short-hand notation for ie’””VﬂAj and —ie’”’“VﬂA;,
respectively. Note that this action is first order in time
derivatives of Aff, and second order in spatial derivatives.
Extremizing the action with respect to A produces the
desired equations of motion (see Appendix D for more
details)

oS

_ =HV i _
E—O—)a’;vﬂH_—O,

(4.2)

and, as discussed above and proved in Appendix C, these last
equations are equivalent to o;“V,A; = 0. Similarly, from
;4—5; = 0 one obtains &;"V,A; = 0.

For the computations presented in the next section, it is
convenient to fix the Lorenz gauge, VMA’; = 0. There is a
remarkably simple way of incorporating this condition in
the action (4.1). All we need to do is extend the domain of
the indices I and I from {1,2,3} t0 {0, 1, 2,3}, and define
oy =ay =—¢". This is analogous to the familiar

extension of the Pauli matrices & by adding ¢° (the
identity), which commutes with all ¢/, i=1, 2, 3.
Algebraic properties of the o}“-matrices extended in this
way appear in Appendix B 4.

To simplify the notation, we use the same name for the
action and the tensors o, although from now on the index
[ is understood to run from O to 3. The equations of motion
still take the same form,

a";V,Af =0, a? V,A; =0, (4.3)
but they now include the Lorenz condition as the equation
for I =0 (I =0),

¢*V,Af =0, g*V,A; =0. (4.4)
Note that the action now depends on two new variables HY
but they have the sole role of acting as Lagrange multipliers
to enforce Lorenz’s condition.

Inspection of the action (4.1) reveals that, contrary to the
standard Maxwell’s Lagrangian, the Lagrangian density
in (4.1) is manifestly invariant, §£ = 0, under electric-
magnetic rotations A%, — eT¢A" . It is now straightforward
to derive the Noether’s current (see Appendix E),

5L oL
s (12 SA ——FA
I lon shen = (=9) (5V,,A+y +”+5VMA_D _D>

:% [H"_aﬂ” AP —HL o™ ,A;} .

on shell

(4.5)

Using the relation between self-dual and anti-self-dual
variables, and ordinary variables A, and F**, it is straight-
forward to check that this expression agrees with /5 |on shen
obtained in Sec. I, Eq. (2.6).

B. Dirac-type Lagrangian

The goal of this section is to rewrite the action (4.1)
(including the Lorenz-gauge-fixing term) in a more con-
venient form that will make the theory formally similar to
Dirac’s theory of spin-1/2 fermions and will facilitate the
computations in the next sections.

We first integrate by parts (4.1), so A* and H appear in
a more symmetric form,

1
S[A+, A_] = - Z
+ H\ oV, A; — Aya Y H].

/ d4x\/—g[H"_5{””iVMA;“ - A;&””[‘VMHI._
(4.6)

This action can now be written as

S[AT,A7] = _41_1 / d*x/=gPip'v,¥  (4.7)

125001-9



AGULLO, DEL RIO, and NAVARRO-SALAS

PHYS. REV. D 98, 125001 (2018)

where we have defined®

A+

H i
v = Aj ., W=(A"H,,A"H_),

H.

o 0 0 a
o0 e 0 is
=il g @ 0 o (48)

Itis convenient to include, in the definition of ¥, an arbitrary
parameter #~! with dimensions of inverse length multiply-
ing A*, and compensate it by adding a global factor # to the
action. The action remains invariant, but the replacement
A* = £7'A* makes all the components of ¥ and ¥ have

the same dimensions (namely, \/energy/length?). To sim-

plify the notation, we will not write # explicitly, but it should
be taken into account in evaluating the dimensions of
expressions containing ¥ and P.

The exact position of the indices in the components of ¥
and P can be easily obtained by comparing (4.6)—(4.8). We
have omitted them in the main body of this paper to
simplify the notation, but the details can be found in
Appendix F. Equation (4.7) is formally analogous to the
action of a Majorana 4-spinor describing a field with zero
electric charge, whose lower two components are complex
conjugate from the upper ones.

From the algebraic properties of the extended a-matrices,
(B31) and (B33), it is straightforward to check that p*
satisfies the Clifford algebra CIiff (3,1),

{p".p°} = 29" (4.9)
We also have that V,#(x) = 0. These matrices can there-
fore be thought of as the spin-1 analog of the Dirac y*
matrices.

We now define the “chiral” matrix

- 0 0 O

_ I o 3B 37 30 - 0 0
Ps = I!E(I[)’yﬁﬁ pp = 0 0 I 0 (4.10)

0 0 01

$We could alternatively have defined a couple of fields with
two “components,” (g_) and (; ). Physical predictions would

4
obviously be the same since we are just writing the same theory in
different variables. However, the formal analogy with Dirac’s
theory is cleaner if we use the four-component object ¥ defined

in (4.8).

Some properties can be immediately checked:

{p.Bs} =0, pi=L (4.11)
Further details and properties can be found in Appendix F.

Although the basic variables in the action are the
potentials A, at the practical level one can work by
considering ¥ and ¥ as independent fields—note that this
is the same as what one does when working with Majorana

spinors. The equations of motion take the form

oS

55 =0 PV =0, (4.12)

They contain four equations, one for each of the four
components of W. The upper two are the equations
a*iV,Af =0 and of*V,H' =0. The lower two are
complex-conjugated equations.

Now, by acting on (4.12) with (—if*V,), we obtain a
second-order equation for ¥:

(_iﬁava) lﬁ”vﬂq‘ = (ﬂ((lﬁﬂ) + ﬁ[aﬁﬂ])vaqu‘

=0+ Q¥ =0, (4.13)
where we have used (4.9) and defined
1
QY = Eﬂ[“ﬂf‘] W, ¥ (4.14)
with
WY =[V,.V,]¥
70 0 0
! R 0z 0 0 Y 4.15
=Rl o o zw o |B @D
0 0 0o X

where X7, = 5,07 — 8357 is the generator of the
(1/2,1/2) (real) representation of the Lorentz group, while
277 and “X are the generators of the (0, 1) @ (0,0) and
(1,0) & (0,0) representations, respectively.

