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We propose an analogy between the quantum physics of a black hole in its late stages of the evaporation
process and a superfluid Bose-Einstein condensate (BEC), based on the Horowitz and Maldacena quantum
final-state projection model [J. High Energy Phys. 02 (2004), 008]. The superfluid region is considered to
be analogous to the interior of a black hole, and the normal fluid/superfluid interface is compared to the
event horizon of a black hole. We theoretically investigate the possibility of recovering the wave function of
particles incident on a superfluid BEC from the normal fluid, facilitated by the mode conversion processes
occurring at the normal fluid/superfluid BEC interface. We also study how the correlations of an infalling
mode with an external memory system can be preserved in the process, similar to Hayden and Preskill’s
“information mirror” model for a black hole [J. High Energy Phys. 09 (2007), 120]. Based on these
analogies, we conjecture that the quantum state of bosons entering a black hole in its final state is the
superfluid quantum ground state of interacting bosons. Our analogy suggests that the wave function of
bosons falling into a black hole can be recovered from the outgoing Hawking modes. In the particular case
in which a holelike quasiparticle (a density dip) is incident on the superfluid BEC causing the superfluid to
shrink in size, our model indicates that the evaporation is unitary.
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I. INTRODUCTION

Certain many-body quantum wave functions can be
considered to be rigid, in the sense that they can act like
fixed points in a Hilbert space, in which the quantum
dynamics around these states would exhibit interesting
physical properties without changing the wave function of
the rigid region. Black holes are thought to be one such
physical system in which this is true. In fact, such an
assumption resolves the black hole information problem
since certain final states permit teleporting the information
contained in the infalling matter to outgoing Hawking
radiation [1–3]. The black hole described by these models
is in its late stages of the evaporation process, past its
“halfway point” where more than half of its initial entropy
has been radiated away [4], such that an asymptotic
quantum final state can be envisaged. Recently, the authors
have proposed that, albeit being a completely different
physical system, superconductors have many of the same
features of a black hole, and the final-state projection model
applies to analogous Hawking radiation (Andreev reflec-
tion) from a superconductor, thereby mapping several
existing theoretical resolutions of the black hole informa-
tion puzzle to experiments using superconductors [5].

Here, we extend this analogy to the case of bosonic
superfluids. We consider a normal fluid/superfluid interface
similar to the experimental setup discussed by Zapata and
Sols [6] to describe a bosonic version of Andreev reflec-
tions [7]. In the bosonic analogue, a particlelike mode
(density bump) incident on the superfluid from the normal
side triggers the retroreflection of a holelike quasiparticle
(density dip), which propagates in the normal region with a
group velocity that is different from ordinary reflections.
In experiments, the distinction between normal fluid and
superfluid can be made with respect to the local speed of
sound; the normal region is where the fluid flows faster
than the local speed of sound. Naively, a bosonic quasi-
particle incident on the superfluid from the normal fluid
gets “trapped” in the superfluid because in order to return to
the normal region it has to achieve velocities exceeding
the local speed of sound. Such a situation can be con-
structed by considering a decaying condensate, with the
outgoing coherent beam treated as the normal region where
the condensate interactions can be ignored [6,8]. Here, the
boundary between the decaying condensate and the out-
going coherent beam plays the role of an event horizon,
similar to other sonic black hole analogies [9–13] and black
hole lasers [14].
Our approach can be contrasted with existing proposals

that compare superfluid Bose-Einstein condensates (BECs)
to black holes, which aim at resolving various aspects of
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the particle production problem near a black hole, pio-
neered by Stephen Hawking [15,16]. The first paper that
mentions an analogy between Andreev reflections and
Hawking radiation was authored by Jacobson [17], and
his attempt was to account for the outgoing black hole
modes as a result of mode conversion from ingoing modes,
and not produced by a trans-Plankian reservoir at the event
horizon. In his 1996 publication, Jacobson concluded that
a mechanism to recover the quantum information lost in
black holes remains elusive, since the partner modes are
still lost in the abyss of a black hole when Hawking modes
are produced. We combine his observations with the final-
state projection model proposed by Horowitz and
Maldacena (Fig. 1) and discuss how the information puzzle
can also be studied in this analogy, therefore showing that it
offer resolutions to both the trans-Plankian problem and the
information puzzle at once.
Recently, there has been much interest in the superfluid/

black hole analogy, for example, the proposal by Zapata
et al. [18] also studies bosonic Andreev reflection as
analogous to Hawking radiation from black holes, although
their work mainly focused on characterizing Hawking
radiation from atomic condensates with a subsonic/
supersonic interface and not the quantum information
paradox aspect of the problem. Similar sonic analogies
to black holes using BECs have been proposed before
[10–12], and a second-order superfluid phase transition
near the horizon similar to helium-4 has been discussed
by Hennigar et al. [19]. Thermodynamic features of an
interacting Bose gas is also a topic of major interest in this
context; for example, area law for the scaling of entropy has

already been proposed for an interacting system of helium-
4 [20]. Here, we further investigate the superfluid/black
hole analogy from an information theory point of view for
bosons and show that the unitarity of black hole evapora-
tion in the final-state projection model is also manifest in
the mode conversion processes occurring at normal fluid/
superfluid BEC interfaces.
Compared to existing approaches describing mode con-

