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We study static spherically and hyperbolically symmetric solutions of the Einstein equations in the
presence of a conformally coupled scalar field and compare them with those in the space filled with a
minimally coupled scalar field. We then study the Kantowski-Sachs cosmological solutions, which are
connected with the static solutions by the duality relations. The main ingredient of these relations is an
exchange of roles between the radial and the temporal coordinates, combined with the exchange between the
spherical and hyperbolical two-dimensional geometries. A brief discussion of questions such as the relation
between the Jordan and the Einstein frames and the description of the singularity crossing is also presented.
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I. INTRODUCTION

The exploration of the exact solutions of Einstein
equations has been attracting the attention of researchers
from the dawn of general relativity. Exact solutions
possessing spherical symmetry were one of the main
branches of this activity since the time of the classical
works by Schwarzschild [1], Tolman [2], Oppenheimer and
Volkoff [3]. The study of static spherically symmetric

solutions of the Einstein equations in the presence of a
massless scalar field has rather a long history [4–16] (see
also [17] as a review). In particular, in paper [13], a duality
between spherically symmetric static solutions in the
presence of a massless scalar field and the Kantowski-
Sachs cosmological models [18], which instead possess
hyperbolic symmetry, was studied. It was noticed also that
the spherically symmetric Kantowski-Sachs universes are
connected by a duality transformation to the static solutions
possessing hyperbolic symmetry. In the limiting case of the
absence of the scalar field, the corresponding static solution
represents some hyperbolic analogue of the Schwarzschild
geometry. While such a hyperbolic solution was mentioned
already in paper [19], its properties were studied in detail in
papers [13,20]. Let us emphasize that the main ingredient
of this duality is the exchange of roles between the radial
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coordinate and the temporal coordinate combined with the
exchange between the spherical two-dimensional geometry
and the hyperbolical two-dimensional geometry.
The study of gravity models, where a scalar field is

nonminimally coupled to the scalar curvature, has a long
history, too [21–23]. Recently, the actuality of such models
has grown due to the study of inflation models based on the
Higgs scalar field nonminimally coupled to gravity [24].
Models wherein a nonminimal coupling between gravity
and a scalar field is conformal were also largely studied
[25–36]. These are interesting for two reasons: first, it is
relatively easy to find exact solutions and to establish the
relations between these solutions and those obtained in
models with a minimally coupled scalar field; second,
there is a possibility of a change of sign of the effective
gravitational constant and of the construction of a singu-
larity-free isotropic cosmological model including a scalar
field conformally coupled to the scalar curvature. Wewould
also like to mention the papers [12,14,37–40], where the
relation between the exact static solutions in the Jordan
frame and in the Einstein frame was studied in detail.
In particular, it was noticed that a singularity in one frame
can correspond to the regular geometry in another frame.
In the paper [41], a very detailed compendium of the
conformal transformations of such geometrical quantities
as the metric, Christoffel connection coefficients, the
Riemann tensor and different curvature invariants was
presented. Further, the conformal transformations of the
matter energy-momentum tensor were also given. The
connection between the conformal transformations and
the duality transformations in superstring theories was
explained in Ref. [41] also. Here, we wish to stress that
what we call “duality” between static and cosmological
solutions in general relativity is quite different from the
duality in the superstring theories, because our duality
involves the exchanges of the coordinates and not the field
variables.
In the present paper, we study static spherically and

hyperbolically symmetric geometries in the presence of a
massless scalar field conformally coupled to gravity and
their relations with Kantowski-Sachs cosmologies. We
compare the solutions found with those obtained in a
theory with the minimally coupled massless scalar field.
The structure of the paper is as follows: in the second

section, we present some general formulas for gravity with
a conformally coupled scalar field. The third section is
devoted to the study of static spherically symmetric
solutions, while in the fourth section, we obtain static
hyperbolically symmetric solutions. In the fifth section we
discuss the duality relations between static and cosmologi-
cal solutions and present some details concerning time
evolution of the Kantowski-Sachs universe in this model.
The last section includes some concluding remarks about
the relations between different frames and about the
problem of the singularity crossing.