Looking at the expression for W, ¥, we see that it
contains real terms, R,,,,X, as well as complex ones,
R 40,27 The real terms come from the action of covariant
derivatives on A”_. Since A, are vectors in spacetime, their
covariant derivative includes a connection associated with
the (1/2,1/2) representation of the Lorentz group.” The

This does not mean, however, that A‘i transform according to
the (1/2,1/2) representation of the Lorentz group; They do so
only up to a gauge transformation [22]. See [29] for a more
precise account of this issue.
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complex terms in W, ¥ originate from the (0,1) and (1,0)

representations, with which H 4 are associated.

The Poisson brackets for ¥ and ¥ can be easily derived
from the canonical relations {A}, H.} = y/5(X,¥'), in an
analogous way as is usually done for Majorana spinors,
with the being difference that, in the situation under
consideration in this paper, the Poisson brackets must be
promoted to commutation relations in the quantum theory.
If anticommutators are used instead, one would find the
quantum propagator to violate causality, as expected from
the spin-statistics theorem. Therefore, in spite of the
fermionlike appearance of the formulation used in this
section, we are describing a theory of bosons.

1. Axial current

We now describe how the electric-magnetic symmetry
and its associated conservation law look in the language
introduced in this section. By using the chiral matrix fs, the
transformation reads

Y — ey, P — Peiths, (4.16)
Notice that this has the same form as a chiral transformation
for fermions. Looking at the form of f5 in Eq. (4.10), it is
clear that the upper two components of ¥, i.e., (A, H,),
represent the self-dual or positive chirality part of the field,
while the lower two components (A_, H_) contain the anti-
self-dual or the negative chiral part. The Lagrangian density
(4.7) is manifestly invariant under these transformation, and
in terms of W the conserved current reads

.

The associated Noether charge is
; 1 s
0o = [z =y [ axuppw.  (18)

where dX; is the volume element of a spacelike Cauchy
hypersurface %,. This expression for Qp, is equivalent to the
one obtained in previous sections [see Eq. (2.7)].

V. QUANTUM ANOMALY

In this section we analyze whether the classical sym-
metry under electric-magnetic rotations persists in the
quantum theory. The most direct avenue to meet this goal
is to compute the vacuum expectation value of the
divergence V, /- A nonvanishing result would imply that
the vacuum expectation value of the charge Qp is not a
constant of motion. For the sake of clarity, we perform the
calculation using two different methods. First, we provide a
direct computation of (V,jp,), in which the ultraviolet
divergences are identified and subtracted in a covariant and

self-consistent way, and then we reproduce the same result
using Fujikawa’s approach to anomalies based on path
integrals. These two methods illuminate complementary
aspects of the calculation.

A. Direct computation

Both j}, and V,j, are operators quadratic in fields, and
therefore the computation of their expectation values must
include renormalization subtractions to eliminate potential
divergences:

(Veuib)ren = (Vi) = (Vi) aaca)-

In this expression, (V,j})aq4) indicates renormalization
terms of fourth adiabatic order that we will compute
using the DeWitt-Schwinger asymptotic expansion. More
precisely, this renormalization scheme works by writing
(V,jp) in terms of the Feymann two-point function

S(x,x') = —i(T¥(x)¥(x')), and then by replacing it by
[S(x, x’)—S(x,x’)Ad<4)], where S(x, x’)Ad<4) denotes the
DeWitt-Schwinger subtractions up to fourth adiabatic
order, and then taking the limit x — x'.

A convenient way to regularize potential infrared diver-
gences is by introducing a parameter s > O in the theory
(that will be sent to zero at the end of the calculation),
replacing the wave equation D¥ =0 by (D + 5)¥ =0,
where D = i#V,, [30]. Therefore,

(5.1)

Vi (0) =V, | H )

—i

= 2D () - H()ps D)

= lirgl%ls‘i’(x)ﬂs‘l‘(x’)

_ 1;$;sTr[ﬂ5qJ(x)@(x/)], (5.2)

x—=y

where we have used {f#, 5} = 0. If we now make a choice
of vacuum state |0), we obtain'’

1
(Vuip) = lirglisTrLH5S(x,x’,s)]. (5.3)

X=X

The renormalized expectation value is then given by

; !
(V) n = M ST (SCx,) =S (6, 5) )] (54

x—x

In this expression, S(x, x’, s) contains the information about
the vacuum state, while the role of S(x,x',5)aq() is to

""We choose x° > x without loss of generality, so that

TY(x)P(x) = P(x)P(x).
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remove the potential ultraviolet divergences, which are
the same for all vacua. It is convenient to write
S(x, X', s)aq@y = (D = 5)G(x, %', 5)|aqa) (D acts on the
x-argument), where''

RAY2(x,x')
167>

x Z Ei(x,x") ” d’ce"'(”zﬁ(é}“))(ir)(k—z)
k=0 0

(5.5)

G(x,x',s) ~

where o(x,x’) is half of the geodesic distance squared
between x and x’, A'/?(x,x') is the Van Vleck-Morette
determinant, and the functions E;(x,x") are the DeWitt
coefficients, which are geometric quantities, built from the
metric and its first 2kth derivatives. We only need the value
of these coefficients when x = x’. For manifolds without
boundaries, they are [31,32]

Ey(x) =1,
1
El(x)zgR]I—Q,
E)(x) = iR2 LR Rﬂ”+iR RPwv iDR I
2T 180 * 180 30

1 1 1 1
— W, W +-Q>——RQ+-0]
+ W W +5 Q7 = cRQ+201Q,

where the expressions for W,, =[V,.V,] and Q(x) are
given in (4.15) and (4.14), respectively. Here, R, R,,, and
R,p., are the Ricci scalar, Ricci tensor, and Riemann
curvature tensor.

Because of the symmetry of the classical action, the
contribution of S(x,x’,s) to (5.4) vanishes for all choices
of vacuum state. Therefore, (V,j}) .., arises entirely from
the subtraction terms, S(x,x",s)zqq4). This implies that
(V,.J')ren 18 independent of the choice of vacuum. Notice
that the same occurs in the calculation of other anomalies,
such as the fermionic chiral anomaly or the trace anomaly.

