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The Eddington-inspired Born-Infeld (EiBI) gravity is a modification of the theory of general relativity
inspired by the nonlinear Born-Infeld electrodynamics. The theory is described by a series of higher-
curvature terms added to the Einstein-Hilbert action with the parameter κ. The EiBI gravity has several
interesting exact neutral and charged black hole solutions. We study the problem of overcharging extremal
black hole solutions of EiBI gravity using a charged test particle to create naked singularity. We show that,
unlike general relativity, the overcharging could be possible for a charged extremal black hole in EiBI
gravity as long as the matter sector is described by usual Maxwell’s electrodynamics. Once the matter
sector is also modified in accordance to the Born-Infeld prescription with the parameter b, the overcharging
is not possible as long as the parameters obey the condition 4κb2 ≤ 1.
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I. INTRODUCTION

General relativity (GR) is extremely successful as a
classical theory of gravity and over the years, it has been
under scrutiny in vacuum or in the weak-field regime
through several precision tests and no significant deviation
from GR has been found [1]. Still there exist many
unsolved puzzles in GR such as the problem of singular-
ities, understanding the dark matter and dark energy, etc.
In order to address some of these problems, many
researchers actively pursue modified gravity theories in
the classical domain which deviate from GR inside matter
distributions, or in the strong-field regime. One such
modification is inspired by the well-known Born-Infeld
electrodynamics [2] where, even at the classical level, it is
possible to avoid the infinity in the electric field at the
location of a point charge. Deser and Gibbons [3] first
suggested a gravity theory in themetric formalismconsisting
a similar structure

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ κRμνj

p
as in the action of Born-

Infeld electrodynamics. In fact, the form of the gravitational
action is not a new concept but existed earlier in Eddington’s
re-formulation of GR in de Sitter spacetime [4]. This is
essentially an affine formalismwhere the affine connection is
the basic variable instead of the metric, but the coupling of
matter to this new formulation of gravity remained a problem.
Later, the Palatini (metric-affine) formulation in Born-

Infeld gravity was introduced by Vollick [5]. He worked on

various related aspects and also introduced a nontrivial and
somewhat artificial way of coupling matter in such a theory
[6,7]. More recently, Banados and Ferreira [8] have come up
with a formulation, popularly known as the Eddington-
inspired Born-Infeld (EiBI) gravity, where the matter cou-
pling is different and simpler compared to Vollick’s original
proposal. For a recent review on Born-Infeld gravity, see [9],
and for its cosmological, astrophysical, and other applica-
tions, see [10–47] and the references therein.
Some work also have been done on black hole physics,

or, broadly on the spherically symmetric, static solutions in
this theory. It may be noted that the vacuum, spherically
symmetric static solution in this theory is trivially the same
as the Schwarzschild de Sitter black hole. However, the
electrovacuum solutions are expected to deviate from the
usual Reissner-Nordström solution in GR. This has been
shown in [8,18,26], where the authors consider EiBI
gravity coupled to a Maxwell electric field of a localized
charge. They obtain the resulting spacetime geometries,
and study its properties. The basic features of such space-
times includes a singularity at the location of the charge
which may or may not be covered by an event horizon. The
strength of the electric field remains nonsingular as in
Born-Infeld electrodynamics. However, this may not be the
only solution because, in EiBI gravity, the matter coupling
is nonlinear. In a different framework [27], it was shown
that the central singularity could be replaced by a wormhole
supported by the electric field. In [24], the author obtained a
class of Lorentzian regular wormhole spacetimes supported
by the quintessential matter which does not violate the weak
or null energy condition in EiBI gravity. The generalization
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of this result in the context of arbitrary nonlinear electro-
dynamics and anisotropic fluids was obtained in [47]. Some
new classes of spherically symmetric static spacetimes were
obtained where EiBI gravity is coupled with Born-Infeld
electrodynamics [20]. They include black holes and naked
singularities. Earlier, a lot of work had indeed been done
by considering nonlinear electrodynamics coupled to GR
[48–55]. Some of them were motivated by string theory
since Born-Infeld structures naturally arise in the low energy
limit of open string theory [56,57].
An essential question in general relativity is to understand

the global properties of the field equation, in particular, the
issue of cosmic censorship. There are various versions of
cosmic censorship conjecture. One of the version prohibits
evolution of a generic, sufficiently regular initial data into a
solution with a naked singularity. The full analysis of this
problem is complicated given the complicated nature of the
Einstein’s field equations. A more straightforward exercise
could be to look for specific counterexamples, where one
starts with a black hole solution with a horizon and try to
create a naked singularity using a physical process. For
example, Wald [58] considered the problem of overcharging
an extremal Reissner-Nordström (R-N) black hole solution
using a charged test particle. Interestingly, the dynamics of
the particle does not allow such overcharging to happen. In
[59], the problem was studied for a near extremal R-N black
hole. It was shown that overcharging is possible if the
backreaction effects are ignored. Similar consideration was
obtained from the study of the rotating black hole in [60] and
also for massless charged particles [61]. The backreaction
problem was analyzed in detail in [62] and it was shown that
the overcharging would not occur once the backreaction
effects are considered. In the context of general relativity, a
general proof of the impossibility of overcharging an extremal
or near-extremal black hole solution was provided in [63]
generalizinga result in [64].Relatedworkshadalsobeendone
for the black holes in higher-dimensional gravity [65–68].
In this work, we study the same overcharging problem

in the context of EiBI gravity. We analyze the dynamics
of charged test particles in the background of extremal
black hole solutions in the EiBI gravity and show that the
overcharging could be possible when the matter sector is
described by usual Maxwell’s electrodynamics. Inter-
estingly, once we consider the modification of the matter
sector by the Born-Infeld prescription, we find that there
is no possibility of overcharging (provided a condition on
the Born-Infeld parameters is satisfied). Our result indicates
that the Born-Infeld modification of gravity along with
matter sector is as consistent as general relativity.

