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It is shown that a collisionless, relativistic kinetic gas configuration propagating in the equatorial plane of
a Kerr black hole undergoes a relaxation process and eventually settles down to a stationary, axisymmetric
configuration surrounding the black hole. The underlying mechanism for this relaxation process is due to
phase space mixing, which implies that although the one-particle distribution function f satisfying the
collisionless Boltzmann equation is quasiperiodic in time, the associated macroscopic observables
computed from averages over f possess well-defined limits as time goes to infinity. The final state of
the gas is described by an effective distribution function depending only upon the constants of motion, and
it can be determined by an appropriate average of the initial distribution function.
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I. INTRODUCTION

Phase space mixing plays an important role in a wide
range of areas in physics, including galactic dynamics,
plasma physics and quantum physics. Roughly speaking,
this phenomenon can be understood as the relaxation of the
observables associated with a distribution function which is
transported along an anharmonic Hamiltonian flow and
hence spreads all over phase space due to different orbits
having different angular frequencies.
In the context of galactic dynamics, groundbreaking work

by Lynden-Bell [1,2] has shown that phase space mixing
might be one of the fundamentalmechanisms responsible for
driving the one-particle distribution function describing the
stellar distribution in a galaxy to an equilibrium configura-
tion, although collisions or the exchange of energy between
individual stars are negligible. For further important dis-
cussions on these topics, see for instance Refs. [3–6].
In plasma physics, phase mixing has been argued to be the

driving mechanism for Landau damping, the relaxation of a
charged collisionless gas to a homogeneous configuration.
Recently, this explanation has been put on a rigorous basis by
the work of Mouhot and Villani [7] who established that for
the case of a finite boxwith periodic boundary conditions the
known phase-mixing property for the linearized Vlasov-
Poisson also occurs in the full Vlasov-Poisson system,
without linearization. For generalization of this work to
the special-relativistic setting, see [8,9].
At the quantum level, phase space mixing has recently

been applied [10] to quenches in Bose-Einstein conden-
sates in order to understand the behavior of the condensate
in the vicinity of the saddle point in a double-well potential.
Again, it was found that the system relaxes to a steady state
due to phase-space mixing. For field-theoretical applica-
tions of the mixing phenomenon, see for example [11,12].

In the presentwork,we analyze the effects of phasemixing
and its associated relaxation process in a general relativistic
scenario. More specifically, we consider a collisionless,
relativistic gas configuration that is trapped by the gravita-
tional field of a rotating black hole. We restrict ourselves to
the simplest case in which the gas configuration is suffi-
ciently thin such that its self-gravity can be neglected and in
which the gas is confined to the equatorial plane of the black
hole, leaving the discussion of more realistic configurations
to future work [13]. As a consequence of our assumptions,
each individual gas particle follows a bound geodesic
trajectory in the equatorial plane of a Kerr black hole
background, and an explicit solution representation for the
one-particle distribution function can be obtained by repre-
senting the geodesic flow in terms of action-anglelike
variables, see Sec. II.
Based on this solution representation, we compute the

particle current density four-vector and provide some
examples in Sec. III showing that the particle density
measured by a stationary observer outside the event
horizon, although fluctuating in time, undergoes damped
oscillations and eventually settles down to a constant value.
An intuitive explanation for this convergence is given by
exhibiting snapshots of the distribution function in the
momentum space of the observer at different times which
clearly illustrate the mixing in phase space.
To provide a precise mathematical formulation for the

mixing property, in Sec. IV we consider an observableN½φ�
which is obtained by integrating the one-particle distribu-
tion function over a given test function φ on relativistic
phase space. The time evolution of this observable is
obtained by transporting the test function along the vector
field generating the time translation symmetry. Denoting
this transported test function by φt, we formulate and prove
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a theorem which shows that, provided a certain determinant
condition holds on the support of φ, N½φt� converges for
t → ∞ to the same observable N½φ� with the distribution
function replaced by its average over the angle variables.
Therefore, apart from providing a rigorous formulation for
the mixing property, our theorem allows to predict the final
state of the gas configuration by considering the average of
the initial distribution function. Finally, we show that the
determinant condition is satisfied almost everywhere in
phase space, and discuss the applicability of our theorem to
the examples in Sec. III.
In Sec. V we present the conclusions and main impli-

cations of our results, and also give an outlook to future
work. Technical details and relevant analytic expressions
required for this article are listed in an Appendix.
Throughout this work we use geometrized units in which
the gravitational constant and the speed of light are one.

II. COLLISIONLESS DISTRIBUTION FUNCTION
IN TERMS OF ACTION-ANGLE VARIABLES

The geodesic flow describing the motion of free falling,
massive particles following (spatially) bound trajectories on
a Kerr spacetime may be represented analytically in terms of
action-anglelike variables [14–16]. For the purpose of this
work, it is sufficient to consider the 3-dimensional spacetime
(M, g) describing the induced geometry on the equatorial
plane of a Kerr black hole exterior of mass M > 0 and
rotational parameter a satisfying jaj ≤ M. In terms of Boyer-
Lindquist coordinates (t, r, φ), the metric has the following
representation:

g¼−dt2þ2M
r
ðdt−adφÞ2þðr2þa2Þdφ2þr2

Δ
dr2; r>rH

ð1Þ

with Δ ≔ r2 − 2Mrþ a2 and rH ≔ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
the

radius of the event horizon. Due to the time-translation
and axial symmetry of (M, g), the geodesic equations form
an integrable Hamiltonian system which is characterized by
the free-particle HamiltonianH and the constants of motion
E and L, given by the following functions on the co-tangent
bundle T�M associated with M:

Hðx; pÞ ≔ 1

2
gμνðxÞpμpν; Eðx; pÞ ≔ −pt;

