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Observational data from the European Space Agency astrometric mission Gaia determining the positions
of celestial objects within an accuracy of a few microarcseconds will be soon fully available. Other satellite-
based space missions are currently planned to significantly improve such precision in the next years. The
data reduction process needs high-precision general relativistic models, allowing one to solve the inverse
ray-tracing problem in the gravitational field of the Solar System up to the requested level of accuracy and
leading then to the estimate of astrometric parameters. Besides a satisfactory description of the background
field due to the planets (which should include their multipolar structure), one should consider also other
effects which may induce modifications to the light propagation. For instance, the interaction of the light
signal with the superposed gravitational field of a gravitational wave emitted by a distant source would
cause a shift in the apparent positions of the stars. We compute here the main astrometric observables
needed for data reduction of satellite-based missions in the presence of a passing plane gravitational wave.
We also take into account the effect of the mass quadrupole moment of the planets, improving previous
results obtained for Gaia.
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I. INTRODUCTION

The aim of modern astrometry is to determine, with very
high accuracy, the position and proper motion of the stars
from satellite-based angular observations. The European
Space Agencymission Gaia launched in 2013 is expected to
produce a star catalog within an accuracy of a few micro-
arcseconds [1,2], but future space missions should reach a
precision of submicroarcseconds or even nanoarcseconds
(see, e.g., Refs. [3–6]). The fully general relativistic model-
ing necessary to locate a celestial object with such an
accuracy requires a detailed account of the underlying
measurement process as well as a likewise accurate descrip-
tion of the background gravitational field. The baseline
model for the Gaia data reduction is called the Gaia
relativistic model (GREM) [7–14]. This model has been
recently improved in Refs. [15,16], where the light propa-
gation in the gravitational field of N arbitrarily moving
bodies of finite size has been determined in the first post-
Newtonian (PN) and in the 1.5PN approximation, respec-
tively. A different model called the relativistic astrometric
model (RAMOD) has been formulated in Refs. [17,18] (see
also Ref. [19] and references therein for further develop-
ments). The astrometric observables associated with Gaia
have been recently computed in Ref. [20] in the case of
pointlike sources moving with constant velocities.
It has also been suggested to use high-precision astrom-

etry to investigate the shift in the apparent positions of the

stars induced by gravitational waves (GWs) [21,22]. The
observed angular deflections are expected to be of the order
of the characteristic strain amplitude of the wave and to
have a characteristic pattern, so that measuring them would
allow for an indirect detection of the GW itself. Various
kinds of gravitational waves in this context have been
discussed so far, including a stochastic GW background
[23] and gravitational waves from localized sources [24].
Gaia observes more than a billion stars over an operating
period of 5–10 yr, locating each of them about 80 times
(in 5 yr). The sensitivity bandwidth of Gaia to GWs is
estimated between 10−9 and 10−5 Hz [25]. A technique to
search for low-frequency GWs in the Gaia data set has been
proposed in Ref. [26], where it has also been tested in the
case of a simulated GW event produced by a supermassive
black hole binary system on a circular orbit. This method is
complementary to the pulsar timing approach, which uses
the precise timing of millisecond pulsars to search for low-
frequency GWs and measure their polarization. The use of
astrometry to constrain the polarization content of GWs has
been discussed in Refs. [27,28]. Astrometric signatures of
GWs can also be found in the residuals of the astrometric
solution (which takes into account the deflection of light
due to Solar System bodies only), if the period of the GW is
much smaller than the time span of the data, as discussed in
Ref. [25] in the case of a plane wave. The parameters
characterizing the GW will enter the astrometric model
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together with the source parameters (i.e., position, proper
motion, and parallax) and satellite parameters (attitude and
calibration) but require a proper estimation process to be
determined.
The aim of the present work is twofold. Wewill study the

effect of a passing gravitational plane wave to the main
observables of a satellite-based astrometric mission includ-
ing Gaia, i.e., to the direction cosines measured by the
observer on the satellite which are related to the along-
scan and across-scan measurements. Furthermore, we will
extend the results of Ref. [20] by including the effect of
the quadrupole moment of the planets, which cannot be
neglected for astrometry at the microarcsecond level of
accuracy of Gaia, as discussed in Refs. [7,9,14,15].
We follow here standard notations and conventions:

Units are chosen so that c ¼ 1 ¼ G, but they are restored
when necessary; the metric signature is þ2; Greek indices
run from 0 to 3, whereas Latin indices run from 1 to 3;
unless differently specified, scalar product operation is
defined with respect to the spacetime metric.

II. SETUP OF THE PROBLEM

A. Coordinate choice and background
spacetime metric

The background spacetime consists of N gravitationally
interacting bodies, each associated with its own world tube
(approximated by a single world line, with a certain number
of multipolar fields defined all along it). It is customary to
identify a “global coordinate system” xα ¼ ðct; xiÞ with the
origin at the center of mass (COM) of the whole system and
“N local coordinate systems” each attached with a single
body. They are needed to split the general problem into two
parts: the “external problem” aimed at determining the
motion of the COMs of the N bodies and the “internal
problem” aimed at determining the motion of each body
around its COM. In the global coordinate system, the
parametric equations of the N COM world lines LA
(A ¼ 1;…; N) have equations zαA ¼ zαAðτAÞ, where τA is
the proper time parametrization along each world line.
Local coordinate systems, instead, can be, e.g., Fermi
coordinates Xα

A ¼ ðcTA; Xa
AÞ along the lines LA (or any

similar set of attached coordinates to these lines). A
mapping between the global and local set of coordinates
is discussed in Ref. [29].
If the spacetime region of interest never gets too close to

any specific body, the gravitational field can be considered
a perturbation of the flat spacetime metric ηαβ referred to
standard Cartesian coordinates, i.e.,

gð0Þαβ ¼ ηαβ þ hMαβ; ð2:1Þ

where hMαβ denotes the gravitational field of the Solar
System bodies, i.e., the “matter” (M) field, and can be
expressed either in the global coordinates xμ or in any of the

N local coordinates Xμ
A. We will work to first order in h

throughout the paper.

