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We obtain a black hole solution of minimal massive gravity theory with Maxwell and electromagnetic
Chern-Simons terms using the first order formalism. This black hole solution can be translated into the
spacelike warped AdS; black hole solution with some parameters’ conditions changing their coordinates
system into a Schwarzschild one. Applying the Wald formalism to this theory with the first order
formalism, we also find out the entropy, mass, and angular momentum of this black hole solution satisfies
the first law of black hole thermodynamics. Under the assumption that minimal massive gravity theory with
suitable asymptotically warped AdS; boundary conditions is holographically dual to a two-dimensional
boundary conformal field theory, we find appropriate central charges by using the relations between
entropy of this black hole and the Cardy formula in dual conformal field theory described by left and right

moving central charges and temperatures.
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I. INTRODUCTION

There are several three-dimensional gravity theories that
are suggested to explain various physical problems, for
example, topologically massive gravity (TMG) [1,2], new
massive gravity (NMG) [3], minimal massive gravity
(MMG) [4], etc. Various three-dimensional gravity theories
can be represented by the Chern-Simons-like Lagrangian
[5]. It is well known that an extension of general relativity
in three dimensions is TMG, which is composed of the
Einstein-Hilbert term, cosmological constant, and gravita-
tional Chern-Simons term, breaking parity symmetry. There
exists a single massive spin two-mode on the linearization of
this theory. TMG theory also allows some black hole solutions
with AdS; asymptotics [6—10].

In the viewpoint of AdS/CFT correspondence, there
exists a discrepancy between any three-dimensional
gravity theory with asymptotic AdS; geometry and its
dual conformal field theory (CFT) on the boundary.
Whenever the spin-two graviton modes propagating on
the bulk have positive energy, the central charge of a dual
boundary CFT is negative, i.e., nonunitary CFT. This
discrepancy is also related to a problem that asymptotic
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AdS; black hole solutions have negative mass values
whenever bulk graviton modes have positive energy, which
is called “bulk vs boundary clash." An alternative method
has been suggested to circumvent this discrepancy, which is
“MMG" theory [4].

One of the purposes of this paper is to construct a black
hole solution in MMG theory including Maxwell and
electromagnetic Chern-Simons terms with the first order
formalism. An intrinsically rotating black hole has been
found to TMG theory including Maxwell and electromag-
netic Chern-Simons term [9]. The authors of [9] have used a
dimensional reduction procedure of [11] to search for a
stationary rotating black hole solution. In this paper we shall
use the first order formalism to find a black hole solution.
MMG theory can be represented by a Lagrangian which is
composed of that of TMG theory including the torsion term
coupled with an auxiliary field 4 and another “ehh” term
with a dimensionless coupling constant . Auxiliary field &
has the same odd parity and mass dimension with the spin
connection @. The MMG field equation cannot be obtained
from an action represented by the metric alone. Elimination
of the auxiliary field /# from the MMG action cannot be
reduced to the action for the metric only, leading to the
correct field equation through the variation of the action for
the metric. Using linearization of the field equation, it is
possible to create parameter regions to evade the bulk vs
boundary clash with the condition of positivity of the central
charge [4]. Therefore, we use the first order formalism to
find a black hole solution persisting with the Lagrangian
form with auxiliary field 4. The solution we have found is the
spacelike warped AdS; black hole under the theory we are
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considering. Similar black hole solutions have been studied
in [8-10,12—-14]

Another purpose of this paper is to calculate the mass,
angular momentum, and entropy of the black hole to be
founded under the theory we are considering. Various
methods to calculate entropy, mass, and angular momen-
tum as conserved charges have been developed and we
have introduced and referred these methods to [15]. We use
the Wald’s formalism to obtain the entropy, mass, and
angular momentum of black holes with the first order
formalism. In this method we can define charge variation
forms to calculate these physical quantities. The entropy of
black holes can be obtained by an integration of the charge
variation form at bifurcation surface H, i.e., the event
horizon. The mass and angular momentum of black holes
can also be obtained by an integration of the charge
variation form at spatial infinity, respectively. This method
becomes a good working tool in case there are some
boundaries at infinity such as asymptotically Minkowski
and anti—de Sitter (AdS) space-time. Applying this method
to the warped AdS; black hole solution in the theory we are
considering, we calculate the entropy, mass, and angular
momentum of this black hole. These physical quantities are
different from those of the warped AdS; black hole in the
TMG case. These values are satisfied with the first law of
black hole thermodynamics and are also represented by a
Smarr relation. In [14] there have been investigations for
the warped AdS; black hole in generalized minimal
massive gravity (GMMG). It has been shown that the
spacelike warped AdS; black hole [16] is a solution of
GMMG which has an additional higher curvature term
occurring in new massive gravity (NMG) [17]. The authors
of [14] have calculated the entropy, mass, and angular
momentum of this black hole using a different method
from ours.

Finally, we have investigated that the entropy of a black
hole can be represented by descriptions of quantities of the
dual CFT side, according to the prescription of AdS/CFT
correspondence. By using the Cardy formula, the entropy
of a black hole can be described by central charges and
temperatures of the dual CFT. If there exists a holographic
dual CFT for the MMG theory, then we can find the
corresponding central charges by using the Cardy formula
with the thermodynamical quantities for the black hole. The
warped AdS; vacua have been referred in [18].

This paper is organized as follows. In Sec. II, we survey
the Lagrangian and construct equations of motion in MMG
theory with Maxwell and electromagnetic Chern-Simons
terms by using the first order formalism. In Sec. III, we find
a black hole solution to solve the field equations. In Sec. IV,
we briefly review the Wald formalism to investigate
thermodynamic properties of the black hole. Using Wald
formalism we define the entropy, mass, and angular
momentum of a black hole with the first order formalism,
and find these quantities for the black hole solution we have

found. Comparing the entropy of the black hole with
the Cardy formula we find central charges. In Sec. V,
we summarize our results and add some comments.
Appendices are attached to explain some formulas, and
to compute some equations, entropy, mass, and angular
momentum of the warped AdS; black hole in MMG theory.

II. MINIMAL MASSIVE GRAVITY THEORY
WITH MAXWELL AND ELECTROMAGNETIC
CHERN-SIMONS TERMS

In MMG theory the Lagrangian can be written in terms
of the Lorentz vector-valued 1-form e?, dualized connec-
tion 1-form w, = 1/2 - e,p.0", and auxiliary field Ahe.
From these, the local Lorentz covariant torsion and curva-
ture 2-forms can be defined by

1
T(w) =de+wxXe, R(a)):da)JrEa)xa). (1)

The Lagrangian 3-form for MMG theory is given by
Ag
LG = —ae-R(w)—l—Fe-e xe+h -T(w)

1 1
+Z<w-da)+§w-a}xa}> +ge'hxh, (2)

where o is a sign and A, a cosmological constant. Lorentz
indices a, b, c, ... are suppressed, and operations “-” and
“x” represent contractions of 7,, and €,,. with wedge
products. The third term describes the “local Lorentz
Chern-Simons” term with a mass parameter x. The fourth
term is introduced to avoid the bulk vs boundary clash with
a massless parameter a. Because the three-dimensional
Newton constant has inverse mass dimension, the
Lagrangian 3-form (2) should have mass-squared dimen-
sions. So the cosmological constant A, has mass-squared
dimensions. The dreibein ¢“ can be assigned zero mass
dimension and even parity. If we assign the same
mass dimension and odd parity to auxiliary field ~* and
connection @?, then the “Lorentz Chern-Simons" term is
the only parity breaking term. We also include the Maxwell
and electromagnetic Chern-Simons terms

1
EMC:—EF/\*F—%A/\dA, (3)

in the Lagrangian 3-form with a massless dimension
parameter yp. In order to use the first order formalism,
we change the above action with the dreibein as follows:

1 1
gMC:_ZFabg:cea/\eb/\ecz_EF/\g’ (4)

where

1
F = *F + :uEA = (E €Cf.(lng +MEAL> ec. (5)
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Therefore, the total Lagrangian with the gravitational
constant can be represented by

