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It has recently been shown that the strong cosmic censorship conjecture can be violated by the massless
neutral scalar field in the nearly extremal Reissner-Nordstrom–de Sitter black hole. However, the formation
of such a black hole by gravitational collapse necessitates the presence of the charged sector on top of the
Einstein-Maxwell system. Thus, we numerically calculate the quasinormal modes for a massless charged
scalar field in the Reissner-Nordstrom–de Sitter spacetime by generalizing the characteristic formulation to
the charged case. As a result, the strong cosmic censorship is recovered by our massless charged scalar field
except in the highly extremal limit Q → Qm, where the violation still occurs when the scalar field is
appropriately charged.
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I. INTRODUCTION AND MOTIVATION

As is well known, a variety of versions of singularity
theorems tell us that spacetime singularity can be formed
generically by the gravitational collapse of suitable matter
distribution [1,2]. Such a formation of singularity indicates
that general relativity breaks down near the singularity and
will be replaced by the so-called complete quantum theory
of gravity. In particular, if the formed singularity is time-
like, general relativity will lose its predictive power because
of the region of spacetime under consideration, whose past
domain of influencewill hit the singularity.With this inmind,
Penrose proposed his strong cosmic censorship hypothesis
(SCC) to maintain the predictability of classical general
relativity. The SCC, in essence, states that the gravitational
collapse of generic initial distribution for suitable matter
only leads to a spacelike or lightlike singularity.
The timelike singularity in the eternal Kerr and Reissner-

Nordstrom black holes appears to violate the SCC. However,
this is not the case because the remnant fields are generically
present, along with the real-life black hole formed from
the gravitational collapse. These remnant fields, which are
demonstrated to have an inverse power-law decay behavior

outside of the black hole, will be amplified when propagated
along the Cauchy horizon due to the exponential blueshift
effect. As a result, the Cauchy horizon becomes singular
such that one cannot extend across the would-be Cauchy
horizon to the spacetime region with the timelike singularity.
But the above argument does not apply to the black holes

in de Sitter spacetime because the remnant fields instead
have an exponential decay behavior outside of the black
hole [3–9]. Accordingly, the extendibility of the Cauchy
horizon depends delicately on the competition between the
exponential decay behavior outside of the black hole and
the exponential blueshift amplification along the Cauchy
horizon. As shown in [10], the blueshift effect wins for the
remnant fields around the Kerr–de Sitter black hole, so the
SCC is respected. On the other hand, when one considers
the remnantmassless neutral scalar field around theReissner-
Nordstrom–de Sitter (RNdS) black hole, the exponential
decay effect wins in some regime of the parameter space
under consideration such that the SCC is violated [11]. Such
a violation becomes more severe for the coupled electro-
magnetic and gravitational perturbations [12]. However,
taking into account the unavoidable presence of charged
remnant fields in the dynamical formation of the RNdS black
hole, Hod found that the SCC is restored at least by the scalar
field with a sufficiently large charge and mass [13]. The
purpose of this paper is to see what happens to the SCC if
one charges the massless scalar field considered in [11].
In this case, Hod’s analytic analysis does not work, sowe are
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required to numerically calculate the low-lying quasinormal
modes (QNMs) for the massless charged scalar field in the
RNdS black hole background. Our result shows that the
SCC is recovered by ourmassless charged scalar field except
in the highly extremal limit, where the violation can still
occur when the charge of our scalar field is tuned to some
appropriate regime.
This paper is organized as follows. In the subsequent

section, we develop the relationship between the QNMs
and the SCC for the charged scalar field in RNdS back-
ground. In Sec. III, after introducing our numerical scheme
for the time evolution of the charged scalar field by the
double null coordinates, we present the relevant numerical
results about the low-lying QNMs for the massless charged
scalar field and the implications to the SCC. We conclude
our paper in the last section with some discussions.