B. Perturbation by an incoming plane
gravitational wave

Let us consider a perturbation of this system induced by
a plane gravitational wave emitted by a distant source. The
complete metric (background plus perturbation) is then
given by

gαβ ¼ ηαβ þ hMαβ þ hGWαβ ; ð2:2Þ

where both M and GW metrics can be treated as indepen-
dent first-order corrections to the Minkowski metric. For
the sake of simplicity, we will take the metric of a
monochromatic plane wave, which has the form

hGWαβ −
1

2
ηαβhGWγ

γ ¼ Re½Aαβeikαx
α �; ð2:3Þ

where Aαβ is a constant symmetric tensor, the polarization
tensor, and k is a constant null vector, the wave vector. We
will adopt the transverse-traceless (TT) gauge, so that hGWαβ
is traceless (i.e., hGWα

α ¼ 0) with nonvanishing compo-
nents only on the plane orthogonal to the direction k of
propagation of the wave (i.e., hGWαβ kβ ¼ 0), implying that
hGW0β ¼ 0. The polarization tensor has only two independent
components, corresponding to the two possible polarization
states.
The gravitational fields associated with GWs are

assumed weak enough to be considered in the linear
approximation. Their effects on the deflection of light
add linearly to those due to the Solar System bodies.

C. Fiducial observers and adapted frames

It is useful to introduce on the spacetime manifold an
observer family u, which forms a congruence of timelike
world lines characterized by the kinematical quantities
acceleration aðuÞ, expansion θðuÞ, and vorticity ωðuÞ [30],
resulting from the splitting of its covariant derivative
∇u≡∇βuα ¼ uα;β, i.e.,

aðuÞα ¼ uα;βuβ;

θðuÞαβ ¼ PðuÞγαPðuÞδβuðγ;δÞ;
ωðuÞαβ ¼ −PðuÞγαPðuÞδβu½γ;δ�; ð2:4Þ

where PðuÞαβ ¼ δαβ þ uαuβ projects orthogonally to u. Let
us assume as fiducial observers those at rest with respect to
the global coordinates, i.e., the static observers, with
associated 4-velocity

u ¼ uα∂α ¼
�
1þ 1

2
h00

�
∂0; ð2:5Þ
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and kinematical fields with coordinate components

aðuÞi ¼ h0i;0 −
1

2
h00;i;

θðuÞij ¼
1

2
hij;0;

ωðuÞij ¼ −h0½i;j�; ð2:6Þ

so that, e.g., aðuÞ ¼ aðuÞi∂i, θðuÞ ¼ θðuÞijdxi ⊗ dxj, etc.
An observer-adapted orthonormal spatial frame results in
the following three vectors:

eðuÞx̂ ¼ h0x∂0 þ
�
1 −

1

2
hxx

�
∂x;

eðuÞŷ ¼ h0y∂0 − hxy∂x þ
�
1 −

1

2
hyy

�
∂y;

eðuÞẑ ¼ h0z∂0 − hxz∂x − hyz∂y þ
�
1 −

1

2
hzz

�
∂z: ð2:7Þ

D. Photon motion

Every astrometric model should be able to reconstruct the
trajectory of a light ray detected by an observer back to the
source, i.e., to solve the inverse ray-tracing problem (see,
e.g., Ref. [31] for a recent fully explicit application), up to
the requested level of accuracy. In the GREM, the photon
trajectory is parametrized by the coordinate time t, so that the
null geodesic equations reduce to a set of second-order
ordinary differential equations for the spatial variables xaðtÞ.
These equations are solved by imposing mixed initial-
boundary conditions by fixing the spatial coordinates of
the photon at the time of emission and the unit tangent vector
to the light trajectory in the infinite past, i.e., at infinite
spatial distance from the origin of the global coordinate
system [7,8,32]. Differently, the RAMOD provides a set of
(equivalent) first-order ordinary differential equations for
the coordinate components of the spatial light direction in
the rest frame of a local static observer, i.e., its line of sight at
each point of the light trajectory, as functions of a suitably
defined nonaffine parameter along the path [17,18]. Further
integration gives the coordinate position of the star. These
equations are integrated by imposing boundary conditions at
the time of observation in terms of the angular directions of
the incoming light ray with respect to the spatial axes of a
frame comoving with the satellite and the coordinate
position of the satellite’s trajectory (see, e.g., Ref. [33]
and references therein for additional details).
Let K be the tangent vector to the photon null geodesic

world line, i.e.,

Kα∇αKβ ¼ 0; KαKα ¼ 0; ð2:8Þ

parametrized by the affine parameter λ such that Kα ¼
dxα=dλ. We will use the following decomposition of the

photon 4-momentum with respect to any given observer
family u [17,18]:

K ¼ −ðu · KÞuþ lðuÞ≡ EðK; uÞuþ lðuÞ; ð2:9Þ

with lðuÞα ¼ PðuÞαβKβ the observer-relative (spatial)
momentum orthogonal to uα and EðK; uÞ ¼ −u · K the
observer-relative energy.
In place of λ, Refs. [17,18] introduce another nonaffine

parameter σ for the orbit, such that

K̄α ¼ Kα

EðK; uÞ ¼
dxα

dσ
; ð2:10Þ

with

l̄ðuÞ ¼ lðuÞ
EðK; uÞ ¼ K̄ − u; ð2:11Þ

a unit (spatial) vector representing the observer-relative
direction of the momentum. σ is related to the affine
parameter λ by dσ ¼ EðK; uÞdλ, implying that Eq. (2.8)
becomes

K̄α∇αK̄β ¼ −
�
d
dσ

ln EðK; uÞ
�
K̄β: ð2:12Þ

The observer-relative energy satisfies the equation

d
dσ

lnEðK;uÞ¼−l̄ðuÞαl̄ðuÞβθðuÞαβ− l̄ðuÞαaðuÞα; ð2:13Þ

so that Eq. (2.12) becomes

dK̄α

dσ
þ Γα

μνK̄μK̄ν

− ½l̄ðuÞμl̄ðuÞνθðuÞμν þ l̄ðuÞμaðuÞμ�K̄α ¼ 0; ð2:14Þ

with Γα
μν ¼ 1

2
ηαρðhρν;μ þ hρμ;ν − hμν;ρÞ evaluated along the

photon path. Equation (2.11) then implies

dl̄ðuÞα
dσ

þ Γα
μνl̄ðuÞμðl̄ðuÞν þ uνÞ þ aðuÞα − kðuÞασl̄ðuÞσ

− ½l̄ðuÞμl̄ðuÞνθðuÞμν þ l̄ðuÞμaðuÞμ�ðl̄ðuÞα þ uαÞ ¼ 0;