version processes at bosonic superfluid/normal fluid inter-
face [6,18], our approach differs in that we assume a
microscopic quantum description of the superfluid region
as the ground state of interacting bosons [21,22]. We then
look at quasiparticle excitations incident on the superfluid
from the normal region, produced from fluctuations of
the condensate/relative flow of the condensate, and quasi-
particles introduced externally. These quasiparticles are
assumed to be sufficiently low in energy such that they
do not perturb the condensate away from its ground state.
Considering an interacting Bose gas instead of a non-
interacting Bose gas permits us to investigate resolutions to
the information paradox in black holes using final-state
projection models [1,3], since different bosonic modes in
the ground state of an interacting Bose gas exist as entangled
pairs [21–23]. Further, the condensate wave function also
has certain invariance (under the transformation k → −k)
when the superfluid interactions impose a strict s-wave
pairing symmetry, which is crucial for the present study.
The closest publication to the current work of which we

are aware is the fermionic superfluid/black hole analogy
presented in Ref. [5]. Similar to the fermionic case, we find
that several existing proposals that describe black hole
evaporation as a unitary process have analogies in the
bosonic case as well, notably, the models proposed by
Horowitz and Maldacena [1] and Hayden and Preskill [4].
Based on this analogy, we propose a final quantum state for
bosons falling into a black hole, which is the ground-state
wave function of a superfluid BEC in which particles exist
as entangled pairs. This can be viewed on par with the
previously proposed superconducting BCS wave function
of fermions forming a black hole [5] in which they exist
in the form of Cooper pairs [24] and therefore gives a
complete symmetrical picture, prescribing wave functions
to fermions and bosons inside a black hole. The advantage
of our approach is that black hole evaporation can be seen
to be a manifestly unitary process when the interactions
are maximally entangling, and it resolves the black hole
information problem for bosons, similar to resolutions of
the black hole information paradox for fermions proposed
previously [5]. The notion of a black hole in our present
study is also consistent with the “information mirror”
model proposed by Hayden and Preskill [4] and the black
hole/superconductor analogy previously proposed by us,
where the black hole “Andreev” reflects the quantum
information encoded in the collapsing matter, while accept-
ing particles [5].

FIG. 1. Quantum information dynamics near the event horizon
of a black hole in the Horowitz-Maldacena final-state projection
model [1,3]. The incoming quasiparticle mode falls into the black
hole by taking the negative energy particle from the Hawking pair
and forming a two-mode paired entangled state inside the event
horizon, while the outgoing Hawking mode escapes to infinity. In
the process, the quantum information originally encoded in the
incoming mode is dynamically transferred to the outgoing mode.
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A detailed analysis of various presumptions leading to
the condensate/black hole analogy has already been
presented elsewhere [5]. To be brief, our generic approach
to resolve the information paradox using condensates
requires that we assume the validity of a local quantum
field theoretic description near the event horizon of a black
hole, such that one can factorize the Hilbert space into
subspaces, and define correlations such as entanglement.
As has been discussed previously, such an assumption,
together with the assumption of linearity and unitarity of
the quantum theory, requires that the wave function of
the interior of the black hole contains no information
about future/past Cauchy surfaces and is special [5,25,26].
Through the work presented here, and in our previous
publication [5], we show that the superfluid quantum
ground state wave functions of bosons and fermions
respectively have many similarities with the aforemen-
tioned special wave function to describe the interior of a
black hole.
This article is organized as follows. In Sec. II, we show

that the quantum information encoded in continuous variable
modes falling into a superfluid BEC can be recovered from
the outgoing modes, and the process can be understood as a
deterministic continuous variable quantum teleportation [27]
of information, mediated by local tunneling/pairing inter-
actions. The implications to the final quantum state of an
evaporating black hole is discussed in Sec. III, by making
analogy with the Horowitz-Maldacena final quantum state
proposal for black holes [1]. The analogy with the black hole
information mirror model proposed by Hayden and Preskill
[4] is also discussed in Sec. III B, in which we show that
the condensate preserves quantum correlations of an infal-
ling mode with an external memory system by transferring
them to the outgoing mode. We discuss our main results and
conclusions in Sec. IV.

II. MODE CONVERSION AT THE INTERFACE
BETWEEN A NORMAL FLUID AND

A SUPERFLUID BEC

In this section, we describe the mode conversion processes
at the interface between a normal fluid and a superfluid BEC
of interacting bosons, when a particlelike mode (density
bump) is incident on the superfluid from the normal side.
In practice, a few processes result [6]: 1) ordinary reflection,
in which the particlelike mode reflects from the interface
back to the normal region. 2) transmission of the quasipar-
ticle across the condensate, and 3) Andreev reflection of
the quasiparticle, in which the retroreflected quasiparticle is
holelike, observed as a density dip. While all these processes
are of interest for various applications of quasiparticle
transport across normal fluid/superfluid interfaces [6], we
restrict to situations in which the interface is ideal (low
reflectivity) and vanishingly small excitation energies such
that processes (1) and (2) can be respectively ignored. The
time reversals of these processes are also physical; for

example, the time reversal of (3) would be the case when
a holelike quasiparticle (density dip) incident on the super-
fluid from the normal side trigger a particlelike mode
(density bump) to be emitted from the superfluid to the
normal side, causing the superfluid to shrink in size.
We begin by reviewing a simple model for the BEC of

interacting bosons by closely following the discussions in
Refs. [21,22]. The Hamiltonian for an interacting Bose gas
of which the ground state is the superfluid BEC is given by
(in the units ℏ ¼ m ¼ 1),

