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We reexamine the relation between the Aretakis charge of an extremal black hole spacetime and the
Newman-Penrose charge of a weakly asymptotically flat spacetime obtained from the original one through
radial inversion and conformal mapping. Building on recent work by Godazgar, Godazgar, and Pope,
we present an explicit general relation between these quantities showing how the charge densities are
mapped. As a nontrivial example we provide the computation of both quantities and their explicit relation
for the extremal Kerr spacetime.
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I. INTRODUCTION

As part of his analyses showing the instability of extreme
black hole horizons under perturbations, Aretakis showed
that fields propagating on the extreme black hole back-
ground have a conserved horizon charge [1–3]. This so-
called Aretakis charge has been shown to exist in higher
dimensions as well as four [4], and for massless and
massive scalars as well as gauge fields [5,6]. Moreover,
although the Aretakis charge involves in its definition only
the field and its radial derivative at the horizon, it is only the
first in an infinite hierarchy of conserved charges involving
higher radial derivatives [3,5].
Shortly after the discovery of the Aretakis charges, it was

shown [6,7] that for extremal Reissner-Nordström this
charges can be mapped, through a conformal symmetry
of the metric under radial inversion, to Newman-Penrose
charges at future asymptotic null infinity. Higher multipoles
of this mapping were computed in [8]. In addition, it has
been argued in [9] that the Aretakis charge of any extreme
black hole can be put in correspondence, through a similar
procedure, with the Newman-Penrose charge of a dual
weakly asymptotic spacetime. However, no other explicit
examples than the Reissner-Nordström were computed.
The goal of this paper is to extend and refine the

conclusions of [9]. First, we make fully explicit the
relation between the Aretakis charge of a general extreme

four-dimensional black hole and the Newman-Penrose
charge in an associated weakly asymptotically flat space-
time, which is conformally related to the radial inversion of
the original spacetime. Second, we provide a new nontrivial
example by exhibiting this relation for the extremal Kerr
black hole. A main conclusion of our work is that when the
black hole is not spherically symmetric there is no direct
mapping between the two charges but rather a more subtle
relation between the charge densities.
In the next section, we establish our framework and

summarize the main results of [9]. In Sec. III, we present
the general relation between the Aretakis and the Newman-
Penrose charges, as well as its explicit computation for the
extreme Kerr black hole. Section IV contains a summary
and discussion of the results.

II. DUALITY BETWEEN EXTREMAL HORIZON
AND ASYMPTOTIC INFINITY

In this section we summarize the results of [9] concern-
ing the duality between the Aretakis charge of an extremal
black hole and the asymptotic Newman-Penrose charge of a
dual conformal metric.
Consider a 4-dimensional extremal black hole with a

Killinghorizon.Inthevicinityof thehorizononecanintroduce
Gaussian null coordinates ðv; ρ; xiÞ, with i ¼ ð1; 2Þ. The
horizon corresponds to ρ ¼ 0, and near it the metric takes
the form:

ds2 ¼ LðxiÞ2½−ρ2Fðρ; xiÞdv2 þ 2dvdρ�
þ γijðρ; xiÞðdxi − ρhiðρ; xiÞdvÞðdxj − ρhjðρ; xiÞdvÞ;

ð1Þ
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withFðρ ¼ 0; xiÞ ¼ 1. It is assumed that hiðρ; xiÞ ¼ Oð1Þ at
thehorizon, and that γijðρ ¼ 0; xiÞ is a topologically spherical
metric. A massless scalar field ψ on this background has an
Aretakis charge defined by

HA ¼ lim
ρ→0

Z
d2x

ffiffiffi
γ

p �
2∂ρψ þ 1

2

∂ργ

γ
ψ

�
; ð2Þ

with γ ¼ det γij. The Aretakis charge is conserved on the
horizon (i.e., its value is v-independent).
Under the coordinate change

ρ → r ¼ 1

ρ
; ð3Þ

the metric takes the form

ds2 ¼ L2

r2
½−Fdv2 − 2dvdr

þ r2hijðdxi − CidvÞðdxj − CjdvÞ�; ð4Þ

where Ci ¼ hi=r and hij ¼ γij=L2. The metric inside the
square brackets corresponds to a weakly asymptotically flat
spacetime, in which the asymptotic 2-dimensional compact
space has metric