ð2:15Þ

which is valid for any observer u. Hereafter we will adopt
the simplified notation l̄ðuÞα ¼ l̄α, being understood that
the direction of light propagation l̄ is relative to the
observer u. We will make explicit the dependence of l̄α

and the metric components hαβ on the parameter σ along
the orbit, when convenient.
For the static observers with 4-velocity (2.5) and

kinematical fields (2.6), the previous equations become
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dl̄0

dσ
¼ l̄il̄jh0i;j þ l̄ih0i;0; ð2:16Þ

dl̄k

dσ
¼ −l̄il̄j

�
hki;j −

1

2
hij;k

�
− l̄iðhk0;i þ hki;0 − h0i;kÞ

− hk0;0 þ
1

2
h00;k

þ l̄k

�
1

2
l̄il̄jhij;0 þ l̄i

�
h0i;0 −

1

2
h00;i

��
; ð2:17Þ

to be completed by

dx0

dσ
¼ l̄0ðσÞ þ 1þ 1

2
h00ðσÞ;

dxa

dσ
¼ l̄aðσÞ: ð2:18Þ

These equations, valid through OðhÞ, have been derived in
this form in Ref. [18]. Unfortunately, the equation for l̄0 is
incorrect there (see Appendix B).
To first-order OðhÞ, the solution of Eqs. (2.16)–(2.18)

can be written as

l̄0 ¼ h0il̄i; l̄a ¼ l̄a
∅ þ l̄a

h; xα ¼ xα∅ þ xαh; ð2:19Þ

where l̄a
∅ denotes the unperturbed local photon direction

and the parameter σ on the light ray trajectory is fixed so
that it is σ ¼ 0 at the event of observation (i.e., at the
satellite position) with coordinates xαobs ¼ ðx0obs; xiobsÞ. The
null condition to OðhÞ then implies

2l̄∅ · l̄h þ hl̄∅l̄∅ ¼ 0; hl̄∅l̄∅ ¼ habl̄a
∅l̄b

∅: ð2:20Þ

Therefore, the unperturbed orbit (which is a straight line)
can be written as

x0∅ ¼ x0obs þ σ; xa∅ ¼ xaobs þ l̄a
∅σ; ð2:21Þ

with xαhð0Þ ¼ 0. The “actual” (locally spatial) photon direc-
tion evaluated at the observation point l̄a

obs ¼ l̄a
∅ þ l̄a

hð0Þ
is considered fully known, being related to direct observa-
tions and to the selected attitude of the observer’s
frame. Therefore, the solution of Eqs. (2.16)–(2.18) can
be written as

x0ðσÞ ¼ x0obs þ σ þ x0hðσÞ; ð2:22Þ

xaðσÞ ¼ xaobs þ l̄a
∅σ þ xahðσÞ

¼ xaobs þ l̄a
obsσ þ ðxahðσÞ − l̄a

hð0ÞσÞ; ð2:23Þ

l̄aðσÞ ¼ l̄a
obs þ ðl̄a

hðσÞ − l̄a
hð0ÞÞ: ð2:24Þ

Equation (2.22) can be used in turn to switch to the
coordinate time parametrization of the GREM, whereas
evaluating Eq. (2.23) at the spatial position xa� ¼ xaðσ�Þ of
the star gives the components l̄a

obs at the observer’s position

in terms of the star coordinates [after eliminating the
parameter σ� through the normalization condition (2.20)].

E. Astrometric observables

1. Satellite adapted frame

The (timelike) satellite world line has 4-velocity U,

U ¼ γðU; uÞ½uþ νðU; uÞ� ¼ Γ½∂0 þ va∂a�; ð2:25Þ

where Γ is a normalization factor and

νðU; uÞ ¼ kνðU; uÞkν̂ðU; uÞ ¼ νðU; uÞâeðuÞâ;
γðU; uÞ ¼ ð1 − kνðU; uÞk2Þ−1=2; ð2:26Þ

so that U ·U ¼ −1 and va depend on t only.
An adapted frame to this world line can be obtained by

boosting the orthonormal threading frame fu; eðuÞâg along
U; i.e.,

E0̂ ¼ U;

Eâ ¼ eðuÞâ þ
ðU · eðuÞâÞ
γðU; uÞ þ 1

ðU þ uÞ; ð2:27Þ

with Eâ ·U ¼ 0, are the axes eðuÞâ of the observer u as
seen by the observer U. The normalization factor Γ in
Eq. (2.25) is given by

Γ ¼ Γ0

�
1þ Γ2

0

�
1

2
h00 þ h0v þ

1

2
hvv

��
; ð2:28Þ

with Γ0 ¼ ð1 − v2Þ−1=2, where the notation h0v ¼ htava,
hvv ¼ habvavb, and v2 ¼ δabvavb has been used. In terms
of the coordinate components of the spatial velocity, the
frame components νðU; uÞâ and the associated Lorentz
factor γðU; uÞ are

νðU;uÞx̂¼vx
�
1þ1

2
ðh00þhxxÞþh0v

�
þhxyvyþhxzvz;

νðU;uÞŷ¼vy
�
1þ1

2
ðh00þhyyÞþh0v

�
þhyzvz;

νðU;uÞẑ¼vz
�
1þ1

2
ðh00þhzzÞþh0v

�
;

γðU;uÞ¼Γ0

�
1þΓ2

0

��
1

2
h00þh0v

�
v2þ1

2
hvv

��
; ð2:29Þ

to first order in h.
The satellite attitude frame is specified by a suitable

spatial rotation of the adapted triad (2.27)

Fâ ¼ Eb̂R
b̂
â; ð2:30Þ
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where the rotation matrix can be equivalently parametrized
by either three Euler angles or the Cayley-Klein parameters
or even the modified Rodrigues parameters [see, e.g.,
Eq. (53) in Ref. [20] for Gaia]. We will refer to them as
attitude parameters ai.

2. Main observables

Following the notation of Ref. [18], let

cosψ ðâ;KÞ ¼
K · Fâ

ð−U · KÞ
����
obs

¼ l̄ðuÞ · Fâ

γðU; uÞð1 − νðU; uÞ · l̄ðuÞÞ

����
obs

ð2:31Þ

be the âth direction cosine measured by the observer on the
satellite. Each observation can be translated in the meas-
urement of two coordinates, cosϕ on the focal plane (along
scan) and sin ζ orthogonal to it (across scan), which are
related to the direction cosines (2.31) by [20]

cosϕ ¼ cosψ ð1̂;KÞ
j sinψ ð3̂;KÞj

; sin ζ ¼ cosψ ð3̂;KÞ: ð2:32Þ

Repeated observations of the same objects from different
satellite orientations and at different times allow one to esti-
mate their astrometric parameters, i.e., angular positions,
parallaxes, and proper motions, as shown in Ref. [20].
From a computational point of view, these observations
produce a large number of equations, which is much larger
than the number of unknowns. Furthermore, the latter enter
the observation equations in a highly nonlinear way in
general, so that a nonlinear optimization algorithm should
be needed. However, assuming that the initial values of all
unknown parameters are close enough to the true ones,
one can linearize the system of equations with respect to
the unknowns around a known set of reference values. The
solution through a least-squares method eventually pro-
vides the catalog and associated uncertainties (we refer to
Ref. [20] and references therein for a detailed account of the
Gaia data analysis).
We will write the solution for the direction cosines as the

sum of two contributions, i.e.,

cosψ ðâ;KÞ ¼ ½cosψ ðâ;KÞ�ð0Þ þ ½cosψ ðâ;KÞ�GW; ð2:33Þ

where ½cosψ ðâ;KÞ�ð0Þ is the part of cosψ ðâ;KÞ due to the
“background” field (2.1), i.e., to the gravitational field of
the Solar System, and ½cosψ ðâ;KÞ�GW is the correction due
to the gravitational wave.