H ¼
X

p

εpd
†
pdp þ

g
2V

X

p;p0
d†pd

†
−pdp0d−p0 ; ð1Þ

where εp ¼ jpj2
2
, g is the coupling constant, and V is the

volume. In the limit N−N0

N ≪ 1, where N is the total number
of particles and N0 is the average number of particles in the
ground state, we can write down the effective Hamiltonian
for the BEC [21,22],

HBEC ¼ 1

2
Vgn2 þ 1

2

X

p≠0
½ðεp þ ngÞðd†pdp þ d†−pd−pÞ

þ ngðe−2iτd†pd†−p þ H:c:Þ�; ð2Þ
where n ¼ N

V and τ is the phase of the condensate. This
Hamiltonian can be diagonalized using Bogoliubov trans-
formations, and the superfluid ground state can be com-
puted as the Bogoliubov quasiparticle vacuum,

jψBECi ¼ e
1
2

P
p
θpðdpd−pe2iτ−d†pd†−pe−2iτÞj0i; ð3Þ

where coshð2θpÞ ¼ εpþngffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεpþngÞ2−ðngÞ2

p and sinhð2θpÞ ¼
ngffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðεpþngÞ2−ðngÞ2
p [21,22].

The crucial observation for the present study is that the
ground-state wave function of a superfluid BEC given in
Eq. (3) is a coherent squeezed state, which exists as pairs of
particles in opposite momentum quantum states [21,22].
For the remainder of the section, we consider one such pair
with squeezing parameter r and momentum p and denote it
by jψðr;pÞi,
jψðr;pÞi ¼ expðreiϕd†pd†−p − re−iϕdpd−pÞj0p0−pi

¼ sechðrÞ
X∞

n¼0

½eiϕ tanhðrÞ�njnpidjn−pid; ð4Þ

where ϕ can be thought of as the condensate phase.
This state is highly entangled. The subscript d is used to
distinguish modes inside the condensate/falling into
the condensate from the outgoing modes, labeled by a.
The average number of excitations in each mode is
hnpi ¼ hn−pi ¼ sinhðrÞ2. The statistics of each mode are
also a pseudothermal state with an effective temperature T
defined by expð−βωÞ ¼ tanhðrÞ2, where β ¼ 1

kBT
[21,23]. In

the following, we show that the existence of particles only in
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the form of entangled pairs within the condensate requires that
the quantum information encoded in the wave function of
particles falling into the condensate cannot enter the con-
densate but has to be retroreflected out of the condensate via
mode conversion processes occurring at the interface.
This can be understood as follows. In bosonic Andreev

reflections, a quasiparticle (particlelike, density bump)
incident on the superfluid boundary from the normal fluid
can be retroreflected as a holelike quasiparticle (density
dip) to the normal region, while both of them contribute
positively to the density of the condensate [6]. In our
model, this is described by a quasiparticle mode (particle-
like, density bump) from a (bosonic) particle/hole pair
falling into the condensate with the incoming quasiparticle
(particlelike, density bump) and forming a paired coherent
state of BECs inside the condensate while leaving behind
holelike quasiparticles (density dip) that propagate back to
the normal region, as depicted in Fig. 2. The converse of
this process is also physical and leads to particlelike modes
emitted from the condensate upon incidence of a low-
density wave from the normal fluid.
A dynamic picture of various scattering events in the

superfluid state that create and annihilate pairs of particles
is depicted in Fig. 2(a), together with the scattering events
at the boundary that can add/remove pairs in the con-
densate. Note the similarity of bosonic Andreev processes
at the interface between a superfluid BEC and the normal
fluid with their fermionic counterpart, which is also
identified as the microscopic origin of the proximity effect
in superconductors [28]; the superconducting correlations
can extend to the normal metal in a superconductor/normal
metal junction, up to a length scale equal to the coherence
length of the superconducting condensate. In the bosonic

case, the corresponding length scale over which the
condensate correlations smear out is known the “healing
length” of the condensate, given by

λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
8πna

p ¼ ℏffiffiffi
2

p
mvc

; ð5Þ

where a is the s-wave scattering length of the condensate
and vc is the speed of sound in the superfluid [29].
To lowest nonvanishing order, one can identify

the chemical potential μ as μ ¼ dε0
dN ¼ ng, where ε0 is the

ground-state energy: ε0 ¼ hψBECjHBECjψBECi [22]. The
chemical potential of the superfluid ground state also agrees
with the asymptotic value of the chemical potential describ-
ing the condensate in Zapata and Sol’s approach [6]. At the
interfacewith a normal fluid, we assume that the condensate
interaction strength g is gradually reduced and to negligible
magnitudes in the outgoing coherent beam (normal fluid).
This facilitates pairing of the incoming mode—having
energy slightly above the asymptotic chemical potential
of the condensate—with an infalling mode—having energy
slightly below the asymptotic chemical potential of the
condensate (still higher than the local chemical potential, as
required for bosons)—at the interface.
In analogy with the fermionic case, a particlelike mode

represents propagation of a bosonic quasiparticle excitation
above the chemical potential of the condensate (above the
Fermi level, in the fermionic case) on the normal side,while a
holelike mode represents propagation below the chemical
potential (below the Fermi level, in the fermionic case) of
the condensate on the normal side. Following the discussion
in Ref. [6], the normal side is described by a flat potentialVN
for simplicity [see Fig. 2(b)]. As has been pointed out

FIG. 2. (a) Boundary between a normal fluid (the fluid velocity v > vc, where vc is the local speed of sound in the superfluid region)
and the superfluid. In the low-energy (ε → 0) limit, a coherently populated incoming quasiparticle mode (density bump, excitation
energyþε, blue) can enter the superfluid by taking the negative energy (−ε) quasiparticle from the bosonic particle hole pair available at
the interface and forming a two-mode squeezed state in the superfluid. The holelike partner mode [absence of the negative energy (−ε)
quasiparticle, and hence a density dip, red], now populated coherently, escapes to infinity. It has energyþε from particle-hole symmetry.
Interactions in the superfluid state, in which scattering events dynamically create (and break) entanglement between different modes in
the condensate, are also shown. (b) Andreev scattering diagram for a leaking condensate (μ − VN > 0) for vanishingly small excitation
energy ε [6].