It turns our that only the terms with k =2 in (5.5)
produce a nonvanishing contribution. Furthermore, we do
not need to consider terms involving derivatives of
E,(x,x") since they involve five derivatives of the metric
and hence are of fifth adiabatic order. Taking into account
that

""This expression for G(x,x', s) Ad(4) 1s obtained by writing
G(x,x',s)sg first in terms of its heat kernel K(r,x,x'),
G(x,x',5)pq = iRAY?(x,X') [ dre‘i(fsz+“<§f))K(r,x, x'), and
then by wusing the asymptotic expansion K(z,x,x)~
=L (i7)*2E;(x) for 7 — 0. See e.g., [31] for further details.

—i
167°

1
TH{Bs s (3, 3))] = 15 Ry R

. (5.6)

where *R%# = L1e®oPR i is the dual of the Riemann
tensor, Eq. (5.4) produces

h

~ 02 R R

<vuj%>ren - (57)

Appendix G contains details of the intermediate steps in
this computation. A few comments are in order now:

(1) This result reveals that quantum fluctuations spoil
the conservation of the axial current j;, and break
the classical symmetry under electric-magnetic (or
chiral) transformations.

(2) The pseudoscalar Raﬁw*Raﬁ’” is known as the
Chern-Pontryagin density (its integral across the
entire spacetime manifold is the Chern-Pontryagin
invariant).

(3) It is important to notice the parallelism with the
chiral anomaly for spin-1/2 fermions. The compu-
tations in that case would be very similar, except that
one would have to use structures associated with
spin-1/2 fields, rather than spin 1. This would
change only the numerical coefficient in (5.7).

B. Path integral formalism

The functional integral for the theory under consider-
ation is'

Z= / DWYDWei/hSI¥¥] (5.8)

The strategy of Fujikawa’s approach to the computation
of anomalies using path integrals is the following. The
generating functional Z is invariant under the replacement
(P, P) - (V' = 0% ¥ = Weifs?) since this is just a
change of variables and the path integral remains invariant
under such a change. However, the two components of the
integrand, the measure and the action, could change under
the transformation. Noether’s theorem—in the version in
which one considers the parameter of the transformation
0(x) to be a spacetime function of compact support—tells
us that 6§ = — [ d*x,/=g0(x)V,j. On the other hand, the
integral measure DYDY could change by a nontrivial
Jacobian, DYDY — JDW DW¥'. Then, the invariance of Z
implies that these two changes must compensate each

. . - p
other; i.e., J-e i/h [ d'x/=g00(V,) must be equal to 1.
From this we see that quantum anomalies appear for those

"2As usual, the inclusion of the Lorentz gauge introduces two
ghost scalar fields. These fields contribute to certain observables,
such as the trace anomaly. However, one can check explicitly that
they do not affect the computation of (V,,j},). It is for this reason
that we have not written their contribution to the path integral.
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classical symmetries that do not leave the measure of the
path integral invariant, i.e., J # 1. The value of (V,j},) can
then be determined from J. The goal of this section is to
compute these quantities.

The Jacobian J can be determined by using standard
functional analysis techniques applied to the wave
operator D?, where D = ﬂ”Vﬂ. Consider the space of
square-integrable fields W(x) with respect to the product
(P, ¥,) = a [d*x/~g¥]¥, [see Appendix F for
further details, particularly the discussion around expres-
sions (F8)], and @ > 0 is an arbitrary real parameter
with dimensions of inverse action.” In terms of the
original variables A, and H., the norm of Y¥(x)
reads (V. ¥) = a [d*x/=g[2|A,|* + 2|H . |*] > 0.

It is easy to check that the operator D? is self-adjoint with
respect to the product (¥, ¥,). The self-adjointness of D?
guarantees the existence of an orthonormal basis {¥,}
made of eigenfunctions, D*¥, = 12¥,. We will denote by
a, the components of a vector ¥ in this basis. An electric-
magnetic rotation ¥ — ¥ = ¢%s¥ can now be expressed
as a change of the components a, — a, =), C,nan,
with C,,, = (¥, e%s¥,,). With this, the Jacobian of the
transformation reads

DYDY — JDY'DY', with

Q2G| _ pi2 ) (¥, p50%,)

J = (detC)? = (5.9)

Then, the invariance of the path integral implies that,
quantum mechanically,

<v/4j113>ren = 2ha Z q’nﬂS\P

(5.10)

To evaluate this expression we again use the heat-kernel
approach. The kernel of the equation, D?¥ = 0, is [31]"

K(z,x,x) = —4az —hy (X)W, (). (5.11)
Then
. -1 . /)
(VodD)ien = Thll_f)%Tf[ﬂsK(ﬁ x,x)] = lﬁTr[ﬂsEz]
h * DA v
—@Raﬂﬂy RPuv, (5.12)

It is introduced in order to make the product dimensionless
and, although a = #2~! would be a natural choice, we leave it
unspecified to make manifest that physical observables are inde-
pendent of it; it cancels out in intermediate steps.

“The factor —4 appears as a consequence of the fact that the
pair of spinor fields that are canonically conjugated are ¥ and

0L _ _ 1\
P—and not ¥ and 50,8 = ZT'

where in the second equality we have used the expansion of
K(z,x,x") for = — 0, written in footnote, and in the last
equality we have used (5.6).
Recall that the path integral produces transition ampli-
tudes for time-ordered products of operators between the
in” and “out” vacuum. However, the result for (V,j},) .,
comes entirely from the asymptotic terms in the heat kernel,
which are the same for all vacua. Therefore, the result
(5.12) agrees with the expectation value of V, /7, in any
vacuum state.

VI. CONCLUSIONS

The apparently trivial invariance of the source-free
Maxwell’s equations under duality transformations
F,, — *F,, has interesting physical consequences. This
mapping can be extended to a continuous ‘‘rotation”
F,, — cos0F,, + sin0*F,,, which can be proven to be a
symmetry of Maxwell’s action both in flat and curved
spacetimes. Noether’s theorem then provides the existence
of a conserved current and the associated constant of
motion, which describes the polarization state of electro-
magnetic radiation. The main goal of this paper is to show
that this conservation law does not survive the quantization
in curved spacetimes, and an anomaly arises in the form
of (5.12).