ωijðxiÞ ¼ lim
r→∞

hijðr; xiÞ ¼
γijðρ ¼ 0; xiÞ

LðxiÞ2 : ð5Þ

We call the weakly asymptotically flat metric in the square
brackets of (4) the conformal dual of the initial metric with
an extremal black hole.
A massless scalar field ψ̃ propagating in a weakly

asymptotically flat spacetime has a conserved (i.e., v-
independent) charge at future null infinity, namely the
Newman-Penrose charge [10]. Its definition is:

HNP ¼ − lim
r→∞

Z
d2x

ffiffiffiffi
ω

p ½2∂rðrψ̃Þ þ r∂rζψ̃ �: ð6Þ

Here ω ¼ detωij and ζ is defined by the relation:

h ¼ det hij ¼ ωζ2: ð7Þ

Note that weak asymptotic flatness implies ζðrÞ ¼
1þOð1=rÞ as r → ∞.
In [9] it is shown as well that the solutions to the

massless wave equation in the original spacetime and in its
conformal dual are related by

ψðv; ρ; xiÞ ¼ LðxiÞ
r

ψ̃

�
v;
1

r
; xi

�
ð8Þ

It is stated in [9] that this allows us to map the Aretakis
charge of the original spacetime to the NP charge of its

conformal dual. However the relation is not worked out
explicitly except in the particular case of the extremal
Reissner-Nordström solution. In the following section we
derive the general explicit relation between both charges.

III. GENERAL RELATION BETWEEN
ARETAKIS CHARGE AND DUAL NP

CHARGE IN 4 DIMENSIONS

To find the explicit general relation between HA and the
conformal dualHNP, we write the field in the vicinity of the
original spacetime’s horizon in an expansion of the form:

ψ ¼ ψ0 þ ρψ1 þOðρ2Þ; ð9Þ

where the ψ j coefficients depend on v and xi but not ρ.
Using this expansion in (2) leads to:

HA ¼
Z

d2x
ffiffiffi
γ

p �
2ψ1 þ

1

2

γ0

γ
ψ0

�
; ð10Þ

where both γ and its derivative are evaluated at the
horizon (ρ ¼ 0).
Analogously, writing the asymptotic field in the con-

formal dual spacetime in an expansion of the form

ψ̃ ¼ ψ̃1

r
þ ψ̃2

r2
þOð1=r3Þ; ð11Þ

we get when replacing in (6) the result

HNP ¼
Z

d2x
ffiffiffiffi
ω

p ð2ψ̃2 − r2ζ0ψ̃1Þ; ð12Þ

where now ζ0 stands for the r → ∞ asymptotic limit of ∂rζ.
From (5) and (7) we have the relation

ζ ¼ LðxiÞ−2
ffiffiffi
γ

p
ffiffiffiffi
ω

p : ð13Þ

From this using the chain rule, that ρ ¼ 1=r, and that
ω ¼ L−4γjρ¼0, we find:

ζ0ðrÞjr→∞ ¼ −
1

2r2
γ0ðρÞ
γ

����
ρ¼0

: ð14Þ

Therefore the NP charge reduces to

HNP ¼
Z

d2x
ffiffiffiffi
ω

p �
2ψ̃2 þ

1

2

γ0ðρÞ
γ

����
ρ¼0

ψ̃1

�
: ð15Þ

Using the relation (8) to match the expansion coefficients
we see that

ψ0 ¼ LðxiÞψ̃1; ψ1 ¼ LðxiÞψ̃2; ð16Þ
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which implies that

HNP ¼
Z

d2x
ffiffiffiffi
ω

p
L−1ðxiÞ

�
2ψ1 þ

1

2

γ0

γ

����
ρ¼0

ψ0

�
: ð17Þ

Comparing (10) with (17) we see that the “charge
densities” in both expressions (i.e., the quantities that
give HA and HNP when integrated in two dimensions with
measures

ffiffiffi
γ

p
and

ffiffiffiffi
ω

p
respectively) are identical up to an

additional L−1ðxiÞ factor in the second one.
Since the relation between both 2d measures is found

from (5), we can also summarize the relation between both
charges as:

HA ¼
Z

d2x
ffiffiffi
γ

p jρ¼0hA; HNP ¼
Z

d2x
ffiffiffi
γ

p jρ¼0hNP;

hA ¼ LðxiÞ3hNP: ð18Þ

In other words, the “charge densities” to be integrated
under the same measure are related by a L3ðxiÞ factor.
We see that there is no straightforward mapping between

the charges, in the sense that there is no operation that
provides the quantity HNP directly from the input HA or
vice versa. Rather, it is the densities to be subjected to
angular integration that are related through the factor LðxiÞ
from the metric (1).
The only case in which the two charges can be directly

mapped is when LðxiÞ is a constant. An example of this is
the extreme Reissner-Nordström metric, where we have
L ¼ M (M being the mass parameter). In this case, our
result reduces immediately to the simpler relation
HA ¼ M3HNP. This agrees with the result of [6,9].

A. Example: Extremal Kerr black hole

As a nontrivial example, in this subsection we compute
the Aretakis charge and the conformal dual NP charge for
the extremal Kerr black hole.
As discussed, e.g., in [11,12],1 the near-horizon regime

of the extremal Kerr metric is described by Gaussian null
coordinate system of the form

ds2 ¼
�
1þ x2

2

��
−

ρ̃2

2a2
dv2 þ 2dvdρ̃

�
þ a2

�
1þ x2

1 − x2

�
dx2

þ 4a2
�
1 − x2

1þ x2

��
dϕþ ρ̃

2a2
dv

�
2

; ð19Þ

where x ¼ cos θ.
Comparing with the form of the metric (1) on which our

analysis is based, we see that the radial coordinates ρ̃ and ρ

are related by the rescaling ρ̃ ¼ 2a2ρ, and that therefore
we have:

L2ðxÞ ¼ a2ð1þ x2Þ: ð20Þ

The angular metric functions are given by

γijdxidxj ¼ a2
1þ x2

1 − x2
dx2 þ 4a2

1 − x2

1þ x2
dϕ2; ð21Þ

whereas hx ¼ 0 and hϕ ¼ 1. The determinant γ is com-
puted from (21) to be

γ ¼ 4a4 ð22Þ

It should be noted that all these metric functions are
evaluated at the horizon. For the computation of the Aretakis
charge we also need the first-order expansion of γij away
from the horizon. This has been computed in [14]:

γð1Þxx ¼ 4a
1 − x4

; γð1Þϕϕ ¼ 16ax2ð1 − x2Þ
ð1þ x2Þ3 ;

γð1Þxϕ ¼ 4axð1 − x2Þ
ð1þ x2Þ2 : ð23Þ

From these and the zeroth-order coefficients given in (21) it
is straightforward to compute:

∂λγ

γ

����
λ¼0

¼ 4

að1þ x2Þ ð24Þ

The radial expansion parameter λ here is not the same as
our radial coordinate ρ. It follows the form of metric used
in [14]:

ds2 ¼ λ2F̄ðλ; xÞdv2 þ 2dvdλþ 2λh̄iðλ; xÞdvdxi
þ γijðλ; xÞdxidxj ð25Þ

This radial coordinate is related to ours by λ ¼ L2ðxÞρ in
the vicinity of the horizon. Using this, (20) and (24), we
can write the Aretakis charge (2) of the extremal Kerr
black hole as:

HA ¼ 4a2
Z

dxdϕ½∂ρψ jρ¼0 þ aψ jρ¼0�: ð26Þ

Consequently, the Newman-Penrose charge of the con-
formal dual spacetime (written in terms of the field and its
radial derivative on the original spacetime’s horizon) is
given by