II. QUASINORMAL MODES AND STRONG
COSMIC CENSORSHIP

Let us start with the four-dimensional RNdS black hole

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ;

Aa ¼ −
Q
r
ðdtÞa; ð1Þ

where the blackening factor

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−
Λr2

3
ð2Þ

with M and Q the mass and charge of the black hole, and
Λ the positive cosmological constant. If the cosmological,
event, and Cauchy horizons are designated as rc, rþ, and
r− individually, then the blackening factor can also be
written as

fðrÞ ¼ Λ
3r2

ðrc − rÞðr − rþÞðr − r−Þðr − roÞ ð3Þ

with ro ¼ −ðrc þ rþ þ r−Þ. In addition, the surface grav-
ity at each horizon rh is given by κh ¼ j 1

2
f0ðrhÞj. Whence,

we have

κc ¼
Λ
6r2c

ðrc − rþÞðrc − r−Þðrc − roÞ;

κþ ¼ Λ
6r2þ

ðrc − rþÞðrþ − r−Þðrþ − roÞ;

κ− ¼ Λ
6r2−

ðrc − r−Þðrþ − r−Þðr− − roÞ;

κo ¼
Λ
6r2o

ðrc − roÞðrþ − roÞðr− − roÞ: ð4Þ

Now suppose that the behavior of the charged scalar field
in such a curved spacetime is governed by the following
Klein-Gordon equation:

½ð∇a − iqAaÞð∇a − iqAaÞ −m2�Ψ ¼ 0; ð5Þ

which can be written explicitly as

−
∂2
tΨ
f

þ 1

r2
∂rðr2f∂rΨÞ þ

1

r2

�
1

sin θ
∂θðsin θ∂θΨÞ

þ 1

sin2θ
∂2
ϕΨ

�
−
2iqQ
rf

∂tΨþ ðqQÞ2
r2f

Ψ −m2Ψ ¼ 0

ð6Þ

with m and q the mass and charge of the scalar field.
Associated with an arbitrary solution to this equation of
motion, not only is there a gauge transformation ðAa;ΨÞ →
ðAa þ∇aλ; eiqλΨÞ, but also a conserved current given by

ja ¼ i½Ψ̄ð∇a − iqAaÞΨ −Ψð∇a þ iqAaÞΨ̄�: ð7Þ

Due to the symmetry of the background and the linearity of
the dynamics, it is sufficient for us to consider the scalar
field as

Ψ ¼ ψðrÞ
r

Ylmðθ;ϕÞe−iωt: ð8Þ

Plugging it into the above equation of motion, we wind up
with the effective equation

d2ψ
dr2�

þ f½ω −ΦðrÞ�2 − VðrÞgψ ¼ 0 ð9Þ

for the radial function, where the tortoise coordinate r� is
defined as dr� ¼ dr

f with the electric potential ΦðrÞ ¼ qQ
r

and the effective potential VðrÞ ¼ f½rf0þlðlþ1Þþm2r2�
r2 . It obvi-

ously follows that the radial function behaves as

ψ ∼ e�i½ω−ΦðrhÞ�r� ð10Þ

near any one of the horizons rh. Now let us consider the
regime between the event and cosmological horizons,
where r� can be integrated out as

r� ¼ −
1

2κc
ln

�
1 −

r
rc

�
þ 1

2κþ
ln

�
r
rþ

− 1

�

−
1

2κ−
ln

�
r
r−

− 1

�
þ 1

2κo
ln

�
1 −

r
ro

�
: ð11Þ

If we impose the following boundary conditions,

ψ ∼ e−i½ω−ΦðrþÞ�r� r → rþ; ψ ∼ ei½ω−ΦðrcÞ�r� r → rc;

ð12Þ

namely, the ingoing boundary condition near the event
horizon and the outgoing boundary condition near the
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cosmological horizon, then the equation of motion will give
rise to a set of discrete frequencies, which are the so-called
QNMs. It is noteworthy that the spectrum of QNMs for the
scalar field with the charge q is related to that with the
charge −q by the minus complex conjugation. So when
the scalar is neutral, the spectrum of QNMs is symmetric
with respect to the imaginary axis on theω plane. As we see
in the next section, this symmetry will be broken in the
presence of the charge.
On the other hand, with the above ingoing boundary

condition near the event horizon, the solution inside of the
black hole generically has both the outgoing and ingoing
modes near the Cauchy horizon. By performing the gauge
transformation with dλ ¼ Q

r dr�, and the coordinate trans-
formation to the outgoing coordinates with u defined as
u ¼ t − r�, which allows us to analytically continue our
metric and electric potential across the Cauchy horizon, the
outgoing and ingoing modes can be expressed as

ψo ∼ e−iωu; ψ i ∼ e−iωuðr − r−Þ
i½ω−Φðr−Þ�

κ− ; r → r−

ð13Þ
near the Cauchy horizon, respectively. Obviously, the
potential nonsmoothness near the Cauchy horizon comes
from the ingoing mode ψ i. As detailed in [10], one can
extend this mode across the Cauchy horizon such that
the SCC is violated if and only if it has a locally square
integrable derivative, belonging to the Sobolev space H1

loc,
which requires

β≡ −
ImðωÞ
κ−

>
1

2
: ð14Þ

Put another way, if one can find a quasinormal mode with
β < 1

2
, then the SCC is preserved. So for this purpose, we

are only required to focus on the lowest-lying quasinormal
mode.

