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Here, we derive the metric for the spacetime around a rotating object for the gravity action having a
nonlocal correction of R□−2R to the Einstein-Hilbert action. Starting with the generic stationary,
axisymmetric metric, we solve the equations of motion in a linearized gravity limit for the modified
action, including the energy-momentum tensor of the rotating mass. We also derive the rotating metric from
the static metric using the Demiański-Janis-Newman algorithm. Finally, we obtain the constraint on the
value of M by calculating the frame-dragging effect in our theory and comparing it to that of general
relativity and Gravity Probe B data, where M is the mass scale of the theory.
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I. INTRODUCTION

The framework of an effective field theory of quantum
gravity predicts nonlocal correction terms in the gravity
action. The effects of these nonlocal terms correspond to
both the infrared (IR) and the ultraviolet (UV) behavior of
gravity. The cosmological effect of nonlocal terms added to
the Einstein-Hilbert (EH) action in the late-time era are
poorly studied. It is well known that the cosmic microwave
background and supernova data suggest that our Universe
has gone through two accelerating expansion phases in the
early Universe and in the recent era, respectively, known as
inflation and late-time acceleration. Therefore, explana-
tions of inflation and late-time acceleration are the primary
motivations for the study of any nonlocal correction in the
cosmological context.
The correction term required to explain the accelerating

expansion of our Universe in recent times has to dominate
at large distance. Nonlocal correction term in the EH
action was first proposed by Wetterich [1]. However, this
model does not produce the desired cosmological evolu-
tion. As the first attempt in this direction, in 2008,
Deser and Woodard introduced a class of models consid-
ering a general nonlocal term of Rfð□−1RÞ. The functional
form of fð□−1RÞ is obtained by fitting it with the super-
nova data. The structure formations of various functional
forms of fð□−1RÞ have since been studied by several
authors [2–18].
In this work, we consider the “RR model” developed

in Ref. [9], which contains a nonlocal term like R□−2R.
This nonlocal term mimics the cosmological constant at

late times. Such a nonlocal term also appears in the
effective action of pure gravity theory [19–21].
In 1918, Lense and Thirring derived a metric which

describes the spacetime structure outside the rotating object
in the weak gravity regime which is known as the Lense-
Thirring metric [22,23]. One can obtain the Lense-Thirring
metric by taking a weak field and slow rotation limit to the
Kerr metric. The progress of the work presented here is
similar to that of Ref. [24], wherein the rotating metric
(Lense-Thirring metric) is derived for the nonsingular
infinite derivative gravity. In this work, we derive the
Lense-Thirring metric for the RR model of nonlocal gravity
taking two different approaches. We start with writing a
field equation for the model in the linearized gravity limit
which assumes the perturbative field hαβ on top of the
background Minkowski metric ηαβ. This field equation is
solved for different components of the general rotating
metric. Thus the achieved metric is characterized by two
scalar potentials (denoted by Φ and Ψ) and one vector
potential. In the general relativistic limit, the two scalar
potentials are the same, which is nothing but the Newtonian
potential. We also derive the same metric using Demiański-
Janis-Newman (DJN) algorithm [25,26].
The Kerr metric in general relativity (GR) is singular at

r ¼ 0 and θ ¼ π=2, where (r; θ;ϕ) are the Boyer-Lindquist
coordinates. This is called ring singularity since r ¼ 0 and
θ ¼ π=2 correspond to the equation of a ring x2 þ y2 ¼ a2

and z ¼ 0 in Cartesian coordinates [27]. We find that the
rotating metric in nonlocal gravity model considered here
also bears the ring singularity at r ¼ 0 and θ ¼ π=2.
Since GR has been proven to be correct in all experi-

ments to date, any modification to GR needs to be checked
against the experimental data. We calculate the geodetic
precession and the Lense-Thirring precession in an orbit
around Earth considering the rotating metric obtained here
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for the RR model. We constrain the value of mass scale M
present as a coefficient of the R□−2R term in the action by
comparing the calculated values of geodetic and Lense-
Thirring precession to the Gravity Probe B satellite
data [28].
This paper is organized as follows: In Sec. II, we review

the RR model of the nonlocal gravity and write the field
equations for the model. In Sec. II A, we derive the field
equations in the linearized gravity limit. The Lense-
Thirring metric or rotating metric for the model is derived
in Sec. III. The analysis of the ring singularity for the metric
obtained in Sec. III is done in Sec. IV. We calculate the
geodetic precession and the Lense-Thirring precession for
the abovementioned metric and compare it to the exper-
imental values of both precessional motions observed by
the Gravity Probe B satellite in Sec. V. Finally, we conclude
our work in Sec. VI.