II. OVERCHARGING A BLACK HOLE BY
THROWING A MASSIVE CHARGED PARTICLE

We consider the motion of a test particle of charge q,
mass m, and four-velocity uμ, in a fixed background
spacetime (spherically symmetric and static) given by

ds2 ¼ gttðrÞdt2 þ grrðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where gttðrÞ and grrðrÞ are characterized by the black
hole parameters: charge Q, mass M, and the Born-Infeld
parameters κ and b2 (to be introduced later). The motion
of the test particle can be obtained from the following
Lagrangian,

L ¼ 1

2
muμuμ þ quμAμ; ð2Þ

where AμðxνÞ is the electromagnetic vector potential of the
black hole. For radial motion of the charged particle,
uμ ¼ f_t; _r; 0; 0g, _t ¼ dt

dλ, _r ¼ dr
dλ, λ being the affine parameter

along the world line. Then, from Eqs. (1) and (2), we get

∂L
∂_t ¼ mgtt_tþ qAt ¼ −E; ð3Þ

where E is a constant of motion along the particle’s
worldline. Then, for the timelike trajectories, i.e.,
uμuμ ¼ −1,

_r2 ¼ −
ðEþ qAtÞ2
m2gttgrr

−
1

grr
ð4Þ

For the Reissner-Nordström (R-N) black hole solution,
At ¼ −Q=r. However, At is modified in the presence of the
Born-Infeld structures in gravity and matter sectors. Since
_r ¼ 0 corresponds to a turning point, for “in-fall” of the
particle

_r2 > 0; for all r ≥ rþ; ð5Þ
where rþ is the event horizon corresponding to the initial
configuration of the black hole. When the particle falls past
the radial coordinate rþ, the final configuration of the black
hole consisting of total charge (Qþ q) and mass (M þ E)
must exceeds extremality in order to destroy the black hole.
In case of the R-N black hole solution, this implies
that, Qþ q > M þ E.
In [58], it is established that these two conditions are

mutually exclusive and can not be satisfied together. As a
result, it is impossible to overcharge an extremal charged
black hole in GR to create a naked singularity.
In Born-Infeld theories, the charged black hole solution

is modified and the condition of overcharging becomes,

M þ E < Qþ q ð6Þ

where Q̄≡ Q̄ðQ; κ; b2Þ is an “effective charge” and is a
function of the actual black hole charge Q and the BI
parameters κ and b2. Thus, in Eq. (6), Qþ q ¼
Q̄ðQþ q; κ; b2Þ. For the initial extremal black hole, we
have Q̄ðQ; κ; b2Þ ¼ M. In the R-N limit, i.e., κ → 0 and
b2 → ∞, Q̄ðQÞ ¼ Q and Q̄ðQþ qÞ ¼ Qþ q. We assume
the “backreaction” effects are negligible. Therefore, to
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overcharge a black hole, the two conditions given by
Eqs. (5) and (6) must be satisfied.

III. THE EDDINGTON-INSPIRED
BORN-INFELD (EiBI) GRAVITY

First we briefly recall the details of EiBI gravity. The
action for the theory developed in Ref. [8] is given as

SEiBIðgμν;Γ;ΨÞ ¼
c3

8πGκ

Z
d4x
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−jgμν þ κRμνðΓÞj
q

− λ
ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q i
þ SMðgμν;ΨÞ ð7Þ

where SMðgμν;ΨÞ is the matter part of the full gravitational
action, Ψ generically denotes any matter field, and κ is the
constant parameter of the theory having dimension of
½Length�2. Rμν is assumed to be the symmetric part of
the Ricci tensor constructed from the connection Γ.
In Einstein’s limit, i.e., for κRμν ≪ gμν, the action reduces
to the Einstein-Hilbert action, provided the dimensionless
parameter λ corresponds to the cosmological constant Λ as
λ≡ κΛþ 1. The theory is based on the Palatini formu-
lation, and therefore, the metric (gμν) and the connection
(Γρ

μν) are treated as independent variables in the action. By
varying (7) with respect to Γα

μν, one obtains

∇Γ
αð

ffiffiffiffiffiffi
−q

p
qμνÞ ¼ 0; ð8Þ

where qμν ≡ gμν þ κRμνðΓÞ; ð9Þ

q ¼ detðqμνÞ ¼ jgμν þ κRμνj, and ∇Γ denotes the covariant
derivative with respect to the connection Γ. Equation (8)
shows that Γ is compatible with respect to the metric qμν,
and hence, we can compute Γ using the equation

Γμ
αβ ¼

1

2
qμσðqσα;β þ qσβ;α − qαβ;σÞ: ð10Þ

qμν is the inverse q-metric such that qμαqμβ ¼ δαβ . The
matter field is minimally coupled only to gμν, i.e., the
matter part of the full gravitational action (SMðgμν;ΨÞ ¼
1
c

R ffiffiffiffiffiffi−gp
LMðgμν;ΨÞd4x) only depends on the metric gμν and

on the matter field Ψ, but not on the connection Γ.
Therefore, the metric gμν is the physical metric, whereas
the metric qμν is called as the auxiliary metric. Thus, the
connection (Γ) is different from the Levi-Civita connec-
tion [fgμαβ ¼ 1

2
gμσðgσα;β þ gσβ;α − gαβ;σÞ].