III. THE GRAVITATIONAL FIELD
OF THE SOLAR SYSTEM

The Solar System is assumed to be isolated and des-
cribed by the following metric in the barycentric celestial

reference system (BCRS) as recommended by the IAU
resolution B1.3 [34]

gð0Þ00 ðt; xiÞ ¼ −1þ 2ϵ2V − 2ϵ4V2 þOð6Þ;
gð0Þ0i ðt; xiÞ ¼ −4ϵ3Vi þOð5Þ;
gð0Þij ðt; xiÞ ¼ δij½1þ 2ϵ2V� þOð4Þ; ð3:1Þ

where ϵ ¼ 1=c and OðnÞ ¼ OðϵnÞ, the functions V ¼
Vðt; xiÞ and Vi ¼ Viðt; xiÞ denoting the potentials associ-
ated with the gravitational field. The BCRS coordinates
are harmonic, since the metric (3.1) satisfies the gauge

conditions ∂βð
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p
gð0ÞαβÞ ¼ 0 ¼ gð0ÞμνΓð0Þα

μν, that is,

∂tV þ ∂iVi ¼ 0ð4Þ: ð3:2Þ

The gravitational potentials V and Vi are given by

Vðt;xiÞ¼
XN
A¼1

VAðt;xiÞ; Viðt;xiÞ¼
XN
A¼1

Vi
Aðt;xiÞ; ð3:3Þ

where the individual contribution of the Ath body is
computed in the local coordinate system (cTA, Xi

A) attached
with it in terms of two families of intrinsic multipole
moments, mass ML and spin SL moments, defined through
the associated energy-momentum tensor [29].
In order to meet the microarcsecond level of accuracy, it

is enough to keep terms in the metric (3.1) up to the order
ofOð3Þ included. Furthermore, the sources can be assumed
to move with a constant velocity relative to the global
reference system. They can also be considered as non-
rotating and endowed with a quadrupolar structure, with a
time-independent mass quadrupole moment. It is enough to
take into account the contribution of giant planets only,
which can be modeled as (flattened) homogeneous axi-
symmetric ellipsoids of revolution, whose principal axes
are aligned with the spatial axes of the global coordinate
system. Such approximations are extensively discussed in
Refs. [7–9,14,15,32].
The gravitational potentials of the Ath source are then

given by

VAðt; xiÞ ¼ hAðt; xiÞ; Vi
Aðt; xiÞ ¼ hAðt; xiÞṽiA; ð3:4Þ

with [9]

hA ¼ GMA

rA

�
1 − J2A

�
Req
A

rA

�
2

P2

�
z − zA
rA

��
; ð3:5Þ

where riA ¼ xi − xiAðtÞ are the coordinates of the Ath body
with the origin fixed at the center of mass of the whole
system, so that

rAðt; xiÞ ¼ ½ðx − xAðtÞÞ2 þ ðy − yAðtÞÞ2 þ ðz − zAðtÞÞ2�1=2;
ð3:6Þ
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with xiAðtÞ ¼ xiAðtA;0Þ þ ṽiAðt − tA;0Þ, tA;0 denoting a given
reference time. P2ðxÞ ¼ 1

2
ð3x2 − 1Þ is the Legendre poly-

nomial of degree n ¼ 2, MA the mass of the Ath body, Req
A

its equatorial radius, and the coefficient J2A the dimen-
sionless mass quadrupole parameter. In the following, we
will remove the subscript A for simplicity, and we will
retain terms up to the order of Oð3Þ in the expansion of
perturbation quantities.
The solution of the photon equations of motion is then

given by [20]

l̄aðσÞ ¼ l̄a
obs þ ϵ2f2½1 − 2ϵðṽ · l̄∅Þ�HaðσÞ

−ð3l̄a
∅ − 4ϵṽaÞðhðσÞ − hobsÞg þ 2ϵ3l̄a

∅H
tðσÞ

¼ l̄a
∅ þ l̄Ma

h ; ð3:7Þ

with ðṽ · l̄∅Þ ¼ δabṽal̄b
∅, and

x0ðσÞ ¼ x0obs þ σ þ ϵ2½1 − 4ϵðṽ · l̄∅Þ�HðσÞ;
xaðσÞ ¼ xaobs þ l̄a

obsσ þ ϵ2f2½1 − 2ϵðṽ · l̄∅Þ�HaðσÞ
−ð3l̄a

∅ − 4ϵṽaÞðHðσÞ − hobsσÞg þ 2ϵ3l̄a
∅HtðσÞ;

ð3:8Þ

where we have introduced the quantities

HðσÞ ¼
Z

σ

0

hðσÞdσ; HaðσÞ ¼
Z

σ

0

½∂ah�ðσÞdσ;

HaðσÞ ¼
Z

σ

0

HaðσÞdσ; HtðσÞ ¼
Z

σ

0

½∂th�ðσÞdσ;

HtðσÞ ¼
Z

σ

0

HtðσÞdσ: ð3:9Þ

Finally, the normalization factor E turns out to be

EðσÞ ¼ 1þ ϵ2ðhðσÞ − hobsÞ − 2ϵ3HtðσÞ; ð3:10Þ

where the unperturbed value has been set equal to unity
without any loss of generality.
A solution to the photon equations of motion (2.16)–

(2.18) in the context of Gaia was already obtained in
Ref. [19] for uniformly moving quadrupolar bodies, by
using a different formulation. However, it is incorrect, as
shown in Appendix B below. The correct solution in the
case of pointlike sources moving with constant velocities
was recently presented in Ref. [20] in the same form as
Eqs. (3.7)–(3.10), with the functions (3.9) given in
Appendix B there. We will provide in Appendix A below
the correct solution for extended bodies also endowed with
a mass quadrupole moment, so improving the results of
Ref. [20] and fully correcting those of Ref. [19].