II. THE MODEL AND BASIC EQUATIONS

Let us begin with the RR model of the nonlocal gravity
specified by the following action:

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
RþM2

3
R

1

□
2
R

�
þ Lm: ð1Þ

Here, M is the mass scale associated with the nonlocal
correction to the EH action. In the limit M → 0, the
above action (1) reduces to the EH action. The extensive
study of the action under consideration has been done in
Refs. [6,7,29].
The equation of motion for the field gαβ [30–33]

corresponding to action (1) is

2κ2Tαβ ¼Gαβþ
2

3
M2Gαβ

1

□
2
Rþ2M2

3
gαβR

1

□
2
R

−
2

3
M2ð∇α∇βþgαβ□Þ 1

□
2
Rþ2

3
M2∇ðαR−1∇βÞR−2

−
2M2

3
gαβð∇ðγR−1∇γÞR−2þ2R−2Þ; ð2Þ

where Gαβ is the Einstein tensor and Tαβ is the energy-
momentum tensor of the matter. Another equivalent form of
the field equation can be obtained by redefining the
operation of the inverse of the d’Alembertian operator
on R as the scalar field and converting Eq. (1) into an
equivalent scalar-tensor action. This approach gives rise to
the following equation of motion:

κ2Tαβ¼Gαβ−
M2

3

�
2ðGαβ−∇α∇βþgαβ□ÞSþgαβ∇γU∇γS

−∇ðαU∇βÞS−
1

2
gαβU2

�
; ð3Þ

where U ¼ − 1
□
R and S ¼ − 1

□
U.

A. Linearized limit

We consider the linearized gravity limit of the field
equation written in Eq. (2). In the linearized gravity limit,
we take gαβ as a perturbed metric around the Minkowski
background ηαβ by a small amount,

gαβ ¼ ηαβ þ hαβ; jhj ≪ 1: ð4Þ

Using Eq. (4), one can find the expressions for the Riemann
tensor, the Ricci tensor, and the Ricci scalar as follows:

Rγαδβ ¼
1

2
ð∂δ∂αhγβ þ ∂β∂γhαδ − ∂β∂αhγδ − ∂δ∂γhβαÞ; ð5Þ

Rαβ ¼
1

2
ð∂γ∂αhγβ þ ∂β∂γh

γ
α − ∂β∂αh −□hαβÞ; ð6Þ

R ¼ ∂α∂βhαβ −□h: ð7Þ

Then the field equation (2) becomes

2κ2Tαβ ¼ −
�
□hαβ − ∂γ∂ðαh

γ
βÞ

þ
�
1 −

2M2

3
□−1

�
ð∂α∂βhþ ηαβ∂γ∂δhγδÞ

−
�
−1þ 2M2

3
□

−1
�
ηαβ□h

þ 2M2

3
□

−2∇α∇β∂γ∂δhγδ
�
: ð8Þ

III. METRIC FOR ROTATING OBJECT

In this section, we calculate the spacetime metric for the
exterior region of the rotating object for the nonlocal
gravity model considered in Eq. (1). Consider the generic
rotating metric as

ds2 ¼ −ð1þ 2ΦÞdt2 þ 2h⃗:dxdtþ ð1 − 2ΨÞdx2: ð9Þ

In the case of general relativity, Φ ¼ Ψ is the Newtonian
potential. Note that the components of hμν are

h00 ¼ −2Φ; ð10Þ

hij ¼ −2Ψηij; ð11Þ

h⃗ ¼ h0xx̂þ h0yŷþ h0zẑ: ð12Þ

The components of the stress-energy tensor for the rotating
object having energy density ρ ¼ mδ3ðr⃗Þ with mass m and
angular velocity vi are given by