Variation of the action (7) with respect to gμν gives

ffiffiffiffiffiffi
−q

p
qμν ¼ λ

ffiffiffiffiffiffi
−g

p
gμν −

8πGκ
c4

ffiffiffiffiffiffi
−g

p
Tμν; ð11Þ

where g ¼ detðgμνÞ ¼ jgμνj and Tμν ¼ 2ffiffiffiffi−gp ∂ð ffiffiffiffi−gp
LMÞ

∂gμν are

components of the stress-energy tensor in the coordinate

frame. The stress-energy tensor is conserved (∇μTμν ¼ 0)
with respect to the physical metric gμν. The index of Tμν and
RμνðΓÞ are to be raised/lowered by gμν and qμν respectively.
Note that Eq. (11) is just an algebraic equation relating
the physical metric to the auxiliary metric through the
stress-energy tensor. Equation (8) [along with Eq. (10)]
gives a set of differential equations which are to be solved
simultaneously with Eq. (11) to get the full solutions.
Therefore, Eqs. (9)–(11) constitute the gravitational field
equations in EiBI theory.
The structure of EiBI theory implies that the physical

metric (gμν) governs the dynamics of test particles. In more
precise words, a freely falling test particle follows the
geodesics of the physical spacetime. Therefore, invariant
scalar quantities associated with the physical spacetime
metric such as RðgμνÞ; R2

αβðgμνÞ etc. are relevant. On the
other hand, the auxiliary metric (qμν) is introduced in the
field equations for mathematical convenience. It does not
couple to matter fields but plays an indirect role through its
presence in the field equations.

IV. BLACK HOLES SUPPORTED BY THE
MAXWELL’S ELECTRIC FIELD AND THE

OVERCHARGING PROBLEM

For the Maxwell’s electromagnetic field theory in the
curved spacetime, the Lagrangian density is L ¼ − 1

16π×ffiffiffiffiffiffi−gp
FμνFμν, where Fμν ¼ ∂μAν − ∂νAμ is the electromag-

netic field tensor. The corresponding stress-energy tensor
is given by Tμν¼− 2ffiffiffiffi−gp ∂L

∂gμν¼ 1
4πðFμσFν

σ− 1
4
gμνFαβFαβÞ.

For an electrostatic scenario, the four-potential is Aμ ¼
fAtðrÞ; 0; 0; 0g.

A. General relativity

In GR, i.e., for the Reissner-Nordström spacetimes,

gtt ¼ −1=grr ¼ −ð1 − 2M
r þ Q2

r2 Þ, At ¼ −Q=r. The event
horizon (rþ) and the Cauchy horizon (r−) are given by
r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. The extremality corresponds to

rþ ¼ r− ¼ Q ¼ M. One can also note that, for extremality,
gttðreÞ ¼ g0ttðreÞ ¼ 0, where the extremal horizon radius
re ¼ rþ ¼ r−. Then, from Eqs. (4) and (5), we get that
E > q for the test particle falling past the horizon of the
extremal black hole. On the other hand, to exceed the
extremality condition of the final black hole, we need
E < q. So, there is no window of choosing a suitable E.
Thus, the overcharging is not possible for the Reissner-
Nordström extremal black hole by throwing a massive
charged particle. This is the result obtained in [58].

B. EiBI gravity

In EiBI gravity, the resulting black hole spacetime
is given by [8,18,20,24,26,47] gtt ¼ −ψ2ðrÞfðrÞ and
grr ¼ 1=fðrÞ, where
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ψ ¼
�
1þ κQ2

r4

�−1=2
; ð12Þ

fðrÞ ¼
 
1þ κQ2

r4

1 − κQ2

r4

!2641 − 2M

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κQ2

r4

q −
Q2

3r2

þ 4Q2

3r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κQ2

r4

q 2F1

�
1

2
;
1

4
;
5

4
;−

κQ2

r4

�375: ð13Þ

By solving the equation of motion for the electric scalar
potential At, or alternatively from the conservation of the
stress-energy tensor (i.e., ∇μTμν ¼ 0) we get

At ¼
Z

Qdr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κQ2

r4

q ¼ −
Q
r 2F1

�
1

2
;
1

4
;
5

4
;−

κQ2

r4

�
: ð14Þ

Note that the spacetime is singular at r0 ¼ ðκQ2Þ1=4
(ðjκjQ2Þ1=4 for κ < 0) unlike in the case of R-N black
hole where we get a point singularity at r0 ¼ 0 and the
charge Q is now distributed over a 2-sphere of area
radius r0, instead of being a ‘point charge’. The horizon
radius (re) of the extremal black hole is obtained from
fðreÞ ¼ f0ðreÞ ¼ 0 using Eq. (13). This leads to

re ¼ Q; ð15Þ

and M ¼ Q
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ

Q2

r
þ 22F1

�
1

2
;
1

4
;
5

4
;−

κ

Q2

��
¼ Q̄ðQ; κÞ: ð16Þ

Thus, for extremal black holes, we haveM ¼ Q̄where Q̄ is
an “effective charge” and is function of the actual charge Q
and BI parameter κ. Note that for κ ¼ 0 (i.e., the GR limit)
in the last equation, M ¼ Q. However, for κ ≠ 0, the mass
to charge ratio (M=Q) differs from 1 (see Fig. 1). Also note
that, for r0 ≥ Q i.e., jκj ≥ Q2, horizon lies below r0 and we
do not have an extremal black hole at all. Thus, we assume
jκj < Q2 in our study. Here, for Q̄ > M, we have naked
singularities similar to the case in GR forQ > M. We verify
this by a graphical analysis shown in Fig. 2 as it is difficult
to verify analytically due to the complexity of functional
form of fðrÞ (Eq. (13).
Using Eqs. (12)–(14) in Eq. (4), we get

