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In this brief paper, we clarify certain aspects related to the magnetic (i.e., odd parity or axial) tidal Love
numbers of a star in general relativity. Magnetic tidal deformations of a compact star had been computed in
2009 independently by Damour and Nagar [1] and by Binnington and Poisson [2]. More recently, Landry
and Poisson [3] showed that the magnetic tidal Love numbers depend on the assumptions made on the
fluid, in particular they are different (and of opposite sign) if the fluid is assumed to be in static equilibrium
or if it is irrotational. We show that the zero-frequency limit of the Regge-Wheeler equation forces the fluid
to be irrotational. For this reason, the results of Damour and Nagar are equivalent to those of Landry and
Poisson for an irrotational fluid, and are expected to be the most appropriate to describe realistic
configurations.
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I. INTRODUCTION

The deformability of a self-gravitating object immersed in
a tidal field is measured by the tidal Love numbers (TLNs)
[4]. The theory of relativistic TLNs in general relativity has
been developed in Refs. [1,2,5,6] for nonspinning bodies,
and then extended to rotating bodies in [7–11]. This theory
has then been applied to compact binary systems, in order to
compute the contribution of the tidal deformation to the
emitted gravitational waveform [12–18].
For nonspinning objects,1 the TLNs can be separated

into two classes according to the parity of the perturbation
induced by the tidal field: induced mass multipole moments
are related to the so-called electric (or even-parity or polar)
TLNs—which also exist in Newtonian theory [4]—
whereas induced current multipole moments are related
to the so-called magnetic (or odd-parity or axial) TLNs.
The current multipole moments are induced by an external
magnetic-type tidal field. Since the latter is not a source of
the gravitational field in Newton’s theory, the magnetic
TLNs are a genuine prediction of general relativity, which
might possibly be relevant for very compact objects.
Tidal deformability affects the gravitational-wave phase

of a binary inspiral at high post-Newtonian order [5], with

the magnetic TLNs giving a small contribution relative to
the electric ones [15,18,21]. Nonetheless, their characteri-
zation is important to develop accurate waveform models
and to compare the post-Newtonian predictions with those
of numerical simulations [18,22–25].
There is some confusion in the literature related to the

magnetic TLNs. These were computed independently in
2009 by Binnington and Poisson [2] (hereafter, BP) and by
Damour and Nagar [1] (hereafter, DN) by considering axial
perturbations of a perfect-fluid star in general relativity (see
also [26] for an earlier study by Favata in the context of
post-Newtonian theory). These perturbations can be
reduced to a single second-order master equation; however,
it has been previously noted that the master equation of BP
and that of DN are inequivalent [9] and give rise to different
magnetic TLNs. Meanwhile, in 2013 Yagi [21] used the
result of DN to compute the effect of the magnetic TLNs in
the waveform and to compute some quasi-universal rela-
tions [27,28] among TLNs of different parity and different
multipole moments. In 2015, Landry and Poisson (here-
after, LP) discovered [3] that the magnetic TLNs depend on
the properties of the fluid (see also [20,29]). In particular,
they found that the magnetic TLNs for irrotational fluids or
for static fluids are different and have the opposite sign.
Consequently, the quasi-universal relations involving mag-
netic TLNs also depend on the fluid properties [18,20,30].
Thus, at the present stage we are left with three different

types of magnetic TLNs: those computed by DN, those
computed by BP, and those computed by LP for irrotational
fluids. The scope of this short note is to clarify certain
aspects of the magnetic TLNs and to unveil the relation
between the different magnetic TLNs presented in previous

*paolo.pani@roma1.infn.it
†leonardo.gualtieri@roma1.infn.it
‡tiziano.abdelsalhin@roma1.infn.it
§fjimenez@na.infn.it
1When the object is spinning, angular momentum gives rise to

spin-tidal coupling and to a new class of rotational TLNs
[3,9,10,19,20]. In this paper we focus on static objects so we
shall not consider the rotational TLNs.
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work. As we shall show, the magnetic TLNs computed by
DN are actually equivalent [modulo a prefactor given in
Eq. (14) below] to those computed by LP for irrotational
fluids, whereas the magnetic TLNs computed by BP refer
to strictly static configurations.