Lðx; pÞ ≔ pφ; ðx; pÞ ∈ T�M;

which Poisson-commute among themselves. The orbits are
confined to the invariant subsets

Γm;E;L ≔ fðx; pÞ ∈ T�M∶Hðx; pÞ ¼ −
m2

2
;

Eðx; pÞ ¼ E;Lðx; pÞ ¼ Lg;

with m > 0. Since only bound orbits are considered, the
angular momentum L has to be large enough in magnitude
such that L2 > L2

ms, with Lms the angular momentum corre-
sponding to the marginally stable circular orbit [17], and the
energy E has to lie inside a certain interval EminðLÞ < E <
EmaxðLÞ with EminðLÞ the energy of the stable circular orbit
with angularmomentumL andEmaxðLÞ ≤ m themaximumof
the potential well. In this range, it can be verified that the
invariant sets Γm;E;L are smooth 3-dimensional submanifolds
of T�M having topologyR × S1 × S1. For the following, we
focuson thephase spaceof bound trajectoriesΓbound, the union
of all these invariant submanifolds.
Using standard tools from Hamiltonian mechanics [18]

one can introduce action-angle variables (Qα, Jα) on Γbound,
see for instance [14,15]. The action variables are defined as1

J0 ≔ −
1

T

Z
T

0

ptdt ¼ E; J1 ≔
1

2π

I
pφdφ ¼ L;

J2 ≔
1

2π

I
prdr ¼

1

π

Z
r2

r1

ffiffiffiffiffiffiffiffiffi
RðrÞp
Δ

dr; ð2Þ

where here the first integral defining J0 is performed along
an integral curve of the vector field ∂t (t being the
parameter along this curve), the second integral defining
J1 is similarly performed over the closed curve along
the vector field ∂φ,

2 and the third integral over the closed
curve in the (r, pr)-plane described by the radial equation
ðΔprÞ2 ¼ RðrÞ with

RðrÞ≔ ðEr2−aL̂Þ2−Δðm2r2þ L̂2Þ; L̂≔L−aE; ð3Þ

and with r1 < r2 the turning points. The angle variables
Qα ≔ ∂S

∂Jα are obtained from the generating function

Sðx; J0; J1; J2Þ ¼ −Etþ Lφþ
Z
ðr;prÞ

prdr; ð4Þ

where the integral on the right-hand side should be
interpreted as a line integral along the curve ðΔprÞ2 ¼
RðrÞ connecting the reference point (r1, 0) to the given
point (r, pr) on this curve. S, Qα, and Jα admit explicit
representations in terms of standard elliptic integrals
(details of the derivation will be presented elsewhere
[13]). In order to describe the result we denote the roots
of the fourth-order polynomial RðrÞ by 0 < r0 < r1 < r2
and introduce the dimensionless variables

α≔
a
M

; ε≔
E
m
; λ≔

L
Mm

; ξj ≔
rj
M

; j¼ 0;1;2:

1Our definition of J0 differs from the definition of Jt in [15] by
a minus sign.

2More precisely, these integral curves are definedwith respect to
the complete lifts of theKilling vector fields∂t and∂φ onT�M, see
for example Refs. [19,20] for the most important properties of the
complete lift in the context of relativistic kinetic theory.
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The curve ðΔprÞ2 ¼ RðrÞ is parametrized by the
π-periodic angle coordinate χ (see Fig. 1) defined by

r
M

¼ ξ0 þ
ξ1 − ξ0

1 − b2sin2χ
; ð5Þ

Δpr

M2m
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
ðξ2 − ξ1Þðξ1 − ξ0Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ1

ξ2 − ξ0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2χ

p
ð1 − b2sin2χÞ2 sinð2χÞ; ð6Þ

with b ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξ2 − ξ1Þ=ðξ2 − ξ0Þ

p
and k ≔

ffiffiffiffiffiffiffiffiffiffiffi
ξ0=ξ1

p
b, such

that 0 < k < b < 1. In terms of these quantities one finds

J0¼mε; J1¼Mmλ; J2¼
Mm
π

½ð1− ε2ÞH0þ εH3�;
ð7Þ

Q0 ¼ −tþM
H0H2ðχÞ − H2H0ðχÞ

H0

;

Q1 ¼ φþ H0H1ðχÞ − H1H0ðχÞ
H0

; Q2 ¼ π
H0ðχÞ
H0

; ð8Þ

where the functionsHjðχÞ and corresponding constantsHj ≔
Hjðπ=2Þ are defined in the Appendix. The coordinates

(Qα, Jα) provide new symplectic coordinates on Γbound, the
submanifold of T�M corresponding to bound orbits. The
action variables Jα label the invariant submanifolds Γm;E;L,
the coordinates (Q1,Q2) are 2π-periodic functions providing
angles on each S1-factor of Γm;E;L ¼ R × S1 × S1, whileQ0

parametrizes its R-factor.
In terms of these action-anglelike variables, the colli-

sionless Boltzmann equation fH; fg ¼ 0 for the one-
particle distribution function f assumes the simple form�

Ω0
∂

∂Q0
þΩ1

∂
∂Q1

þ Ω2
∂

∂Q2

�
f ¼ 0;

Ωα ≔
∂H
∂Jα : ð9Þ

SinceH and Ωα only depend on the action variables Jα, the
most general solution of Eq. (9) has the form

fðx; pÞ ¼ FðQ1 − ω1Q0; Q2 − ω2Q0; J0; J1; J2Þ; ð10Þ
with FðQ1; Q2; J0; J1; J2Þ an arbitrary function which is
2π-periodic in the Q variables and decays sufficiently fast
in the J variables, such that the integrals defining the
spacetime observables are well defined. Here the frequen-
cies ω1 and ω2 are defined by