A. Astrometric observables

The spatial triad (2.27) adapted to the satellite world line
U becomes in this case

Eâ ¼
�
ϵva þ ϵ3

�
va
�
v2

2
þ 3h

�
− 4hṽa

��
∂0

þ ð1 − ϵ2hÞ∂a þ
ϵ2

2
vavb∂b þOð4Þ: ð3:11Þ

The direction cosines (2.31) are thus given by

½cosψ ðâ;KÞ�ð0Þ ¼ ½cosψ ðâ;KÞ�flat þ ½cosψ ðâ;KÞ�M; ð3:12Þ

where

×½cosψ ðâ;KÞ�flat ¼ Câ · l̄∅ þ ϵ½ðv · l̄∅ÞðCâ · l̄∅Þ − Câ · v�

þ ϵ2½1þ ϵðv · l̄∅Þ�
�
−
1

2
ðv · l̄∅ÞðCâ · vÞ

þ ðCâ · l̄∅Þ
�
ðv · l̄∅Þ2 −

v2

2

��
þOð4Þ

ð3:13Þ

is the flat spacetime value, whereas

½cosψ ðâ;KÞ�M ¼ Câ · l̄M
h þ ϵ½ðCâ · l̄∅Þðv · l̄M

h Þ
þ ðv · l̄∅ÞðCâ · l̄M

h Þ�
þ ϵ2h½ðCâ · l̄∅Þð1þ 4ϵðv · l̄∅ÞÞ
− 2ϵðCâ · vÞ� þOð4Þ ð3:14Þ

is the first-order correction due to the “matter” field, which
has to be evaluated at the position of the satellite, i.e., for
σ ¼ 0. Here the notation ðA · BÞ ¼ δabAaBb has been used
for the scalar product between three-dimensional vectors.
The coefficients Cb

â ¼ Rb
â are all functions of the attitude

parameters only.
Therefore, the âth direction cosine turns out to be a

function of the spatial positionxa� of the star (or, equivalently,
its astrometric parameters) and the satellite’s attitude
represented by the parameters ai, i.e., ½cosψ ðâ;KÞ�ð0Þ ¼
fâðxi�; aiÞ. The variation of this equation with respect to
the parameters is easily computed (see Sec. IV in Ref. [20]),
leading to a linearized set of equations around a known
solution at the time of observation, which is then solved by
using the least-squares method, as stated above.

IV. ASTROMETRIC EFFECTS INDUCED
BY A GRAVITATIONAL PLANE WAVE

Let us consider the perturbation due to a monochromatic
gravitational plane wave with frequency ω traveling along
an arbitrary direction (with wave vector k ¼ ω∂0 þ ka∂a).
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In the TT gauge, the associated metric has nonvanishing
components hGWab ¼ Oð4Þ with (see, e.g., Ref. [25])

hGWab dxadxb ¼ ðαhþ − βh×Þdx2 þ ðγhþ þ βh×Þdy2 − hþdz2

þ 2

�
−
ky
kx

γhþ þ kz
kx

δh×

�
dxdy

þ 2

�
kz
kx

hþ þ ky
kx

h×

�
dxdz− 2h×dydz;

ð4:1Þ
provided that kx ≠ 0, with coefficients

α ¼ k2y − k2z
k2x þ k2y

; β ¼ 2kykz
k2x þ k2y

;

γ ¼ 1 − α; δ ¼ k2x − k2y
k2x þ k2y

; ð4:2Þ

and polarization functions hþ¼hsþ−hcþ and h×¼hc×−hs×,
with

hcþ ¼ Acþ cosW; hsþ ¼ Asþ sinW;

hc× ¼ Ac
× cosW; hs× ¼ As

× sinW; ð4:3Þ

and W ¼ k · x ¼ kαxα. The two GW polarizations are thus
equivalently parametrized by four strain amplitudes instead
of two amplitudes and two phases. Note that there exist
many equivalent forms of the metric (4.1) depending on the
chosen parametrization of the direction of propagation of
the wave (see, e.g., Ref. [22], where spherical-like coor-
dinates are used instead).
The parametric equations of null geodesic orbits with

tangent vector K [see Eq. (2.8)] in the metric ηαβ þ hGWαβ are
given by

x0ðλÞ ¼ x00 þ ðEþ BtÞλþ Ct
cðcosWðλÞ − cosW0Þ

þ Ct
sðsinWðλÞ − sinW0Þ;

xaðλÞ ¼ xa0 þ ðKa
0 þ BaÞλþ Ca

cðcosWðλÞ − cosW0Þ
þ Ca

s ðsinWðλÞ − sinW0Þ; ð4:4Þ

where the unperturbed 4-momentum is denoted by K0 ¼
E∂0 þ Ka

0∂a, λ is an affine parameter, and xα0 ¼ xαðλ ¼ 0Þ,
so that

WðλÞ ¼ ðK0 · kÞλþW0; W0 ¼ Wð0Þ ¼ k · x0; ð4:5Þ

provided that ðK0 · kÞ ≠ 0, and

Ct
c ¼ −

ω

2kxðK0 · kÞ2
fkx½ðαAsþ þ βAs

×ÞK2
0x þ ð−βAs

× þ γAsþÞK2
0y þ 2K0yK0zAs

× − K2
0zA

sþ�

− 2K0x½ðkyγAsþ þ kzδAs
×ÞK0y þ ð−Asþkz þ As

×kyÞK0z�g;

Cx
c ¼

kx
ω
Ct
c −

ðK0zky þ K0ykzδ − K0xkxβÞAs
× − AsþðK0xkxα − γkyK0y þ K0zkzÞ

kxðK0 · kÞ
;

Cy
c ¼ ky

ω
Ct
c þ

½ðK0z − K0yβÞkx − K0xkzδ�As
× − AsþγðK0xky − K0ykxÞ

kxðK0 · kÞ
;

Cz
c ¼

kz
ω
Ct
c þ

ð−K0xky þ K0ykxÞAs
× þ AsþðK0xkz − kxK0zÞ

kxðK0 · kÞ
; ð4:6Þ

with Cα
s ¼ Cα

cðAsþ → Acþ; As
× → Ac

×Þ, whereas Bα are OðhÞ
arbitrary constants such that K0 · B ¼ 0. The tangent vector
K to null geodesics is thus given by

K¼ ½1þðK0 ·kÞðCt
s cosW−Ct

c sinWÞþBt�∂0

þ½Ka
0þðK0 ·kÞðCa

s cosW−Ca
c sinWÞþBa�∂a; ð4:7Þ

where we have set the unperturbed photon energy E ¼ 1 as
before.
Let us introduce also in this case the decomposition (2.9)

of the photon 4-momentum with respect to the static
observers u¼∂0. We find E¼1þEGW for the normaliza-
tion factor, with