Ziot = Lvmc + Lwmcs (6)

where k, i.e., the gravitational constant 8zG, is absorbed in
Zwmic- To find equations of motion we consider the variation
of the total Lagrangian 3-form with respect to e, i, and .
Then the variation for &, is given by

A
0L o = Oe (_UR(CU)+70€X€+D(a))h+ghxh+7>
1
+dw- (—aT(a)) +e xh—f——R((o))
H
+6h- (T(w)+aex h)—S6ANdF

1
+d(6e‘h—06w-e+2—5a)'a)—5A/\]-"), (7)
U

where
- HE
F=,F+ 7A. (8)
So, we can get equations of motion as follows:
T(w)+ae x h =0, 9)
R(w) 4+ pe x h —ouT(w) =0, (10)

A
—aR(a))—Q—?OeXe—f—D(a))h—i—ghxh—i—T:O, (11)

where the 2-form field 7, associated with the matter part is
given by

1
Ta = _Z(zFab%C+ganc)eb AN EC. (12)
Now we can use (9) to make the torsion free condition

T(Q) =de+Qxe=0, (13)

then we should consider the shifted connection Q = w+
ah. Using these new connection 1-forms we can reexpress
equations of motion as follows:

T(Q) =0, (14)

A
R(Q)—l—%exe—l—ﬂ(l—l—aa)zexh—l-a’f:(), (15)

A
D(Q)h—ghxh—i—a,u(l +0a)exh+70exe+’f:0.
(16)

From the variation with respect to the gauge field A, The
equation of motion for the Maxwell and electromagnetic
Chern-Simons terms is given by

dF = d(,F + uzA) = 0. (17)

III. BLACK HOLE SOLUTION

To find a black hole solution with stationary circular
symmetry, the dimensional reduction method has been used
in [6-9,19]. Following the procedure of this method, we
can take a metric ansatz with two commuting Killing
vectors 0, and J,, as

i (p)dx"dx* (18)
TSy

where x* expresses two coordinates t,¢ and f(p)* =
—detA. The function {(p) is introduced as a scale factor
for arbitrary reparametrizations of the coordinate p. If
we assume that the space-time has two commuting
Killing vectors O, and 0y, the special linear group
SL(2,R) of transformations in the Killing vector space
is locally isomorphic to the Lorentz group SO(1,2).
Therefore the parametrization of the matrix 4,, can be

described by
Y(p) ) (19)

([ T(p) +X(p)
h= ( T(p) - X(p)

Y(p)

The special linear transformation of 4., corresponds to the
Lorentz transformation of a vector X — (T,X,Y), and
flp)* =—deta=X"= -T2+ X>+Y? is the pseudo-
norm in Minkowski space. We now take

Y(p) =h(p).  (20)
and then (18) becomes

dp?
$(p)*fp)

2 2
sdr* + s+R(p)? <d¢+ 1? ((5))2 dt) :

(21)
For the above metric, we can obtain the dreibein as follows:

f

1
¢ TR ¢ P

h
g ()
(22)

where we simply omit the representation of coordinate p
from functions of p such as f, {, R, and h. From now on,
using this dreibein we will develop the first order formalism
instead of the dimensional reduction method. To solve the
equations of motion we should find the components of
the electromagnetic field F,, = e ,e",F,, which can be
represented by

h
Foy = (R <A§ _EA%)’ Fip = C:%A;s’ (23)
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where “/ ”” means the differentiation with respect to p, and
other components vanish. Also, we can get the components
of (5)

5u=chay o (- n,)

F, =0,

(07'2:(:1?( = %A/> +/‘E1A¢‘ (24)
R R

Using dreibein (22) and the above components of the
electromagnetic field we first consider the equation of
motion for the electromagnetic field (17) to find a solution.
Then we can obtain two equations

/ h !/
cL(FR) = 0. (26)

These equations can be easily solved as

G, f h

9’—2:?, EgO—FCZF:CO (27)

For the simplest case we consider constants Cy = C, = 0.
Then we can find %, = 0. Applying these results to (24)
we get

h

h

If we take { = pg, then the second equation can be simply
reduced to

fPAL + R?A, — hA,, = 0. (30)

To solve the above equation let us take functions as some
polynomials

%= f20* + f1p + fo

h = hyp+ h,
R? = cyp* 4 ¢1p + ¢,
A =Tp+ T,
Ay = 1p + o (31)

Substituting the above functions into (30), then we can find
an equation of p which has cubic term as its maximum
order. If we require the cubic term to be vanished, then we
can choose T} = 0 which means that the electric field does
not make any physical effect. The other coefficients of p
terms give us three relations as follows:

fath1 + 2Ty — hypy =0,
f1o1 + 1Ty — hypg — hogpy = 0,
Sfod1 + coTo — hopy = 0, (32)

Substituting functions (31) into (28) with { = ug, we
can get

¢

hy =1, 721“ —f2).  (33)

o = hor, Ty=
With these values we can solve the equations in (32) to
obtain two coefficients

¢ 202(2h0—f1)’ Cozcz(htz)_fo). (34)

If f, # 0, then the linear term of function f2 = f,p* +
f1p + fo can be set to zero (f; = 0) by a translation of p.
Therefore, we can simply represent three functions in the
metric ansatz (21) as follows:

R(p)* =5 — 7 (h* = %),
f(p) = f2(p* = 0}).
h(p) = p + ho. (35)

We now investigate the equations of motion, (14), (15),
and (16), to find a black hole solution. First, we consider
the torsion free condition (14) for the metric ansatz (21).
It is convenient to use some relations derived from (35)
while we calculate connection 1-forms, curvature 2-forms,
and auxiliary fields:

(-2
(&) = e (124 %)
E20-n) e

By substituting (22) into (14) we can find connection
1-forms

QO:%C(I—

leég(l—
2\/

-

where we regard { as a constant because we take { = ug
before. We can also find the curvature 2-forms from the
definition (1) with the above shifted connection 1-forms Q¢,

/

%>u

e
?

/-\%

(37)
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2
{ 2+ Cz( 2y <£2)}€1/\62 ZC (Rz)”fhe N

Rl — —15282 A eO’

2

2 _ _12 12 2\ h
R—{ 4C+24(R)<

R2>}e Ael + - Cz(Rz)”fhe A e, (38)

R?

We are dealing with a simplest case (27) with Cy = C, = 0, i.e., ¥, = 0. It means that the matter part of the equations of
motion (15) and (16) vanished, 7, = 0. So, we can find auxiliary flelds h* from (15) as follows:

1(& 1 h? + f? 1 h

ho __ﬁ{% _Zéz(Rz)//< R2f>}6’ 'u{ §2(R2)//f } s
1(& 1 " — f?

hl —ﬂ{8_4€2(R2) < R2 >} )

oo 3fi derwr(E) oo o

where parameters have been changed by &> = {? — 4aA and i = u(1 + 6a)?. Now we reexpress Eq. (16) as component
forms

Ay
dhy + €,5cQ0 A h¢ — aegpch? A B + ou(l + oa)eypee? A hS + 7€abce A e =0. (40)

By using the results of the dreibein, shifted connections, and auxiliary fields we can find five equations but two of these are the
same one. So, the equations resulting from (40) are given by

g“%]@)”gw : <1§2 - lCz(Rz)” i _f2> . <1§2 +1C2(R2),,M>

R? 8 4 R?
f2
Fou(1 + o) (3 4 32T )+ g =0 (41)
h h W2 - f? h
- ety k-2 ey (je - jeuey R;f)—%wml+oa> Jewytizo @)

I , f2 a(l L f2 1, 1 iy 1,
(R?) C <§§2 --(R?) ) . (géﬁ +ZCZ(R2) e ) +ou(1 —l—aa)zﬁz + Ny =0. (43)

4
%é«Z(Rz)// 2h2+f2 g(lgz f2> <1§2_1C2(R2)//h2+f2>
H
1
2

8 R? 8° 4 R?
2

wm+m(é ey

Adding (41) to (44) and then multiplying 2/u?, we can obtain

aé? 2 att A
{20(1 + oa) —i— 45[!}(1 = f2) = o(1 + oa) gz ;;52 +4(1 + aa)2§—§, (45)
where we use the first relation for functions in (35). Therefore, we can find a constant
2_4a a
[, o+ oa)(1 429 —{ - FR G 4+ 0 —4(1 + oy 6)
2= « (C—4an, :
26(1 + oa) — % - ZLE(HM()’E
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By using (35) and multiplying &2/4¢?, Eq. (42) becomes

at?