6.5 7.0 7.5 8.0

2

1

1

2

FIG. 1. Left panel: The function RðrÞ=M4m2 and its four roots 0 < ξ0 < ξ1 < ξ2 for the parameter values α ¼ 0.9, ε ¼ 0.93297 and
λ ¼ 2.9528. Only the nontrivial roots ξj, j ¼ 0, 1, 2, which lie outside the event horizon are relevant in this work. Right panel: the
projection of the set Γm;E;L with the same parameter values onto the (r, pr)-plane and the angle χ parametrizing this set. Here, ξ ≔ r=M
and πðξÞ ≔ Δpr=M2m.
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ω1≔
Ω1

Ω0
¼ 1

M
H1

H2−εH0

; ω2≔
Ω2

Ω0
¼−

π

H1

ω1: ð11Þ

Equations (7), (8), (10) provide an explicit solution repre-
sentation for the distribution function f which will enable us
to study the dynamical behavior of generic, time-dependent
gas configurations in the next two sections. Note that
according to Eq. (8) the distribution function f is axisym-
metric if and only if F is independent of Q1, and it is
stationary and axisymmetric if and only ifF is independent of
Q1 and Q2 (in which case it depends only on the action
variables Jα). In the remainder of this work, we demonstrate
that any distribution function relaxes in time (in some sense
made precise in Sec. IV) to such a stationary and axisym-
metric configuration.

III. RELAXATION OF SPACETIME
OBSERVABLES AND PHASE SPACE MIXING

In this section we analyze the behavior of spacetime
observables along the world lines of observers located
outside the event horizon. For simplicity and the sake of
illustration, in this section we assume that the black hole is
non-rotating (although we will come back to the rotating
case in the next section). Furthermore, we focus on the
particle current density four-vector (see for instance [21])

J μðxÞ ¼
Z

fðx; pÞpμdvolxðpÞ;

dvolxðpÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνðxÞÞ

p
dptdprdpϑdpφ;

measured by a static observer in the equatorial plane with
fixed spatial coordinates ðr;ϑ;φÞ ¼ ðrobs; π=2;φobsÞ,
robs > 2M, with respect to its rest frame

e0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r

q ∂
∂t ; e1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r ∂
∂r ;

e2 ¼
1

r
∂
∂ϑ ; e3 ¼

1

r
∂
∂φ :

In order to perform the integral over the momentum we first
reexpress the volume form dvolxðpÞ in terms of the
conserved quantities m, E, l and lz, where l and lz
are, respectively, the total and the azimuthal component of
the angular momentum. For points x located in the
equatorial plane, one obtains

dvolxðpÞ ¼
1

r2
dEdprdpϑdlz ¼

dEðmdmÞðldlÞdσffiffiffiffiffiffiffiffiffi
RðrÞp ;

where we have defined σ by sin σ ¼ lz=l and the function
RðrÞ is given in Eq. (3). Assuming a kinetic gas distribution
of identical particles of positive rest mass m which are
confined to the equatorial plane (such that σ ¼ �π=2 and
lz ¼ L), one obtains the following orthonormal compo-
nents of the current density:

J α≔m3

Z ½fðx;pþÞpαþþfðx;p−Þpα
−�jλjdεdλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1− ε2Þξðξ−ξ0Þðξ−ξ1Þðξ2−ξÞ
p ����

ξ¼robs=M

;

ð12Þ

with p0
� ≔ mε=

ffiffiffiffiffiffiffiffiffiffi
1 − 2

ξ

q
, p1

� ≔
ffiffiffiffiffiffiffiffiffiffi
1 − 2

ξ

q
pr�, p2

� ≔ 0 and

p3
� ≔ mλ=ξ, and where p� denote the two possible values

for the four-momentum p ¼ pαeα corresponding to the two
solutions of equation ðΔprÞ2 ¼ RðrÞ. To make further
progress, we use the relations (A1) to reexpress the integral
in terms of the turning points ξ1 and ξ2. Instead of ξ1 and ξ2,
it is convenient to use the generalized Keplerian variables
(P, e) as in Ref. [22], which are defined by

ξ1 ¼
P

1þ e
; ξ2 ¼

P
1 − e

;

such that ξ0 ¼ 2P=ðP − 4Þ. Here, the eccentricity e is
restricted to the interval 0 < e < 1, the limit e → 0
representing circular trajectories, and the semi-latus rectum
P is restricted to P > 6þ 2e, the limits P → ∞ and P →
6þ 2e (with fixed e) corresponding, respectively, to the
Newtonian limit and the innermost stable orbits (ISO)
which separate the bound orbits from those that plunge into
the black hole. Note that there is a one-to-two correspon-
dence between the parameters (P, e) and the constants of
motion (ε, �λ). Note also that given ξobs ¼ robs=M, the
parameters (P, e) are restricted by the conditions
ξ0 < ξ1 < ξobs < ξ2, which yield

PminðeÞ ≔ maxf6þ 2e; ð1 − eÞξobsg
< P < ð1þ eÞξobs ≕PmaxðeÞ: ð13Þ

Based on these observations, Eq. (12) can be rewritten as
the sum J α ¼ J α

λ>0 þ J α
λ<0 over the contributions corre-

sponding to gas particles with positive/negative angular
momentum λ, where

J α
λ>0 ¼

m3

2

X
�

Z
1

0

de
Z

PmaxðeÞ

PminðeÞ
dP

×
FðQ1

� − ω1Q0
�; Q

2
� − ω2Q0

�; J0; J1; J2Þpα
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − ε2Þξðξ − ξ0Þðξ − ξ1Þðξ2 − ξÞ
p

×
e

ffiffiffiffi
P

p ½ðP − 6Þ2 − 4e2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − 3 − e2Þ5½ðP − 2Þ2 − 4e2�

p ����
ξ¼ξobs

: ð14Þ

Here, it is understood that all the relevant quantities are
expressed in terms of (P, e) which determine the locations
of the roots ξ0, ξ1, ξ2 and the conserved quantities (ε, λ)
taking the positive sign of λ (and similarly for J 0