II. SOME GENERAL FORMULAS FOR GRAVITY
WITH A CONFORMALLY COUPLED MASSLESS

SCALAR FIELD

Let us consider an action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
UðσÞR −

1

2
gμνσ;μσ;ν

�
: ð1Þ

The Einstein equations are

U

�
Rμν −

1

2
gμνR

�
þ gμν□U −∇μ∇νU

¼ 1

2
σ;μσ;ν −

1

4
gμνσ;ασ;α: ð2Þ

The variation with respect to σ gives the Klein-Gordon
equation

□σ þ dU
dσ

R ¼ 0: ð3Þ

The Einstein equations (2) can be rewritten as

U
�
Rμν −

1

2
gμνR

�
þ gμν

d2U
dσ2

σ;ασ
;α

þ gμν
dU
dσ

□σ −
d2U
dσ2

σ;μσ;ν −
dU
dσ

∇ν∇μσ

¼ 1

2
σ;μσ;ν −

1

4
gμνσ;ασ;α: ð4Þ

On contracting Eq. (4) with the contravariant metric, we get

−URþ 3
d2U
dσ2

σ;μσ
;μ þ 3

dU
dσ

□σ þ 1

2
σ;μσ

;μ ¼ 0: ð5Þ

For the case of a conformal coupling,

Uc ¼ U0 −
σ2

12
; ð6Þ

one easily finds that

R ¼ 0 ð7Þ

and

□σ ¼ 0: ð8Þ

III. STATIC SPHERICALLY
SYMMETRIC SOLUTIONS

We shall consider a static spherically symmetric metric
in the form
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ds2 ¼ b2ðrÞdt2 − a2ðrÞðdr2 þ dθ2 þ sin2 θdϕ2Þ: ð9Þ

For the metric (9) and for the scalar field σ, which
depends only on the radial variable r, we obtain

□σðrÞ ¼ −
1

a2
σ00 −

ab0 þ a0b
a3b

σ0; ð10Þ

where primes mean derivatives with respect to r.
The Ricci scalar is

R ¼ 2

a4b
ðb00a2 þ b0a0a − ba02 − ba2 þ 2baa00Þ: ð11Þ

For the case of the conformal coupling (6), it follows
from Eqs. (7) and (11) that

b00a2 þ b0a0a − ba02 − ba2 þ 2baa00 ¼ 0: ð12Þ

Equations (8) with (10) can be easily integrated, giving

σ0 ¼ C
ab

; ð13Þ

where C is an integration constant.
The Einstein equations are now

6Uc½a02 þ a2 − 2aa00� ¼ C2

2b2
þ Cσab0

b2
; ð14Þ

6Uc½a2b−a02b−2a0ab0� ¼−Caσ
�
b0

b
þ2

a0

a

�
−
3C2

2b
; ð15Þ

6Uc½a02b−aba00−a2b00� ¼C2

2b
þ σCa0: ð16Þ

In order to simplify the equations obtained above, we
introduce new functions

aeðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

σðrÞ2
12U0

s
aðrÞ; beðrÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

σðrÞ2
12U0

s
bðrÞ: ð17Þ

In terms of these functions, Eqs. (14)–(16) take the
following form:

a2eb2e − 2b2eaea00e þ b2ea0e2 ¼
C2

4U0

; ð18Þ

a2eb2e − b2ea0e2 − 2beaea0eb0e ¼ −
C2

4U0

; ð19Þ

b2eaea00e − b2ea0e2 þ bea2eb00e ¼ −
C2

4U0

ð20Þ

Equation (12) in terms of the new variables is

2b2eaea00e − a2eb2e − b2ea0e2 þ bea2eb00e þ beaea0eb0e ¼ −
C2

4U0

:

ð21Þ

The introduction of the new functions ae and be used
together with Eq. (13) allows us to obtain equations
independent of the scalar field σ and its derivatives.
On introducing

A ¼ a0e
ae

; B≡ b0e
be

;

we can rewrite Eqs. (18)–(20) in the following form:

1 − 2A0 − A2 ¼ C2

4U0b2ea2e
; ð22Þ

1 − 2AB − A2 ¼ −
C2

4U0b2ea2e
; ð23Þ

A0 þ B0 þ B2 ¼ −
C2

4U0b2ea2e
: ð24Þ

The resulting equations are quite similar to the Einstein
equations for the model with minimally coupled massless
scalar field, considered in [13].
On summing Eqs. (22) and (23) and Eqs. (22) and (24),

we obtain the following equations:

1 − A − A0 − AB − A2 ¼ 0; ð25Þ

1 − A0 þ B0 þ B2 − A2 ¼ 0: ð26Þ

From this pair of equations, one can obtain another:

A ¼ −
B0

B
− B; ð27Þ

�
1

B

�00
−
1

B
¼ 0: ð28Þ

There are two independent solutions of Eq. (28). One of
these solutions is inverse proportional to the hyperbolic
cosine, and the other is inverse proportional to the hyper-
bolic sine. Let us choose as a solution