4pjpi

2 3g2 4
—o(l+o )6—2+i a§~2.
207 4ud  16upd
By using (35), (47), and multiplying 2/ul?, Eq. (43)
becomes

(1—f2) =

(26(1 + o) —§)(1 —f2)

&2 38 » Mo
= o(1 +00) 54 1 4L 0P Y. (48)

Finally, we can obtain

36(1 + oa) ——g—l- 30(% 2(1 +oa)(2 + aa)%
26(1 + oa) —’%

fr=
(49)

Substituting (47) into (46) we can also find the same result
with (49). When a goes to zero, then (49) approaches

c—~5— 422"
fa— ”—g (50)
206 — ﬁ
and (47) approaches
3C o
o =5 (51)

These results can be identified with the same results (3.9)
and (3.13) in [9]. Let ¢, = 1 and f, = 8 for convenience,
and set fo = —p?p3 and hy = w(1 — f*). Then we can
represent three functions (35) as follows:

2
R* = p* + 2wp + (1 — %) + ﬂp’gz,
2 =50 =),
h=p+aw(l-p). (52)

By using these functions we can rewrite this black hole
solution

202 2 dp?
dS2 — _.B </)R2 ,00> dt2 é’zﬂz( /; )
+R? (d¢ +Ha)§e71ﬂ2>dt>2, (53)

which is the same form of [9,19] with a parameter condition
0 < fp? < 1foracausally regular black hole solution. Taking
o = 1 for convenience and solving this inequality, we can

TABLE I. A table of parameter ranges for the causally regular
black hole. Ranges A and B for {/u are represented by Egs. (54)
and (55).

a Ao %
—-1l<a<0 %<A0<2(52_1) B<’%<A
l<a<7 A0<% A<§<B
%<AO<% %<B,orA<%
Ao>2(%i1) B<S<A
a>"T /\O<% A<§<B
%<A0<2(5—2_1) %<BorA<%

<A0< §<A0rB<I%

2
2(a—1)

find ranges of parameters a, A, and {/u. The allowed ranges
for parameters are represented by Table I.

In Table I, we express A and B as upper and lower limits
of the allowed ranges for {/u as follows:

A:2(1+a)((a+2) 0+Z)’ (54)

2(1+ a)((a+ 2)——;1)

Saly -]

B:

(55)

If we change the coordinate system and take some

parameters as follows
4 1/2
t - ‘t,
” (3@2 - 1>> ’

32 —1)\1/2 1
¢—’<%> 0, Po—’i(’”+—r—)»

1 243

o(1=p) =5 (r +r=2pyF7), =
412 4

P ROV =g RON (50

then we can obtain the spacelike stretched warped AdS;
black hole solution which is represented by [10]

£Adr?
+ £2R(r)*(d6 + NO(r)dt)?, (57)

ds?> = —=N(r)*dt* +

where functions constituting the metric are defined by

124034-6
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R(r)? = 2 B2 =Dr+ (2 +3)(r. +7r.)
—duy/ror_(VF +3)),
, W) r—r)(r-r)
NG = AR(r ’
vr — r.r 1/2
wo(r) = 2E ), 58

Since the parameter condition for the causally regular black
hole solutionis 0 < > < 1, we take v > 1 for convenience.
From (31) and (33) we can express the gauge field A as
follows

A=p[(1=p)dr + (p+ o(1 - ))dg].  (59)

If we change coordinates and parameters following (56),
then the electromagnetic potential can be represented by

3201, 2ur— 713
A=y 2V 2oV 43) )
4 v 2u

(60)

The undetermined parameter ¢; can be determined by
considering the magnitude of the electromagnetic field. We
can see that 4 is related to ¢y from (31), (32), and (33), but
¢ does not affect this relation. The sign of ¢; means the
opposite charge or opposite direction of rotation, so we can
take ¢p; to be arbitrary. It means that the rotation of this
black hole can be generated by the angular part A, from the
electromagnetic potential (60). This angular part A is also
related to (34), so it makes a warping factor term R(p).
With the appropriate boundary conditions [20-23], asymp-
totic isometries U(1), x SL(2,R); can be reduced to
Virasoro plus U(1) Kac-Moody algebra at the boundary,
suggesting a holographically dual warped CFT [24].

IV. THERMODYNAMIC PROPERTIES
OF BLACK HOLES

In this section, we investigate thermodynamic properties
of the warped AdS; black hole in MMG theory. In order to
find these properties, we need to find the mass, angular
momentum, and entropy of the black hole. These physical
quantities can be defined by the Wald formalism [25,26].
In [15] we have investigated the Wald formalism for the
sake of the calculation of the entropy, mass, and angular
momentum of black holes with the first order formalism.
Here we briefly survey the Wald formalism and definitions
of entropy, mass, and angular momentum of black holes.

If there exists a black hole solution with a local
symmetry generated by a Killing vector &, then the entropy
of the black hole is defined on a bifurcation surface, and the
corresponding mass and angular momentum are defined

well at spatial infinity. In order to find these definitions we
first consider a diffeomorphism invariant theory described
by a Lagrangian d-form £, where d indicates the space-
time dimensions. The variation of a Lagrangian is induced
by a field variation

8% = &6y + dO(y, dyr), (61)

where y describes dynamical fields collectively. £, =0
means equations of motion constructed by fields variation
oy and O is a (d — 1)-form “symplectic potential" con-
structed by dynamical fields y and variations of them.

Let us consider a vector field £ on a space-time manifold
and variations of fields y induced by a diffeomorphism
generated by this vector,

Since we are considering a diffeomorphism invariant
theory, the variation of the Lagrangian can be represented
by the Lie derivative of the Lagrangian under this variation,

The above formula means that the vector fields £ on a
space-time generate infinitesimal local symmetries.
Applying this formula into (61), we can define a closed
(d — 1)-form Noether current,

Je =0y, L) — i<, (64)

under on-shell conditions. So, this current can be described
by an exact (d — 2)-form,

Je=dQ;, (65)

where Q: is constructed from fields and their derivatives. In
diffeomorphism covariant framework [25,26], the phase
space is given by the projection of the field configuration
space composed of the solutions of field equations with a
corresponding symplectic form. The variation 5z under
on-shell conditions describes the flow vector corresponding
to the one-parameter family of diffeomorphisms generated
by & Therefore, the variation of the Hamiltonian conju-
gated to & is prescribed by the symplectic form which is
defined by

ot = [ wl.ow.tan). (66)

where the right-hand side is the symplectic form which is
defined by the integration of the symplectic current @ on
the Cauchy surface Z. If we take £ as a symmetry vector
field of all dynamical fields, i.e., £:y =0, and their
variation Oy satisfies the linearized equation, then the
symplectic current is given by

124034-7
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w(y. oy, £ap) = 00 (y. £2) — £:0(y. dy).  (67)
By using the variations of the Noether current (64), (65),
and Lagrangian (61), we can find the variation of the
Hamiltonian as follows:

where the second integration should be performed on the
boundary of the Cauchy surface X. Since £ generate a
symmetry of solutions of fields vy, ie., £z =0, the
symplectic current vanishes. Therefore H; = 0 gives us
a boundary relation