To meet our goal, we have rewritten Maxwell’s theory by
using self-dual and anti-self-dual variables. These fields
transform under irreducible representations of the Lorentz
group and describe the two chiral sectors of the theory. In
this language, Maxwell’s electric-magnetic rotations reduce
to an ordinary chiral transformation, which in the absence
of charges and currents becomes a symmetry of the
classical theory. In this sense, our result can be understood
as the spin-1 generalization of the spin-1/2 chiral anomaly.

Although anomalies arise mathematically as a conse-
quence of taming ultraviolet divergences via regularization
and renormalization, they have low-energy implications, as
stressed, e.g., in [33]. To give some examples, in two-
dimensional spacetimes the trace anomaly implies the
Hawking effect [34], and the fermionic axial anomaly is
closely related to the Schwinger pair creation effect [35].
Similarly, the electric-magnetic duality anomaly found in
this paper is expected to have interesting physical appli-
cations in astrophysics, cosmology, and condensed matter
systems. This paper has been devoted to discussing the
details of theoretical formalism underlying the computation
of this anomaly. A detailed analysis of its physical
consequences will be the focus of future publications. In
particular, we expect that gravitational dynamics will be
able to produce net circular polarization on photons
through asymmetric creation of right and left quanta.
Some preliminary ideas were summarized in [36], where
applications related to gravitational collapse and mergers in
astrophysics were suggested.
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APPENDIX A: NOETHER CURRENT

Here we provide a few more details about the variation of
the Lagrangian density (2.4) under the infinitesimal trans-
formation (2.3). We obtain

oL oL
oL = oA, ——0A, +8VA

= —/=gF"V,Z,.

8V, A, = —\/—gF"*V,5A,

(A1)

The equality *F=dZ+G leads to F=—*dZ—*G. Then

*G,G" = ("F,, —dZ,)(-(*dZ)" - F*) =dz**(*dZ),,
F*F,, +2dZ*F,,, from which we get
1
oL = —, /—gi V, (A B — Z,*dZm)
1
7 /=9*G,, G". (A2)

The last term is equal to the product of the electric and
magnetic parts of G and, since the latter vanishes in one
frame, *G,,G* = 0 in any frame. Then 6L is the diver-
gence of a current, L = \/—_gVﬂ h*, which implies that the
action remains invariant.

The Noether current is then given by

1 oL
o= T 5A, — I
]D ;—_g 8V”AD v
1
= 5[4, P~ Z,2P

Z,(rdzy™), (A3

which agrees with (2.5) after using dZ = *F 4+ G. Acting
now with the derivative operator on (A3), one finds

3 1 * v v
Vi = 5 VuA, B =29, Z,F
—27,V, B —V,Z,(*dZ)"]
1 * v * v v
=3 [VUABY — (B, + Gy JF* ~2Z,V,F

1
- 5 (*F/w + Gﬂl/><_Fﬂy

=-Z,V, B

+ 1G]

(the Bianchi identity was used in the first equality) which
vanishes on shell.

APPENDIX B: THE «f* TENSOR

This Appendix contains additional properties of the af”
tensors used in the main body of this paper. The properties
for the tensors @} are obtained by complex conjugation.

1. Definition and properties

Let {r*,x% y*, z*} be an inertial coordinate frame of
contravariant vectors in 4D Minkowski spacetime.
Consider the following set of complex, antisymmetric
tensors:

ot = —2(tlaxtl 4 jylaghl), (B1)
adh = —2(rlaybl 4 jglaxhl), (B2)
a5t = —2(rlazh) 4 ixlayPl), (B3)

where the square brackets indicate antisymmetrization of
indices. It is straightforward to check that they are self-dual,
ie.,i*af?=ije® 4ai! = af’. These three tensors form an
orthogonal basis in the space of self-dual (complex) tensors
in Minkowski spacetime. Given any such tensor F¢*, we
can write it as
Fib = H! a4?, (B4)
where H! indicates the components of F in this basis.
This last equation can alternatively read as follows. Let V
be a three-dimensional complex vector space, made of
vectors HY, . Let {X;,Y;, Z;} be a basis of one-forms in the
dual space V*. Equation (B4) tells us that a¢® is an
isomorphism between V and the space of self-dual tensors.
An isomorphism can be obtained by the identifying basis
ot = o X, + a5PY + s Z;. (B5)
This isomorphism can be used to endow V with a product
hyy = 4nabncda, b, which, in the basis we started with,
has components equal to minus the Kronecker delta, —d;;.
Spacetime indices a, b, c, - - - are raised and lowered with
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Minkowski metric 7,;,, while “internal” indices /,J, K, - - -
are raised and lowered with A;;.

We collect here some useful properties of the tensors af
which can be checked by direct computation:

uh

Aap1@® ;= dhyy, (B6)
Aap' g = 4P apeas (B7)
A @5 =0, (B8)
aya?y = hyn© = [TZy]% (B9)

In property B7), JrPabcd = %(”acnbd ~ Naalpe + ieabcd) is
the projector on self-dual tensors in Minkowski spacetime,
and [TX;;]?¢ is the generator of the (0,1) representation of
the Lorentz group, whose explicit form is [tX;,]* =
—ie;xa®X . Recall that, according to our sign conventions,
we have 1., = t,t, — X,Xp — YaVp — ZaZp and €4 =
—411lexPycz4) in this basis. On the other hand, taking the
symmetric and antisymmetric parts of (B9) yields the
“commutation” and “anticommutation” properties of a¢’:

al'yalh ) = [z, (B10)
@y = nhyy. (B11)

In a similar manner, the tensor
a’ =a"X; + a5’y + a5’ z; (B12)

provides an isomorphism between the vector space V, the
complex conjugate of V, and the space of anti-self-dual
tensors in Minkowski spacetime,
b _ gl zab
F& = H_a}". (B13)
The analogs of the properties (B6)—(B9) hold, replacing
+pebed by the anti-self-dual projector ~P4*¢¢, which is
simply the complex conjugate of *P*<¢ and [TX;,]* by
the generator of the (1,0) representations [7X; ;]

The generalization to curved spacetimes is straightfor-
ward. Given a field of vierbeins ¢4(x), i.e., a field of
orthonormal basis of tangent vectors in the spacetime
manifold (M, g,,), the a}" tensor is constructed from the
Minkowski space tensor a¢? by

o (x) = h(x) ey (x)a”. (B14)
This makes it obvious that the properties (B6)—(B9)
generalize to curved spacetimes by simply replacing the

tensors 1,, and €,,., by their counterparts in curved
geometries, g, and €,,45.