SREENATH K. MANIKANDAN and ANDREW N. JORDAN PHYS. REV. D 98, 124043 (2018)

124043-4



previously [6], a decaying condensatewill have the chemical
potential slightly above the potential VN on the normal side
(μ > VN) and hence can permit propagating holelike modes
on the normal side below the asymptotic condensate chemical
potential, unlike the case of a confined condensate (VN > μ)
in which the holelike modes can only be evanescent on
the normal side [6]. In the following, we assume that
the participating modes have energies within the allowed
crossing range, εϵðVN − μ; μ − VNÞ, where we consider
ε to be very small such that the energy of the incident
particles does not exceed the smallest excitation energy of
the condensate. Within this assumption, we can safely
assume that the condensate remains in a stationary state,
which is the ground state of the interacting bosons. Here ε
being very small relative to μ − VN corresponds to quasi-
particle energies around the chemical potential, and therefore
also represents particles which can enter/leave the condensate
when the condensate is statistically described as a grand-
canonical ensemble.
The interface between the normal fluid and the super-

fluid BEC is rather special since it involves fluctuations of
the condensate. We restrict to a Hamiltonian description of
the interface with the Hamiltonian that describes generation
of Bogoliubov quasiparticles at the interface,

HI ¼ iJk;−kd
†
ka

†
−k þ H:c:; ð6Þ

where d†k represent creation of an infalling quasiparticle
mode with negative energy −ε having wave vector k ¼
−kμ þ δk, where jkμj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðμ − VNÞ

p
. The mode a†−k

describes a simultaneously created low-density mode
with wave vector kμ − δk on the normal side such that
the particle density is conserved globally. Here, iJk;−k are
effective matrix elements that describe the quasiparticle
tunneling across the interface. The resonant interaction
that creates/destroys a propagating mode of lower density
(holelike) on the normal side is appropriate for a leaking
condensate, for which the chemical potential μ is slightly
above the potential on the normal side (μ > VN), since they
permit holelike modes on the normal side that are not
evanescent [6]. The Hamiltonian in Eq. (6) is also similar to
the tunneling Hamiltonian considered in the fermionic case
[5], in which we notice that the interaction creates reso-
nances across the interface in which the particle mode
tends to be on either side of the interface. Such bosonic
quasiparticle/hole pairs are highly correlated. To see this,
we look at the time evolution of the vacuum j0kidj0−kia by
this interaction. We find that

e−iHItj0kidj0−kia ¼ etJk;−kd
†
ka

†
−k−tJk;−kdka−k j0kidj0−kia

¼ ŜðζÞj0kidj0−kia; ð7Þ

where ŜðζÞ ¼ eζd
†
ka

†
−k−ζ

�dka−k is the two-mode squeezing
operator with squeezing parameter ζ ¼ Jk;−kt, which we
assume to be a real number [30]. Although we consider a
simple unitary description of particle/hole production based
on quasiparticle tunneling at the interface, our approach
effectively describes bosonic quasiparticle production at
sonic horizons by relative motion of fluids, previously
studied in similar contexts [9,10,31]. Further note that the
resulting unitary evolution is also consistent with the
Bogoliubov representation of the BEC fluctuations in terms
of the infalling and outgoing modes. To see this, we look at
the time evolution of the modes d and a in the Heisenberg
picture.We find that dkðζÞ ¼ dkð0Þ cosh ζ þ a−kð0Þ† sinh ζ
and a−kðζÞ ¼ a−kð0Þ cosh ζ þ dkð0Þ† sinh ζ, which are
Bogoliubov transformations of the bosonic modes.
We now consider a simple case in which the infalling

bosonic mode is labeled by wavevector q ¼ kμ þ δk,
which has positive excitation energy ϵ relative to μ.
Further, the mode q is assumed to be coherently populated
as described by the state jψ iniq,

jψ iniq ¼ jαqi ¼ e−jαj2=2
X

n

αnffiffiffiffiffi
n!

p jnqid; ð8Þ

where we denote jnqid ¼ ðd†qÞnffiffiffi
n!

p j0qid describing n quanta in

an infalling mode with wave vector q. The choice jαj ¼ 1
ensures that the average energy of the infalling mode is
clearly within the allowed crossing range for the example
considered. We can write the joint state at the interface as a
tensor product of the incoming state jψ iniq and the particle
hole pair labeled by the particle wave vector k:

jΨi ¼ e−jαj2=2
X

n

αnffiffiffiffiffi
n!