B ¼ γ

cosh r
; ð29Þ

where γ is a constant. Then from Eq. (27) it follows that

A ¼ tanh r −
γ

cosh r
: ð30Þ
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On substituting the expression (30) into the left-hand side

of Eq. (22), we see that it is equal to − ð1þγ2Þ
cosh2 r < 0, while the

right-hand side of this equation is positive. Thus, we should
discard the solution (29)–(30).
Let us now consider

B ¼ γ

sinh r
; ð31Þ

then

A ¼ coth r −
γ

sinh r
: ð32Þ

On substituting the expression (32) into Eq. (22), we obtain

1 − γ2

sinh2 r
¼ C2

4U0b2ea2e
; ð33Þ

which tells us that

γ2 ≤ 1: ð34Þ
On now integrating Eqs. (31) and (32), we obtain

be ¼ b0

�
tanh

r
2

�
γ

ð35Þ

and

ae ¼ a0
sinh r

ðtanh r
2
Þγ ; ð36Þ

where a0 and b0 are constants.
On substituting the expressions (35) and (36) into

Eq. (33), we obtain

C ¼ �2a0b0
ffiffiffiffiffiffi
U0

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
: ð37Þ

In what follows, we shall choose the “plus” sign on the
right-hand side of Eq. (37) without loss of generality.
On substituting (37) together with (36) and (35) and (17)

into Eq. (13), we obtain

σ0

1 − σ2

12U0

¼ 2
ffiffiffiffiffiffi
U0

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
sinh r

: ð38Þ

On integrating this equation, we obtain

σ ¼
ffiffiffiffiffiffiffiffiffiffiffi
12U0

p A0ðtanh r
2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
− 1

A0ðtanh r
2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ 1

; ð39Þ

where A0 > 0 is an integration constant. On using the
solution (39), we can finally write down the expressions for
the functions a and b:

a ¼
a0
�
A0ðtanh r

2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ 1

�
sinh r

2
ffiffiffiffiffi
A0

p ðtanh r
2
Þγþ

ffiffiffiffiffiffi
1−γ2
3

p ; ð40Þ

b ¼
b0
�
A0ðtanh r

2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ 1

�
ðtanh r

2
Þγ

2
ffiffiffiffiffi
A0

p ðtanh r
2
Þ

ffiffiffiffiffiffi
1−γ2
3

p : ð41Þ

Let us first look at the particular cases, when γ ¼ �1. For
these cases, the derivatives of the scalar field are equal to
zero [see Eq. (37)], and the case is equivalent to the case
of the empty space. The presence of a constant scalar field
σ ¼ ffiffiffiffiffiffiffiffiffiffiffi

12U0

p A0−1
A0þ1

implies simply some changes of the
Newton constant. Thus, this case coincides with that
considered for a minimally coupled scalar field in paper
[13]. Let us give here some details for completeness. In the
case γ ¼ 1, the metric (9) has the form

ds2¼ b20ðA0þ1Þ2tanh2 r
2

4A0

dt2

−
a20ðA0þ1Þ2cosh4 r

2

A0

ðdr2þdθ2þ sin2θdϕ2Þ: ð42Þ

On introducing a new “Schwarzschild” radial variable,

r̃ ¼ a0ðA0 þ 1Þffiffiffiffiffi
A0

p cosh2
r
2
; ð43Þ

we can rewrite the metric (42) in the familiar Schwarzschild
form,

ds2 ¼ b20ðA0 þ 1Þ2
4A0

�
1 −

a0ðA0 þ 1Þffiffiffiffiffi
A0

p 1

r̃

�
dt2

−
d r̃2

ð1 − a0ðA0þ1Þffiffiffiffi
A0

p 1
r̃Þ
− r̃2ðdθ2 þ sin2θdϕ2Þ; ð44Þ

where the quantity a0ðA0þ1Þffiffiffiffi
A0

p plays the role of the

Schwarzschild radius and the constant b2
0
ðA0þ1Þ2
4A0

can be
absorbed in the definition of the time parameter.
For the case γ ¼ −1, the metric (9) has the form

ds2 ¼ b20ðA0 þ 1Þ2coth2 r
2

4A0

dt2

−
a20ðA0 þ 1Þ2sinh4 r

2

A0

ðdr2 þ dθ2 þ sin2θdϕ2Þ: ð45Þ

On introducing a variable r̂ by

r̂ ¼ a0ðA0 þ 1Þffiffiffiffiffi
A0

p sinh2
r
2
; ð46Þ
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we can rewrite the metric (45) as