EGW ¼ ðK0 · kÞðCt
s cosWðλÞ − Ct

c sinWðλÞÞ þ Bt; ð4:8Þ

so that the nonaffine parameter σ parametrizing the photon
trajectory turns out to be

σ ¼ ð1þ BtÞλþ Ct
cðcosWðλÞ − cosW0Þ

þ Ct
sðsinWðλÞ − sinW0Þ; ð4:9Þ

which can be easily inverted to yield λ as a function of σ.
The arbitrary constant Bt can then be chosen so that E ¼ 1
for σ ¼ 0, i.e., Bt ¼ −ðK0 · kÞðCt

s cosW0 − Ct
c sinW0Þ,

leading to

EGWðσÞ ¼ −ðK0 · kÞ½Ct
sðcosWðσÞ − cosW0Þ

þ Ct
cðsinWðσÞ − sinW0Þ�: ð4:10Þ

Furthermore,
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l̄ðσÞ ¼ ½Ka
0 − ðCa

s − Ct
sKa

0Þ cosWðσÞ
þðCa

c − Ct
cKa

0Þ sinWðσÞ�∂a

≡ ðKa
0 þ l̄GWa

h ðσÞÞ∂a; ð4:11Þ

and

x0ðσÞ ¼ x00 þ σ;

xaðσÞ ¼ xa0 þ Ka
0σ

þ ðCa
c − Ct

cKa
0ÞðcosWðσÞ − cosW0Þ

þ ðCa
s − Ct

sKa
0ÞðsinWðσÞ − sinW0Þ; ð4:12Þ

where xα0 ¼ xαobs, K
a
0 ¼ l̄a

∅, and we have set Ba ¼ BtKa
0.

A. Astrometric observables

The spatial triad (2.27) adapted to the satellite world line
U in this case reads

Eâ ¼ eðuÞâ þ va
�
1þ v2

2

�
∂0 þ

1

2
vavb∂b; ð4:13Þ

where

eðuÞx̂ ¼
�
1 −

1

2
hGWxx

�
∂x;

eðuÞŷ ¼ −hGWxy ∂x þ
�
1 −

1

2
hGWyy

�
∂y;

eðuÞẑ ¼ −hGWxz ∂x − hGWyz ∂y þ
�
1 −

1

2
hGWzz

�
∂z; ð4:14Þ

as from Eq. (2.7) with h0a ¼ 0. The leading-order correc-
tion to the direction cosines then turns out to be

½cosψ ðâ;KÞ�GW ¼ Câ · ν̂GWhobs; ð4:15Þ

where ðCâ · ν̂GWhobsÞ ¼ δabCa
âν̂

GWb
hobs and

ν̂GWx
h ¼ l̄GWx

h þ 1

2
hGWxx l̄x

∅ þ hGWxy l̄y
∅ þ hGWxz l̄z

∅;

ν̂GWy
h ¼ l̄GWy

h þ 1

2
hGWyy l̄y

∅ þ hGWyz l̄z
∅;

ν̂GWz
h ¼ l̄GWz

h þ 1

2
hGWzz l̄z

∅; ð4:16Þ

which have to be evaluated at the position of the satellite,
i.e., for σ ¼ 0, where

l̄GWa
hobs ¼ −ðCa

s − Ct
sl̄a

∅Þ cosW0 þ ðCa
c − Ct

cl̄a
∅Þ sinW0:

ð4:17Þ

Including terms which are linear in the satellite velocity, we
finally get

½cosψ ðâ;KÞ�GW ¼ ðCâ · ν̂GWhobsÞ½1þ ϵðv · l̄∅Þ�
þ ϵ½ðCâ · l̄∅ÞðhGWl̄∅v þ ðv · l̄GW

hobsÞÞ
− ðCâ · νGWhobsÞ�; ð4:18Þ

where hGW
l̄∅v

¼ hGWab l̄a
∅v

b and

νx̂GWh ¼ 1

2
hGWxx vx þ hGWxy vy þ hGWxz vz;

νŷGWh ¼ 1

2
hGWyy vy þ hGWyz vz;

νẑGWh ¼ 1

2
hGWzz vz ð4:19Þ

are the GW-dependent part of the frame components (2.29)
of the satellite’s spatial velocity.
Therefore, the âth direction cosine depends on seven

further parameters: the four strain parameters hsþ, hcþ, hs×,
and hc× and three parameters ka describing the direction of
the gravitational wave (or, equivalently, two such param-
eters and the frequency ω). Unfortunately, in this case one
does not know any initial value for any of these parameters,
so that the least-squares method cannot be applied. A GW
detection algorithm has been proposed in Ref. [25], using
the technique of vector spherical harmonics [35] and the
HEALPix sky pixelization scheme [36].
Let us conclude this section by comparing our results

with those of Book and Flanagan [23], who first com-
puted the change in the photon direction towards a distant
astrometric source due to a plane gravitational wave. They
considered an observer at rest, with an adapted frame
parallel transported along his world line, so that our results
cannot be directly related to those of Ref. [23]. The photon
4-momentum is given there [Eq. (32)] by

K ¼ ωobsðu − nâEðparÞ
â Þ; ð4:20Þ

whereωobs denotes the observed photon frequency [Eq. (27)],
nâ ¼ na þ δnâ, n denoting the unperturbed direction and δn

the OðhÞ correction [Eq. (39)], and fu; EðparÞ
â g is a parallel

transported frame along u [Eqs. (30) and (31)], with

EðparÞ
â ¼

�
δba −

1

2
hGWab

�
∂b; ð4:21Þ

which is suitably rotated with respect to the spatial frame
(4.13) (where one should also set va ¼ 0). Direct com-
parison with the decomposition (2.9) gives ωobs ¼ E and

l̄a ¼ −na − δna þ 1

2
hGWab nb; ð4:22Þ

implying that −na ¼ Ka
0 ¼ l̄a

∅ and the OðhÞ corrections to
the coordinate components of the photon direction are
related by
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l̄GWa
h ¼ −δna −

1

2
hGWab l̄b

∅; ð4:23Þ

recalling Eq. (4.11). Finally, Ref. [23] uses an affine
parametrization for the photon 4-momentum (4.20),
whereas the solution (4.11) for l̄GWa

h is given in terms
of the nonaffine parameter σ given by Eq. (4.9), so that one
should also replace σ by λ before evaluating at the observer
to show the agreement with Eq. (39). However, Ref. [23]
does not discuss how to implement this model in the case of
an actual satellite-based astrometric mission, as we have
done before by computing the main satellite observables.