_r2 ¼ 1

m2ψ2ðrÞ
�
E −

qQ
r 2F1

�
1

2
;
1

4
;
5

4
;−

κQ2

r4

��
2

− fðrÞ:

ð17Þ

Then, for crossing the horizon, _r2 > 0 for all r ≥ re. To
satisfy this condition at the horizon radius, r ¼ re ¼ Q,

E > q · 2F1

�
1

2
;
1

4
;
5

4
;−

κ

Q2

�
: ð18Þ

We use Eq. (6) to get the condition for exceeding the
extremality of the final black hole

E < Q̄ðQþ q; κÞ − Q̄ðQ; κÞ; ð19Þ

where we used M ¼ Q̄ðQ; κÞ for the initial extremal black
hole configuration and Q̄ðQ; κÞ is given by Eq. (16).
Both Eqs. (18) and (19) will be simultaneously satisfied,

i.e., there will be a window for a choice of E for
overcharging the black hole only when the quantity

Δ ¼ Q̄ðQþ q; κÞ − Q̄ðQ; κÞ − q · 2F1

�
1

2
;
1

4
;
5

4
;−

κ

Q2

�
ð20Þ

is positive (Δ > 0). However, in general, showing Δ > 0
analytically is difficult. For small κ or for large black hole
such that Q2 ≫ jκj, we obtain

2F1

�
1

2
;
1

4
;
5

4
;−

κ

Q2

�
≃ 1 −

κ

10Q2
ð21Þ

and Q̄ðQ; κÞ ≃Qþ κ

10Q
: ð22Þ

Also, noting that the test charge q must be small compared
to the black hole charge Q, i.e., Q ≫ q, we obtain

Δ ≃
κq2

10Q2ðQþ qÞ ≃
κq2

10Q3
: ð23Þ

Hence, overcharging of the extremal black hole is always
possible for κ > 0. However, for κ ≤ 0, overcharging is not

FIG. 1. Plot of the mass to charge ratio (M=Q) of the extremal
EiBI-Maxwell black holes (i.e., for M ¼ Q̄) as the function of
κ=Q2 using Eq. (16). We use the restriction jκ=Q2j < 1 in
the plot.
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possible. Also, note that we recover the general relativistic
results in the limit κ → 0.
To show whether the overcharging is possible for

arbitrary κ and Q, we define a dimensionless variable
ξðμ; ηÞ, (where μ ¼ κ

Q2 and η ¼ q
Q), as

ξ ¼ Δ
Q

¼ ð1þ ηÞ
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ

ð1þ ηÞ2
r

þ 22F1

�
1

2
;
1

4
;
5

4
;−

μ

ð1þ ηÞ2
��

−
1

3

� ffiffiffiffiffiffiffiffiffiffiffi
1þ μ

p
þ 22F1

�
1

2
;
1

4
;
5

4
;−μ

��

− η2F1

�
1

2
;
1

4
;
5

4
;−μ

�
: ð24Þ

If ξ > 0 for some specific values of μ and η, then there will
be a window for a choice of E for overcharging the black
hole. In Fig. 3, we plot (three-dimensional surface plot) ξ as
the function of μ and η where we use jκj ≤ Q2 (i.e., jμj ≤ 1)
and q ≤ Q (i.e., η ≤ 1). From the plot, we note that ξ > 0
for all μ > 0 and η. Thus, for κ > 0, we can choose the
energy E of the test particle with any small charge q

(smaller than the black hole charge Q), so that the inequal-
ities Eqs. (18) and (19) will be satisfied.
For in-falling of the test particle, _r2 > 0 for all r > re.

This implies that [using Eq. (17)]

m <
E −

qQ
2
F1ð12;14;54;−κQ2

r4
Þ

r

ψðrÞ ffiffiffiffiffiffiffiffiffi
fðrÞp ; r ≥ re: ð25Þ

R.H.S. of the inequality (25) is monotonically decreasing
and reaches the value E asymptotically at large r.
Therefore, inequality (25) is satisfied for m < E which
is true for any ordinary matter.
Thus, for κ > 0, the overcharging an extremal black hole

is always possible by throwing a test charged particle of
small charge q and energy E satisfying the conditions
Eqs. (18) and (19). This is a significant departure from the
result obtained in the case of GR, where even without the
backreaction, it is not possible to create a naked singularity
by overcharging an extremal charged black hole. The test
charge required for such a process can never enter the black
hole. But, in EiBI theory, since the dynamics are different,
it is possible to find a situation where overcharging an
extremal black hole is possible. If we can create a naked

(a)

(c) (d)

(b)

FIG. 2. At the horizon fðrÞ ¼ 0. For black holes, there must be at least one zero of fðrÞ, and for naked singularities fðrÞ > 0. Here we
plot f [given by Eq. (13)] as the function of r=Q. Given a fixed value of κ=Q2 (κ=Q2 ¼ 0.01; 0.5;−0.01;−0.1 in the plots (a), (b), (c),
and (d) respectively) we plot fðrÞ for several values ofM=Q̄ (M=Q̄ ¼ 0.8, 0.9, 1, 1.1, 1.2) and compare. In each of the plots (a)–(d), we
note that M ¼ Q̄ is the critical condition which distinguishes the black holes from naked singularities. Clearly, we have black holes for
M ≥ Q̄ and naked singularities forM < Q̄. Therefore, M ¼ Q̄ [given in Eq. (16)] is the extremal condition of EiBI black holes. This is
similar to the case of GR where we have black holes if M ≥ Q and naked singularities if M < Q.
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singularity from an extremal solution using a physical
process, it is a counterexample to the cosmic censorship in
the context of EiBI gravity. It seems unlike GR, it is easier
to invalidate cosmic censorship for Born-Infeld modifica-
tion of the gravity.
Next, we would like to know if this can be avoided,

provided we modify the matter section also using the Born-
Infeld prescription. In the next section, we will study the
overcharging problem for Black holes supported by the
Born-Infeld electric field.