ds2 ¼ b20ðA0 þ 1Þ2
4A0

�
1þ a0ðA0 þ 1Þffiffiffiffiffi

A0

p 1

r̂

�
dt2

−
dr̂2�

1þ a0ðA0þ1Þffiffiffiffi
A0

p 1
r̂

� − r̃2ðdθ2 þ sin2θdϕ2Þ; ð47Þ

where on choosing a0 < 0, we again have the standard
Schwarzschild metric, where the Schwarzschild radius is
proportional to some positive pointlike mass.
Now, looking at the expressions (40) and (41), we get

bðrÞ ∼ rγ−
ffiffiffiffiffiffi
1−γ2
3

p
; aðrÞ ∼ r1−γ−

ffiffiffiffiffiffi
1−γ2
3

p
; ð48Þ

when r → 0.
We can see that another special value of the parameter γ is

γ ¼ 1

2
: ð49Þ

Indeed, if γ ¼ 1=2, then at r ¼ 0 both factors aðrÞ and bðrÞ
and, hence, the corresponding metric coefficients are finite.
This regime does not have a counterpart in the case of a
minimally coupled scalar field [13], andwe shall discuss it in
detail later.
It is easy to see that for γ > 1=2,

bðrÞ → 0; aðrÞ → ∞; when r → 0:

If γ < 1=2, then the behavior of the functions a and b is
the opposite: bðrÞ → ∞, while aðrÞ → 0, when r → 0.
A simple calculation shows that if γ ≠ 1=2, then at r → 0,
the invariant

RμνRμν ∼ B0r
−4
�
2−γ−

ffiffiffiffiffiffi
1−γ2
3

p �
→ ∞; ð50Þ

where B0 is a positive constant. Thus, the solutions with
γ ≠ 1=2 contain a real singularity at r ¼ 0. In this case, we
consider aðrÞ and bðrÞ for r ≥ 0 only.
Such a singularity is absent for the case when γ ¼ 1=2,

because the functions a and b are finite at r ¼ 0. The
explicit expression for the metric is now

ds2 ¼ b20ðA0 tanh
r
2
þ 1Þ2

4A0

dt2

−
a20½A0 tanh r

2
þ 1�2 cosh4 r

2

A0

ðdr2 þ dθ2 þ sin2 θdϕ2Þ:

ð51Þ

The scalar field is given by

σ ¼
ffiffiffiffiffiffiffiffiffiffiffi
12U0

p A0 tanh r
2
− 1

A0 tanh
r
2
þ 1

: ð52Þ

One can see that both the expressions (51) and (52) are quite
regular at r ¼ 0 and can be smoothly continued in the region
r < 0. The expression for the scalar field in this region is
such that σ2 > 12U0 and, hence, Uc < 0, and we enter into
the antigravity regime, without crossing any singularity. Let
us note that the effect of the disappearance of the singularity
due to the nonminimal coupling is connected with a high
symmetry of the geometry (here, it being the spherical
symmetry). A similar effect was observed also in paper [34]
for a flat Friedmann universe. On the other hand, as was
shown in paper [31] and then studied in some details in
paper [36] for the case of the Bianchi-I universe the
transition to the regime of antigravity, where Uc < 0, is
accompanied by the appearance of the cosmological sin-
gularity. Thus, one should expect that removing the
assumption of spherical symmetry or, more generally, axial
symmetry, will result in formation of general curvature
singularities just on spatial hypersurfaces beyond which
gravity becomes repulsive.
Let us see what happens at r < 0. There are two options.

If the integration constant A0 < 1, then the geometry is
regular for all values of the variable r. The asymptotic
expression for the metric (51) at r → −∞ is

ds2 ¼ b20ð1 − A0Þ2
4A0

dt2

−
a20ð1 − A0Þ2

16A0

e−2rðdr2 þ dθ1 þ sin2 θdϕ2Þ: ð53Þ

On introducing a variable

r̄ ¼ a0ð1 − A0Þe−r
4

ffiffiffiffiffi
A0

p ; ð54Þ

we can rewrite the metric (53) as

ds2¼ b20ð1−A0Þ2
4A0

dt2−dr̄2− r̄2ðdθ2þ sin2 θdϕ2Þ; ð55Þ

and it describes the Minkowski spacetime. It is easy to see
that at r → ∞ we again encounter an asymptotically flat
Minkowski spacetime. Let us note that for a value of the
radial variable

r ¼ −arctanhA0; ð56Þ

the factor aðrÞ has a minimum value. Thus, we can imagine
that this value of the variable r corresponds to a throat of
some wormholelike configuration1.