T00 ¼ ρ; T0i ¼ −ρvi: ð13Þ
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Notice that the rotation of the object explains the presence
of the angular momentum terms T0i in the stress-energy
tensor. Taking the trace of linearized field equation (8) and
substituting the metric given in Eq. (9) and the stress-
energy tensor components given in Eq. (13), we obtain

ρ ¼ −2ð1 −M2
□

−1Þð□h − ∂α∂βhαβÞ: ð14Þ

Using Eqs. (8) and (14), we obtain the equations of motion
for h00, hij, and h0i as

ρ ¼ 4ð1 −M2
□

−1Þð∇2Φ − 2∇2ΨÞ; ð15Þ

ρ ¼ −
4

3
M2

□
−1ð∇2Φ − 2∇2ΨÞ − 4∇2Ψ; ð16Þ

κρvi ¼ −2∇2h0i: ð17Þ

One can see that there are no off-diagonal terms h0i in the
Eqs. (15) and (16). It is also apparent from Eq. (17) that
the equation for the off-diagonal terms is unaffected by the
nonlocal gravity correction and has the same form as in GR.
Solving Eqs. (15)–(17), we get

ΦðrÞ ¼ m
24πM2

pr
ðe−Mr − 4Þ ¼ Gm

r

�
e−Mr − 4

3

�
; ð18Þ

ΨðrÞ ¼ m
24πM2

pr
ð−e−Mr − 2Þ ¼ Gm

r

�
−e−Mr − 2

3

�
; ð19Þ

h0x ¼ −
mvx

2πM2
pr

¼ −
4Gmvx

r
; ð20Þ

h0y ¼ −
mvy

2πM2
pr

¼ −
4Gmvy

r
; ð21Þ

h0z ¼ −
mvz

2πM2
pr

¼ −
4Gmvz

r
: ð22Þ

We consider the case in which the source is moving in such
direction so that its angular momentum points in the z
direction. Therefore, we can write the velocities as follows:

vx ¼ −yω; vy ¼ xω; vz ¼ 0: ð23Þ

Using Eqs. (18) and (19), we rewrite Eqs. (20)–(22) as

h0x ¼ −2yωðΦðrÞ þΨðrÞÞ;
h0y ¼ 2xωðΦðrÞ þΨðrÞÞ; h0z ¼ 0: ð24Þ

The resulting metric is given by

ds2 ¼ −ð1þ 2ΦÞdt2 þ 4ðΦþΨÞðxωdtdy − yωdtdxÞ
þ ð1 − 2ΨÞdx2: ð25Þ

Furthermore, we can convert the above metric from
Cartesian coordinates to Boyer-Lindquist coordinates
(t, r, θ, ϕ) via the transformations

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ cosϕ; y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ sinϕ;

z ¼ r cos θ; ð26Þ

and as a result we get

ds2 ¼ −ð1þ 2ΦÞdt2 þ 4
Jsin2θ
m

ðΦþ ΨÞdϕdt
þ ð1 − 2ΨÞðdr2 þ r2dθ2 þ r2sin2θdϕ2Þ; ð27Þ

where J is the angular momentum, defined as v ¼ r×J
mr2.

This is a case of a very slowly rotating object, and
therefore we take r2 þ a2 ∼ r2 in the transformation equa-
tions. If we take the r → ∞ limit, then the metric in Eq. (27)
reduces to the rotating metric in GR, which shows that
the nonlocal gravity correction attenuates at very large
distances.

A. Rotating metric from DJN algorithm

The Demiański-Janis-Newman algorithm provides a
scheme to transform a static metric into a rotating metric
using complex coordinate transformations [25,26,34,35].
In this section, we apply this algorithm on the weak gravity
static metric for the RR model written in Eq. (1) to
reproduce the metric in Eq. (27). First, we write the static
metric for the RR model

ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΨÞdx2; ð28Þ

where Φ and Ψ are given by Eqs. (18) and (19), respec-
tively. Transforming the above metric into spherical polar
coordinates, one can rewrite metric (28) in the following
form:

ds2 ¼ −ftdt2 þ frdr2 þ fΩðdθ2 þ sin2θdϕ2Þ; ð29Þ

where ft ¼ 1þ 2Φ, fr ¼ 1–2Ψ, and fΩ ¼ r2fr.
Performing the null coordinate transformation