III. NUMERICAL SCHEME AND
RELEVANT RESULTS

A. Numerical scheme

Regarding the QNMs of the charged scalar field in the
RNdS black hole, early works include [14,15]. Those
works focused on the superradiance instability, and the
numerical scheme they used is the general initial value
integration. Below we also extract the QNMs by the time
domain analysis, but instead we evolve our initial data
by the characteristic formulation, which was proposed
originally in [16]. This characteristic formulation has been
adopted in various case studies [17–21]. We generalize this
formulation to our charged scalar field. To proceed, as
demonstrated in Fig. 1, we first make the coordinate
transformation to the double null coordinates ðu; vÞ, with
u defined before and v defined as v ¼ tþ r�. Accordingly,
the metric reads

ds2 ¼ −fdudvþ r2ðdθ2 þ sin2θdϕ2Þ: ð15Þ

In addition, we would also like to make the gauge

transformation dλ ¼ Qð2r−rc−rþÞ
rðrc−rþÞ dr� such that the electric

potential reads

Aa ¼ −
Qðr − rþÞ
rðrc − rþÞ

ðduÞa þ
Qðr − rcÞ
rðrc − rþÞ

ðdvÞa: ð16Þ

If we expand the scalar field as

Ψ ¼ ψðu; vÞ
r

Ylmðθ;ϕÞ; ð17Þ

then the resultant Klein-Gordon equation can be ex-
pressed as

0 ¼ −4∂u∂vψ − 4iΦðrÞ
�

rc − r
rc − rþ

∂uψ þ r − rþ
rc − rþ

∂vψ

�

−UðrÞψ ; ð18Þ

where UðrÞ ¼ 4Φ2ðrÞðr−rcÞðr−rþÞ
ðrc−rþÞ2 þ f

r2 ½ðlðlþ1Þþf0rþm2r2þ
iΦðrÞrðrcþrþÞ

rc−rþ
�. Whence, it is not hard to see that the QNMs

behave as e−iωv near rþ and e−iωu near rc. This is actually the
reason why we have made the above gauge transformation.
To numerically solve the above partial differential

equation, we approximate it at the point Oðu0þΔ
2
;v0þΔ

2
Þ

to the order of OðΔ2Þ in the following way:

∂u∂vψ jO →
ψðNÞ − ψðEÞ − ψðWÞ þ ψðSÞ

Δ2
; ð19Þ

FIG. 1. Penrose diagram for the RNdS black hole with u and v
defined as u ¼ t − r� and v ¼ tþ r�. The red line, blue line, and
green line denote the black hole event horizon, Cauchy horizon,
and cosmological horizon individually.
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∂uψ jO →
ψðNÞ þ ψðWÞ − ψðEÞ − ψðSÞ

2Δ
; ð20Þ

∂vψ jO →
ψðNÞ þ ψðEÞ − ψðWÞ − ψðSÞ

2Δ
; ð21Þ

ψðOÞ → ψðEÞ þ ψðWÞ
2

; ð22Þ

where, as depicted in Fig. 2, N, E, W, and S correspond
individually to the points ðu0 þ Δ; v0 þ ΔÞ, ðu0; v0 þ ΔÞ,
ðu0 þ Δ; v0Þ, and ðu0; v0Þ. With this approximation, the
equation of motion gives rise to

ψðNÞ ¼
�
1þ i

ΦðrÞΔ
2

�
−1
�
−
�
1 − i

ΦðrÞΔ
2

�
ψðSÞ ð23Þ

− i
ð2r − rc − rþÞΦðrÞΔ

2ðrc − rþÞ
ðψðEÞ − ψðWÞÞ

þ
�
1 −

UðrÞΔ2

8

�
ðψðEÞ þ ψðWÞÞ

�
; ð24Þ

where r is evaluated at the point O; thus, it can be solved
by r�ðrÞ ¼ 1

2
ðv0 − u0Þ. As illustrated in Fig. 3, to reduce

the computing time, we adopt a parallel evolution along
the time t slice within the diamond under consideration.
In addition, in our numerical evolution, the initial value
for our scalar field is set as follows:

ψð0; vÞ ¼ 0;

ψðu; 0Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

ðu−ucÞ2
2σ2 ; ð25Þ

with σ and uc as the width and center of the Gaussian
wave packet. Then, we extract the spectrum of low-lying
QNMs from the N equally elapsed late-time data ψ̂ðtpÞ ¼
ψðt0 þ pΔ; r� ¼ 0Þ using the Prony method [22]. The
convergence of our numerics is examined by decreasing
the evolution step length Δ. We have also tested our
numerics by reproducing the relevant results reported in
the previous literature, such as [11,14,15]. Below we focus
only on the massless scalar field, although the prescribed

numerical scheme can be applied equally to the massive
case. In addition, we work with the units in which M ¼ 1.
As a demonstration, we would like to conclude this

subsection by depicting the temporal evolution of ψ̂ðtÞ of
q ¼ 0.1 in Fig. 4 and list the corresponding spectrum of low-
lying QNMs in Table I for Λ ¼ 0.02 and Q=Qm ¼ 0.9910,
where Qm corresponds to the charge of the black hole with
rþ ¼ r− and n denotes the overtone number, with n ¼ 1

representing the fundamental mode. Among others, we see
there is a slowlygrowingunstablemode for l ¼ 0with its real

part ReðωÞκ−
∈ðΦðrcÞ

κ−
¼0.051966;ΦðrþÞ

κ−
¼0.503183Þ. Actually, as

shown before in [14,15], this kind of unstable mode appears
only for l ¼ 0 and is always superradiant.

B. Relevant results

Due to the limited computational resources, we have
no intention of charting the corresponding spectrum of

FIG. 2. Finite difference scheme to obtain the data atN from the
data at E, W, and S.

FIG. 3. Diamond parallel evolution scheme, where horizontal
and vertical lines correspond to the time t slice and equal r line,
respectively.

FIG. 4. The temporal evolution of jψ̂ðtÞj of q ¼ 0.1 for Λ ¼
0.02 and Q=Qm ¼ 0.9910.
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low-lying QNMs for the whole parameter space. Actually,
as demonstrated in [11], only in the near extremal RNdS
black hole is the SCC violated by the massless neutral
scalar field, where the dominant criminal modes can be
the de Sitter mode, the photon sphere mode, or the near
extremal mode, depending on the specific parameter
value in the moduli space. With this in mind, we simply
investigate some representative points in the moduli space,
which also suffices for our purpose. In particular, the
following representative points are chosen to facilitate the
comparison, if necessary, with the result presented in [11].
We first present the lowest-lying QNMs in Fig. 5 for the

case of Λ ¼ 0.02 and Q=Qm ¼ 0.9950, where the SCC
would be violated by the l ¼ 1 dominant de Sitter mode if
the massless scalar field was uncharged. However, once we
charge the scalar field, the l ¼ 0 trivial zero mode becomes
nontrivial. In particular, it demonstrates the superradiant
instability in the small charge regime and then stabilizes
when the charge is large enough, which is consistent with
the previous observation made in [14,15]. But no matter if it
is unstable or stable, this l ¼ 0 zeromode still lies well above
the −1=2 horizontal threshold line, thus saves the SCC.
Now let us turn to the case of Λ ¼ 0.14 and Q=Qm ¼

0.9950, where the SCC would be violated by the photon
sphere dominant mode if the massless scalar field was
uncharged. As shown in Fig. 6, the l ¼ 0 trivial zero mode
still becomes nontrivial once the scalar field is charged,
although it does not demonstrate the superradiance instability
anymore, consistent with the observation made in [14,15]

that a large cosmological constant stabilizes the system.
Similarly, in the presence of the charge, this mode keeps the
SCC from being violated again. As an aside, there is an
obvious nonsmoothness for the behavior of the l ¼ 0
dominant mode as one cranks up the charge. As demon-
strated in Fig. 7, such a nonsmoothness arises from the fact
that the l ¼ 0 near extremal mode takes over the dominant
position from the l ¼ 0 zero mode when the charge is large
enough.
Next let us see what happens to the case of Λ ¼ 0.14

and Q=Qm ¼ 0.9985, where the SCC would be violated

FIG. 5. The lowest-lying QNMs for Λ ¼ 0.02 and Q=Qm ¼
0.9950.