HNP ¼
4

a

Z
dxdϕ

1

ð1þ x2Þ3=2 ½∂ρψ jρ¼0 þ aψ jρ¼0�: ð27Þ1For higher dimensional examples of extremal near horizon
geometries, see, e.g., [13].
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Due to the nontrivial nature of the angular function LðxÞ,
there is no direct mapping between both charges as
happens in the extreme Reissner-Nordström case.
We conclude this section with some additional remarks on

the relation between the original metric and its conformal
dual. The extremal four-dimensional Reissner-Nordström
metric has the property that its conformal dual metric, as
defined above from Eq. (4), is identical to the original one
(up to a constant that can be absorbed into a redefinition
of the radial coordinate) [15]. Thus in the special case of
extremal Reissner-Nordstrom the Aretakis charge is mapped
to the NP charge of the same spacetime. A similar property is
enjoyed by extremal 4-charge static black holes in ungauged
four-dimensional STU supergravity, in the case where the
four charges are pairwise equal [9]. These correspondences
were an important part of the motivation of [9] for exploring
the relation between Aretakis and NP charges. Therefore, it
is interesting to explore whether extremal Kerr satisfies any
similar property.
Though we do not have the full expression for the

extremal Kerr metric in the horizon-adapted Gaussian null
coordinate system, we have the zeroth-order metric at the
horizon, which lets us know the zeroth-order asymptotic
metric at r → ∞ in the conformal dual spacetime. This
metric is

ds2 ¼ −dv2 − 2dvdrþ r2γijðxÞ
L2ðxÞ

�
dxi −

hiðxÞ
r

dv

�

×

�
dxj −

hjðxÞ
r

dv

�
; ð28Þ

with L given in (20), γij given in (21), and hx ¼ 0, hϕ ¼ 1

as before. It is seen that the conformal dual metric is not
(asymptotically) equal to the original Kerr metric and in
fact is only weakly asymptotically flat (rather than asymp-
totically flat) due to the nontrivial angular metric. Indeed
after replacing x ¼ cos θ we have

γijdxidxj

L2
¼ dθ2 þ 4 sin2 θ

ð1þ cos2 θÞ2 dϕ
2 ð29Þ

instead of dθ2 þ sinθ dϕ2 as should be the case in an
asymptotically flat spacetime. The simple relation between
the extremal black hole spacetime and its conformal dual
present for Reissner-Nordström spacetime is therefore not
generalized to rotating black holes.

IV. DISCUSSION

The primary goal of the present paper is to extend the
results of [9] by providing an explicit expression linking the
Aretakis charge of an extremal black hole spacetime with

the Newman-Penrose charge of the conformal dual space-
time. By the latter we mean the conformal metric to the
ρ → 1=r inverted spacetime, as explained above [Eq. (4)].
We saw that, aside from spherically symmetric cases such
as the extremal Reissner-Nordström black hole, in general
there is no direct mapping between the charges. Rather, the
mapping is at the level of the densities to be integrated over
the horizon and over asymptotic infinity, as exhibited above
through (10) and (17), or more explicitly in (18).
We have also provided an explicit computation of

both charges in the extremal Kerr spacetime (and its
conformal dual). This is noteworthy as a nontrivial
example where the metric is not spherically symmetric.
The calculation was facilitated by the previous construc-
tion in [14] of the first-order expansion for the angular
near-horizon metric γij.
The results presented in this paper should be a stepping

stone towards further exploration of the near horizon-
asymptotic infinity duality and its consequences. One area
in which additional investigations would be especially
fruitful would be the extension of the results presented
to higher dimensions, which was already hinted in [9] but
could be made explicit along the lines of the present paper.
In higher dimensions the correspondence between HA and
HNP can still be derived, although the dual spacetime on
which HNP is defined is less likely to admit of a physical
interpretation because the definition of weak asymptotic
flatness required for the derivation (ζ ¼ 1þOð1=rÞ) is
further away from ordinary asymptotic flatness than it is in
four dimensions. Exploring the issue in depth could
possibly help clarify as well the physical meaning of this
correspondence in four dimensions.
Another area of application which already received

preliminary discussion in [9] is extremal 4d black holes
in STU supergravity [16–19] and their generalizations,
including a study of the Aretakis charge and its dualities
for the extremal version of their “subtracted geometry”
limit [20–22].
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