[25,26,34,35] t ¼ uþ ð1−2Ψ
1þ2ΦÞ1=2r, Eq. (29) yields

ds2¼−ð1þ2ΦÞdu2−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ2ΦÞð1−2ΨÞ

p
dudrþfΩdΩ2;

ð30Þ

where dΩ2 ¼ dθ2 þ sin2θdϕ2. The next step is to complex-
ify the coordinates in metric (30) as follows:

r → r0 ¼ rþ ai cos θ; u → u0 ¼ u − ai cos θ: ð31Þ
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In Eq. (31), we introduced rotation parameter a defined by
a≡ J

m. Using the above transformations and the ansatz
idθ ¼ sin θdϕ, we obtain the differential transformations
of r and u as

dr ¼ dr0 − asin2θdϕ; ð32Þ

du ¼ du0 þ asin2θdϕ: ð33Þ

In the DJN approach, we have to be careful while choosing
transformations for r, r2, and 1

r that the functions fi remain
real, and their angle dependence should be of cos θ.
Ensuring this, the transformations we find are

r → r0; ð34Þ

1

r
→

Reðr0Þ
jr0j2 ; ð35Þ

r2 ↔jr0j2: ð36Þ

Therefore, our functions become

ftðrÞ → f̃tðr; θÞ ¼ 1þ mr
24πM2

pΣ
ðe−mr − 4Þ; ð37Þ

frðrÞ → f̃rðr; θÞ ¼ 1þ mr
24πM2

pΣ
ðe−mr þ 2Þ; ð38Þ

r2 → Σ≡ r2 þ a2cos2θ: ð39Þ

Then we write down the null rotating metric

ds2 ¼ −f̃tðduþ αdrþ ω sin θdϕÞ2 þ 2βdrdϕ

þ Σf̃rðdθ2 þ σ2sin2θdϕ2Þ; ð40Þ

where

ω ¼ a sin θ −

ffiffiffiffiffi
f̃r
f̃t

s
a sin θ; ð41Þ

σ2 ¼ 1þ a2sin2θ
r2 þ a2

; ð42Þ

α ¼
ffiffiffiffiffi
f̃r
f̃t

s
; ð43Þ

β ¼ −f̃rasin2θ: ð44Þ

The last step is to convert the null metric into Boyer-
Lindquist form. To do that, we have to make sure that

gðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf̃tf̃rÞ−1

q
f̃Ω − F0G0

Δ
; ð45Þ

hðrÞ ¼ F0

HðθÞΔ ð46Þ

are functions of r only, where Δ ¼ ðf̃Ω=f̃rÞσ2. It is true
provided that Φ ≪ 1, such that f−1r ¼ ft. These trans-
formations are valid only when we consider the very small
perturbation around the Minkowski background. After
some trivial algebra, we obtain

ds2 ¼ −ð1þ 2Φ̃Þdt2 þ 4aðΦ̃þ Ψ̃Þsin2θdϕdt

þ Σð1 − 2Ψ̃Þ
r2 þ a2

dr2

þ Σð1 − 2Ψ̃Þ
�
dθ2 þ sin2θ

�
r2 þ a2

Σ

�
dϕ2

�
; ð47Þ

where

Φ̃ ¼ mr
24πM2

pΣ
ðe−Mr − 4Þ; ð48Þ

Ψ̃ ¼ mr
24πM2

pΣ
ð−e−Mr − 2Þ: ð49Þ

IV. RING SINGULARITY

In this section, we investigate the ring singularity in the
metric (27). We follow the same procedure as in Ref. [36].
Let us consider a rotating ring having mass m and radius a.
The ring lies in the X-Y plane with z ¼ 0, and the angular
velocity of the ring points in the direction of the Z axis. The
(00) component of the energy-momentum tensor of the
source is given by

T00 ¼ mδðzÞ δðx
2 þ y2 − a2Þ

π
: ð50Þ

The above distribution for the energy-momentum tensor is
similar to that of the distributional form of the energy-
momentum tensor of the Kerr metric [37]. We also have the
following nonvanishing components of the stress-energy
tensor:

T0i ¼ T00vi; ð51Þ

where vi is the same angular velocity as defined earlier.
Now we rewrite the general linearized metric given in