V. BLACK HOLES SUPPORTED BY THE
BORN-INFELD ELECTRIC FIELD AND

THE OVERCHARGING PROBLEM

A nonlinear theory of electrodynamics was proposed by
Born and Infeld in 1934 [2]. In Maxwell’s theory of
electrodynamics, singularities appear in the electric and
magnetic fields. As an example, the electric field as well as
the self-energy for a point charge diverge at its location.
Born and Infeld, in their theory, introduced a new parameter
b which sets a maximum limit on the value of the
electromagnetic (EM) field, similar to the maximum speed
limit in the special theory of relativity. In curved spacetime,
the Lagrangian density for the BI EM field theory is given
by [2]

LBI ¼
b2

ffiffiffiffiffiffi−gp
4π

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

b2
−
G2

b4

s #
; ð26Þ

where F ¼ 1
2
FμνFμν and G ¼ 1

4
FμνGμν are two scalar

quantities constructed from the components of the EM
field tensor (Fμν) and the dual field tensor
(Gμν ¼ 1

2
ffiffiffiffi−gp ϵμναβFαβ). For an electrostatic scenario in flat

Minkowski spacetime, G ¼ E⃗ · B⃗ ¼ 0, and therefore, the

above Lagrangian reduces to LBI ¼ b2
4π ½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jE⃗j2=b2

q
�,

where E⃗ and B⃗ are the electric and magnetic field vectors.
Here, it is clear that b sets an upper limit on the electric
field, and consequently the self-energy is also finite for a
point charge. Consequently, the Coulomb’s law in BI
theory gets altered as EðrÞ ¼ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4þQ2=b2
p . Maxwell’s theory

is recovered in the limit b → ∞. Note that singularities
in the classical EM fields are well resolved in the
quantum electrodynamics (QED) theory which is
extremely successful. However, at the time of proposal
of BI electrodynamics, there was no full quantum theory
of electrodynamics. BI theory was almost totally forgotten
for a long time after QED came. However, recently, there is
a new interest in BI theory due to investigations in string
theory [56,57].
The energy-momentum tensor associated with BI EM

fields has the general expression

Tμν ¼ −
2ffiffiffiffiffiffi−gp ∂L

∂gμν ¼ −
b2

4π

2
64gμν

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

b2
−
G2

b4

s
− 1

!

−
b2FμσFσ

ν − G2gμν

b4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

b2 −
G2

b4

q
3
75; ð27Þ

which is obtained from the Lagrangian (26). Note that BI
electrodynamics is a gauge invariant theory, and therefore,
the Lorentz force equations are still valid for the motion of a
test charged particle in the BI EM fields. However, the test
particle feels a different strength of the EM force.

A. General relativity

In GR, the black hole solution with Born-Infeld electric
field due to a point charge is known as geonic black hole
solution [48]. In this scenario, a distant observer associates
a total mass which comprisesM (the black hole mass) and a
pure electromagnetic mass stored as the self energy in the

FIG. 3. Surface plot of ξðμ; ηÞ for jκj ≤ Q2 and q ≤ Q. μ and η are dimensionless variables defined as μ ¼ κ
Q2 and η ¼ q

Q :ξ > 0 for all
μ > 0 (i.e., κ > 0) and η (i.e., q) where as ξ < 0 for all μ < 0 and η. Thus, overcharging an extremal black hole is possible for all κ > 0
and for small q (smaller than the black hole charge Q).
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electromagnetic field. If M is zero, the spacetime becomes
regular everywhere. The spacetime for such a geonic black
hole is given by gtt ¼ −1=grr ¼ −geðrÞ where

geðrÞ ¼ 1 −
2M
r

−
2Q2

3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þQ2=b2

p
þ r2Þ

þ 4Q2

3r2 2F1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4

�
: ð28Þ

By solving the equation of motion for the potential At, or
alternatively from the conservation of the stress-energy
tensor given in Eq. (27) (i.e., ∇μTμν ¼ 0), we get

At ¼
Z

Qdr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4

q ¼ −
Q
r 2F1

�
1

2
;
1

4
;
5

4
;−

Q2

b2r4

�
: ð29Þ

Note that the potentials At in Eqs. (14) and (29) look
identical provided we define b2 ≡ 1=κ (κ > 0). This may
be due to the fact that, as shown in Ref. [69], the EiBI
gravity coupled with Maxwell’s electrodynamics can be
mapped to GR coupled with BI electrodynamics. However,
the Einstein equation in the mapped general relativity is that
of the auxiliary metric (qμν), but not of the physical metric
(gμν). Therefore, the physical metric in the two cases (i.e.,
EiBI gravity coupled to Maxwell electrodynamics and GR
coupled to BI electrodynamics) will be different from one
another. Also note that, although the two electromagnetic
potential look identical, the corresponding physical quan-
tities such as the energy density, pressures which appear in
the field equations are different in the two cases.
There is a point singularity at r0 ¼ 0. For the extremal

configuration, the horizon radius re and the relation
between the black hole charge Q and mass M become
(using geðreÞ ¼ g0eðreÞ ¼ 0)

re ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

4b2Q2

s
; ð30Þ

and M ¼ Q
3

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

4b2Q2

s

þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

4b2Q2

q 2F1

�
1

2
;
1

4
;
5

4
;−

Q2

b2r4e

��

¼ Q̄ðQ; b2Þ: ð31Þ

Note that 4b2Q2 > 1 for the existence of extremal event
horizon. The above relations reduce to the limit of extremal
Reissner-Nordström black hole for b2 → ∞ (i.e., the limit
of Maxwell’s electromagnetic field theory). Using Eqs. (28)
and (29) in Eq. (4), we get