λ<0 where
one takes the negative sign of λ). The sum over the � signs
refers to the two possible choices for p� which, in turn
correspond to the two possible values for the angle
variables Qα

�. Note that Qαþ þQα
− ¼ 2π.
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In Figs. 2, 3 and 4 we display the time behavior of the
particle density n ≔ J 0

λ>0 measured by the observer for the
case of an initial distribution function of the form
Fðq1; q2; J0; J1; J2Þ ¼ FQðq1; q2ÞFJðP; eÞ, where

FQðq1; q2Þ ≔
1

N
exp

�
−
cos2ðq1Þ

η21
−
cos2ðq2Þ

η22

�
;

FJðP; eÞ ≔ exp

�
−
ðP − 2e − P0 þ 2e0Þ2

ðΔPÞ2 −
ðe − e0Þ2
ðΔeÞ2

�
;

ð15Þ

N is a positive normalization factor chosen such thatR
2π
0 dq1

R
2π
0 dq2FQðq1; q2Þ ¼ 1, and η1, η2, P0, e0, ΔP,

Δe are positive constants whose values are given in Table I.
Notice that the function FQ defined in Eq. (15) satisfies
FQðq1; q2Þ ¼ FQð2π − q1; 2π − q2Þ, which implies that
both terms in the sum

P
� yield the same contribution

for J α
λ>0 when α ¼ 0, 3, while J 1

λ>0 ¼ 0. The observer is
located at either ðrobs;φobsÞ ¼ ð6M; 0Þ or ð9M; 0Þ.
Even though the distribution function oscillates in time

and does not have a (pointwise) limit, the results in the plots
indicate that the observable n converges to a finite value

FIG. 2. Particle density as a function of time measured by a static observer located at robs ¼ 6M and φobs ¼ 0 in a Schwarzschild
spacetime for case A (left panel) and case B (right panel). As is visible from these plots, the initial decay is much faster in case A,
although the log− log plots below indicate that in both cases the final decay is of the inverse power-law type.

FIG. 3. This plot shows the decay of the particle density towards its asymptotic value n∞ for case A. Left panel: log plot of the relative
error jn=n∞ − 1j, indicating an initial exponential decay for the initial period until t ≃ 400M. Right panel: log− log plot of the relative
error, indicating that for times larger than ≃700M the decay is slower (apparently of the inverse power-law type).

PHASE SPACE MIXING IN THE EQUATORIAL PLANE OF … PHYS. REV. D 98, 124024 (2018)

124024-5



(denoted by n∞ and computed from the averaged
distribution function as will be explained in the third
remark after Theorem 1) as t → ∞. We note that in case
A the convergence is rather fast (exponential decay during
the initial period, with relative fluctuations below 0.001
after times larger than 300M), while in the remaining
cases the convergence appears to be slower (inverse
power-law decay with relative fluctuations below 0.001
after a few thousand M). We have also computed the
remaining nontrivial component J 3

λ>0 and the contribu-
tions J α

λ<0 belonging to negative angular momentum
(assuming the same distribution FJðP; eÞ) and verified
that they exhibit a similar time behavior, with
J 3 ≔ J 3

λ>0 þ J 3
λ<0 → 0.

As shown in the next section, the relaxation process
displayed in Figs. 2–4 is due to phase space mixing. To get

an intuitive idea about this phenomenon, in Fig. 5 we show
snapshots of the function FQðQ1 − ω1Q0; Q2 − ω2Q0Þ for
an observer located at robs ¼ 6M and φobs ¼ 0 at different
times. As is visible from these plots, the geodesic flow
(which is volume preserving according to Liouville’s
theorem) stretches the phase space elements and spreads
them over large regions in phase space, inducing the mixing
property. As a consequence, averaged (macroscopic) quan-
tities computed from the distribution function, such as the
components of the current density in Eq. (14), have the
form of an integral over a smooth function multiplied by an
oscillating function whose frequency increases unbound-
edly in time. In the limit t → ∞ these oscillations cancel
out, and hence one can replace the distribution function
with its nonoscillatory part, that is, its average over the
angle variables:

FIG. 4. log− log plots of the relative error jn=n∞ − 1j for casesB − F, showing the decayof the particle density towards its final valuen∞.

TABLE I. Parameter values for the initial distribution function F, describing a kinetic gas whose gas particles all move on bound
orbits, and the location of the observer ξobs. Note that cases B − F contain circular orbits (e ¼ 0) in their main support, while case A
corresponds to a gas configuration whose distribution is peaked around highly eccentric orbits. Also shown is the estimated power κ
obtained from fitting the envelope of the relative error jn=n∞ − 1j to an inverse power law of the form t−κ, and the time t<0.001 after
which this error is estimated to lie below 0.001. In case A the decay is dominated by an initial exponential decaying phase, as indicated in
the right panel of Fig. 2, after which the error is already very small, which makes it difficult to determine the power κ. In all other cases
the values for κ and t<0.001 have been estimated to about 10% accuracy.

Case η1 η2 P0 e0 ΔP Δe ξobs κ t<0.001

A 3 5 9.2 0.6 0.632 0.316 6 � � � 300M
B 3 5 6.68 0.14 0.5 0.387 6 0.9 1500M
C 3 5 6.3 0.12 0.5 0.447 6 0.9 900M
D 3 5 6.383 0.092 0.5 0.316 6 0.9 900M
E 3 5 9.2 0.1 1.10 0.548 9 0.8 3500M
F 3 5 9.2 0.1 0.632 0.316 9 0.8 7000M
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FðQ1 − ω1Q0; Q2 − ω2Q0; J0; J1; J2Þ⇀F̄ðJ0; J1; J2Þ

≔
1

ð2πÞ2
Z2π
0

Z2π
0

FðQ1; Q2; J0; J1; J2ÞdQ1dQ2 ð16Þ

The precise sense in which this convergence is valid will be
explained in the next section.