0x

If we consider a stationary black hole solution with a
Killing vector £ which vanishes on bifurcation surface H,
then the above integration should be performed at interior
boundary H, i.e., the bifurcation surface, and at its outer
boundary, i.e., spatial infinity of the Cauchy surface X
Therefore, the above variational form identity (69) can be
represented by

H ©

If we assume that the Killing vector & specifies time
translation and axial rotation with an angular velocity
QH, i.e.,

0 0

§:&+QH%’ (71)

then (70) can be suitably in comparison with the black hole
thermodynamics

TH5SBH = 5./\/1 - QH(SJ, (72)

where the Hawking temperature is given by Ty = kg/2x
with the surface gravity xg. Following the Wald formalism
we can define the mass and angular momentum of a black
hole as follows [15]:

1 0 1 0
_%A‘S’“{E} o= SG/‘S"‘J‘[@A

(73)

oM =

and the entropy of a black hole can also be defined by
1 2z 0 0
—_—— 1) Q Opel=1| |,
e (0[] o o]

(74)
where the charge variation form Jy; is given by

58BH -

If we include the gravitational constant 1/8zG in the
Lagrangian from the beginning, we can omit this constant
from definitions (73) and (74). Now we investigate whether
this definition for the black hole entropy is correct or not.
First, we consider the Lagrangian for the Chern-Simons-
like form [5]
ZLesL =

1 1
_grsar ~da’ + gfrstar : (as X a’)' (76)

2
This Lagrangian form is introduced to describe diverse
gravity theories, i.e., TMG, NMG, MMG, etc., which may
include the Chern-Simons term and some auxiliary fields.
The notation a” means a collection of Lorentz vector-
valued 1-forms a;dx*, where r is a “flavor” index running
1---N.In the MMG theory case, flavor N represents fields
of this theory, i.e., dreibein e, connection 1-form @, and
auxiliary field 4. g, and f ., represent metric and coupling
constants on the flavor space, respectively. To find the
charge variation form we first consider the variation of this
Lagrangian form which is given by

1
6L gL =0a"- (g,sdas —&—Efmas X a’) +d< g,s0a”-a >
(77)

where the first term gives equations of motion and we can
read the symplectic potential from the second term
1
O(a,da) = Eg”éa’ -a’. (78)
Following the Wald formalism we can obtain the Noether
charge

%grsifar -a’, (79)
with the on-shell condition. In order to find the charge
variation form we consider the variation of the Noether
charge and interior product of the symplectic potential.
Then the charge variation form for the Chern-Simons-like
Lagrangian (76) is given by

Q=

Sy = gpsiea” - da’. (80)

Because the Killing vector £ vanishes on the bifurcation
surface H, the interior product of the symplectic potential
with this vector should be vanished, i.e., i:® = 0. Applying
this condition to the variation of the Noether charge, then
the variation of this charge is equal to the charge variation
form (80). Therefore, we can define the entropy of a black
hole (74) with the charge variation form in the Chern-
Simons-like gravity theories.

The calculation for BTZ black hole entropy in TMG,
including the gravitational Chern-Simons term, has been
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performed in [27]. In that paper, the charge for the black
hole entropy has been given by Q% = Q; — C; where
0C: = i;0 + X; with a choice Z; = 0. So, the variation
5Q; is the same definition with Jy..

Now we are able to calculate the mass, angular momen-
tum, and entropy of a black hole with definitions (73) and
(74). To find these physical quantities in MMG theory
with Maxwell and electromagnetic Chern-Simons terms,
we consider the symplectic potential ® coming from the
total derivative term of the variation of the Lagrangian L.
The symplectic potential from (7) is given by

1
©=—0dw ¢t -dw-w+de-h—6ANF. (81)
"

Considering the variation of the Lagrangian for a vector
field &, the Noether current is given by

J§ = @(6,(1), h,£§€,£§(1), £5h> - lé‘g (82)

The Noether current is closed when equations of motion are
satisfied, so it can be represented by an exact form

The symplectic potential (81) can be divided into two parts
O (e, , h, Se, bw, 5h)

1

= —00w - e + 06w - w+ de - h, (84)
2u

@™(A,5A) = —5A A F. (85)

Combining two definitions (82) and (83) we can find
conserved charges for gravitational and electromagnetic
interactions, respectively,

1
Q?ravz—O'l-ga)'e+ﬂi§w'w+i‘fe'h7 (86)

0F" = —i:A - F. (87)

When we calculate the Noether current (82), we should
consider the Lagrangian & as two parts. One is &%,
which is related to the gravitational interaction, i.e., terms
including e, w, and &, and the other is Z°™, which is related
to the gauge fields A or F. Changing connection 1-forms @
into the shifted ones Q =w + ah with a condition
e -h =0, we can obtain

1
@av :_55Q.e+2_59.§2+(1+6a)5€'h
U
_21(59.h+5h-9—a5h-h), (88)
U

1
Q?av:—6i59'3+2_i59'g+(1+Ga)i§e'h
u

—%(iﬁfghﬂfh-g—aifh-h). (89)

By using the above symplectic potential and conserved
charge, we can find the charge variation form for the
gravitational interaction as follows:

5Z§rav -5 Qgrav _ ié@grav

1
M

~2(i:Q - 6h + izh - 6Q — aizh - 5h),  (90)
u

and for the electromagnetic interaction
Ope" = 60" — i O = —i:A - 6F — i F - 6A. (91)

When we consider the thermodynamic relationship, the
charge variation form 6yz"™ can be defined by

1
50 = L o, (92)

where 2z comes from the solid angle in three dimensions
and it depends on the definition of charge. As an example,
if we consider only electric potential terms, then the —i:A
part of (91) describes an electric potential and the integra-
tion of 6F on the bifurcation surface H corresponds with
the variation of the electric charge.

In order to calculate these charge variation forms we first
consider the dreibein from the metric of the black hole (57)

2

¢
e =Ndt, e'=——dr,

2 _ R 0 .
Sedr. @ =¢R(0+Ndr). (93)

We can find connection 1-forms by applying the dreibein
into the torsion free condition (14),

RZNY 2NR’
Q= 7 e’ + 2 e,
Ql = szjgl el
R>N? 2RN'
Q= — y e’ 2 e (94)

With these connection 1-forms we can find curvature 2-
forms by using the definition

R(Q) = d© %g < Q. (95)

Then components of curvature 2-forms are given by

2 2
RV = <;2+F(r)> e' AN’ +G(r)e' ne®, R! :—%62 nev,

2 2_
= (-5 R0 ) e -G(et e

(96)
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where functions F(r) and G(r) are simply represented by

2 2 2 0
F(r) :73( > 1)%, G(r) :—73( y 1>RA;N . (97)

Applying the above curvature 2-forms into Eq. (15) with 7, = 0, we can also find auxiliary fields

2 2 1 1 /12 302-=1
ho = ! <U M—aAO—ZF)eO—:Gez, h! <V——M—aAo)el,

AN i AN 2
1 [V 3(2-1) 1
W = — |- +>=——>—al, +2F |e* +-Ge". 98
2ﬂ<52+ 7 aly + >e +ﬂ e (98)

The electromagnetic field can be extracted from (60) with { = up = 2v/7,

F= —;A = —¢, 3(”24_1){dz+ <2”_ rzr_(yz i 3)>d9}. (99)

The mass and angular momentum of black holes can be calculated from (90), and the electric charge of black holes can
also be obtained from (91). In order to find this charge variation form we need to calculate nonvanishing interior products by
the Killing vector ¢ and angle @ parts of the variations of the dreibein, connection 1-forms, auxiliary fields, and
electromagnetic fields. All these calculations are represented in Appendix B. Then the charge variation form for the black
hole mass is given by

0 v(V? +3) dva  ?3(1* -1) 1
grav —_ 2 T =2 — =54/ 2 1+3))de
K [aj 2u {1 w7 Olry r) = g8y ryr-(v" +3)

_[3(u2—1)f<0 v)+u3 v <y2+w_a[\0>_g £<UZ+M_GAO)