TABLE I. The low-lying QNMs ω
κ−

of q ¼ 0.1 for Λ ¼ 0.02 and Q=Qm ¼ 0.9910.

n l ¼ 0 l ¼ 1 l ¼ 10

1 0.057773þ 0.002227i 0.032203 − 0.475118i −14.080 − 0.491i
2 1.008291 − 0.520028i 2.348530 − 0.499977i 14.653 − 0.492i
3 −0.452819 − 0.559594i −1.769203 − 0.500762i −14.059 − 1.474i
4 0.598660 − 0.834292i −0.033667 − 1.435223i 14.633 − 1.476i

FIG. 6. The lowest-lying QNMs for Λ ¼ 0.14 and Q=Qm ¼
0.9950.

FIG. 7. The l ¼ 0 dominant and subdominant QNMs for
Λ ¼ 0.14 andQ=Qm ¼ 0.9950, where the orange points and blue
points denote the zero mode and near extremal mode, respectively.
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by the l ¼ 0 dominant extremal mode if the massless scalar
field was uncharged. As such, we would like to depict the
corresponding dominant and subdominant QNMs in Fig. 8.
As one can see, due to the l ¼ 0 nontrivial zero mode in the
presence of the charge, there is no violation of the SCC.
In addition, it is noteworthy that the presence of the charge
breaks the left and right symmetry between the l ≠ 0
photon sphere modes with respect to the imaginary axis
on the ω plane. To be more precise, as illustrated in Fig. 9
for the l ¼ 10 photon sphere modes, the magnitude of both
the real and imaginary parts of ωL þ ωR increases from
zero as the charge q varies from 0 to 10.
Comparing Figs. 6 and 8, one can see that the minimum

of ImðωÞ
κ−

for the dominant QNMs decreases when the
charge of the black hole is increased toward the extremal
limit. Actually, this is the case. Moreover, the SCC is still
violated in such a limiting case [23]. To see this explicitly,

we depict the lowest-lying QNMs in Fig. 10 for ΛM2 ¼
0.14 and Q=Qm ¼ 0.9999. Obviously, although the
SCC is respected in the regime where the charge of the
scalar field is sufficiently small or sufficiently large,
the violation of the SCC still occurs when the scalar
field is appropriately charged within the narrow regime.
Furthermore, we zoom in on this violation regime in
Fig. 11, which demonstrates that this violation regime
becomes bigger when one approaches the extremal limit.
In particular, the minimal violation charge gets smaller
while the maximal violation charge remains almost
unchanged. This indicates that the maximal violation
charge may converge to a finite value in the extremal
limit. Namely, once the charge of the scalar field is larger
than this value, the SCC is always respected [25].

IV. CONCLUSION AND DISCUSSION

To address the SCC in the presence of the massless
charged scalar field on top of the RNdS black hole, we have
succeeded in calculating the corresponding low-lying

FIG. 8. The dominant and subdominant QNMs for Λ ¼ 0.14
and Q=Qm ¼ 0.9985.

FIG. 9. The symmetry breaking of the l ¼ 10 left and right
photon sphere modes for Λ ¼ 0.14 and Q=Qm ¼ 0.9985. The
orange points denote the left photon sphere modes ωL, the blue
points denote the right photon sphere modes ωR, and the green
points denote ðωL þ ω̄RÞ=2, where the arrow indicates the
increase of the charge q from 0 to 10.

FIG. 10. The lowest-lying QNMs for Λ ¼ 0.14 and Q=Qm ¼
0.9999.

FIG. 11. The violation regime for Λ ¼ 0.14 gets bigger when
the extremal limit is approached.
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QNMs using the time domain analysis. To this end, we
generalize the characteristic formulation to the charged
case in the double null coordinates. As a result, we find that
the presence of the massless charged scalar field can
recover the SCC in the RNdS black hole except in the
highly extremal limit, where the violation can still occur
when the scalar field is appropriately charged.
In addition, among others, our numerical result also

demonstrates two interesting patterns. First, the l ¼ 0
dominant mode seems to always dominate over the l ≠ 0
dominant modes. Second, it seems that the imaginary parts
of different lmodes converge to some discrete values in the
large q limit. Both of these issues beg an analytic analysis.
So far, our investigation has been restricted at the linear
level. So not only is it intriguing to see how the would-be
Cauchy horizon becomes singular, but it is also important
to figure out the superradiant instability induced final state
using the fully nonlinear numerical simulation. We hope to
address some of these topics in the near future.
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3371 (2017).
[9] P. Hintz, arXiv:1612.04489.