IV. MATHEMATICAL FORMULATION
OF THE MIXING PROPERTY

After discussing the intuitive picture behind the mixing
phenomenon and the corresponding relaxation process of
the spacetime observables, in this section we provide a pre-
cise mathematical formulation of this effect which provides
a rigorous explanation for the convergence of certain
macroscopic observables. Here, a macroscopic observable
is described by a test function φ ∈ C∞

0 ðΓboundÞ on the

relativistic phase space Γbound, and its associated value is
defined by the quantity

N½φ� ≔
Z
Γbound

fðx; pÞφðx; pÞdvolΓ; ð17Þ

with dvolΓ ¼ dtdφdrdptdpφdpr the canonical volume
form on Γbound and fðx; pÞ the one-particle distribution
function describing the state of the kinetic gas. Note that
our definition (17) is based on a fully covariant (i.e.,
independent of any choice of foliation or local coordinates)
spacetime point of view which includes a time integral,
such that N½φ� does not dependent on time. Therefore, in
order to understand the dynamical behavior, one needs to
perform a translation of the test function φ along a time
direction. Due to the many-fingered nature of time in
general relativity there are no such preferred time directions
in a general situation. In our case, the presence of the

FIG. 5. Level sets for the distribution function FQðQ1 − ω1Q0; Q2 − ω2Q0Þ as a function of the parameters (P0 ≔ P − 6 − 2e, e) as
seen by a static observer located at robs ¼ 6M and φobs ¼ 0 for different times: t ¼ 0M, t ¼ 100M, t ¼ 200M, t ¼ 300M, t ¼ 400M,
and t ¼ 500M (from top left to right bottom). In these plots, the values of NP and Ne are related to (P0, e) through the formulas
P0 ¼ 0.01 × NP and e ¼ 0.005 × Ne, respectively, and the inequalities (13) translate into 0 ≤ NP ≤ 2Ne. The colors indicate different
intervals in the range of FQ, with dark blue corresponding to values of FQ lying close to its maximum and white corresponding to values
of FQ close to its minimum.
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Killing vector field ∂t induces a natural vector field k̂ on
phase space Γbound defined as the complete lift of ∂t (see
Refs. [19,20] for details). This vector field, in turn, induces
a flow ψ t on Γbound with respect to which one may define
the time-translated test function:3

φtðx; pÞ ≔ φðψ−tðx; pÞÞ: ð18Þ

It is important tomention that in the rotating case, theKilling
vector field ∂t is spacelike and not timelike inside the
ergoregion, meaning that (due to the dragging by rotation)
stationary observers lying inside the ergoregion cannot
follow the integral curves of ∂t. In this case one might
replace ∂t with the linear combination X ≔ ∂t þΩ∂φ, with
the constant angular velocity Ω chosen such that X is
timelike in the vicinity of the observer, and define ψ t as
the flow with respect to the complete lift X̂ of X. This
provides a more sensible definition for the time-translated
test function φ, if φ has its support in a region lying close to
the event horizon which intersects the ergoregion. We stress
that the theorem below holds for both (and probably more
general) cases, the flow of ψ t being defined with respect to
the complete lift of either ∂t or X.

4

For the statement of the following theorem, the area
function, defined by

AmðE;LÞ ≔
I

prdr ¼ 2Mm½ð1 − ε2ÞH0 þ εH3�;

L2 > L2
ms; EminðLÞ < E < EmaxðLÞ; ð19Þ

plays an important role. Note that this function determines
the action variable J2 ¼ Am

2π , and the frequencies ω1 and ω2

defined in Eq. (11) are determined by the gradient of Am as
follows:

ω1 ¼ ∂Am

∂L =
∂Am

∂E ; ω2 ¼ −2π=
∂Am

∂E : ð20Þ

After these remarks, we are ready to formulate the main
result of this article:
Theorem 1. Let F ∈ L1ðS1 × S1 × ð−∞;∞Þ ×

ð−∞;∞Þ × ð0;∞ÞÞ be a Lebesgue-integrable function
which, according to Eq. (10), determines a solution
fðx; pÞ on Γbound of the collisionless Boltzmann equation
on the equatorial plane of a Kerr black hole background.
Let F̄ and f̄ be the corresponding distribution functions
obtained by averaging over the angle variables. Let φ ∈
C∞
0 ðΓboundÞ be a test function, and denote by φt its time-

translation as defined in Eq. (18).
Suppose further that on the support of φ the following

nondegeneracy condition holds:

detðD2AmðE;LÞÞ ≠ 0; ð21Þ

where D2AmðE;LÞ denotes the Hessian matrix of the area
function (19).
Then,

lim
t→∞

N½φt� ¼
Z
Γbound

f̄ðx; pÞφðx; pÞdvolΓ: ð22Þ

Remarks:
(1) The validity of the determinant condition (21) will

be analyzed towards the end of this section, follow-
ing the proof of the theorem. As will be verified

FIG. 6. The determinant condition in the (P, e)-space for a Schwarzschild black hole (middle panel) and a Kerr black hole with
rotational parameter a ¼ 0.9M (prograde orbits in the left panel, retrograde orbits in the right panel). The black dashed line corresponds
to innermost stable orbits (ISO), for which ξ0 ¼ ξ1, while the blue solid line indicates the points for which the determinant condition (21)
is violated. (Note that the Schwarzschild range P > 6þ 2e for the semi-latus rectum changes in the rotating case, see for instance
Appendix A in Ref. [22]).

3Geometrically speaking, φt is the push-forward of φ
with respect to ψ t.