4 “ut) 2 2u(1 + oa) \ 2 2 AN £
vt a (VP 301 -1) 31 - 1)
R D (D2 gy ) -2 sede 100
{2 2ﬂ<f2+ ZE °> 7 Cdd, (100)

where

B (1?4 3) 4v
0 =371y T7-) =32y OV - +3). (101)

Then we can obtain the black hole mass form by using the first definition of (73)

M :”(”2—”){(1 —ﬁa>2- (u2+3)ﬂ(;—;2} . {(r+ +r) —% ror (02 +3)}

8Gut it
1 [3(*-1)¢ v V3 ve? o3P -1)

S e S/ PR BT z —al

+4Gf{ 4 (“ yf) T T e\ 2T T 2 T

a ¢ (V¥ 30P-1) vl a (V¥ 30 -1) 32 -1)
A (ATn SRV S B Sl (ST WGP ANV W I A
w2 (f” ZEE °> {2 % (f” 2 0) 4

1/2 12
{u . _ﬁ r+,_(y2+3)}, (102)

where we should change the gravitational constant G to GZ to give the correct mass dimension. As a goes to zero

with parameter conditions ¢ = 1 and p = 3v/¢, the above result becomes the mass of the warped AdS; black hole
in TMG [10,15,28].
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As we have already seen before, Eq. (16) can be reduced to
(40) with a condition 7, = 0. So, this equation can be
solved with all the results: (93), (94), and (98). More details
are explained in Appendix A. Considering Eq. (A10), we
can take for a special case

c=1, u(l+a)=—

a=2%-3, Ng=—— 103
0

which satisfy conditions (A9) and (Al1). With these
parameters and {? = 412 /£? from (56), we can find upper
and lower limits, i.e., (54) and (55), for {/u as follows:

2 4
A=-(1 — (2 =1 104
S0+a)=50-1). (104
2(1+a)(5a+13) 4 =1)(5.2-1)
13a + 21 13,2 -9 (105)
So B is larger than A, and the ratio,
2 4
Z=—(1 — (¥ =1 1
=0+ =302, (106)

is located between A and B. Parameter values (103)
represent a point in parameter space. In Table I, we can
find this point to be in the parameters region

a>1, Ay < % /4a, A</{/u<B. (107)

These regions can also be reexpressed with 2 as follows:

2
> 1%

(108)

The second part of (102) vanishes with these parameters
(103). So the mass of the warped AdS; black hole in MMG
theory can be reduced as follows:

M:(y2+§) <r++r_—% r+r_(1/2+3)>. (109)

16Gv

To find the angular momentum of the black hole we need to
calculate the charge variation form (90) with a Killing
vector £ = -2 But this charge variation form 8y:[2] can be
simply represented by a total variation of this charge form

0 at? 2
grav | = R4 or _ = RR' ~~ _GR
22" g = oo (w4 5 on)

2p

1 at 32 -1)
R’% 0!
+2/¢{ N (52 * £?

2
—aA0+2F>R} + (1 +oa)

2V 307 -1)
ﬁ <ﬁ+7_aA0+2F>R2:|d9.

(110)

As a goes to zero, the above charge form is reduced to the
one of TMG theory and then gives us correct angular
momentum for the warped AdS; black hole in TMG with
parameter conditions ¢ = 1 and p = 3v/¢ [10,15]. From
functions (58) we can calculate each functions in square
bracket. The value of the angular momentum should be
calculated at spatial infinity, so we expand the above charge
form (110) as a function of r. This charge form includes 72,
r and constant terms. Other terms including the negative
power of r vanish as r goes to infinity. These calculations
are summarized in Appendix C. It can be shown that
coefficients of *> and r vanish by using the result of (103).
So, the rest constant term gives a value associated to the
charge form for the angular momentum of the black hole
after some tedious calculations

grav [ﬂ] _ e +3)

¢ log) 24
3 1 2
|:2 2<r++r - r_(1/2_|_3)>
Y ;2(@—1’_)2}(1& (111)

Using the definition of the angular momentum (73) with
Sy¥™[2], we can obtain the angular momentum of the
warped AdS; black hole in minimal massive gravity

g=-223 Kr+ bro= s\ Jrr 3))2
‘w(” _,_>2} (112)

To obtain the above correct result we need to consider the
change of coordinates to be dimensionful. So, we change
the gravitational constant G to GZ. This change makes the
angular velocity to be dimensionful with 1/£ and rotational
Killing vector with .

To find the entropy of the warped AdS; black hole in this
theory, we first consider the calculation for the charge
variation form from the definition (74). So, calculations
should be performed at the bifurcation surface H with a
Killing vector & = % + Qpy %
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0 0
Sy =y [8] + Q- Oy [86]’ (113)

where €j, is given by (B6). The charge variation
form for the entropy of the warped AdS; black hole
is given by (C7). By using parameter conditions (103),
and functions (58), (BS), and (B9) with variations of

f(y2+3)r 2

ent

functions in Appendix B, we can rearrange the charge
variation form for the entropy of the black hole. Then we
can take the radial coordinate value r = r_ at the event
horizon H. From all of these substitutions we can
rearrange the charge variation form as a formula of r,
and r_ with their variations ér , ér_ and 6R,. So, the
result is given by

e - - [6R+ + R or, —
+

4

2% -1) <\/r+r V2 +3) 3

or
ry 4 R+> "

(® =1)(2? - 3)

2% - 1) Vrer_ (1 +3) 3(1/
——— <SR\ 6y\/r, u R R
* 3v { +0 ro(? +3) + < 4 R+ OR. ¢ + 3.2 OR.,

W =1)22=3)W* +3)ry —r_

- p
1242 R, T

Using the variation form 6R described by (B10) at the event
horizon r, of the black hole

v +3r,

SR, = —(5r+—|—5r_)—§—5 r_(V* +3),

and 2R, = 2ur, — +/r, r_(v* + 3) appropriately, we can
rearrange the charge variation form with variations ér_ and
or_. Summarizing the above terms then we can obtain the
charge variation form as follows:

e = f(y24+ 3) r+R—+ = 611/ {(1/ + 202 + 3)6r,
- @ = 1) +3)dr_ — %5\/r+r_(1/2 + 3)] deo.
(115)
The entropy of a black hole can be defined by
TS = - —— / o, (116)
8nGr

where we change the Newton constant G into G¢ to make
parameters to be dimensionful. Using the Hawking temper-
ature for this warped AdS; black hole

¥ +3
drt 2yr+ -

B (VP +3)r, —
8nt R,

(117)

(ry—r_) _
ror_(1” +3)

TH:

we can obtain the entropy of the spacelike warped AdS;
black hole in this theory which is given by

—1)(22 -3 ror_ (V2
( 2(2 )( L

+3) 3(P-1)r,
- s . (114
2r, 7 R, ) |4 (114)

14
12Gv

BH — |:(I/4 + 21/2 + 3)r_,_

—(1/2—1)(1/2+3)r_—g r_(v2—|—3)} (118)

To calculate the variation for the electric charge part, we
need to consider the charge variation form for the electro-
magnetic interaction (91). By using the gauge field repre-
sentations (60) and (99), the result for the calculation of
Syg" vanishes. Therefore, the contribution of ®,,5Q for the
first law of black hole thermodynamics is disappeared.

So, the entropy, mass, and angular momentum of this
black hole satisfies the first law of black hole thermody-
namics

with the dimensionful angular velocity
2

Qury —\/ryr_(1* +3))¢

Also we obtain the Smarr relation between the mass,
angular momentum, and entropy of the black hole

The same relation with (121) has been obtained in the case
of the warped AdS; black hole in TMG theory with
Maxwell and electromagnetic Chern-Simons terms in
[9]. The definition for the charge variation form (113)
leads us to the same correct results for the entropy of the
BTZ black hole, the spacelike warped AdS; black hole in
TMG [27,29].