Eq. (9),

ds2 ¼ −ð1þ 2ΦÞdt2 þ 2h⃗:dxdtþ ð1 − 2ΨÞdx2: ð52Þ
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The differential equations for each component of the metric
are given by

ð□þM2Þ
ð3□þ4M2Þ∇

2Φðr⃗Þ¼ 4GmδðzÞδðx2þy2−a2Þ;

ð□þM2Þ
ð3□þ2M2Þ∇

2Ψðr⃗Þ¼ 4GmδðzÞδðx2þy2−a2Þ;

∇2h0xðr⃗Þ¼−8GmωyδðzÞδðx2þy2−a2Þ;
∇2h0yðr⃗Þ¼ 8GmωxδðzÞδðx2þy2−a2Þ: ð53Þ

In the next section, we solve Eq. (53) and examine the
presence of ring singularity. Before going to the next
section, let us look at the Kerr metric given by [38]

ds2¼−
�
1−

2mr
Σ

�
dt2−

4marsin2θ
Σ

dtdϕþ Σ
Δ
dr2

þΣdθ2þ sin2θ

�
r2þa2þ2ma2rsin2θ

Σ

�
dϕ2; ð54Þ

where Σ≡ r2 þ a2cos2θ and Δ≡ r2 − 2mrþ a2, with a
being the rotation parameter. It is easy to observe that the
Kerr metric in Eq. (54) becomes singular (see Ref. [27])
when Σ becomes zero. The Kretschmann scalar blows up as
Σ ¼ 0 at r ¼ 0 and θ ¼ π=2, which in Cartesian coordi-
nates means that [27]

x2 þ y2 ¼ a2; z ¼ 0; ð55Þ

which is nothing but the equation of a ring of radius a. Thus
GR admits the ring singularity in the Kerr spacetime.

A. Computation of metric components
h00, h0i, and hij

Solving the differential equations written in Eq. (53) and
obtaining expressions for the metric components is easier in
momentum space. Therefore, we first find the Fourier
transform for δðzÞδðx2 þ y2 − a2Þ,

F ½δðzÞδðx2 þ y2 − a2Þ�

¼
Z

dxdydzδðzÞδðx2 þ y2 − a2Þeikxxeikyyeikzz: ð56Þ

The above integral can be computed in cylindrical
coordinates:

x ¼ ρ cosφ; y ¼ ρ sinφ; z ¼ z: ð57Þ

We have

F ½δðzÞδðx2þy2−a2Þ�

¼
Z

∞

−∞
dzδðzÞeikzz

Z
∞

0

dρρδðρ2−a2Þ
Z

2π

0

dφeikxρcosφeikyρsinφ

¼πJ0
	
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2y

q 

; ð58Þ

where J0 is a Bessel function.
Using Eq. (58) in the differential equation for Φ and

taking the inverse Fourier transform, we get the following
expression for the potential Φ:

Φðr⃗Þ ¼ −4πGm
Z

d3k
ð2πÞ3

ð3k2 þ 4M2Þ
k2ðk2 þM2Þ

× J0
	
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q 

eikxxeikyyeikzz; ð59Þ

where d3k is the differential volume in momentum space.
To study the ring singularity in our model of interest, we
restrict ourselves to the ring plane (i.e., the X − Y plane,
z ¼ 0) and transform Eq. (59) in cylindrical coordinates via
the following transformations:

kx ¼ ζ cosϕ; ky ¼ ζ sinϕ; kz ¼ 0: ð60Þ

Then we have the final expression for ΦðρÞ being

ΦðρÞ ¼ −Gm
Z

∞

0

dζJ0ðaζÞJ0ðζρÞ
ð3ζ2 þ 4M2Þ
ðζ2 þM2Þ ; ð61Þ

which in the limit M → 0 gives the metric potential in the
case of GR:

ΦGRðρÞ ¼ −3Gm
Z

∞

0

dζJ0ðaζÞJ0ðζρÞ: ð62Þ

A similar expression can be found for Ψ,

ΨðρÞ ¼ −Gm
Z

∞

0

dζJ0ðaζÞJ0ðζρÞ
ð3ζ2 þ 2M2Þ
ðζ2 þM2Þ : ð63Þ

To compute the h0i, first we find the Fourier transform of
xδðzÞδðx2 þ y2 − a2Þ,

F ½xδðzÞδðx2 þ y2 − a2Þ�

¼
Z

∞

−∞
dzδðzÞeikzz

Z
∞

0

dρρ2δðρ2 − a2Þ

×
Z

2π

0

dφeikxρ cosφeikyρ sinφ cosφ

¼ πa
kxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y
q J1

�
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q �
; ð64Þ

and similarly we also obtain
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F ½yδðzÞδðx2 þ y2 − a2Þ� ¼ πa
kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y
q J1

	
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q 

:

ð65Þ

Then h0i are given by the following expressions:

h0xðr⃗Þ ¼ 16Gmωa
Z

d3k
ð2πÞ3

1

k2
kxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y
q

× J1
	
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q 

eikxxeikyyeikzz; ð66Þ

h0yðr⃗Þ ¼ −16Gmωa
Z

d3k
ð2πÞ3

1

k2
kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y
q

× J1
	
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q 

eikxxeikyyeikzz: ð67Þ

By using cylindrical coordinates and setting z ¼ 0, we can
obtain similar expressions for the cross terms,

h0xðx; yÞ ¼ 2Gmωa
y
ρ

Z
∞

0

dζJ1ðaζÞJ1ðζρÞ; ð68Þ

h0yðx; yÞ ¼ −2Gmωa
x
ρ

Z
∞

0

dζJ1ðaζÞJ1ðζρÞ; ð69Þ

where we remember that ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the radial

cylindrical coordinate in the plane z ¼ 0. Note that since
θ ¼ π=2, we have

x
ρ
¼ cosϕ;

y
ρ
¼ sinϕ: ð70Þ

Thus all of the radial dependence and the singularity
structure are taken into account by the following integral:

HðρÞ≡
Z

∞

0

dζJ1ðaζÞJ1ðζρÞ; ð71Þ

which has the same form as HGRðρÞ [36]:

HGRðρÞ≡
Z

∞

0

dζJ1ðaζÞJ1ðζρÞ: ð72Þ

Computation of the integrals involved in expressions of
gravitational potentials Φ and Ψ in Eqs. (61) and (63) and
of HðρÞ in Eq. (71) is not possible analytically. Here, we
solve them numerically and show the results in Figs. 1 and 2.
We divide and multiply Eqs. (62), (63), and (71) by m and
reparametrize ζ, a, and ρ as ζ0 ¼ ζ=m, a0 ¼ am, ρ0 ¼ ρm in
order to make all of the quantities dimensionless. In our
numerical calculation, we consider M=m ¼ 0.001. It is
evident from the figures that the gravitational potentials
Φ and Ψ and the off-diagonal components of the metric h0i
show the singular characteristic at mρ ¼ 1.

FIG. 1. Plots for ΦðρmÞ=Gm2 and ΨðρmÞ=Gm2. We have taken ma ¼ 1.0.

FIG. 2. HðρmÞ=m vs ρm. We have taken ma ¼ 1.0. HðρmÞ=m
for the RR model and general relativity overlap with each other.
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V. FRAME-DRAGGING EFFECT

The rotating metric is valid in the weak field limit for any
rotating astrophysical object which possesses the axial
symmetry. Thus the metric derived in Eq. (47) can be
applied to the spacetime around Earth, under the assumption
that the underlying theory of gravity has a nonlocal
correction like that given in Eq. (1) to the GR action.
Any object which revolves aroundEarthwill experience two
types of precessional motion of general relativistic origin.
One is due to the geodetic drift, and another is due to the
frame-dragging drift. The Gravity Probe B satellite has
measured these two precessions, and they were compared to
the predicted value from general relativity.
The geodetic precession is caused by the curvature of the

spacetime due to the rotating object’s mass, and the Lense-
Thirring precession or the frame-dragging effect is the result
of drifting of the framedue to the rotation of the object. Aswe
can see in Eq. (9), the metric is composed of a scalar fieldΦ
and a vector field h⃗. These scalar fields and the vector field
depend on the shape of the body and mass and velocity
distribution of the body. These fields can be expanded in
terms of multipole moments. For our calculation, we con-
sider only the monopole moment. The formulas for instanta-
neous geodetic precession and instantaneous Lense-Thirring
precession in Cartesian coordinates are given by [39]