_r2 ¼ 1

m2

�
E −

qQ
r 2F1

�
1

2
;
1

4
;
5

4
;−

Q2

b2r4

��
2

− geðrÞ: ð32Þ

To satisfy the condition _r2 > 0 at the horizon radius, r ¼ re
[Eq. (30)],

E>
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 1
4b2Q2

q · 2F1

�
1

2
;
1

4
;
5

4
;−

1

b2Q2ð1− 1
4b2Q2Þ2

�
: ð33Þ

The condition for exceeding the extremality of the final
black hole becomes [by using Eq. (6)]

E < Q̄ðQþ q; b2Þ − Q̄ðQ; b2Þ; ð34Þ

where M ¼ Q̄ðQ; b2Þ for the initial extremal black hole
configuration and Q̄ðQ; b2Þ is given by Eq. (31).
Both Eqs. (33) and (34) will be simultaneously satisfied

when Δ > 0 where

Δ ¼ Q̄ðQþ q; b2Þ − Q̄ðQ; b2Þ − qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

4b2Q2

q
× 2F1

�
1

2
;
1

4
;
5

4
;−

1

b2Q2ð1 − 1
4b2Q2Þ2

�
: ð35Þ

Assuming a small deviation fromMaxwell’s theory or large
black hole charge such that b2Q2 ≫ 1, and small charge of
the test particle such that Q ≫ q, we get

Δ ≃ −
q2

40b2Q3
: ð36Þ

We note that overcharging of the extremal black hole is not
possible for any large b and small q. To show this for any
arbitrary b2 > 1

4Q2 and q < Q, we define the dimensionless

variable ξðν; ηÞ, (where ν ¼ 1
bQ and η ¼ q

Q), as

ξ ¼ Δ
Q

¼ ð1þ ηÞ
3

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ν2

4ð1þ ηÞ2

s

þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

4ð1þηÞ2
q 2F1

�
1

2
;
1

4
;
5

4
;−

ν2ð1þ ηÞ2
ðð1þ ηÞ2 − ν2

4
Þ2
�375

−
1

3

2
64

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ν2

4

r
þ 2ffiffiffiffiffiffiffiffiffiffiffi

1 − ν2

4

q 2F1

�
1

2
;
1

4
;
5

4
;−

ν2

ð1 − ν2

4
Þ2
�375

−
ηffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

4

q 2F1

�
1

2
;
1

4
;
5

4
;−

ν2

ð1 − ν2

4
Þ2
�
: ð37Þ
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We plot (three-dimensional surface plot) ξ as a function
of ν and η in Fig. 4. The values of ν and η are in the ranges
of −2 < ν < 2 and 0 < η < 1. We note that ξ is always
negative (ξ < 0). Thus, there is no window for choosing the
energy E of the charged test particle such that the con-
ditions given by Eqs. (33) and (34) will be simultaneously
satisfied. Hence, the overcharging of an extremal geonic
black hole is never possible. This is basically an illustration
of the general result obtained in [58] for matter described
by Born-Infeld electrodynamics.
In the next subsection, we consider the case when the BI

electrodynamics is coupled to EiBI gravity. Thus, both the
matter and the gravitational sectors are modified in accor-
dance with the Born-Infeld prescription.

B. EiBI gravity

In EiBI gravity, the resulting black hole solutions are
characterized by BI parameters, both κ (for EiBI gravity)
and b2 (for BI electrodynamics) in addition to the black
hole charge Q and mass M. For detailed description of
the spacetime solutions and their properties, see
Ref. [20]. Using these solutions, here, we show that
overcharging of extremal black holes is possible only for
a certain choice of κ and b2, particularly for 4κb2 > 1.
Interestingly for the case of 4κb2 ¼ 1, the conditions for
choice of E become exactly the same as in the Reissner-
Nordström black holes. Therefore, it is the critical choice
for κ and b2. We will analyze different situation depend-
ing on the values of 4κb2.

1. 4κb2 = 1

For 4κb2 ¼ 1, the metric functions take simple forms
which are given by [20] gtt ¼ −hðrÞ and grr ¼ ψ̃2ðrÞ=hðrÞ
where

ψ̃ ¼
�

2r2

r2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 4κQ2

p �
1=2

; ð38Þ

hðrÞ ¼
�
1þ 4κQ2

ðr2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 4κQ2

p
Þ2
�

×

2
641− 2

ffiffiffi
2

p
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 4κQ2

pq þ 2Q2

r2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 4κQ2

p
3
75:

ð39Þ

The spacetime looks simpler when we use a radial
coordinate transformation given by

r̄ ¼ rffiffiffi
2

p
"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κQ2

r4

r #
: ð40Þ

Then the spacetime becomes [20]

ds2 ¼ Uðr̄Þ
�
−
�
1 −

2M
r̄

þQ2

r̄2

�
dt2 þ dr̄2

ð1 − 2M
r̄ þ Q2

r̄2 Þ

�

þ Vðr̄Þr̄2ðdθ2 þ sin2θdϕ2Þ; ð41Þ

where

V ¼ 1 −
κQ2

r̄4
; U ¼ 1þ κQ2

r̄4
: ð42Þ

Note that r2 ¼ Vðr̄Þr̄2. The spacetime [Eq. (41)] resembles
the Reissner-Nordström spacetime apart from the con-
formal factors U and V. As κ → 0 (and consequently
b2 → ∞ as 4κb2 ¼ 1) the spacetime reduces to Reissner-
Nordström spacetime. There is a point singularity at r ¼ 0,
at the location of the charge Q and mass M.
From the equation of motion for the scalar potential At,