4As one can easily verify, the effect of replacing ∂t by X is
equivalent to replacing the frequency ω1 by ω1 þ Ω in the proof
of Theorem 1.
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numerically, it is satisfied everywhere except for
points lying on a certain curve in (E, L)-space, see
Fig. 6. However, we stress that the theorem does not
require condition (21) to hold everywhere; it is
sufficient to hold for points lying in the support
of φ, that is, in the vicinity where the observer
performs the measurement.

(2) Although the above formulation of the theorem
requires the test function φ to be smooth, this
assumption can be relaxed considerably. For exam-
ple, it is possible to consider certain observables
with test functions of the form

φðx; pÞ ¼ δðx − xobsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνðxÞÞ

p
ψðpÞ;

corresponding to spacetime observables at some
given event xobs, as the ones considered in the
previous section, see [13,23].

(3) The quantity n∞ in Figs. 2, 3 and 4 has been
calculated by replacingF by its average F̄ in Eq. (14).

(4) Note that the hypothesis of the theorem require φ to
be supported on Γbound, which excludes circular
orbits since the latter belong to the boundary of
Γbound. However, the theorem can likely be gener-
alized to the more realistic case in which the support
of φ includes circular orbits (see also the remarks at
the end of this section).

Proof of Theorem 1. In a first step, we rewrite the
integral defining N½φ� in terms of the action-angle variables
(Qα, Jα) as follows:

N½φ�¼
Z

FðQ1−ω1Q0;Q2−ω2Q0;J0;J1;J2Þ

×ΦðQ0;Q1;Q2;J0;J1;J2ÞdQ0dQ1dQ2dJ0dJ1dJ2;

where ΦðQ0; Q1; Q2; J0; J1; J2Þ ¼ φðx; pÞ is the represen-
tation of the test function φ in terms of (Qα, Jα) and where
we have used the fact that the transformation ðx; pÞ ↦
ðQα; JαÞ is canonical. With respect to these variables, the
flow associated with the vector field k̂ ¼ −∂=∂Q0 amounts
to a translation of Q0 by −t, keeping the other variables
fixed, such that φtðx; pÞ ¼ ΦðQ0 þ t; Q1; Q2; J0; J1; J2Þ.
By means of the variable substitution Q0 ¼ Θ0 − t,
QA ¼ ΘA þ ωAΘ0, A ¼ 1, 2, one obtains

N½φt� ¼
Z

∞

0

dm
Z

2π

0

dΘ1

Z
2π

0

dΘ2

Z
L2>L2

ms

dL

×
Z

EmaxðLÞ

EminðLÞ
dEFmðΘ1 þ ω1t;Θ2 þ ω2t; E; LÞ

×ΦmðΘ1;Θ2; E; LÞ;

where we have defined FmðΘ1;Θ2; E; LÞ ≔ FðΘ1;Θ2; E;
L; AmðE;LÞ=2πÞ and

ΦmðΘ1;Θ2; E; LÞ

≔
1

2π

∂Am

∂m ðE;LÞ
Z

∞

−∞
Φ
�
Θ0;Θ1 þ ω1Θ0;Θ2

þ ω2Θ0; E; L;
AmðE;LÞ

2π

�
dΘ0:

In a next step, we perform a variable substitution in order to
replace the integral over (E,L) by an integral over (ω1,ω2). To
this purpose, we denote byWm∶ ðE;LÞ ↦ ðω1;ω2Þ the map
that defines (for fixed m) the angular frequencies (ω1, ω2) in
terms of the constants of motion (E, L). Its Jacobian
determinant is related to the determinant of the Hessian of
the area function as follows:

detðDWmÞ ¼ −
ðω2Þ3
ð2πÞ2 detðD

2AmðE;LÞÞ:

Therefore, due to condition (21) the map Wm is (at least)
locally invertible on the support ofφ. If not globally invertible,
wemaycover its domainwith open subsetsUi onwhichWm is
invertible. Since Φ is compactly supported, only a finite
number of these subsets are required.On each of theseUi’swe
define

Gm;iðΘ1;Θ2;ω1;ω2Þ≔
�FmðΘ1;Θ2;E;LÞÞ

jdetDWmðE;LÞj ; ðω1;ω2Þ∈WmðUiÞ;
0; otherwise:

Assuming first that Φm is supported in one of these sets Ui,
we have

N½φt� ¼
Z

∞

0

dm
Z

2π

0

dΘ1

Z
2π

0

dΘ2

×
Z
R2

dω1dω2gm;iðt;Θ1;Θ2;ω1;ω2Þ

×ΦmðΘ1;Θ2; E; LÞ; ð23Þ

where

gm;iðt;Θ1;Θ2;ω1;ω2Þ≔Gm;iðΘ1þω1t;Θ2þω2t;ω1;ω2Þ:
ð24Þ

After these initial steps, we encounter ourselves exactly
in the same situation as a collisionless gas in a periodic box,
and the mixing property is easily revealed by means of
Fourier transformation (see section III in [7]): for this,
define

Ĝm;iðk1; k2; η1; η2Þ

≔
1

ð2πÞ2
Z

∞

−∞

Z
∞

−∞

Z
2π

0

Z
2π

0

Gm;iðΘ1;Θ2;ω1;ω2Þ

× e−iðk1Θ1þk2Θ2Þe−iðη1ω1þη2ω
2ÞdΘ1dΘ2dω1dω2;
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where ðk1; k2Þ ∈ Z2 and ðη1; η2Þ ∈ R2. Then,