It has been shown that the spacelike warped AdS; black
hole can be regarded as the ground state with U(1), x
SL(2,R), symmetry in TMG with v > 1 [10]. This black
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hole solution is a discrete quotient of warped AdS; space.
So, it is conjectured that quantum TMG with suitable
warped AdS; boundary conditions is holographically dual
to a 2D boundary CFT with suitable central charges. Under
this conjecture we can define left and right moving energies
2 2
nt nt

Ep :?CLTZ, Eg :?CRT%,
in terms of left and right central charges and temperatures.
They can be defined by

(A +3) 1 5
T, = Py ry+r_ ;\/ur_(v +3) ),

(L? +3) (r
8nt "

which is obtained by considering a quotient along the

isometry Jy. The black hole entropy can be described by

(122)

Tp = -r.), (123)

nt
Spu = T(CLTL + crTg), (124)
as follows the Cardy formula. According to the result in
[30], the mass and angular momentum can be represented
by left and right moving energies

B 3pY 2c, B
M—Um VEL’ J=-¢(E;,—Eg). (125)

Even though we did not obtain the warped AdS; black hole
solution without matter term, we can refer (57) as a solution
for MMG theory with matter term contribution 7', = 0. So
the above conjectural results can also be applied with this
AdS; black hole in MMG theory. Therefore mass and
angular momentum can be represented with f*> = (1 +
3)/41* in (56) as follows:

2
M= = 3) ety (126)
2 2
J = f(g4;3) [<r+—|—r_—— r+r_(v2—|—3)>
_E_j(” - ,_)2] (127)

Comparing the above formulas with (109) and (112), then
we can obtain left and right moving central charges as
follows:

67 (A +2)¢

S — - . (128
CTGw 3 TG+ 3) (128)

It has been investigated that the variation of the bulk action
including the Chern-Simons term is related to the gravi-
tational anomaly for the boundary CFT theory [31]. The
bulk variation, i.e., general coordinate variation or local

Lorentz transformation, can be described by a boundary
integration with a coefficient of the Chern-Simons term.
The gravitational anomaly for the CFT can also be
described by the same integration with a coefficient related
to the difference between the left and right moving central
charges. In the context of AdS/CFT correspondence, the
comparison between two values make a relation ¢; — cp =
96zn where n means the coefficient of the Chern-Simons
term. In [10] they have found that the difference between
two central charges of TMG in warped AdS; matches the
coefficient of the gravitational anomaly

i
Gv
with 7 = —1/322Gu and u = 3v/¢. From (128) the differ-

ence between central charges of MMG in warped AdS; is
given by

C;, —CRr = — s (129)

202 = 1)¢

o (130)

C;, —Cr = —
If we use two conditions 4 = 3v/£(1 + @) and @ = 217 — 3
from (103), then n = —2(v* — 1)£/962Gv gives us the
same value as (130). As a goes to zero, we obtain (129)
again. So, we may suppose that the calculation of a general
coordinate transformation for the action of MMG theory

should be the boundary integration with coefficient
n=—(14+a)¢/9%zGuv.

V. CONCLUSION

In this paper we have constructed a spacelike warped
AdS; black hole solution in MMG theory with Maxwell
and electromagnetic Chern-Simons terms. In order to find
the black hole solution we solve equations of motion (14),
(15), and (16) using the first order formalism. This black
hole solution can be interpreted into a spacelike warped
AdS; black hole by changing the coordinates system into a
Schwarzschild one with v > 1, such as that referred to in
the case in TMG theory [9,10].

According to Wald’s procedure with the first order
formalism, we can define the mass and angular momentum
of a black hole as variational forms which are related to the
integration of a charge variation form §y; at spatial infinity
(73) [15]. The mass of the spacelike warped AdS; black
hole can be given by (102) with a parameter a. As a goes to
0 with 4 = 3v/¢, the mass of this black hole (102) becomes
the mass value of the same black hole in TMG. The angular
momentum of this black hole can be represented as an
integral of the charge form (C6) at spatial infinity with
parameter . In the same manner we can also obtain the
same value of the charge form in TMG which is calculated
in (B.10) of [15] as a approaches to 0. Solving equations
of motion (16), we can obtain three parameter condi-
tions: (A9), (A10), and (A11). We can find special para-
meter values (103) satisfying these parameter conditions.
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With these special parameter values (103) we have obtained
the mass and angular momentum of this black hole, (109)
and (112).

The entropy of the black hole can also be defined by an
integral of the charge variation form (74) at the bifurcation
surface H. It is well known that the entropy of a black hole
can be calculated as a conserved charge. But if we consider
a theory including nontensorial terms like a gravitational
Chern-Simons term, the definition for the entropy of a
black hole should be modified [27]. In this paper, we have
defined the entropy of a black hole as an integral of the
charge variation form (74). It can be identified that the
calculation of the entropy for the warped AdS; black hole
using definition (74) leads to the correct entropy value that
appeared in [10]. In this paper, we have calculated the
entropy of the warped AdS; black hole (118) in MMG
theory. This result gives us the correct relation for the first
law of black hole thermodynamics (119). And we also have
obtained the Smarr relation (121) which describes finite
relations between physical values of black holes.

As a goes to 0, > approaches to

1 3A,

s

PR (131)

with (50), (51), and 6 = 1. So, we can find the region for
Ay from 0 < 2 < 1 as follows:

C2 CZ I/2 IJ2
LAy < —,
4 SRS TaATMNT32

where parameter ¢ can be changed by 41?/¢? coming
from (56). With the parameter solutions (103) of Egs. (A9),
(A10), and (A11), we have found physical quantities and
relations of the warped AdS; black hole solution in MMG
theory such as mass, angular momentum, entropy, central
charges, and Smarr relation. All physical quantities in
MMG theory should approach those of TMG theory as a
goes to 0. If we consider v > 1 values only, then we can
read that v becomes \/3/72 from (103) as a approaches 0.

Substituting v = /3/2 into (109), (112), (118), and (128),
we can obtain physical quantities as follows:

(132)

3

M=——(ro+r_—+/3ryr_),

16G

3¢ 3 , 7 5
J = —64G\/;[(r++r_ V3ryr) A—l(rJr r_)],

xt 2|11 3 1
SBH—6\/;{Er+—ﬁr_—z—“/3r+r_],

_4\Ff _7\Ff
L=3\V36 ®73\306

The above values can also be obtained by substituting v =

(133)

v/3/2 into the formulas of the mass, angular momentum,

entropy, and central charges of the warped AdS; black hole
coming from TMG theory in [10].

The authors of [32] have constructed the quasilocal
conserved charge for the Chern-Simons-like theories of
gravity [5] with first order formalism. To find this charge
they have used the off-shell Abbott-Deser-Tekin (ADT)
method [33-36] and the field variation with the Lorentz-Lie
derivative

8:a" = 8za™ — & ,d)°. (134)
The Lorentz-Lie derivative is defined by
Ree® = £ + 1% e, (135)

where 1% = 1/2 - €9, A% is a generator of the local Lorentz
transformation and £; describes the Lie derivative for a
vector £ The purpose in introducing this derivative is to
circumvent the divergence of the connection 1-form @“ on
the bifurcation surface H, even though the interior product
of a Killing vector & for the connection becomes finite [37].
In our approach, the variation of the field variables for a
vector field { can be described by

cai = {garll]. af} = £eaf +- -, (136)
where --- means the term proportional to equations of
motion [4,38] and @[] is a generator of a diffeomor-
phism associated to a vector field £, which comes from the
sum of primary constraints derived by a Hamiltonian
analysis [4]. Therefore, it is enough to adapt the Wald
formalism for the diffeomorphism invariant Lagrangian as
we derive the charge variation form to define physical
quantities, i.e., the entropy, electric charge, mass, and
angular momentum of a black hole [15].