2. Covariant derivative operator

In this Appendix we provide some details regarding the
extension of the action of the covariant derivative to
indices I, J, K, ....

Recall that the vierbein e;(x) at a given point of the
spacetime manifold (M, g,, ) provides an isometry between
the tangent space at x and Minkowski spacetime. The
extension of the action of the covariant derivative V,, on
“internal” indices a, b, c,... is obtained by demanding
V,ej(x) = 0. This defines the connection one-form w,,

W = =ey0, et + [.efe ab,

"

(B15)

where I',, are the Christoffel symbols. Recall that wﬁb is

antisymmetric, w%’ = a),[,“h] (asaconsequence of V,g,5 = 0).

To further extend the action of V, to the complex vector
space V, we follow the standard strategy. Namely, by
linearity the difference between any two possible extensions
is characterized by
(vll - v;4)1—11 = _CyIJHJa

H eV  (B16)

If we choose V , to be the ordinary derivative associated with
a system of coordinates, v,, = 8,,, we see that there are as
many derivative operators as mixed tensors C,;’. The most
natural condition to single out one of them is to demand that
V,, annihilates the isomorphism a7 (x),

0=V,a = 0,0 + o) + Thpa’ -

J op
up Cur'ay .
Now using a* (x) = ¢%(x)eh (x)a®,, together with the
properties of a¢’, we obtain from the previous equation
the form of C,;’

| d’ﬂ

1 1
C IJ = 783(8;46?) abal +2a(1/)’ up

K 2
1 J [,a a v ,a cb
= iaab [ea(aﬂec) +1.eec Jof
1 o b ac 1 [a J b
= 2 App e Wy = 2 b ac 1Pyac

—w ab [+2ah} [J

— 3o (B17)

where [*2,,],” is the generator of the (0,1) representation of
the Lorentz group. Therefore, the covariant derivative acting
on the field H; is given by

1
S il [Jrzab]ljl'l;r .

VH = 0,H] = o

(B18)
Using the curved-space version of property (B7), one
&’ =0 in tun leads to
the condition V”aéﬂ = 0 for the dual space, yielding

concludes that the condition V,
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V,H. =0,H" — %wﬁ”[*Zab]’JHi. (B19)

Further useful equalities can be found. Looking at
property (B6) in curved space, the above conditions imply
that V,h;; =0. A similar derivation shows that the
covariant derivative of the tensors 1"/ or hly = h'Xhy; also
vanishes. Finally, the covariant derivative of the totally
antisymmetric tensors €;;x is zero. This is readily seen

by noting from (B9) that V;Z%j = 0. Recalling that
["21,]% = —ie;xa®X, then one concludes V€5 = 0.
By complex conjugating (B18), we obtain

. -] .
V,H. =0,H — Ewgb =) H, (B20)

where [Z,,] jj is the generator of the (1,0) representation of
the Lorentz group. The tensors h; ;, h!”, 511-, and €;; ; are
also annihilated by V.

3. 3+1 spacetime decomposition

A globally hyperbolic spacetime can always be foliated
by a one-parameter family of spatial hypersurfaces %,, M ~
R x X, [37]. If we denote by n* the unit timelike vector
field everywhere orthogonal to £, then h,, = g,, — n,n, is
the induced spatial metric on Z,.

We can now use the isomorphism o}" defined in (B5) to
build the following mixed tensors:

(i) 7y = n,a"; provides an isomorphism between com-

plex vectors in V and (spatial) vectors in the tangent
space of X,.
(ii) y’; = n,a"; is similar to the previous map replacing
V by its complex-conjugated space V.
(iii) 7] :=y4y} provides an isomorphism between V
and V.
(iv) €™ :=ypn,e®* defines a totally antisymmetric,
“purely spatial” tensor with mixed indices.
From the last definition one can derive an identity that will
be useful in later calculations,

iV elpy vl —;w] 1
i2e o ay;. (B21)
As we have already mentioned, o} provides a one-to-
one correspondence between self-dual tensors F and
elements H!. € V. We can now also build an isomorphism
between self-dual tensors F and purely spatial vectors in
spacetime constructed as H*. = n, F”. Indeed,
H" =nF =n,a"H =y/H.. (B22)

From the above definitions, and using (B7) and (B9), one
can easily verify the following properties,

yljyﬂ[ = d;ynﬂapﬂlnp = —n”nﬂ + gpﬂ - hl/ﬂ’ (B23)

v — vJ — vJ
ViV = a”ylnﬂap np - a(”ylnﬂam

np = h[ ] (B24)
This shows that y/ indeed provides an isometry between
spatial complex vectors in X, and elements of V. Notice that
V,ry #0, but the spatial derivative of H’ satisfies

D, H' = DH':

D,H" = N H} = "V, (y|H])

=V H] + (V) Hf

=V H + W (n,a, + K, ) Hf

="V ,H} = DH", (B25)
where we have used V,n,=n,a,+K,, a, is the
4-acceleration of the vector field n,, and K,, = K(,,) is
the extrinsic curvature of the three-dimensional submanifold
%,. Furthermore, if D;H!, =0, then H!, can be written as the
“curl” of a complex potential, H', =ie’*V, A/ Indeed,

D,Hﬂr =D,H% = L'Daeo’””V”A;L = ie"”"’DaV”A;r
= WY,V A}

o € R A, = 0, (B26)
where R,,,; is the Riemann tensor, and we have used (B25),
(B22), and (B23).

4. Extended azb and its algebraic properties

This section provides some details regarding the
“extended of’-tensors,” defined by extending the range
of the index I to run from O to 3, and setting o, = —¢g**.