or alternatively from the conservation of the stress-energy
tensor given in Eq. (27) (i.e., ∇μTμν ¼ 0), we get

dAt

dr̄
¼ QUðr̄Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2ðr̄Þr̄2 þ 4κQ2
p ¼ Q

r̄2
: ð43Þ

Thus, the scalar potential At becomes

At ¼ −
Q
r̄
¼ −

ffiffiffi
2

p
Q

r
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κQ2

r4

q i1=2 : ð44Þ

For the extremal black holes, the horizon radius re and
the relation between Q and M are obtained [using hðreÞ ¼
h0ðreÞ ¼ 0 and Eq. (40)] as

re ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

κ

Q2

r
ð45Þ

and M ¼ Q: ð46Þ

FIG. 4. Surface plot of ξðν; ηÞ for 4b2Q2 ≥ 1 and q ≤ Q. ν and
η are dimensionless variables defined as ν ¼ 1

bQ and η ¼ q
Q :ξ < 0

for all ν and η. Thus, overcharging of an extremal black hole is
not possible for any b2 and q.
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Note that, for nonextremal black holes, the event horizon
(rþ) and the Cauchy horizon (r−) are given by r� ¼
ðM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κQ2

ðM�
ffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p
Þ4

r
.

Using Eqs. (38), (39), and (44) in Eq. (4), we get

_r2¼ ψ̃2

"
1

m2

 
E−

ffiffiffi
2

p
Qq
r

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4κQ2

r4

r #−1=2!2

−hðrÞ
#
:

ð47Þ

To satisfy the condition _r2 > 0 at the horizon radius,
r ¼ re [Eq. (45)],

E >

ffiffiffi
2

p
Qq
re

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κQ2

r4e

s #−1=2
¼ q: ð48Þ

The condition for exceeding the extremality of the final
black hole becomes [by using Eq. (6)]

E < Qþ q −M ¼ q; ð49Þ

where we used Q ¼ M for the initial extremal configura-
tion. E > q and E < q can not be satisfied simultaneously.
We encountered exactly similar situation for extremal
Reissner-Nordström black holes. Thus, the overcharging
of extremal black holes are not possible for any κ
provided b2 ¼ 1

4κ.

2. 4κb2 > 1

For 4κb2 > 1, the resulting spacetime is given by [20]

gtt ¼ −Uαðr̄Þhαðr̄Þ and grr ¼ Vαðr̄Þ
Uαðr̄Þhαðr̄Þ where

hαðr̄Þ ¼ 1þ αr̄2

6κðα − 1Þ

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4κQ2ðα − 1Þ
αr̄4

s
− 1

#

þ α1=4ð4Q2Þ3=4
3κ1=4ðα − 1Þ1=4r̄

× F

�
arcsin

�ð4κQ2ðα − 1ÞÞ1=4
α1=4r̄

����� − 1

�
−
2M
r̄

;

ð50Þ

Uαðr̄Þ ¼
2 − α

2ð1 − αÞ −
α

2ð1 − αÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4κQ2ð1−αÞ
αr̄4

q ; ð51Þ

Vαðr̄Þ ¼
2 − α

2ð1 − αÞ −
α

2ð1 − αÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κQ2ð1 − αÞ

αr̄4

s
; ð52Þ

and r̄ ¼ r

"
1 −

α

2
þ α

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κQ2

αr4

s #1=2
; ð53Þ

where FðϕjmÞ ¼ R ϕ0 ½1 −msin2θ�−1=2dθ is the incomplete
elliptic integral of the first kind and α ¼ 4κb2. There are
point singularities (r0 ¼ 0) for 1 < α ≤ 2 and surface

singularities at r0 ¼
h
ðα−2Þ
2ðα−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κQ2ðα−1Þ

α

q i1=2
for α > 2.

From the equation of motion for the scalar potential At,
we get

AtðrÞ ¼ −
Z

∞

r

Q
x2

"�
1þ Q2

b2x4

�

×

 
1 −

α

2
þ α

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2x4

s !#−1=2
dx: ð54Þ

The last integration can be performed analytically after

using the transformation z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2x4

q
. We obtain

AtðrÞ ¼
b2

2Q

�
Q
b

�
3=2
Z

1

z

dz

ðzþ 1Þ3=4ðz− 1Þ3=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α

2
ðz− 1Þp

¼ −
ffiffiffi
2

p
b2

Q

�
Q
b

�
3=2 ðz− 1Þ1=4

ð2þ αðz− 1ÞÞ1=4

× 2F1

�
1

4
;
3

4
;
5

4
;
ðα− 1Þðz− 1Þ
2þ αðz− 1Þ

�

¼ −
ffiffiffi
2

p
Q
r

" 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4

s !2

þ ðα− 1Þ Q2

b2r4

#−1=4

× 2F1

0
B@1

4
;
3

4
;
5

4
;

ðα− 1Þ Q2

b2r4�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4

q 	2 þ ðα− 1Þ Q2

b2r4

1
CA
ð55Þ

For extremal black holes, we obtain the horizon radius
re, the corresponding value of r̄e, and the relation between
Q and M

re ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

4b2Q2

s
; r̄e ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α − 1

4b2Q2

s
; ð56Þ

M ¼ r̄e
2

�
1þ 2b2r̄2e

3ðα − 1Þ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Q2ðα − 1Þ
b2r̄4e

s
− 1

!