ΩG ¼ 3

2
∇Φ × V⃗; ΩLT ¼ 1

2
∇ × h⃗; ð73Þ

where V⃗ is the four velocity of the orbiting gyroscope and
h0i are the off-diagonal terms of the rotating metric. The
instantaneous geodetic precession and Lense-Thirring pre-
cession for nonlocal gravity theory can be expressed as

ΩGðNLÞ ¼
1

3
e−Mrð−1þ 4eMr −MrÞΩGðGRÞ; ð74Þ

ΩLTðNLÞ ¼ ΩLTðGRÞ; ð75Þ

where general relativistic expressions of geodetic precession
and Lense-Thirring precession are given by

ΩGðGRÞ ¼
3Gm
2r3

ðr⃗ × V⃗Þ; ΩLTðGRÞ ¼
2G
r3

J⃗: ð76Þ

The unchanging Lense-Thirring precession ΩLTðNLÞ can be
also explained by the fact that the off-diagonal terms [see
Eqs. (20)–(22)] of the metric which are due to rotation of the
object are not affected by the nonlocal correction of the
RR model.
The Gravity Probe B satellite containing four gyroscopes

was launched in 2004. These gyroscopes measured geodetic
and frame-dragging precessions in orbit with an altitude r ¼
650 km from the surface of Earth. The result of the
measurements done by Gravity Probe B for the geodetic

drift rate was ΩG ¼ 6601.8� 18.3 milliarc sec =yr and
for the frame-dragging drift rate was ΩLT ¼ 37.2�
7.2 milliarc sec=yr [28]. The GR predicted geodetic drift
rate is ΩGðGRÞ ¼ 6606.1 milliarc sec=yr and frame-
dragging drift rate is ΩLTðGRÞ ¼ 39.2 milliarc sec=yr.
One can constrain the value of M by checking for what

values of M, ΩGðNLÞ, and ΩLTðNLÞ match with ΩGðGRÞ and
ΩLTðGRÞ having the difference well within the error bars of
the Gravity Probe B results. SinceM comes multiplied by r
in Eq. (74), we find a constraint onMr which comes out to
beMr ≤ 0.117. Considering the value of the radial distance
of the Gravity Probe B satellite from the center of Earth,
which is r ¼ 7021 km, and which we can obtain by
converting the above constraint into the constraint on M,
which is M ≤ 3.299 × 10−15 eV. This is the reverse of the
condition obtained in Ref. [24], which can be justified in a
way that IR corrections to GR are taken here, while in
Ref. [24] UV corrections were considered.

VI. CONCLUSIONS

In this work, we derived the metric for the exterior
spacetime of the rotating body starting from the general
rotating metric in the modified gravity theory having
nonlocal gravity corrections to the Einstein-Hilbert action.
The rotating metric which we found in Eq. (27) reduces to
GR form in the large r limit. We also found that the off-
diagonal terms of the metric are unchanged from the
rotating metric in GR.
In the last section, we calculated the instantaneous

geodetic precession and instantaneous Lense-Thirring pre-
cession of a satellite orbiting Earth for the model consid-
ered in Eq. (1) using the rotating metric derived in Eq. (27).
We found that the instantaneous geodetic precession
ΩGðNLÞ for the model (1) differs from that of GR ΩGðGRÞ
by a multiplicative factor, while the instantaneous Lense-
Thirring precession is the same as in GR. We compared the
values of geodetic precession and Lense-Thirring preces-
sion to the Gravity Probe B satellite’s data and put the
constraint on the value of the scale M, which comes out to
be M ≤ 3.299 × 10−15 eV.
The rotating metric obtained in this paper can be utilized

further in the studies of the metric for the Kerr black hole
and tests of nonlocal gravity theory using gravitational
wave astronomy. In particular, one can derive the metric for
the Kerr black hole as the Kerr metric with small pertur-
bation and can calculate the deviations in the frequencies of
the gravitational waves emitted by the test particle orbiting
a super massive black hole, which consequently can be
useful in modeling extreme mass ratio inspirals for the
modified gravity with nonlocal gravity corrections.
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