ĝm;iðt; k1; k2; η1; η2Þ ¼ Ĝm;iðk1; k2; η1 − k1t; η2 − k2tÞ;

hence the Fourier transform converts the rotations of the
angle variables ðΘ1;Θ2Þ ↦ ðΘ1 þ ω1t;Θ2 þ ω2tÞ into a
translation ðη1; η2Þ ↦ ðη1 − k1t; η2 − k2tÞ of the frequen-
cies associated with the angular frequencies. According to
the Riemann-Lebesgue lemma ĝm;iðt; k1; k2; η1; η2Þ con-
verges pointwise to 0 for all fixed ðk1; k2; η1; η2Þ with
ðk1; k2Þ ≠ ð0; 0Þ. Consequently,

lim
t→∞

ĝm;iðt; k1; k2; η1; η2Þ ¼ δk10δk20Ĝm;ið0; 0; η1; η2Þ
≕ ĝ∞m;iðk1; k2; η1; η2Þ;

for all ðk1; k2; η1; η2Þ ∈ Z2 ×R2 with the convergence rate
determined by the smoothness ofGm;iðΘ1;Θ2;ω1;ω2Þwith
respect to ω1, ω2. Here, ĝ∞m;iðk1; k2; η1; η2Þ is the Fourier
transform of the function

g∞m;iðΘ1;Θ2;ω1;ω2Þ¼ 1

ð2πÞ2
Z

2π

0

Z
2π

0

Gm;iðΘ1;Θ2;ω1;ω2Þ

×dΘ1dΘ2¼Gm;iðΘ1;Θ2;ω1;ω2Þ;

which is the average of Gm;i over the angle variables.
Since Φm is smooth and has compact support, it follows
that N½φt� converges for t → ∞ to the same expression
as the one in the right-hand side of Eq. (23) with
gm;iðt;Θ1;Θ2;ω1;ω2Þ replaced with g∞m;iðΘ1;Θ2;ω1;ω2Þ.
This proves the theorem for the case in which the support of
Φm lies within one of the subsets Ui.
For the general case, a partition of unity can be used to

write Φm as a finite sum of functions each of which is
supported in only one of the subsets Ui. □

Now that the theorem has been proven, we discuss
the validity of the nondegeneracy condition (21). Based
on the explicit representation in Eq. (19), we have com-
puted the determinant of the Hessian of the area function.
As in the previous section, it is convenient to describe the
result in terms of the generalized Keplerian variables ðP; eÞ
instead of ðE;LÞ. Interestingly, it turns out the determinant
condition is satisfied everywhere except for points lying on
the blue solid curves shown in Figs. 6 for different values of
the rotational parameter.
To provide analytic support for the results shown in these

figures we consider the particular case of quasicircular orbits
on a Schwarzschild background, forwhichα ¼ 0 and e ≪ 1.
In this case, the expansion of the first derivatives of the area
function in terms of the eccentricity e yield

AE ≔
∂Am

∂E
¼ M

2πP2ffiffiffiffiffiffiffiffiffiffiffi
P − 6

p
�
1þ 3

4

2P3 − 32P2 þ 165P − 266

ðP − 2ÞðP − 6Þ2

× e2 þOðe4Þ
�
; ð25Þ

AL ≔
∂Am

∂L ¼ −
2π

ffiffiffiffi
P

pffiffiffiffiffiffiffiffiffiffiffi
P − 6

p
�
1þ 3

4

1

ðP − 6Þ2 e
2 þOðe4Þ

�
;

ð26Þ

giving

det
�∂AE∂P

∂AE∂e
∂AL∂P

∂AL∂e

�
¼MDðPÞeþOðe3Þ;

DðPÞ≔−9π2
P3=2ð4P2−39Pþ86Þ

ðP−2ÞðP−6Þ3 ; P> 6:

The function D is positive when P is slightly larger than 6
and negative for large P, and it has a single root at
P ¼ P� ≔ ð39þ ffiffiffiffiffiffiffiffi

145
p Þ=8 ≃ 6.38, which corresponds to

the limit point of the blue solid curve as e → 0 in the middle
panel of Fig. 6. From Eqs. (25) and (26) one can also
conclude that ðAE; ALÞ is a function of ðP; e2Þ which is
locally invertible for small e2 and P away from P�.
We end this section by observing that the distribution

functions considered in the previous section in casesA,E and
F have their main support away from the blue solid curve in
ðP; eÞ-space where the determinant condition is violated,
while in the remaining cases B, C andD the main support of
the distribution function intersects this curve (compare the
values given in Table I with the middle panel of Fig. 6).
Although the determinant condition is violated in the latter
cases, the plots inFigs. 3 and4 suggest that the particle density
still converges for t → ∞, indicating that mixing is still
sufficiently strong for the relaxation process to take place.

V. CONCLUSIONS

In this work, we have shown that a relativistic, collision-
less kinetic gas propagating in the equatorial plane of a Kerr
black hole spacetime settles down to a stationary, axisym-
metric configuration. As we have demonstrated, this
relaxation process is due to phase space mixing, an effect
that plays a prominent role in a wide range of fields in
physics including galactic dynamics and plasma physics.
Here, we have exhibited the relevance of the mixing
phenomenon for the dynamical behavior of spacetime
observables within the fully general relativistic setting of
a kinetic gas which is trapped in the strong gravitational
field of a black hole.
The main implication of this work is that the one-particle

distribution function f describing the state of the gas,
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which in general is a function of the five coordinates
ðQ1; Q2; J0; J1; J2Þ parametrizing the relativistic phase
space Γbound corresponding to bound trajectories, can be
replaced by a much simpler distribution function f̄ which is
a function depending only of the constants of motion
ðJ0; J1; J2Þ and which can be computed by averaging the
initial distribution function over the angle variables
ðQ1; Q2Þ. Indeed, our main theorem in the previous section
shows that, provided the determinant condition (21) is
satisfied on the support of φ, the integral over f times any
test function φ converges in time to the integral over f̄ times
the same test function φ. At the physical level, these
integrals have the interpretation of macroscopic observ-
ables, where different choices for the test function corre-
spond to different physical quantities being measured.
The determinant condition (21) means that the map