þ 4
ffiffiffi
b

p
Q3=2

3ðα − 1Þ1=4r̄e
F

�
arcsin

��
Q2ðα − 1Þ

b2r̄4e

�
1=4
����� − 1

��
¼ Q̄ðQ; b2; αÞ: ð57Þ

To satisfy the condition _r2 > 0 at the horizon radius,
r ¼ re [Eq. (56)],
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E > qjAtðreÞj; ð58Þ

where AtðreÞ is to be evaluated using Eq. (55).
For exceeding the extremality of the final black hole

becomes [by using Eq. (6)]

E < Q̄ðQþ q; b2; αÞ − Q̄ðQ; b2; αÞ; ð59Þ
where M ¼ Q̄ðQ; b2; αÞ for initial extremal configuration
and Q̄ðQ; b2; αÞ is given by Eq. (57).
Both Eqs. (58) and (59) will be simultaneously satisfied

when Δ > 0 where

Δ ¼ Q̄ðQþ q; b2; αÞ − Q̄ðQ; b2; αÞ − qjAtðreÞj: ð60Þ
For small deviation fromMaxwell’s theory or large black

hole charge such that b2Q2 ≫ 1 we get

AtðreÞ ≃ 1 −
α − 1

40b2Q2
; ð61Þ

Q̄ðQ; b2;αÞ ≃Qþ α − 1

40b2Q
; ð62Þ

where we carefully expanded all the terms in Eqs. (54),
(56), and (57) up to the order Oð 1

b3Q3Þ.
Using the above approximate results in Eq. (60) and

assuming small test charge q ≪ Q, we obtain

Δ ≃
ðα − 1Þq2
40b2Q3

> 0: ð63Þ

Since α ¼ 4κb2 > 1, Δ > 0 and there is a window for
choosing E suitably for any small deviation from
Maxwell’s electromagnetic field theory.
To show the validity of the above result for any b2Q2 >

1=4, we define a dimensionless function ξðη; α; νÞ ¼ Δ=Q

where η ¼ q=Q and ν ¼ 1=bQ. In Fig. 5, we plot (three-
dimensional surface) ξ for two choices of ν and we note that
ξ > 0 for 4κb2 > 1 given any value of q < Q. Therefore,
both analytical and numerical analysis confirm that over-
charging of an extremal black hole is possible when
only 4κb2 > 1.

VI. CONCLUSIONS

We summarize our results point wise below:
(1) We have seen that overcharging of an extremal black

hole is possible in EiBI gravity sourced by a
Maxwell’s electric field with black hole charge Q
and massM. The theory parameter of EiBI gravity κ
appears in the inequalities for E for a given q, where
E and q are energy and charge of the test particle
of massm, thrown radially to destroy the black hole.
In fact, κ generates an window for a viable choice
of E satisfying the condition of overcharging. This is
a significant departure from the case of general
relativity.

(2) Next, we investigate what would happen when we
consider BI electric field instead of Maxwell’s
electric field. We use results of the spherically
symmetric static solutions in EiBI gravity coupled
BI electrodynamics [20]. The solutions are charac-
terized by two parameters–κ for EiBI gravity and b2

for BI electrodynamics–apart from charge Q and
mass M. κ → 0 gives the GR limit for gravitational
sector and b2 → ∞ gives Maxwell’s limit of BI
electrodynamics theory.
(a) We took the solution for the critical case

4κb2 ¼ 1, as this gives the simplest form of
metric functions [20]. For this, we interestingly
found that the criteria for overcharging an

FIG. 5. Surface plot of ξðη; α; νÞ for q ≤ Q and 1 < α ≤ 2 for the given values of b (4b2Q2 > 1). α, η, and ν are dimensionless
variables defined as α ¼ 4κb2, η ¼ q

Q, and ν ¼ 1
bQ. In (a) ν ¼ 1.0 and in (b) ν ¼ 0.1. ν ξ > 0 for all α > 1. Thus, overcharging an

extremal black hole is possible for 4κb2 > 1.
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extremal black hole is exactly same as we see
in the case of Reissner-Nordstrom solution,
i.e., E > q and E < q. Thus, overcharging is
not possible as long as 4κb2 ¼ 1.

(b) We also looked at geonic black hole solution.
This is an old known solution in GR with Born-
Infeld electric field instead of Maxwell’s electric
field as the matter. This is also a limiting case of
the solution for EiBI gravity coupled to BI
electrodynamics with κ → 0. Here also, we
found that overcharging is not possible. This
is also an interesting result as “GR coupled with
BI electrodynamics” leads to that “overcharging
is not possible”; but “EiBI gravity coupled with
Maxwell’s electrodynamics” leads to that “over-
charging is possible”.

(3) Extending our analysis further, we showed that in
general overcharging of an extremal black hole is
possible only for the case 4κb2 > 1. All of the above
results are included in this inequality.

There are several observational and theoretical justifi-
cation to look for physics beyond general relativity. EiBI
gravity is a viable candidate for such a modified theory of

gravity. But, a modified theory of gravity is also expected to
be as well behaved as Einstein’s theory of general relativity.
Analyzing the applicability of the cosmic censorship
conjecture in terms of overcharging an extremal black
hole solution is therefore a good consistency check for an
alternative theory of gravity. In this work, we show that,
for the parameter range 4κb2 > 1, such a overcharging is
possible with test particle. This is completely different from
the case of general relativity. As a result, it seems that the
validity of the cosmic censorship limits the choice of BI
parameters to 4κb2 ≤ 1. Similar bounds of the parameters
of a modified gravity theory like Einstein-Gauss-Bonnet
gravity has been found using the validity of the classical
second law for black holes [70]. Therefore, it may be
interesting to understand further consequences of the bound
4κb2 ≤ 1 for black hole mechanics in EiBI gravity.
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