[10] O. J. C. Dias, F. C. Eperson, H. S. Reall, and J. E. Santos,
Phys. Rev. D 97, 104060 (2018).

[11] V. Cardoso, J. L. Costa, K. Destounis, P. Hintz, and A.
Jansen, Phys. Rev. Lett. 120, 031103 (2018).

[12] O. J. C. Dias, H. S. Reall, and J. E. Santos, J. High Energy
Phys. 10 (2018) 001.

[13] S. Hod, arXiv:1801.07261.
[14] Z. Zhu, S. Zhang, C. E. Pellicer, B. Wang, and E. Abdalla,

Phys. Rev. D 90, 044042 (2014).
[15] R. A. Konoplya and A. Zhidenko, Phys. Rev. D 90, 064048

(2014).

[16] C. Gundlach, R. Price, and J. Pullin, Phys. Rev. D 49, 883
(1994).

[17] P. R. Brady, C. M. Chambers, W. G. Laarakkers, and E.
Poisson, Phys. Rev. D 60, 064003 (1999).

[18] B. Wang, C. Molina, and E. Abdalla, Phys. Rev. D 63,
084001 (2001).

[19] C. Molina, D. Giugno, E. Abdalla, and A. Saa, Phys. Rev. D
69, 104013 (2004).

[20] B. Wang, C. Lin, and C. Molina, Phys. Rev. D 70, 064025
(2004).

[21] J. Lucietti, K. Murata, H. S. Reall, and N. Tanahashi, J. High
Energy Phys. 03 (2013) 035.

[22] E. Berti, V. Cardoso, J. A. Gonzalez, and U. Sperhake,
Phys. Rev. D 75, 124017 (2007).

[23] Recently, we were informed by Aron Jansen that they find
there is still a violation of SCCwhen one goes to theQ → Qm
limit in [24], and he suggested adding such a limiting point in
the moduli space for a complete picture. We are grateful to
Aron Jansen and his companions for such an improvement.

[24] V. Cardoso, J. L. Costa, K. Destounis, P. Hintz, and A.
Jansen, Phys. Rev. D 98, 104007 (2018).

[25] It is noteworthy that the wiggles found in [26] for some
region of the moduli space may change such a picture.

[26] O. J. C.Dias, H. S. Reall, and J. E. Santos, arXiv:1808.04832.

STRONG COSMIC CENSORSHIP FOR THE MASSLESS … PHYS. REV. D 98, 124025 (2018)

124025-7

https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevD.55.7538
https://doi.org/10.1007/s00220-014-2063-4
https://doi.org/10.1007/s40818-017-0028-6
https://doi.org/10.1063/1.4996575
https://doi.org/10.1007/s00023-017-0592-z
https://doi.org/10.1007/s00023-017-0592-z
https://doi.org/10.1007/s00023-017-0592-z
http://arXiv.org/abs/1612.04489
https://doi.org/10.1103/PhysRevD.97.104060
https://doi.org/10.1103/PhysRevLett.120.031103
https://doi.org/10.1007/JHEP10(2018)001
https://doi.org/10.1007/JHEP10(2018)001
http://arXiv.org/abs/1801.07261
https://doi.org/10.1103/PhysRevD.90.044042
https://doi.org/10.1103/PhysRevD.90.064048
https://doi.org/10.1103/PhysRevD.90.064048
https://doi.org/10.1103/PhysRevD.49.883
https://doi.org/10.1103/PhysRevD.49.883
https://doi.org/10.1103/PhysRevD.60.064003
https://doi.org/10.1103/PhysRevD.63.084001
https://doi.org/10.1103/PhysRevD.63.084001
https://doi.org/10.1103/PhysRevD.69.104013
https://doi.org/10.1103/PhysRevD.69.104013
https://doi.org/10.1103/PhysRevD.70.064025
https://doi.org/10.1103/PhysRevD.70.064025
https://doi.org/10.1007/JHEP03(2013)035
https://doi.org/10.1007/JHEP03(2013)035
https://doi.org/10.1103/PhysRevD.75.124017
https://doi.org/10.1103/PhysRevD.98.104007
http://arXiv.org/abs/1808.04832