ðE;LÞ ↦ ðω1;ω2Þ which defines the angular frequencies
in terms of the constants of motion E and L is locally
invertible, a condition that is well known in perturbation
theory of integrable Hamiltonian systems, see for example
Sec. X. 51 in [18]. For geodesic motion in the equatorial
plane of a Kerr black hole we have shown that the
determinant condition holds everywhere with the exception
of points in the ðE;LÞ-plane lying on a curve (a zero-
measure set) which connects a particular circular orbit to
innermost stable orbits at large eccentricities. As the plots
in Sec. III indicate, mixing still occurs in the vicinity of
these exceptional points, suggesting that our theorem also
holds under weaker assumptions. It should be interesting to
relate the behavior of the gas in the vicinity of the
exceptional points to Tremaine’s analysis of stable singu-
larities or catastrophes in galaxies [4] and the implications
on the time scale in which the mixing occurs. In any case,
for the specific examples we have analyzed in Sec. III, the
damping of the oscillations in the particle density is rather
fast, with relative amplitude lying below 0.001 after a few
thousand light-crossing times corresponding to the gravi-
tational radius of the black hole.
A further interesting problem consists in analyzing the

effects of the self-gravity of the gas configuration (which
have been neglected in the present work) on the mixing
property. The inclusion of the self-gravity implies that the
Kerr metric acquires correction terms due to the non-
vanishing stress-energy tensor associatedwith the gas,which
in turn leads to a perturbed Hamiltonian flow describing the
geodesic motion for the gas particles. Based on general
arguments from Kolmogorov-Arnold-Moser (KAM) theory,
it has been argued [22,24] that such perturbations could
trigger dynamical chaos in the vicinity of resonant orbits.
Therefore, it should be particularly interesting to study the
mixing phenomenon in the neighborhood of such orbits, and
investigate whether or not the relaxation of the observables
persists in the self-gravitating case.

The generalization of the mixing property to thick disk
configurations, where individual gas particles are not
necessarily confined to the equatorial plane, will be given
in future work [13].
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APPENDIX: EXPLICIT EXPRESSIONS
FOR THE FUNCTIONS Hj

Using the definition of the function RðrÞ in Eq. (3), the
following relations between ðε; λÞ and its roots ðξjÞ are
obtained:

1 − ε2 ¼ 2

ξ012
; λ̂2 ¼ ξ0ξ1ξ2

ξ012
;

λ̂2 þ 2αλ̂εþ α2 ¼ 2
ξ0ξ1 þ ξ0ξ2 þ ξ1ξ2

ξ012
; ðA1Þ

where we have abbreviated ξ012 ≔ ξ0 þ ξ1 þ ξ2 and intro-
duced λ̂ ≔ λ − αε. The functions HjðχÞ and corresponding
constants Hj ≔ Hjðπ=2Þ in terms of which the angle
variables Qα are expressed are defined as follows:

H0ðχÞ ≔ −
C
2

�
ðξ0ξ012 − ξ1ξ2ÞFðχ; kÞ þ ξ1ðξ2 − ξ0ÞEðχ; kÞ

þ ðξ1 − ξ0Þξ012Πðχ; b2; kÞ −
1

2
ξ1ðξ2 − ξ1Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2χ

p
1 − b2sin2χ

sinð2χÞ
	
; ðA2Þ

H1ðχÞ ≔ −C
��

λ̂þ α
εξ20 − αλ̂

ðξ0 − ξþÞðξ0 − ξ−Þ
�
Fðχ; kÞ

− α
ξ1 − ξ0
ξþ − ξ−

�
εξ2þ − αλ̂

ðξ0 − ξþÞðξ1 − ξþÞ
Πðχ; b2þ; kÞ

− ðþ ↔ −Þ
�	

; ðA3Þ
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H2ðχÞ≔2C

�
ξ0ðεξ20−αλ̂Þ

ðξ0−ξþÞðξ0−ξ−Þ
Fðχ;kÞþεðξ1−ξ0ÞΠðχ;b2;kÞ−

ξ1−ξ0
ξþ−ξ−

�
ξþðεξ2þ−αλ̂Þ

ðξ0−ξþÞðξ1−ξþÞ
Πðχ;b2þ;kÞ−ðþ↔−Þ

�	
;

ðA4Þ

and

H3ðχÞ ≔ H2ðχÞ þ
λ

ε
H1ðχÞ ¼

2Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ012ðξ012 − 2Þp �

ξ20Fðχ; kÞ þ ðξ1 − ξ0Þðξ012 − 2ÞΠðχ; b2; kÞ

−
ξ1 − ξ0
ξþ − ξ−

½ξþðξ2 − ξþÞΠðχ; b2þ; kÞ − ðþ ↔ −Þ�
	
; ðA5Þ

with b ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξ2 − ξ1Þ=ðξ2 − ξ0Þ

p
, k ≔

ffiffiffiffiffiffiffiffiffiffiffi
ξ0=ξ1

p
b, ξ� ≔ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
, b� ≔

ffiffiffiffiffiffiffiffiffi
ξ0−ξ�
ξ1−ξ�

q
b and C ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξ012

ξ1ðξ2−ξ0Þ
q

, and where the

functions Fðχ; kÞ, Eðχ; kÞ and Πðχ; b2; kÞ denote standard elliptic integrals as defined, for instance, in Ref. [25].
In terms of these functions one finds

S ¼ Mm

�
−ε

t
M

þ λφþ ð1 − ε2ÞH0ðχÞ þ εH3ðχÞ
�
; ðA6Þ

and

∂S
∂m ¼ MH0ðχÞ;

∂S
∂L ¼ φþ H1ðχÞ;

∂S
∂E ¼ −tþMH2ðχÞ − EH0ðχÞ; ðA7Þ

from which the expressions (8) are easily derived.
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