There has been a conjecture that TMG theory with
suitable asymptotically stretched AdS; boundary conditions
v > 1 is holographically dual to a two-dimensional boun-
dary CFT with appropriate left and right moving central
charges [10]. Applying this conjecture into this black hole
solution, we have found left and right moving central
charges in MMG theory, respectively. In [10] it has
been shown that the difference between left and right
moving central charges matches the coefficient of the
diffeomorphism anomaly with a relation ¢; — cp = 9677.
Considering MMG theory, we can find (130) with
n=—(1+a)£/96xzGu. So, the difference between central
charges in this theory seems to appear as a shift by a
parameter « in comparison with the TMG case.
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APPENDIX A: EQUATIONS FOR
PARAMETER CONDITIONS

As we have seen before, Eq. (16) can be reduced by a
form (40) under a condition 7, = 0. By using the concrete
form of the dreibein (22), shifted connection 1-forms (94),
and auxiliary fields (98) for the warped AdS; black hole,
(57) with (58), this equation can be solved component by
component. Then we have five equations

f2+ %

3 -1 RZNY 2RN
+2F>+((” )—i—F) T -

2
+0y(1+0a)<%—aA0—l—F> + Ny =0,

2RN'
F= oy +F

2RN
3G

R>NY' a 1/_2 32 -1)
¢ 2w\~

—aAO>G—|-6/4(1 +0a)G =0, (A2)

a (V¥ 3P -1) o3P -1)
a 2RN’ 2NR'
—aA0—2F>—ﬁG2+ 7 G- G

R2N9/ 3 2_1 2
< (sz >+2F> —|—0;4(1~|—0a)<;2—aA0>

+

Z

a (V¥ 302 -1)

—— (5 - _aA,-2F

4 <f2 ZE )

v 30 -1) 2RN _2RN'

(" ) et

RENY (312 —1) V2

- (2- 7 +3F>—|—(m(l+aa)<ﬁ

302 -1 .

- (fz )—aAO—F>+/4A0—O, (A4)
3(2-1) 2NR'  a (V* 3(*-1)
() E g (a —an)e

R*NY 2RN
t— G+F’7+a/¢(l+0a)G=0. (AS5)

Subtracting (A2) from (AS5) describes a relation

N2
RAN® = 1 + =

g (A6)

From (97), functions F(r) and G(r) can be represented by a
simple form

3P - 1)N? 3(v> — 1) RNN?
F(r>:Tﬁ G(r):_TT_
(A7)
Using (A6) and (A7), we get two relations
4 1 1 ¢ 1 3(2-1
—FRN?+-GN =0, —tFN—rGRNH_:‘_(V 5 —)N.
Hu H H H i 4
(A8)

Now we substitute all these solutions to Eq. (40) which
comes from (16), and then we have three conditions as
follows:

a (V¥ 30*-1) v 30 -1)
() (A )

1 V2
——-7—1—0‘/4(1—1—061)(?—0(&)) + Ay =0,

(A9)

v a (1P 30F-1
‘fz;t(ff(fz)‘“A(’)““(”"“):O’

(A10)
a (vF 30P-1) 2
7 (ﬁ‘T‘“AO)
v 30 -1
+ou(l+oa) (ﬁ_ ( 2 )—aA())
v 3P-1)
If we take special parameters,
3v 1
(A12)

then the above three equations for parameter conditions
(A9), (A10), and (All) are satisfied by these parame-
ters (A12).

APPENDIX B: SOME CALCULATIONS FOR
CHARGE VARIATION FORMS

The variation of the nonvanishing angle 6 part of all
relevant fields for the calculation of the charge variation
form Jy; is given by
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2
de* = £S5Rd0, 6Q0 = ?5(NRR’)d6',

¢
5h" = —~5(GR)do,

i
¢ (Vv 3(P-1) 4
2= (42 A, |SR +=8(FR
6h {2ﬁ<f2+ 2 a0>5 +—4( )}d@,

592 = —5(R3N?")do,

i
IR 3(2—1)\1/2
OF = =264 =) (T)
ror_(V* +3)

(r_éry + r oér_)do. (B1)

4ryr_

Nonvanishing interior products of dreibein and connection
1-forms for the Killing vector & = % are given by

iee® =N,  ize* =¢RN,
, R*N?  2NR'
l‘fQO = f N + fz fRNe,
R*NY' 2RN'
Q= — £RN? + AN (B2)

Nonvanishing interior products of auxiliary fields A and
electromagnetic fields JF for the Killing vector ¢ = % are
given by

1 [ 302-1) 4
W =— = -2 2 gAy—2F |N = =GRN?,
o <f2 2 ) i
. £ (v 3P -1) 1
ich? =5 <ﬁ+7ﬂ —aA0+2F>RN0+ﬁGN,
) U 32 -1)

Nonvanishing interior products of relevant fields for the
Killing vector £ = % are given by

_ 2NKR

i’ =¢R, Q"= A (R
Q% = —szjw ¢R,  i:h’ = —gGR,
ich® = 2—"; <§+w— aly + 2F>R,
i(F=——iA
— 3(1/24— 1) (2ur - r+2r_(l/2 + 3)> (B4)

In order to calculate the charge variation form for the
black hole entropy, we should get nonvanishing interior

products with the Killing vector & = % + Qy %. The results
are as follows:

iee® =N, i =¢R(N’+Qy), iF=0,
R>NY 2NR'
i:Q0 = : N + 2 ZR(N? + Qy),
R>NY' 2RN'
Q= — £R(Qy + NY) + 7N,
, 1 /(v 3(P-1)
lgho :ﬁ (ﬁ—T—GAO—2F>N

£
——GR(Qy; + N?),
H

1 (v 3(P-1)
:ﬁ<ﬁ+T_aA0+2F>’/ﬂR(QH+NG)

1
+ -GN, (B5)
H

where the angular velocity of the horizon Qj is
defined by

"= . = -N°(ry)

__ 2 L)

(Qury —\/ryr_(1* +3)) R,

As r approaches to the event horizon r_, all terms including
Qy, + N? vanish.

In order to calculate the charge variation forms more
concretely, we first consider the differentiation of all
functions of (58) with respect to r. The derivatives of
these functions are given by

R +3(1/2—1) r
2r 8 R’
N,:f\/(uz—i—?ﬁ){l rz—r+r_

&R

R =

_3(1/2—1)r (r—=r)(r—r_)
4 R ’
ror (P +3) 1
N9/ — +
2 rR?

_ w# (2yr — \/m) (B7)

From the above formulas and (58) we can get some
relations
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RPN Jryr (P +3)1 32 =1) r

(21/1” —\ryr (P + 3)),

4 20 r 8 R*?

s e (142200

2RN'  \/(* +3) 2r—=ry—r_ — 1 3(1/2—1)L

R = s B ey 1) (58

These functions are helpful to calculate the charge variation form for the mass of the black hole. The following functions are
helpful to calculate the charge form (110) for the angular momentum of the black hole,

3v(t? -1 R 3 -1)r\ /
R4N0/:_ ( I )I’Z—f—R(;—}— ( 2 )E> r+r_(112—|—3),

NV +3 (R 3WP-1)r
NRR/:#<Z+TE> (r_r+)(r—r_),
3v(? —1)r R 3(*=1)r
R3NY — _ _ - _ 2
N R\t RV
3(* — 1) RNN? 3> = 1)N?
GR=-="Z—"——R  FR=="22R (B9)

Some variations of functions to calculate the charge variation form are represented in detail as follows:

r vr/ror (1’ +3)
s RO TR ror

(r_éro +r.ér_), (B10)

S(NRR') = £V +3) {_<R L3 1)£> (r=r)dry + (r=ry)ér_]

2 2r 8 R 2\/(r=ry)(r—r_)
vi-1)r
+ (%‘¥F> (r—r+)(r—r_)5R}, (B11)
-1 r ror_ (v
S(R’N”) = <§+ & 8 1)E> ' +2;+(r_+3) (r_8ry +riér.)
N {@*3@23_ Ué(zw_ ror (2 +3)) }5R, (B12)

5(GR) = 3 - ]‘)M'z(y +3) {% (21/r— \Jrar_ (P + 3)) A\ (r=ry)(r—=r_)éR
V) Y

R 2r r_

(r_bry+r.ér_)