We begin by defining a in Minkowski spacetime. Let
V =V @ C, equipped with a Lorentzian flat metric 7;,, be
our “internal” vector space, where the indices /, J run from
0 to 3. The complex three-dimensional vector space V,
defined in Appendix B 1, is now a subspace of V. Let n;
denote a unit timelike vector (5,;n/n’ = 1) orthogonal to
the V subspace (i.e., n'm'n;; = 0, for all m’ € V). It spans
a one-dimensional vector space. The metric tensor in V can
be written as n;; = n;n; + h;;, where h;; is the metric
tensor in V used in Appendix B 1. Let X, Y;, Z;, n; be an
orthonormal basis of V*, the dual space of V, with
n; =nyn’. We now define the extended tensor o} by
extending expression (B5) as follows:

o’ = a{’X; + asPY + a®Z — nPny. (B27)
Therefore, we have
i’ = a$Ph] — nm, (B28)
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where a4?h/ (the projection of a¢® on V) is simply the a”
tensor used in the previous subsection, before extending the
range of indices /,J,K, ....

The tensor a?b defined in (B27) maps vectors in V to
tensors in Minkowski spacetime of the form

a;: H'. — af’H!, = F — HOpab. (B29)
Here, F4* is an antisymmetric self-dual tensor that in
Minkowski spacetime transforms under the (0,1) irreduc-
ible representation of the Lorentz group, while H) is a
scalar function.

Thus, the extended tensors a¢” map vectors in V to
tensors in Minkowski spacetime that transform under
Lorentz under the (0, 1) @ (0,0) representation.

The properties (B6)—(B9) must be replaced by

A at, = 4n,;, (B30)
Aap! Acgy = 4T Pl 4 pbped = 4=pactd 4 pacybd - (B31)
U@y = 4nyn;, (B32)
apay = nn — M, (B33)
where  TMY§ = "X + 20!“”1(}15”1) =—4"p acbnﬂ’?ﬂ"fi)’15

and ¢S is the generator of the (0, 1) @ (0,0) representa-
tion of the Lorentz group.16 From (B33), we obtain the
commutation and anticommutation relations

a[ablac]hj = —+M757’ (B34)

a0 =y (B35)
The generalization of these properties to curved space-
times is done, again, by using a vierbein or orthonormal
tetrad ey (x), to write the relation between the curved
spacetime «a;-matrices and the flat spacetime ones,
o (x) = eh(x)el (¥)ar. (B36)

The covariant derivative acting on the extended indices
I,J,K, ... can be determined following the arguments in
Appendix B 2, but now we demand that V,, annihilates the

extended tensor of’, V" = 0. As expected, the result is

We use the same notation for y¥ := n,a"” with the extended
alpha tensors, as well as the rest of the mixed tensors
in Appendix B 3. Its distinction is clear from the context.

"®Note that we denote the generator of the (0,1) @ (0,0)
representation with the same symbol as the (0,1) generator that
we used in the previous subsections; the (0, 1) @ (0, 0) generator
has more components than the (0,1) one; namely, the components
corresponding to I or J equal 0. However, these components are
all equal to zero; hence, we find it appropriate to use the same
name for the two generators.

1
V.Hf =0,H} - Ewgﬂza,,,ij, (B37)

where T,/ is the generator of the (0, 1) & (0,0) Lorentz
representation. The properties of the conjugate tensors "
are obtained in a similar way.

We finish this Appendix by deriving a few useful
relations. First, from (B30) we obtain V5, =0.
Second, by acting with g,,V, on Eq. (B28), and by using
Vo) =0, we obtain V,n; = 0 (since 1;; = nyn; + hyy,
we also conclude that V,h;; = 0). Recalling (B28) again,
this last property implies that the covariant derivative
defined in this section also annihilates the projection of
o into V, namely, V, (o} h}) = 0.

APPENDIX C: MAXWELL EQUATIONS
IN CURVED SPACETIME

This Appendix shows the equivalence between the
equations of motion for the potentials (3.25) and the
fields (3.24).

First, we show that the equation for the potential
a'V,A,, =0 implies the equation for the field
&'V ,H' = 0. (We focus on self-dual fields; the derivation
for anti-self-dual fields can be obtained by complex
conjugation.) To prove this, notice first that using the
identity (B21), the equation for the potential implies
that 2ie’*V,A 53 =a"'V,A,,. Then, recalling that
H' =ie"V,AS, we see that when A,, satisfies the
equations of motion, the relation between the field and
the potential can be rewritten as H, = Ja*/V,A . Acting

. 5 .
now with a;”V,, we obtain

1
afpvai = (C1)

=3V, a1V A, = =2V, VOA =0,
where we have used the fact that —4a”a**! is a projector on
self-dual fields and, in the last equality, all solutions of
a'V,A;, =0 are also solutions of the second-order

equations VpV[‘sAﬁ’r] = 0 [remember the discussion below
Eq. (3.25)].

Next, we want to show the reverse; i.e., starting from
&V ,H'_ = 0, we want to show that there exists a potential
A,,, related to H by H' =iV, A, , that satisfies
a'V,A,, =0.

We begin by noticing that the identity Vﬂa?’ﬁ = 0 allows
us to write the field equations as V,(a}”H'.) = 0. Because
o"H_ is a self-dual tensor, this equation implies that the
two-form defined by F,, = OtIMHﬂr is closed,’ dF, =0.

Notice that for self-dual or anti-self-dual two-forms,
V, w* =0 if and only if V,*w = 0, the latter formula being
equivalent to dw = 0.

125001-17



AGULLO, DEL RIO, and NAVARRO-SALAS

PHYS. REV. D 98, 125001 (2018)

This allows the introduction of a potential one-form A,
F, =dA,. Then, dA, is self-dual; that is to say, the
ap

contraction of @;" and dA vanishes. But this is precisely

the equation of motion we are looking for, &?ﬁ VA s =0.
What remains is to prove that H', and A, are related by
means of a curl. To see this, we notice that since
F.,, =a,H', we have a,,H', =2V A . Multiplying
both sides by a**/ produces HY, = a**/V,A ). Now using
the relation (B21) and the equation for A, g, this relation
reduces to HY = ie’*V,A,,, which is what we wanted
to prove.

APPENDIX D: DERIVING EQUATIONS OF
MOTION FROM FIRST-ORDER ACTION

In this Appendix we derive the equation of motion from
the first-order action, described in Sec. IV A. We begin with
the derivation of Eq. (4.2) from the action (4.1). Recall that
in this action we have not yet introduced the Lorentz gauge,
and the indices I,J,... and I, J, ... take values 1,2,3.