p jnqid ⊗ ŜðζÞj0kidj0−kia: ð9Þ

Since the condensate only permits pairs of entangled
particles to enter, the reduced state of the outgoing mode
is found by applying the projection onto the state jψðr;kμÞi
for the infalling modes. We consider the limit of vanish-
ingly small ε (δk → 0), which corresponds to the wave
vector of particles that can exist in both the condensate and
the normal fluid. We obtain

hψ jΨi ≃ sechðrÞ
X∞

n00¼0

½e−iϕ tanhðrÞ�n00 hn00kμ
jdhn00−kμ

jde
−jαj2
2

X

n0

αn
0

ffiffiffiffiffiffi
n0!

p jn0kμ
id ⊗ sechðζÞ

X∞

n¼0

tanhðζÞnjn−kμ
idjnkμ

ia

¼ sechðrÞsechðζÞe−jαj2
2

X∞

n¼0

½e−iϕ tanhðrÞ tanhðζÞα�nffiffiffiffiffi
n!

p jnkμ
ia ∝ jαe−iϕ tanhðrÞ tanhðζÞia: ð10Þ
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When r; ζ ≫ 1 (i.e., when the interaction time t ≫ max
½J−1k;−k; ðngÞ−1�), the outgoing mode is in the coherent state
jαe−iϕi, where ϕ can be associated to the phase of the
condensate. This addition of a relative phase upon Andreev
reflection is known for Andreev reflection of an electron
(hole) at normal metal/superconductor interfaces [7,28,32],
and the final-state projection approach also predicts the
same phase difference between the incoming and outgoing
modes [5]. The relative phase between ingoing and out-
going modes in bosonic Andreev reflections as described
above can also be measured and therefore can be verified
experimentally.
In the general case (for an arbitrary incoming quantum

state jψ ini), we note that the quantum state of incoming and
outgoing modes in Eq. (10) is related by the “scattering”
operator U,

jψfi ∝ Ujψ ini ¼ ½e−iϕ tanhðrÞ tanhðζÞ�N̂ jψ ini; ð11Þ

where we have suppressed the mode indices indicating the
conversion of modes. For the identical effective temper-
ature of the final state of the infalling modes and the shared
entangled pair at the interface (i.e., when r ¼ ζ), note that
the operator U relates directly to the effective temperature
by the relation expð−βωÞ ¼ tanhðrÞ2 as

U ¼ ½e−iϕ expð−βωÞ�N̂ ¼ expð−N̂βωÞe−iN̂ϕ: ð12Þ

This suggests that the unitarity in final-state projection
holds only when the pairs in the superfluid BEC are
maximally correlated (the superfluid interactions are max-
imally entangling), i.e., when r, ζ ≫ 1. Nevertheless, the
hyperbolic tangent function tanhðxÞ reaches unity rather
fast with respect to x; a simple accounting in terms of the
tunneling/superfluid interactions suggests that this holds
when the interaction time t ≫ max½J−1k;−k; ðngÞ−1�. Thus, at
relatively large timescales relevant for the scattering prob-
lem, the scattering matrix U becomes unitary in the final-
state projection approach. We emphasize that the apparent
departure from unitarity in the final-state projection
approach when applied to short timescales does not imply
the breakdown of the unitarity of physics at the BEC
interface. The seemingly lost amplitude in this effective
model would correspond to the probability amplitude to
remain unpaired and leakage of the incoming quasiparticle
amplitude through other boundary processes for which the
final-state projection approach does not account, such as
ordinary reflection, and transmission of the quasiparticle
across the condensate.
Notice that the limit r, ζ ≫ 1 is a bit tricky since the

hyperbolic secant function vanishes in the limit. We can
better understand the limit r, ζ → ∞ using a Heisenberg
picture description by following some simple arguments in
the language of continuous variable quantum teleportation
[27]: in the Heisenberg picture, the particle hole pair of

bosons produced at the interface between the normal fluid
and the superfluid BEC should have all the symmetries of
the vacuum, and hence they should exist in time-reversed
states of each other:

x̂k ¼ x̂h and p̂k ¼ −p̂h: ð13Þ

Here, x̂ and p̂ are canonical Hermitian quadrature observ-

ables; for a specified mode s, x̂s ¼ asþa†sffiffi
2

p and p̂s ¼ as−a
†
sffiffi

2
p

i
,

satisfying the commutation relations ½x̂s; x̂s0 � ¼ ½p̂s; p̂s0 � ¼
0; and ½x̂s; p̂s0 � ¼ iδs;s0 [33]. Also note that the sum
p̂k þ p̂h, and difference x̂k − x̂h can be measured simulta-
neously since their commutator vanishes. Using the cor-
respondence between continuous variable states and
Wigner functions, the Wigner phase space distribution of
the (bosonic) particle-hole pair can be written as [34]

Wðxk; pk; xh; phÞ ∝ δðxk − xhÞδðpk þ phÞ: ð14Þ

The state can be understood as a two-mode coherent
squeeze state with ζ → ∞ [34] (assuming ζ to be real
and ϕ ¼ 0),

jψk-hi ¼ lim
ζ→∞

eζa
†
ka

†
h−ζ

�akah j00i

¼ lim
ζ→∞

sechðζÞ
X∞

m¼0

tanhðζÞmjmmi; ð15Þ

in agreement with our previous description. This limit is
discussed more in the next section, in the context of an
evaporating black hole.
We emphasize that the interactions mediating this

dynamical transfer of quantum information at the normal
fluid/superfluid BEC interface are strictly local. They are
either the tunneling interaction at the interface that creates
the quasiparticle excitations across the normal fluid/
superfluid BEC boundary or the scattering/pairing inter-
actions inside the condensate. This rules out the possibility
of the superluminal transfer of quantum information
happening at the interface. In fact, the speed of quantum
information transfer can be roughly associated to the local
speed of sound (vc) in the superfluid state [5].