V. CONCLUDING REMARKS

The passage of a gravitational wave is expected to induce
a time-dependent periodic shift on the apparent positions of
stars, entering the astrometric solution in a characteristic
way. We have computed the corrections to the main
observables of satellite-based astrometric missions due to
the interaction with a monochromatic plane gravitational
wave in the RAMOD framework. Such corrections turn out
to depend on the characteristic parameters of the wave,
associated with the amplitudes of the two polarization
modes, the direction of propagation, and the frequency. We
have also improved the reference astrometric solution for
Gaia by including the effect of the quadrupole moment of
the planets, generalizing previous results [20]. The quadru-
pole contribution to the Gaia observables could be directly
implemented in the current data processing. In contrast,
detecting GW effects would require suitable search algo-
rithms, data compressing, and optimization techniques
reducing the dimensionality of the parameter space. The
methods discussed in Refs. [25,26] are very promising, so
that we expect that an efficient algorithm will be soon
available before the final Gaia data release.
Future satellite-based astrometric missions are planned

to reach a significantly improved level of accuracy, so that
they are better suited to measure GW effects. In the
meantime, the description of the gravitational field of the
Solar System should become more accurate, by including
further PN terms in the gravitational potentials as well as by
relaxing some simplifying assumption on the multipolar
structure and proper motion of the planets valid at the
microarcsecond level only [15,16,37].
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APPENDIX A: LIGHT PROPAGATION IN THE
FIELD OF UNIFORMLY MOVING

QUADRUPOLAR BODIES

The solution of the photon equations of motion is given
by (3.7)–(3.10) in terms of the quantities (3.9), which are
listed below in the case of uniformly moving extended
bodies endowed with mass quadrupole moment. It is
enough to show the functions HðσÞ, HaðσÞ, and HaðσÞ,
because HtðσÞ¼−δabHaðσÞṽb and HtðσÞ¼−δabHaðσÞṽb,
from the relation ∂th ¼ −ṽa∂ah and the assumed constant
value of ṽa. We will write such functions in the form

HðσÞ ¼ Hð0ÞðσÞ þ ϵHð1ÞðσÞ þOð2Þ;
HaðσÞ ¼ Hað0ÞðσÞ þ ϵHað1ÞðσÞ þOð2Þ;
HaðσÞ ¼ Hað0ÞðσÞ þ ϵHað1ÞðσÞ þOð2Þ; ðA1Þ

since our solution is accurate up to the order of Oð3Þ
included. A solution for quadrupolar bodies in the
RAMOD framework has already been presented in
Ref. [19] but is affected by several mistakes, as shown
in Appendix B. Our derivation discussed in Sec. III is
different from that of Ref. [19] (a term-by-term comparison
is not possible), so we will give below the final solution
only for the momentum and orbit of the photon.
For the sake of simplicity, we will drop the summation

symbol over the bodies in the gravitational potential
h ¼ P

N
A¼1 hA as well as the label A, thus referring to a

single source with potential (3.5). Quantities in bold are
three-dimensional vectors, i.e., a ¼ ai∂i, so that both the
scalar and cross product between them are meant to be the
standard operations in an Euclidean space and referred to
standard Cartesian coordinates, i.e., a · c ¼ δijaicj and
ða × cÞi ¼ ϵijkajck.
We will use the following definitions:

ba ¼ ½l̄∅ × ðrobs × l̄∅Þ�a ¼ raobs − l̄a
∅ðrobs · l̄∅Þ;

da ¼ ½l̄∅ × ðṽ × l̄∅Þ�a ¼ ṽa − l̄a
∅ðṽ · l̄∅Þ; ðA2Þ

so that b2 ¼ δabbabb ¼ r2obs − ðrobs · l̄∅Þ2, and

Cn ¼
1

rn
−

1

rnobs
; Fn ¼

ðr · l̄∅Þ
rn

−
ðrobs · l̄∅Þ

rnobs
;

S ¼ r − robs −
ðrobs · l̄∅Þ

robs
σ; ðA3Þ

where
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ðr · l̄∅Þ ¼ ðrobs · l̄∅Þ þ σ þOð2Þ; ðA4Þ

so that

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2þ r2obsþ2σðrobs · l̄∅Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þðr · l̄∅Þ2

q
; ðA5Þ

and

Da
n ¼ da − n

bz

b2
ðṽ · bÞ;

Xn ¼ 1 − nðl̄z
∅Þ2; Y ¼ ðl̄z

∅Þ2 −
ðbzÞ2
b2

: ðA6Þ

1. Monopole solution

The correct solution for a uniformly moving mass
monopole has already been given in Ref. [20], although
not explicitly pointed out there. We recall it below for
completeness:

Hð0Þ
M ðσÞ ¼ GM ln

�
rþ ðr · l̄∅Þ

robs þ ðrobs · l̄∅Þ
�
;

Ha
M
ð0ÞðσÞ ¼ GM

�
l̄a
∅C1 −

ba

b2
F1

�
;

Ha
M
ð0ÞðσÞ ¼ l̄a

∅

�
Hð0Þ

M ðσÞ − GM
robs

σ

�
−GM

ba

b2
S; ðA7Þ

and

Hð1Þ
M ðσÞ ¼ ðṽ · l̄∅ÞHð0Þ

M þ GM

rþ ðr · l̄∅Þ
�

r − robs þ σ

robs þ ðrobs · l̄∅Þ
ðṽ · bÞ − ðṽ · l̄∅Þσ

�
;

Ha
M
ð1ÞðσÞ ¼ ðṽ · l̄∅ÞHa

M
ð0ÞðσÞ

þGM
b2

�
robs
r

Da
2S − ba½ðṽ · l̄∅Þðrobs · l̄∅Þ þ ðṽ · bÞ�C1 þ ½baðṽ · l̄∅Þ − l̄a

∅ðṽ · bÞ�F1

�
;

Ha
M
ð1ÞðσÞ ¼ ðṽ · l̄∅ÞHa

M
ð0ÞðσÞ þ l̄a

∅H
ð1Þ
M ðσÞ − daHð0Þ

M ðσÞ

−
GM
b2

�
½baðṽ · l̄∅Þ þ l̄a

∅ðṽ · bÞ�S − rrobsDa
2F1 þ

ba

robs
½ðṽ · l̄∅Þðrobs · l̄∅Þ − ðṽ · bÞ�σ

�
: ðA8Þ

2. Quadrupole solution

For a mass quadrupole, one gets (see also Ref. [38] for the static case)