1Note that the fact that this configuration requires the ghost
behavior of graviton in the antigravity regime for r < 0 is in the
agreement with the general theorem proved in Ref. [42] that there
are no non-singular wormholes in scalar-tensor gravity without
ghosts.

DUALITY BETWEEN STATIC SPHERICALLY OR … PHYS. REV. D 98, 124028 (2018)

124028-5



Let us again emphasize that the absence of the singu-
larity at r ¼ 0 provided γ ¼ 1=2 is connected with the
presence of the conformal coupling in our model. Indeed,
on making the transition from the Jordan frame to the
Einstein frame, where the coupling becomes minimal,
one may encounter the singularity at r ¼ 0. Therefore,
in this case the conformal continuation, described in [14],
is possible. A similar phenomenon for the Friedmann-
Lemaître-Robertson-Walker cosmology was described in
detail in paper [34].
Let us now consider a more interesting case wherein the

integration constant A0 ≥ 1. When

r → r0 ¼ −2arctanh
1

A0

; ð57Þ

both scale factors tend to zero as ðr − r0Þ and we stumble
upon the singularity, characterized by the invariant

RμνRμν ∼
1

ðr − r0Þ8
: ð58Þ

Nevertheless, for r < r0, the metric and the scalar field are
well defined, and one can construct the continuation of the
solution into this region. Then, for r → −∞ we again have
an asymptotically flat Minkowski spacetime. We wish to
note that in contrast with the case of r ¼ 0 the singularity at
r ¼ r0 and A0 ≥ 1 arises due to the presence of the
conformal coupling. Indeed, the transformation to the
Einstein frame eliminates this singularity.
Let end this section by observing that for the case γ ≠ 1=2

the continuation of the solutions “beyond the singularity”
looks rather problematic, even if formally the corresponding
equations are satisfied. The point is that the function tanh r

2

enters into the solutions in powers of γ and
ffiffiffiffiffiffiffi
1−γ2
3

q
and is ill

defined at r < 0 when tanh r
2
is negative.

IV. STATIC HYPERBOLICALLY SYMMETRIC
SOLUTIONS FOR THE CASE OF A

CONFORMALLY COUPLED SCALAR FIELD

We shall consider a static hyperbolically symmetric
metric of the form [13,20].

ds2 ¼ b2ðrÞdt2 − a2ðrÞðdr2 þ dχ2 þ sinh2 χdϕ2Þ; ð59Þ

where the hyperbolic angle χ runs from 0 to ∞. All
considerations are analogous to those presented in the
preceding section.
We then obtain the general solution in the following

form;

ds2 ¼
b20
�
A0ðtan r

2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ 1

�2ðtan r
2
Þ2γ

4A0ðtan r
2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p dt2

−
a20
�
A0ðtan r

2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ 1

�2

sin2 r

4A0ðtan r
2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ2γ

× ðdr2 þ dχ2 þ sinh2 χdϕ2Þ; ð60Þ

while

σ ¼
ffiffiffiffiffiffiffiffiffiffiffi
12U0

p A0ðtan r
2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
− 1

A0ðtan r
2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ 1

: ð61Þ

For the cases γ ¼ �1, we obtain the pseudo-
Schwarzschild solution, which was mentioned in the paper
by Harrison [19] as a “degenerate solution III-9” and whose
properties were studied in detail in papers [13,20]. If
γ ≠ 1=2, at the point r ¼ 0 one has the singularity of
the same kind as that studied in the preceding section.
However, another singularity arises at r ¼ π, if γ ≠ −1=2.
In this case, the invariant RμνRμν behaves as

RμνRμν ∼ ðπ − rÞ−4
�
2þγ−

ffiffiffiffiffiffi
1−γ2
3

p �
: ð62Þ

Note that the right-hand sides of Eqs. (58) and (62) have the
standard ρ−4 behavior if expressed in terms of the proper
distance ρ. Thus, if γ ≠ �1=2 then, the solution (60), (61) is
well defined between two singularities at r ¼ 0 and r ¼ π.
Let us now consider two particular cases. If γ ¼ 1=2, the
solution (60), (61) has the following form:

ds2 ¼ b20ðA0 tan r
2
þ 1Þ2

4A0

dt2 −
a20½4A0 tan r

2
þ 1�2 sin2 r

A0 tan2
r
2

× ½dr2 þ dχ2 þ sinh2 χdϕ2�: ð63Þ

σ ¼
ffiffiffiffiffiffiffiffiffiffiffi
12U0

p A0 tan r
2
− 1

A0 tan
r
2
þ 1

: ð64Þ

The value r ¼ 0 is now regular and we can construct a
continuation of the solution into the region r < 0. However,
in this region we encounter a singularity at

r1 ¼ −2 arctan
1

A0

: ð65Þ

One can construct a continuation through this singularity
because the expressions (63) and (64) are well defined at
r < r1. Finally, we encounter the singularity, which was
already described above at r ¼ −π. Thus, one can say that
the solutions (63), (64) are defined between the two
singularities at r ¼ −π and r ¼ þπ with an intermediate
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singularity at r ¼ r1 ¼ −2 arctan 1
A0
, which can be contin-

ued through.
Let us consider another particular case γ ¼ −1=2. The

solution is now

ds2 ¼ b20ðA0 tan r
2
þ 1Þ2

4A0 tan2 r
2

dt2 −
a20ðA0 tan r

2
þ 1Þ2 sin2 r

4A0

× ðdr2 þ dχ2 þ sinh2 χdϕ2Þ: ð66Þ

The expression for the scalar σ is given by Eq. (64). The
solution (66) is defined between two singularities at r ¼ 0
and r ¼ 2π and is nonsingular at r ¼ π. There is also an
intermediate singularity at r ¼ 2π − 2 arctan 1

A0
.

V. RELATION BETWEEN STATIC AND
COSMOLOGICAL SOLUTIONS

In this section, we shall use the method for the
construction of cosmological solutions, starting from the
duality relations described in the paper [13]. The corre-
sponding transformations can be considered as a special
kind of complex transformations used for the construction
of new solutions of the Einstein equations (see e.g., [43]).
As an example one can mention also the complex trans-
formations connecting cosmological Kasner solutions [44]
for a Bianchi-I universe with the static Kasner solutions
(see, e.g., [45]). However, the particular form of the
complex transformations, exchanging hyperbolic and
spherical symmetry in the form implemented in paper
[13] and in the present paper does not appear to be widely
used. Let us consider the static spherically symmetric
spacetime. If we make the substitution

r ↔ t; ð67Þ

followed by a change of the sign of all the metric
components,

gμν → −gμν; ð68Þ

and by the substitution

θ → iχ; ð69Þ

we obtain a Kantowski-Sachs cosmological solution, where
the spherical symmetry is replaced by the hyperbolic one:

ds2 ¼
a20
�
A0ðtanh t

2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ 1

�2

sinh2 t

4A0ðtanh t
2
Þ2γþ2

ffiffiffiffiffiffi
1−γ2
3

p
× ðdt2 − dχ2 − sinh2 χdϕ2Þ

−
b20
�
A0ðtanh t

2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ 1

�2ðtanh t
2
Þ2γ−2

ffiffiffiffiffiffi
1−γ2
3

p
4A0

dr2:

ð70Þ

It is curious to look at the particular solution for the case
γ ¼ 1=2 and A0 < 1. Now,

ds2 ¼ a20ðA0 tanh
t
2
þ 1Þ2 cosh4 t

2

A0

ðdt2 − dχ2 − sinh2 χdϕ2Þ

−
b20ðA0 tanh t

2
þ 1Þ2

4A0

dr2: ð71Þ

One can see that the evolution of the Universe is a non-
singular one. The scale corresponding to the variable r
(which can be both compact or noncompact) is almost
constant. Let us look at the evolution of the two-dimensional
hyperboloid with the metric

dχ2 þ sinh2 χdϕ2:

When t → −∞, the metric of the Universe can be repre-
sented as

ds2¼ dt̃2− t̃2ðdχ2þ sinh2 χdϕ2Þ−b20ð1−A0Þ2
4A0

dr2; ð72Þ

where a cosmic time parameter t̃ is defined by

t̃ ¼ −
a0ð1 − A0Þe−tffiffiffiffiffi

A0

p : ð73Þ

It is easy to see that the metric (72) describes the direct
product of the line or circle by the 2þ 1 dimensional Milne
universe, which is equivalent to the Minkowski spacetime.
An analogous expression can be written for t → þ∞. Thus,
the Universe begins its evolution in the distant past
from the asymptotically Minkowski spacetime, represented
in the Milne form, then it contracts until the moment
t2 ¼ −2arctanhA0 and the it begins an expansion, which
ends again in the asymptotically flat Minkowski spacetime.
Another interesting case arises if we start from the static

hyperbolically symmetric metric (60) and make the duality
transformations presented above with the difference that
now