III. QUANTUM FINAL STATE OF BOSONS
FALLING INTO A BLACK HOLE

In the previous section, we have discussed how the
superfluid quantum ground state of interacting bosons can
act like a fixed point in Hilbert space, such that a unitary
description of quasiparticles interacting with the super-
fluid BEC is possible without changing the wave function
of the superfluid BEC, when the condensate interactions
are maximally entangling. Effectively, these processes can
be described by considering the BEC necessitating a final-
state boundary condition for the modes that enter/leave
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the condensate. This, in turn preserves the quantum
information encoded in the infalling modes via mode
conversion processes that locally transfer the information
to the outgoing modes.
We now look at the implications of this result for a

black hole in its final stages of the evaporation process
[1,3,4,15,25,26]. Our description of bosonic Andreev
reflection from a normal fluid/superfluid BEC interface
is quite similar to the ideas proposed by Horowtiz and
Maldacena [1] and Preskill and Hayden [4], respectively,
regarding how the quantum information encoded in the
infalling matter can escape from a black hole past the
halfway point in the evaporation process, in which more
that half of its initial entropy has been radiated away
and a quantum final-state description can be envisaged.
The prevalent idea these models propose is that a black hole
in its final state, while accepting particles, acts like an
information mirror [4] to the quantum information encoded
in the infalling particles and reflects the quantum informa-
tion to the exterior via outgoing Hawking modes. In the
following, we revisit the quantum information dynamics in
these two models in the context of quantum information
encoded in (continuous variable) bosonic modes and
compare to the dynamics of a normal fluid/superfluid BEC
interface.

A. Analogy to the Horowitz-Maldacena model

Following the condensate description provided in Sec. II,
here we first describe how the information dynamics at the
interface between a normal fluid and a superfluid BEC
makes the condensate wave function analogous to the
Horowitz-Maldacena prescription for the quantum final
state of a black hole [1]. In comparison to the original
proposal by Horowitz and Maldacena, we consider quan-
tum information encoded in continuous variable modes as
appropriate for bosons [27,34]. The resource for teleporting
the quantum information to the exterior of a black hole is
the entanglement between the particle/antiparticle pair
produced at the event horizon (bosonic particle/hole pairs
available at the interface between a normal fluid/superfluid
BEC interface). We consider the limit r, ζ → ∞, corre-
sponding to infinitely squeezed (maximally entangled)
modes. A finite amount of squeezing in the final state
would be analogous to the example described in Sec. II, in
which a departure from unitarity can be measured owing to
not-maximally entangling interactions in the final state.
This departure from unitarity in the final-state projection
approach has been discussed previously by Gottesman and
Preskill in Ref. [2].
Since the Hawking pair is produced spontaneously from

the vacuum, they are maximally entangled and exist in
time-reversed states of each other such that they satisfy
perfect correlations,

p̂o ¼ −p̂i and x̂o ¼ x̂i; ð16Þ

in agreement with Eq. (14). The subscripts i and o denote
ingoing and outgoing Hawking modes, respectively.
Now, consider an incoming particlelike mode, described
by the quadratures x̂in and p̂in. Following the Horowitz-
Maldacena proposal for black hole evaporation, the infal-
ling matter falls into the black hole (superfluid BEC) with
the negative energy particle produced from vacuum fluc-
tuations near the event horizon (fluctuations of the con-
densate at the interface between the superfluid/normal
region), and the partner Hawking mode escapes to infinity.
In the process, the black hole (in its final stages of the
evaporation process) applies a final-state boundary con-
dition in which the infalling modes are projected onto the
relative position quadrature (x̂in − x̂i) basis, yielding result
x−, and to the sum of the momentum quadratures (p̂in þ p̂i)
basis, yielding result pþ. Note that one can, in principle,
simultaneously measure these two observables since they
commute. As a result of perfect correlations described
by Eq. (16), the outgoing Hawking mode has the spatial
quadrature x̂o ¼ x̂i ¼ x̂in − x− and the momentum quad-
rature p̂o ¼ −p̂i ¼ p̂in − pþ [27,34]. In the Schrodinger
picture, if the wave function of the incoming particle were
ψ inðxinÞ, the wave function of the outgoing hole would be
unitarily related by spacial and momentum displacements,
ψoðxoÞ ¼ eixopþψ inðxo þ x−Þ [27].
We now look at the case in which the underlying space-

time metric has spherical symmetry, and then it is natural to
expect that the final quantum state of pairs of bosons
entering into the black hole also respects this symmetry,
which puts restrictions on the class of all possible candidate
wave functions to describe the final quantum state of a
black hole. The superfluid ground state of interacting
bosons satisfies this symmetry; the two pairing modes
are entangled in opposite momentum quantum states, in
which the paired wave function is symmetric under
k → −k, and the squeezing parameter depends only on
the magnitude jkj, thereby strictly imposing the s-wave
symmetry for the infalling modes.
We therefore conjecture that the final quantum state of