Hð0Þ
Q ðσÞ ¼ GMðReqÞ2J2

�
l̄z
∅b

zC3 þ
1

2
YF3 þ

1

2b2
ðX3 þ 2YÞF1

�
;

Ha
Q
ð0ÞðσÞ ¼ GMðReqÞ2J2

�
ba
�
−3l̄z

∅b
zC5 −

3

2
YF5 −

1

2b2
ðX5 þ 4YÞ

�
2

b2
F1 þ F3

��

þ l̄a
∅

�
1

2
X5C3 þ

3

2
b2YC5 þ

l̄z
∅bz

b2

�
2

b2
F1 þ F3 − 3b2F5

��
þ δaz

�
−
bz

b2

�
F3 þ

2

b2
F1

�
þ l̄z

∅C3

��
;

Ha
Q
ð0ÞðσÞ ¼ GMðReqÞ2J2

�
ba
�
1

2
YC3 −

l̄z
∅bz

b2

�
2

b2
F1 þ F3

�
þ 1

2b2
ðX5 þ 4YÞ

�
−

2

b2
ðr − robsÞ þ C1

�

þ
�
1

2b2
ðX5 þ 4YÞ

�
2

b2
þ 1

r2obs

� ðrobs · l̄∅Þ
robs

þ 3

r5obs

�
l̄z
∅b

z þ 1

2
Yðrobs · l̄∅Þ

��
σ

�

þ l̄a
∅

�
1

2b2
ðX5 þ 2YÞF1 þ

1

2
YF3 þ

l̄z
∅b

z

b2

�
2

b2
ðr − robsÞ − C1 þ b2C3

�

−
�

1

2r3obs

�
X5 þ 3

b2

r2obs
Y

�
þ 2l̄z

∅bz

b4

�
1þ b2

2r2obs

�
1 −

3b2

r2obs

�� ðrobs · l̄∅Þ
robs

�
σ

�

þ δaz

�
bz

b2

�
C1 þ

ðrobs · l̄∅Þ
r3obs

σ −
2
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Yðṽ · bÞ − bzðDz

1 − l̄z
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1þðX5þ4YÞðṽ ·bÞÞðrobs · l̄∅Þ− l̄z
∅D

z
4− ðX5þ4YÞðṽ · l̄∅Þ

�

þ l̄a
∅ð2l̄z

∅D
z
4ðrobs · l̄∅Þ−2bzðdz−2l̄z
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APPENDIX B: CORRECTING FORMULAS IN
PREVIOUS RAMOD PAPERS

The theoretical framework of the RAMOD model is
developed in Refs. [17,18], whereas Ref. [19] contains
the main application to the Gaia context. Reference [17]
deals with the static case. The generalization to the
dynamical case is discussed in Ref. [18], which, however,
contains an incorrect equation for the component l̄0

of the relative-observer spatial momentum [cf. Eq. (16)
there with Eq. (2.16) here]. Finally, Ref. [19] has a number
of results requiring correction, which are summarized
below.
(1) The equation governing the evolution of l̄0 along the

photon path given in Eq. (16) of Ref. [18] [see also
Eq. (2) in Ref. [19]] is incorrect. It should read
instead as in Eq. (2.16) above. In fact, the second
term in the right-hand side of Eq. (2.16) can be
neglected at the order of Oð3Þ, so that the disagree-
ment with Eq. (16) of Ref. [18] is due to the term
− 1

2
∂0h00 there, which is clearly wrong. This can be

shown simply by taking the solution for l̄0 in terms
of that for the spatial components l̄a given by the

first equation of (2.19) [Eq. (14) of Ref. [18]].
Differentiating the latter with respect to σ and using
Eq. (2.18) then immediately gives the evolution
equation (2.16) for l̄0, while it does not reproduce
Eq. (16) of Ref. [18], even at the order of Oð3Þ. All
related formulas containing l̄0 (or its explicit sol-
ution after the metric is specified) in subsequent
RAMOD papers must reflect this change.

(2) The gravitational potentials entering the spacetime
metric are written in Ref. [19] in terms of the
retarded time [see, e.g., Eq. (18) there in the
case of uniformly moving pointlike bodies], which
is a function of the global coordinates. The deriva-
tion of the solution to the photon equations of
motion then proceeds without specifying this rela-
tion, generating unnecessary additional terms. The
final solution for the photon trajectory still contains
retarded quantities, so that it is never explicit.
It should necessarily be further transformed using
the relation tret ¼ tretðt; xiÞ and reexpressed in terms
of global coordinates, but this is not the case in
Ref. [19].
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(3) The authors claim that the congruence of static
observers is vorticity-free if the sources move with
constant velocity [see the sentence after Eq. (57) in
Ref. [19]]. However, this is not the case. In fact,
the components of the vorticity tensor turn out
to be ωðuÞij ¼ −h0½i;j� [see Eq. (2.6), where h0i ¼
−4ϵ3

P
AhAðt; xiÞṽiA with potential (3.4) of the Ath

source], which vanish only if ṽiA ≡ 0, since hAðt; xiÞ
and their spatial derivatives are nonzero.
In order to have a vorticity-free congruence, one

should select as fiducial observers a different family
of observers, e.g., those with 4-velocity vector n
orthogonal to the t ¼ const hypersurfaces (see, e.g.,
Ref. [30]). To OðhÞ, we find

n ¼
�
1þ 1

2
h00

�
∂0 − h0i∂i; ðB1Þ

with associated kinematical fields

aðnÞi ¼ −
1

2
h00;i;

θðnÞij ¼
1

2
hij;0 − h0ði;jÞ;

ωðnÞij ¼ 0: ðB2Þ

Equations (2.15) referred to n then imply

dl̄ðnÞ0
dσ

¼ 0;

dl̄ðnÞk
dσ

¼ −l̄ðnÞil̄ðnÞj
�
hki;j −

1

2
hij;k

�
− l̄ðnÞiðhki;0 − h0i;kÞ þ

1

2
h00;k

þ l̄ðnÞk
�
l̄ðnÞil̄ðnÞj

�
1

2
hij;0 − h0i;j

�
−
1

2
l̄ðnÞih00;i

�
: ðB3Þ

(4) The solution for the photon trajectory is wrong in the
general case, i.e., for moving bodies. Moreover, it is
also incorrect in the static case. In fact, the integration
of the photon equations is not carried out correctly.
Consider, for instance, Eq. (72) in Ref. [19], which is
correct. Further integrating this equation would lead

to Eq. (127) there, which, however, has two missing
terms, proportional to the integration interval. Similar
mistakes have propagated throughout the paper.

The correct solution for uniformly moving extended
bodies endowed with a mass quadrupole moment is given
in Appendix A above.
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