From the form of the action (4.1),

SulA+,A]

1 .
:_E/d4x\/—g[HI_5!”yivﬂAzjr +HL "V, A7l (DI)

we have
5SM 1- v i i U 0 -
0= AT~ 5@ iV, HL + Vﬂie’” a?N,Ay. (D2)

We now use the identity (B21) (note that Ve’ # 0) and
(B7) to write

0= %aﬂ” iV HL + %a””’a“ﬁzVﬂVaAE
_ %V#&”Di€aﬂiva‘4§ - %&”Vié“ﬂivﬂvaAﬁ

= %a"”jvﬂHi— B évﬂaﬂyjeaﬂivaAl;
+ [FPMPY NV ,AG — PPV, VA7 (D3)

Recalling that H = —iei””V”A,,i, and using the Bianchi
identity €*“/R,.,. = 0, we get

0=a";V,HL + %e”””ﬁVMV,IA;
o
=@V, HL + L PR, A
=a";V,HL.

(D4)

Finally, as shown in Appendix C, these equations are
equivalent to o}“V,A; = 0. Similarly, by differentiating

the action with respect to A_, we obtain a’”’,VﬂHﬂr =0,
which implies &;"V,A} = 0.

Now we again derive the equations of motion, but
starting from the action that incorporates the Lorenz-gauge
condition. As explained in Sec. IV A, this gauge condition
is incorporated by extending the range of the indices
I,J,... and i, J, ... to take values 0,1,2,3, by introducing
Lagrange multipliers HY, and defining o)’ = —¢**. In
order to take advantage of the calculation done a few lines
above, we now keep the indices 1, J, ... and I , J , ... Tunning
from 1 to 3, and explicitly write the Lorenz-gauge fixing
term in the action:

1 .
SiAL HO] =~ / dx\/=gIH! @V AF + H' oV A7

—-HV, A —H)V AL (D5)

Variation with respect to HY. provides the Lorenz-gauge
condition: V,A" = 0. Variation with respect to A, yields

oS

0=3ar

P4 [ 1 v 170
— @V, HL - VR (D6)

Let us first focus on the 0-component of this equation with
respect to the (arbitrary) spacetime decomposition used to
relate H . and A’,. This is done by contracting (D6) with the
timelike vector n,. The term involving H’ vanishes

[D,-Hi_ = 0 by construction, see (B26)], and we obtain
n*V,H° = 9,H° = 0. On the other hand, acting with V,
on Eq. (D6), we get (JH® = 0; the term involving H. again
vanishes because &’;”V,,VﬂHI._ =0."" Now, if both
OH® =0 and 9,H° = 0 hold, then D;D'H° = 0 holds.
Choosing that H® vanishes at spatial infinity, one gets
HY = 0. With this, Eq. (D6) reduces to &*V,H. =0,
which is the correct equation of motion. An identical
reasoning can be applied for Hﬂ. Following the same
arguments as in Appendix C, we can write the (extended)
first-order equations of motion for the potentials as

oa'V,A; =0, (D8)
with I =0, 1, 2, 3, the O component being the Lorentz-
gauge fixing.

3This last formula can be checked as follows:

#V,V,HL =V, V@ H =V, V, P
1

)

1

1
=R, F¥ —-R,,F** = 0. D7
o tva 9 Tha ( )

1
Ruud P2 + 5 Ry P
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APPENDIX E: DERIVING THE NOETHER
CURRENT FROM FIRST-ORDER ACTION

In this section we derive the Noether current in first-order
formalism by working directly with the variables A, and
A_ and the action functional (4.1).

The variations of the Lagrangian density £ = L[A,A_]
under an infinitesimal electric-magnetic rotation of the
potentials, 0A, = Fid0A ., produces

o= DL gy OE

oA 6V,Af +c.c.

oV, Af
:—%HI a i (—is0)V A

1
—5ieal? VA7 (~is0)V, A +e.c.

166
2

1660

~—-Hla @V, Af + 2 HL a7,V A +c.c.=0. (El)

We find that, unlike in second-order formalism, the duality
rotation leaves the Lagrangian invariant. The Noether
current is now constructed as

oL

j’L‘):av A+5A++cc

1
= — S HL @ (~is0)A;

1
— 5 i@ VA7 (~iB0)A] + c.c.

156’

S HL @A — HYaA7)

60
+ —Eefﬂ”A;“ap",VpA; +c.c.|. (E2)

This expression agrees with the result obtained in Sec. II,
Eq. (2.5). Note that the last term in (E2) does not contribute
to the associated Noether charge, and it is proportional to
the equations of motion, vanishing on shell. It is not
difficult to find that it agrees exactly with the last term
in (2.5).

APPENDIX F: DEFINITION OF ¥ AND p* AND
THEIR PROPERTIES

In this Appendix we define the fields ¥ introduced in
Sec. IV B, as well as the matrices #* and f5, and discuss
their properties.

Given the complex potentials A,jf and the self-dual and

anti-self-dual fields, H’+ and H’;, we define the object

A+I./
H,
AV

H_;

(F1)

Note that all four components of this object are related: A,

is the complex conjugate of A;f, and H!, = ie’™V A/, H’

is the conjugate of H’, Therefore Y is the spin-1 analog of
a Majorana spinor, whose upper and lower components are
related by complex conjugation (Majorana fields represent
real spinors with zero electric charge).

If we denote by X the vector space of all ¥, we define the
linear map p#:X — X by

&”DI‘HI'_
P IAI./
Y = S F2
p et (F2)
_aﬁlf A;“
which is well defined for all ¥. In matrix notation
0 0 0 a
” 0 0 —-ao') 0 3
il 0w o o (F3)
- 0 0 0

Now define the product of two p* as the composite
operation p#f:X — X, defined by (p#p")¥ = p*(p*¥).
This is linear, and it leads to

', a 0 0 0

P = R A
0 0 a0
0 0 0 #“a

Using the properties (B34) and (B35) of the a; matrices,
one can easily write the symmetric and antisymmetric parts
of this expression in y and v; in particular, the symmetric
part produces the anticommutation relations written
in Eq. (4.9).