bosons collapsing into a black hole is the maximally
correlated superfluid quantum ground state of interacting
bosons corresponding to the limit r → ∞, x− ¼ pþ ¼ 0,
analogous to the Horowitz-Maldacena proposal [1]. The
wave function of the outgoing mode in this case becomes
ψoðxoÞ ¼ eixopþψ inðxo þ x−Þ ¼ ψ inðxoÞ [27], which is
same as the wave function of the infalling mode. Here,
we considered the case in which the phase of the superfluid
is set to zero for simplicity. Assuming a nonzero phase ϕ
for the superfluid quantum ground state of maximally
correlated pairs corresponds to a unitary transformation
Û ¼ e−iN̂ϕ relating the incoming and outgoing modes, as is
evident from Eq. (10). An illustration of the Horowitz-
Maldacena proposal superimposed on the Penrose diagram
of an evaporating black hole is shown in Fig. 3.
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Further, notice that the superfluid quantum ground-state
wave function, being macroscopic, is also rigid in some
sense and can act like a fixed point in the Hilbert space, in
which the dynamics can still respect unitarity and linearly
of quantum physics without changing the wave function of
the condensate. In laboratory settings, external parameters
like temperature and pressure control give this stability to
the condensate ground state, and we assume the boundary
processes are also sufficiently low energy (ε → 0) so as not
to perturb the condensate from its ground state. This
observation should be read in the context of an earlier
argument made by Susskind, as to how, in the gravity
context, requiring the validity of a local quantum field
theory respecting linearity and unitarity of quantum physics
makes the wave function of the interior of a black hole
independent of the past and future Cauchy surfaces [25,26].
By satisfying certain symmetry requirements as discussed
above, we find that the superfluid ground state of interact-
ing bosons can qualify as this special quantum state to
describe the final quantum state of bosons collapsing into a
black hole past its halfway point in evaporation.

B. Black hole as an information mirror:
Analogy to Hayden-Preskill model

The information mirror hypothesis for black hole evapo-
ration was proposed by Hayden and Preskill to describe the
final stages of an evaporating black hole, in which the
quantum information encoded in the infalling modes is
rapidly revealed in the outgoing radiation [4]. Here, we

resort to a minimal description of the Hayden-Preskill
model proposed by Lloyd and Preskill [3,5]. We show that
a black hole assuming a superfluid quantum final-state
description in its late stages of the evaporation process can
Andreev reflect the quantum information out of the super-
fluid while accepting particles and therefore show that the
normal fluid/superfluid BEC interface provides an exper-
imentally realizable paradigm in which the black hole–
information mirror hypothesis can be investigated.
We proceed as follows. Consider two quasiparticle

excitation pairs at the boundary between a normal fluid
and a superfluid BEC described by squeezing parameters ζ1
and ζ2, respectively. While there are quasiparticle excitation
pairs created by the fluctuations of the BEC, we can also
introduce these quasiparticle excitations externally. The two-
mode squeezed state jψ1i ¼ Ŝðζ1Þj0mij0qid is assumed to
describe a correlated information/external memory system,
in which the quantum information contained in the mode k
is described as correlations with an external memory system
m. The second quasiparticle pair jψ2i ¼ Ŝðζ2Þj0kidj0−kia
describes a bosonic particle/hole pair similar to our descrip-
tion in Sec. II. Here, we assume ζ1, ζ2 to be real for
simplicity.
When the mode k is incident on the superfluid BEC

interface from a normal fluid, the BECs require that the
infalling particles form a particular entangled state inside
the BEC, mediated by the condensate interactions. We
implement this as the condensate applying a particular
final-state boundary condition for the infalling modes. The
limiting case δk → 0 is shown below and corresponds to
modes that can be present in both the condensate and the
normal fluid. We find that applying the condensate boun-
dary condition leaves the outgoing mode to be correlated
with the memory system,

jψm;ai ¼ hψðr;kμÞjψ1i ⊗ jψ2i
¼ hψðr;kμÞjŜðζ1Þj0mij0kμ

id ⊗ Ŝðζ2Þj0−kμ
idj0kμ

ia

¼ sechðrÞ
X∞

n00¼0

½e−iϕ tanhðrÞ�n00 hn00kμ
jdhn00−kμ

jd

sechðζ1Þ
X∞

n0¼0

tanhðζ1Þn0 jn0mijn0kμ
id ⊗ sechðζ2Þ

×
X∞

n¼0

tanhðζ2Þnjn−kμ
idjnkμ

ia

∝ sechðrÞsechðζ1Þsechðζ2Þ

×
X∞

n¼0

½e−iϕ tanhðrÞ tanhðζ1Þ tanhðζ2Þ�njnmijnkμ
ia;

ð17Þ
which describes entanglement between the memory system
and the outgoing mode. Further, note that in the limit r, ζ1
and ζ2 → ∞, we obtain the perfect transfer of correlations.

FIG. 3. Quantum information dynamics in the Horowitz-
Maldacena final-state projection model, shown in the Penrose
diagram of an evaporating black hole [1,3,5,35]. It is shown that
the quantum information encoded in the infalling mode is
dynamically transferred to the outgoing Hawking radiation by
the black hole imposing a particular final-state boundary con-
dition, in which the unitarity of the process is described by the
scattering matrix U.
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This can be seen immediately using the Heisenberg picture
again. A perfectly correlated memory m and the infalling
mode q are described by the correlations x̂m ¼ x̂q and
p̂m ¼ −p̂q [see Eq. (14)]. Another maximally correlated
quasiparticle excitation pair (labeled by wave vector k) is
produced due to the tunneling interactions at the interface,
satisfying correlations x̂k ¼ x̂−k and p̂k ¼ −p̂−k.
Following our previous discussions, a spherically symmet-
ric black hole (superfluid BEC) imposes the boundary
condition that the infalling modes are maximally corre-
lated; it imposes the correlations x̂q ¼ x̂k and p̂q ¼ −p̂k.
As a consequence, we find that the outgoing matter is now
maximally correlated to the memory system, x̂m ¼ x̂−k
and p̂m ¼ −p̂−k. In the sense of Preskill and Hayden,
this describes a dynamical transfer of information from the
infalling mode to the outgoing modes facilitated by the
black hole applying an appropriate boundary condition
for the infalling modes. Please see Fig. 4 for an illustration
of this proposal.