χ → iθ:

Then we arrive at the Kantowski-Sachs universe,
where the spatial sections are direct products of the

DUALITY BETWEEN STATIC SPHERICALLY OR … PHYS. REV. D 98, 124028 (2018)

124028-7



one-dimensional submanifold (the r variable) and a two-
dimensional sphere:

ds2¼
a20
�
A0ðtan t

2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ1

�2

sin2 t

4A0ðtan t
2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ2γ

ðdt2−dθ2−sin2θdϕ2Þ

−
b20
�
A0ðtan t

2
Þ2

ffiffiffiffiffiffi
1−γ2
3

p
þ1

�2ðtan t
2
Þ2γ−2

ffiffiffiffiffiffi
1−γ2
3

p
4A0

dr2: ð74Þ

As before, the cases γ ¼ �1 describe an empty
Kantowski-Sachs universe and they are well known.
If 1

2
< γ < 1, then one has the singularities at t ¼ 0 and

t ¼ π and it is not clear if the continuation through these
singularities makes sense. When t → 0, aðtÞ → ∞, while
bðtÞ → 0. At t → π, the scale factor a tends to zero, while
b → ∞. All the evolution takes place at the gravity
regime (Uc ≥ 0).
If − 1

2
< γ < 1=2, then at t ¼ 0 we have a singularity

such that a → 0 and b → ∞. Then at t → π the scale factor
a again vanishes while b grows infinitely.
If − 1 < γ < −1=2, then at t → 0, a → 0 while b → ∞.

When t → π, a → ∞ and b → 0.
Let us consider in detail the particular cases γ ¼ �1=2.

For γ ¼ 1=2, the metric is given by

ds2 ¼ a20ðA0 tan
t
2
þ 1Þ2 cos4 t

2

A0

ðdt2 − dθ2 − sin2 θdϕ2Þ

−
b20ðA0 tan t

2
þ 1Þ2

4A0

dr2: ð75Þ

This metric is regular at t ¼ 0 and has singularities at
t ¼ �π and at t ¼ t0 ¼ −2 arctan 1

A0
. At t → �π, the scale

factor a → 0 while b → ∞. At t → t0 both scale factors
vanish. At t < 0, we find ourselves in the region with
antigravity becauseUc < 0. We see that the expression (75)
contains only integer powers of the trigonometrical func-
tions and one can describe the crossing of the singularities
in a unique way. Thus, we can imagine an infinite periodic
evolution of the Universe. Let us consider a period between
−π and π. At t ¼ −π, the Universe goes out of the
singularity with the vanishing value of the scale factor a
and an infinite value of the scale factor b. Then, the
scale factor b decreases and vanishes when the Universe
approaches to the singularity at t ¼ t0 ¼ −2 arctan 1

A0
.

Meanwhile the scale factor a increases and reaches its
maximal value at t ¼ t1 ¼ −π þ arctanA0 and then begins
decreasing and vanishes at the singularity at t ¼ t0. After
that b increases reaching an infinite value at the singularity
at t ¼ π, while a increases until t ¼ t2 ¼ arctanA0, where
it achieves its maximum value and then decreases and
vanishes at t ¼ π. Then, the evolution repeats itself. Let us
now also look more carefully to the structure of the

anisotropy of these cosmological singularities. In the
vicinity of the moment t → π, the asymptotic expressions
for the metric coefficients become simpler and we can
introduce a cosmic time parameter T → 0. The metric now
has the following form:

ds2 ¼ dT2 − c21Tdθ
2 − c22T sin2 θdϕ2 − c3

1

T
dr2: ð76Þ

This form has a structure similar to that of the Kasner
solution for a Bianchi-I universe [44,46], where the Kasner
indices have the values

p1 ¼
1

2
; p2 ¼

1

2
; p3 ¼ −

1

2
: ð77Þ

Let us note that while these indices do not satisfy the
standard Kasner relations [44,46]

p1 þ p2 þ p3 ¼ p2
1 þ p2

2 þ p2
3 ¼ 1; ð78Þ

they satisfy the generalized relation

X3
i¼1

p2
i ¼ 2

X3
i¼1

pi −
�X3

i¼1

pi

�2

; ð79Þ

discussed in our preceding paper [36]. We can find a similar
asymptotic representation of the metric (75) in the vicinity
of the singularity at t ¼ t0. It is

ds2 ¼ dT2 − c21Tdθ
2 − c22T sin2 θdϕ2 − c3Tdr2: ð80Þ

Thus, this behavior is isotropic and the Kasner indices

p1 ¼ p2 ¼ p3 ¼
1

2
ð81Þ

again satisfy the relation (79).
Lets us consider another particular case where γ ¼ −1=2.