Define the “chiral” matrix f5 as a linear map fis: X — X
by fs = 4i €uapP f**BP. Manipulating this expression we
obtain
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i
ﬁ5 = E e/waﬁﬂwﬂy]ﬂ[aﬁ/}]

4P [P, 0 0
i 0 M MK, 0 0
=—€
6" 0 0 AP, P 0
0 0 0 MR M

9/ 0 0 0
0 -k, 0 0
0o 0 ¢, 0
0 0 0 n

The tensor *P is the projector on (anti-)self-dual tensors
defined below (B9), and the tensors [*M*] were defined
below Eq. (B33). In the above calculation, we have used the
self-duality property, £i*P* = P*. The map f; has the
following properties:

' 0 0 0

{Bs.p"} =0. (Fo6)
0 0 0 &

A duality transformation can be implemented by means of

the linear operation Ty:X — X, with T, = %5, 0 € R.
Let X* be the dual space, the space of linear functionals

over X. Given ¥ € X as in (F1), we define ¥ € X* by

W= (Ay Hf A; HL). (F7)

The action functional (4.7) is thus a well-defined quantity.
To construct a Hilbert space from X, we need to endow it
with an inner product. Note that, while the product P¥ € C
is well defined, it does not produce a positive real number.
We can define a (positive-definite) inner product as follows:

(P, ¥,) =« / d*x\/=q¥,6%,, (F8)

where «a is an arbitrary positive real constant with dimen-
sions of inverse action (see footnote 13), and 6: X — X isa
linear application defined by

oY = (F9)

(FS)
|
which in matrix notation reads
0 0 & o0
0 0 ¢!
5= ! F10
o, 0 O (F10)
0 y§ 0 O

(y,; was defined in Appendix B 3). This operation is useful
since W6¥ > 0. By expanding the fields as in (F7) and (F9),
one checks that expression (F8) is real, and in particular
(. ¥,) = (¥,,¥;). Linearity with the second variable is
trivial.

The analog of this product for the Dirac field is commonly
written simply as (¥,,V,) = a [ d*x,/=g¥|V¥,, where
the matrix §(= y°) is implicit in ¥' = ¥§ to simplify the
notation (see, e.g., Ref. [16]). Note, however, that the
presence of J is required in order to make the operation
well defined regarding the position of indices. We use the
product (F8) in Sec. V B.

APPENDIX G: DETAILS IN THE CALCULATION
OF THE ELECTROMAGNETIC
DUALITY ANOMALY

This Appendix provides details of the intermediate
steps summarized in Sec. V regarding the computation
of (V. /) ren- In that section we needed to compute

1
(Vuip) = limESTrVJSS(x,x’,s)], (G1)

-0
where S(x, X', 5) sqa) = [(Dx — $)G(x, X', 5)] pq(4)> and with
the asymptotic expansion in (5.5). There is no need to
explicitly find the asymptotic expansion of A'/?(x,x’),
o(x,x"), and E;(x,x") in the short-distance limit.

We show first that the derivative term, D,G(x,x',s),
does not contribute to (V,j},). From this contribution one
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only has to consider the k = 0, 1 terms in the sum (5.5)
since the term with k = 2 is of adiabatic order five. The
action of the derivative on G(x,x’,s) produces three
contributions: one that goes with VEA'2(x,x’), another
with Vio(x, x’), and another with VE, (x, x'). The first two
are multiplied by Tr{f*psE;(x)}, and this quantity van-
ishes for both k =0, 1. Regarding the contribution of
Vi, E;(x,x'), it vanishes because of the limit s — 0. To see
this, notice that for k = 0, 1, the factor V},E;(x, x") appears
multiplied in the sum (5.5) by the following contributions,
respectively,

0 2 eled)y 2i
/ dre™ (75 (i7)? =
0

o(x,x")

+ 0(s?) (G2)

/ " dre= 5 (i7) = 2ilog s + O(°)  (G3)
0

On the other hand, higher values of k in (5.5) provide
contributions of more than 4 derivatives of the metric to
S(x,x',5), so they are of higher adiabatic order. The k = 0
case vanishes because it is proportional to Tr{fsE(x)} =
Tr{fs} =0. The k =1 term does not contribute either
becellélse it is proportional to Tr{fsE,(x)} = Tr{fsQ},
and

1
Tr(psQ) = —2iR,, 3 TrIm Tprryal _ i M-S B

1
= 5 iRy TrIm[ M 2]

= _zl.R”U[jg/wal = 2iR el.wrmnpno. = O.

Hvap

Then, it only remains to calculate the kK =2 term in the
asymptotic sum (5.5),

(V, ) = <2 Te(psE)

so the limit s — 0 in (G1) vanishes. 32722
We show now that the other term contributing to in [1 oL 5
S(x, %, 5) ad(ays SG(x, X', 5) aq(a)> only provides a nonzero 3022 ﬁTr(ﬂ5WWW" )+§Tr(ﬂ5Q )| (G4)
result by means of the k = 2 term in the asymptotic sum
(5.5). First notice that the limit x — x’ can be safely taken. ~ with W,, =[V,,V,] given in (4.15) and
|
1 [a ]
QY = 3 ppIW Y
—2t pryal 0 0
1 0 %+M;w+2a/3 0 0
= Ruuap R g
2 0 —)—prryap 0
0 0 1MpeEep
where % w18 the generator of the (1/2,1/2) representa- Tr(BsW,, W) = —2i Rﬂmﬂ*Rﬂ”"ﬁ, (G5)
tion of the Lorentz group, 7%, is the generator of the
(0,1) @ (0,0) representation, I‘Z“ﬂ jj is the generator of Tr(f5Q%) = iR™P*R,,p. (G6)
(1, 0) ® (0, 0)7 and ipabcd =1 (”ac”]bd ~ Naallbe + leabcd)' . . .
A lengthy but straightforward computation produces With this, we obtain
“In this calculation we use the relation TP oped = —% [Zapea + Tr(ﬂ5E2) = lgR”mﬁ *Rﬂuaﬂ' (G7)

i(*Z,) 4] and the Bianchi identity R, ,3e"** = 0 (several times).
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