C. Effective temperature of Andreev processes

During the Andreev processes, an incident quasiparticle
penetrates a finite distance into the condensate as evan-
escent waves [6,28]. For a superconductor, this length scale
can be associated to the superconducting coherence length
of the condensate [28]. Similarly, for interacting bosons, we
note that the corresponding length scale can be associated
to the healing length of the condensate, λ ¼ ℏ=ð ffiffiffi

2
p

mvcÞ.
This can be understood as follows: Andreev processes

are most probable when the quasiparticles have roughly the

energy equal to the chemical potential of the condensate, μ.

By equating p2

2m ¼ μ ¼ mv2c, we obtain the corresponding

de Broglie wavelength, λ ¼ ℏ=ð ffiffiffi
2

p
mvcÞ. Note that this is

essentially equivalent to equating the quantum pressure
and interaction terms in the Hamiltonian as discussed in
Ref. [29]. At the chemical potential, the Bogoliubov
dispersion relation transitions between phononic (linear
dispersion) and free particle dispersion relation [36,37],
therefore facilitating mode conversion processes mediated
by condensate interactions.
From the most probable energy ∼μ, Andreev processes

can be associated to an effective temperature for the
superfluid state,

Tλ ¼
ℏvcffiffiffi
2

p
kBλ

; ð18Þ

where vc is the speed of sound in the superfluid state and λ
is the healing length [38]. This is similar to the effective
temperature of the superconducting ground state, which
varies as Tλs ∼

ℏvF
kBλs

, where vF is the Fermi velocity and λs is
the coherence length of the superconductor [5,39]. By
comparing the effective temperature of the superfluid state
with the temperature of a Schwarzschild black hole
[5,15,40–42],

TBH ¼ ℏc
4πkBrS

; ð19Þ

where c is the speed of light and rS the Schwarzschild
radius, we arrive at the conclusion that in the Andreev
analogy the speed of sound is analogous to the speed of
light, and the healing length of the superfluid is analogous
to the Schwarzschild radius of a black hole.

IV. CONCLUSIONS

In this article, we proposed an analogy to investigate the
resolutions of the quantum information paradox in black
holes by comparing the final quantum state of a black hole
in its late stages of the evaporation process to the superfluid
quantum ground state of interacting bosons. We showed
that in this scenario the problem of particle production near
the event horizon (pioneered by Hawking [15]) can be
compared to mode conversion processes occurring at a
normal fluid/superfluid BEC interface, in such a way that
the quantum information is preserved. Here, the quantum
correlations encoded in continuous variable modes falling
into a superfluid BEC can be dynamically transferred to the
outgoing modes, facilitated by the superfluid applying a
final-state boundary condition to the infalling modes.
In our analogy, the interface between a normal fluid and

a superfluid BEC played the role of the event horizon in
black holes, and the bulk of the superfluid was compared to
the interior of a black hole in which the quantum final-state

FIG. 4. Information mirror–like processes near the event
horizon [normal fluid–superfulid (N-S) boundary] following
Hayden and Preskill’s proposal [3–5]: The incoming quasipar-
ticle mode initially entangled with an external memory falls into
the black hole by taking one particle from the Hawking pair and
forming a two-mode paired entangled state inside the event
horizon, while the outgoing Hawking mode, now correlated with
the external memory, escapes to infinity.
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projection is applied. We further conjectured that the final
quantum state for bosons falling into a black hole is the pair
wave function of interacting bosons in a superfluid BEC
ground state. The appeal of this conjecture is that 1) it
resolves the information paradox in black holes by provid-
ing a unitary description of the particle production problem
near the event horizon; 2) it allows one to test quantum
theories of gravity in controlled laboratory settings using
normal fluid/superfluid BEC interfaces; and 3) in con-
junction with the earlier result of ours [5] in which we
proposed a superconducting BCS wave function for fer-
mions collapsing into a black hole, the bosonic analogy
presented here, proposing the superfluid ground state of
interacting bosons as the quantum final state of bosons
falling into a black hole, gives a complete symmetric
picture, prescribing the quantum final state to both fermions
and bosons inside a black hole.
We stress that, although we find surprisingly good

similarity between the superfluid quantum ground state
of interacting bosons (present study)/interacting fermions
(see Ref. [5]) and the proposed quantum final state of a

black hole in Horowitz-Maldacena and Hayden-Preskill
information mirror models, there are obvious differences
between the two systems one can point out, and hence this
analogy, considered alone, does not imply an exact corre-
spondence between the two fields. What is remarkable is
that, albeit being a very complex many-body system, a
“classical” black hole is characterized by very few param-
eters: its mass, charge, and angular momentum. Hence, one
would naively expect a microscopic quantum treatment for
the final quantum state of black holes should also have a
similar simple set of parameters describing the dynamics,
supporting our analogy to superfluid wave functions as
candidate wave functions to describe the quantum final
state of a black hole.
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