2ur —\/ror_(v* +3)
N TR . [(r—r_)5r++(r—r+)6r_]}, (B13)
o) = 2= SN SR s (= o+ (= o] . (B14)

124034-17



SOONKEON NAM and JONG-DAE PARK PHYS. REV. D 98, 124034 (2018)

APPENDIX C: CHARGE VARIATION FORMS FOR THE WARPED AdS; BLACK HOLE IN MMG

Substituting (B2) and (B3) into the charge variation form for the gravitational interaction (90), we can obtain the charge
variation form for the black hole mass as follows

av | O R>N? 2RN' 2
Sk {E] :—o-{ (— - RN + 5 )f&R—ENﬁ(NRR’) fRN%(RW”)}de

1 ( /REN? 2NR’ 2 RZN? 2RN’
- |(——N+ /RN’ ) Z5(NRR') + | — /RN’ +=——N |5(R*N?") +d6
U ¢ Iz ¢ 2 %

+ (1 + oa) F NG&(GR) + fRN”{ 4 <;§ + 3(”;_1) - aA0> SR + ;6(FR)}

¢ (v 3P -1) 1
— S +="——2—aAy+2F |RN? + -GN »¢5R|d6
+{2ﬁ<f2+ 77 et > T } ]

¢ (R’N®  2NR'
¢ [; ( N+ fRN9> 5(GR)

u 4 2

R*NY' 2RN' £ (v 3(P-1) ¢
- £RNY N) AL (Y any R + SS(FR
+( ¢ Nz ) {2ﬁ<f2+ 2 °> 7% )}

1 [ 3(”-1) ¢ 2 at
(B T Ay —2F |N = 2GRN V[ ZS(NRR) + 2 5(GR
{~<f2 o ) P }(ﬂ e >>

¢ (v 3(1P-1) 1
(B 2 ) A+ 2F \RN? +~GN
{2ﬁ<f2+ 2 ) 7 }

{5(R3N9’) + 02“0 ( 2t w - aA0> SR + %5(FR) H do. (C1)

The above formula can be reexpressed by (100) with functions in (58), and some functions and variations in Appendix B for
the warped AdS black hole. Substituting parameter conditions (A12) into the above result, then the charge variation form
becomes (109).

The charge variation form for the angular momentum can be represented by the total variation of the charge form (110).
Substituting functions (58) and (B9) in Appendix B into the charge form (110), we can find the charge form for the angular
momentum of the black hole. This charge form is a lengthy and complicated function of r. As r goes to infinity, the negative
power of r terms of this charge form vanish. So, this charge form can be represented by a function of the 7> order. We now
arrange the coefficients of r order by order. The coefficient of the 7> order of this charge form is given by

32 -1) (L* +3) v \?2 1 af (V¥ 317 -1) a 2
2 2 )| e - ~ S (L 2 A
r 1 [auf o /Ma +2;4 1/+2ﬁ f2+ 7 al\ +M( +3)

+(1+aa){f2 (;z+3(y;2_1)—a/\0> +(”2;3)H. (C2)

The coefficient of r order is given by

302 -1 *+3(2 2 1
r-—(y4 ){of r+r_(v2+3)—y2: {/%05(1—[71:“)(6"‘; "+”—(V2+3)>

—(r++r_)<1 —i—?a)z}—i—}l(—v—i—af (Lﬂz +3(U;42_1)_a/\0> +/%(V2+3))‘{ <C"'1 (@ +3)>

_ X2 C(_, .o 3p2-1) X2
Y(U +3)(C+r++r_)+2< u+2 <bﬂ2 y al\g +M(u +3)

-I-(]-l-oa){fz <;§+$—OAO)C—D2;3(Q+r_)H, (C3)
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where

v +3 4v

Czi(u%—r_)—m

312-1) r-(v* +3). (C4)

The coefficient of the #° order, i.e., the constant term, is given by
32 -1) C v +3 2u \? 2u 2u 1
T[Gﬁ-i ror (¥ +3) - » ror_ 1—/?05 —(r++r_)ﬁa l_lﬁa : C—l—; ror_(* +3)
1 2 1 C 1 a C
4<C—Ea<20+— _(u2+3)>> }—'—Z{U(E—'_; r+r_(1/2+3)> E(V —|—3)< —|—r+—|—r>
C af (V¥ 307-1) 2 1 af (VF 3017 -1) a
+2 2 <f2+f2—a/\o)} +/.l< +<l/ﬂ2+f2_a/\0>+ﬂl,ﬂ(l/ +3))

3C? af (v 3017 -1) a Craf (V¥ 3(1”-1)
Ay (2 DA _e e (2 A
{ 3 < l/+2ﬂ <f2+ l,ﬂz a. 0)+ f(l/ +3)> 3 Zﬁ <52+ fz a 0>

2
+~i(1/2+3)(r++r_)g+~i(1/2+3)r+r_ +(1+0a)y j—3r+r_ . (C5)
4 2 2

This constant term is related to the angular momentum of the black hole. Rearranging the above coefficients with the
parameter conditions (A12), the coefficients of > and r disappear. Only the constant term survives. The charge form for the
angular momentum of the black hole with 6 = 1 can be represented by

2 _ 2
xe [2} _-l) FC o2 +3) -2 (102 +r+r—>

90 4 |2 2%
V(N 5 232 (L? +3)
- 3 —C _
+2,u<2+y -+ )) +8ﬂ Tl a u(l+a) had

(1* +3) 2va 1 2va 2va 2va 1 5
. 1— 1— -
+ » ﬂf 3 7 ror_ +(r++r)ﬂf 7 C—i—y ror_(v -+ 3)
1 2va 1 5 1 2va\? 1 5 2
> e (204—; ror_(v +3)) Z(ﬁf) (204—; ryr_(v +3))
1 a, , 2 C? v 30 -1) 2
D B 3 2 — 4+ QA 243
+2ﬂ{(ﬁf(v+ )> (C+r++r_)+4(2 <bﬂ2+ 7 al\ +M(u+ )

—wZ +3)(C+1 r_(v? +3))(C+r++r_)

ac

+y<g§(;+3@;1>_aAo)+ﬂﬂ;<y +3> ( +¢7+3)
i +3)<“i<ﬂ+@—al\o)+0}(v +3>)C<C+r++r_)}
- (af<fz+$—a/\0>+/%(u2+3)>-%”Cz

1 at 302 -1) a C* af (V* 3(F-1)
+l;<—l/+ (f2+T—aAO>+[7(D2+3))-{—g-ﬁ<ﬁ+T—a/\o

a 3C?

+m”( +3)- g —+ 0;(1/ +3)(ry +r )C}+ O;(u +3)r,r ] (C6)

Substituting parameter conditions (A12) into the above formula, then the charge form becomes (111).
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The charge variation form for the entropy of the black hole can be obtained by adding the charge variation form y;

to the charge variation form for 5y [

variation form for the entropy of the black hole is given by

0 0
ent grav grav
S =5y [a}mﬁ Sy [ae]

grav [gt]

] multiplied by angular velocity Q4 (B6). By using (B1) and (B5), the charge

2RN' 2
- —o'{ N NoR - ?N(S(NRR’)}dG + (1 + oa) d {NS(GR) + GNSR}d6
I
1 (2R*NY 2RN' 2RN’ 312 -1)
—;{ 7 NS(NRR') +=— Na(R*N"’)}de K ) ( - aA0> SR
1 1 (» 30*-1) ¢ (2RN' a
—F—— (-2 —aA N5(NRR' ——GN5R3N9' S(FR
R A e
£ (R*NY a (V¥ 302 -1) a
- N—-— (= —="5——aAy |N+=FN :5(GR)|de. c7
+f4{ ¢ 2ﬁ<f2 Z “0) T }( )] 7

Substituting (58), (B8), and (B9), and variations of function from below (B10) into the above formula, this charge variation

form becomes (114) at the horizon r = r.
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