The metric is now

ds2 ¼ a20ðA0 tan t
2
þ 1Þ2 sin2 t

4A0

ðdt2 − dθ2 − sin2 θdϕ2Þ

−
b20ðA0 tan

t
2
þ 1Þ2

4A0ðtan t
2
Þ2 dr2: ð82Þ

In this case, we can also consider a periodic evolution
of the Universe, which crosses the singularities. It begins at
the singularity at t ¼ 0 when the scale factor a is equal to
zero and the scale factor b is infinite, then b begins
decreasing and arrives to a value equal to zero at the
singularity at t ¼ t2 ¼ 2π − 2 arctan 1

A0
. Meanwhile the

scale factor a increases, arriving to a maximum value at
t ¼ π − arctan 1

A0
, then it decreases and vanish at t ¼ t2.
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After that the scale factor a grows infinitely until arriving to
the singularity at t ¼ 2π while the scale factor b reaches its
maximal value at t ¼ 2π − arctan 1

A0
and vanishes at t ¼ 2π.

Then the evolution repeats itself. We can add here that in
the vicinity of the singularity at t ¼ 0,the Kasner indices
are given by Eq. (77) while in the vicinity of the singularity
at t ¼ t2, the Kasner indices are given by Eq. (81).

VI. CONCLUDING REMARKS

It is well known that on combining the conformal
transformation of the metric with the reparametrization
of the scalar field, one can rewrite the action of a model
with a nonminimally coupled scalar field in a form where it
becomes minimally coupled. Such a procedure is called
the transformation from the Jordan frame to the Einstein
frame. For the first time, this transformation was used in
paper [23].
Many papers discuss this topic, which sometimes is

described as a study of the equivalence between frames
[34,47]. In a way, one can say that mathematically the
procedure of the transition between the frames is well
defined and can be used in different contexts. We wish to
emphasize that the physical cosmological evolutions are
those seen by an observer using the cosmic (synchronous)
time, which is different in different frames. Thus, evolu-
tions in the Einstein and Jordan frames, connected by a
conformal transformation and by the reparametrization of
the scalar field can be qualitatively different. In the present
paper we have shown that the static spherically or hyper-
bolically symmetric solutions of the Einstein equations and
their Kantowski-Sachs counterparts in the presence of the
conformally coupled scalar field possess some special
regimes, which are absent for the case of a minimally
coupled scalar field [13]. Moreover, one can see that for the
models considered here there exist situations when a
transition from the Einstein frame to the Jordan frame or
viceversa can remove or create a singularity. Similar effects
were studied in detail for Friedmann models in paper [34].
It was shown that when the Universe encounter the
singularity in the Einstein frame, it is absent in the

Jordan frame, because this singularity is reabsorbed by
the conformal transformation factor. Such effect is however
absent in the Bianchi-I models and the singularities arise
simultaneously in both frames [31,35,36]. Let us add that
the fact that the conformal transformations can essentially
change the geometry of the spacetime due to an effective
creation of some additional matter was discussed in the
paper [41].
In recent years there has been an intensive discussion on

the possibility of the crossing of the Big Bang—Big
Crunch type singularities in cosmology [48]. The main
point here is that one can describe the singularity crossing if
in spite of the presence of some divergent invariants at the
singularity, it is possible to establish some well-defined
prescription for matching some nonsingular quantities
before and after the singularity. In paper [34] such a
procedure was based on the Jordan-Einstein frame tran-
sitions. In papers [35,36] other field reparametrizations
were used. In the present paper we have used the fact that
for some special choices of the parameters, the expressions
for the metric and the field are well defined (contain only
integer degrees of some simple functions) and hence, the
matching between regions separated by a singularity arises
naturally. We think that the question concerning possible
generality of such a procedure deserves further investiga-
tions. On the other hand, the finding some exact solutions
of Einstein equations which have more complicated struc-
ture than solutions such as Friedmann-Lemaître universes
or Schwarzschild black holes, can be useful for both
cosmology and black hole physics. In particular, it concerns
the questions connected with the general relativistic sin-
gularities. Let us note that spherically symmetric solutions
for models with a minimally coupled scalar field and
nonzero potential have been studied in [14,17,49,50].
We plan to study similar solutions in the models with
nonminimal coupling in the further investigations.
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