II. AXIAL PERTURBATIONS OF
A PERFECT-FLUID STAR

We consider magnetic (i.e., odd parity or axial) pertur-
bations of Einstein’s equations in the Regge-Wheeler
gauge [31]. In our analysis the perturbations can be time
dependent; we shall analyze the static limit later on. We use
geometrical units in which G ¼ c ¼ 1.
We consider a (spherically symmetric) background

described by an isotropic perfect fluid with stress-energy
tensor Tμν ¼ ðρþ pÞuμuν þ pgμν, where uμ is the four-
velocity of the fluid, and p and ρ are the pressure and
the energy density, respectively. The background metric,

gð0Þμν dxμdxν¼−eνdt2þeλdr2þr2dΩ2, satisfies the Tolman-
Oppenheimer-Volkoff equations,

M0 ¼ 4πr2ρ; ν0 ¼ 2
M þ 4πr3p
rðr − 2MÞ ;

p0 ¼ −ðpþ ρÞM þ 4πr3p
rðr − 2MÞ ; ð1Þ

where a prime denotes a derivative with respect to r, and we
have defined the radial mass function MðrÞ such that
e−λ ¼ 1–2M=r. In this background, the unperturbed fluid
velocity reads uμ ¼ uμ0 ¼ fe−ν=2; 0; 0; 0g.
The perturbed metric reads gμνðt; r; ϑ;φÞ ¼ gð0Þμν þ

δgoddμν ðt; r; ϑ;φÞ, with

δgoddμν ¼
X
l

Xl

m¼−l

0
BBB@

0 0 hl0ðt; rÞSlϑ hl0ðt; rÞSlφ
� 0 hl1ðt; rÞSlϑ hl1ðt; rÞSlφ
� � 0 0

� � � 0

1
CCCA; ð2Þ

where asterisks represent symmetric components, Yl ¼
Ylðϑ;φÞ are the scalar spherical harmonics, and ðSlϑ; SlφÞ≡
ð− 1

sinϑY
l
;φ; sin ϑYl

;ϑÞ are the (odd-parity) vector spherical
harmonics. Since the background is spherically symmetric,
the azimuthal number m is degenerate and the perturbation
equations depend only on l. Under parity transformations
(ϑ → π − ϑ, φ → φþ π), the perturbations are multiplied
by ð−1Þlþ1 and therefore are called odd-parity or “axial”;
we shall use the two notations indistinctly.
In the axial sector the metric perturbations are not

coupled to pressure and density perturbations, but are
coupled to axial fluid perturbations. The only nonvanishing
odd-parity fluid perturbation is the axial fluid velocity (we
follow the notation of Ref. [32] in the nonrotating case):

δuμ ¼ ½4πe−ν=2r2ðρþpÞ�−1
�
0;0;Slϑ;

Slφ
sin2θ

�
Ulðt; rÞ; ð3Þ

such that uμ ¼ uμ0 þ δuμ. By linearizing Einstein’s equa-

tions on the background gð0Þμν , one can obtain a system of
three differential equations for the axial sector only

e−ν _h0 − e−λh01 −
1

r2
ð2M − 4πðρ − pÞr3Þh1 ¼ 0; ð4Þ

e−νð _h00 − ḧ1Þ −
2e−ν

r
_h0 −

ðl − 1Þðlþ 2Þ
r2

h1 ¼ 0; ð5Þ

e−λðh000 − _h01Þ−4πðρþpÞrðh00− _h01Þ−
2e−λ

r
_h1

−
1

r3
ðlðlþ1Þr−4Mþ8πðρþpÞr3Þh0−4eνU¼ 0; ð6Þ

where for clarity we omitted the multipolar index l from
the perturbation variables and used a dot to denote a time
derivative.
We immediately see that Eq. (4) can be generically

solved for h0 in terms of h1, provided the perturbations are
not strictly static, in which case _h0 ¼ 0 and Eq. (4)
becomes a constraint equation for h1.
More precisely, Eq. (4) can be written as

_h0 ¼ eðν−λÞ=2ðψrÞ0; ð7Þ

where ψ is defined such that

h1 ¼ eðλ−νÞ=2ψr; ð8Þ

and we have used the background equations (1). Below, we
consider the static and time-dependent cases separately.

A. Static axial perturbations

For strictly static perturbations, _hi ¼ 0 and U ¼ 0. In
this case Eq. (5) yields h1 ¼ 0, which also satisfies Eq. (4).
On the other hand, Eq. (6) yields a second-order differential
equation for h0:

e−λh000−4πrðpþρÞh00−
�
lðlþ1Þ

r2
−
4M
r3

þ8πðpþρÞ
�
h0¼0:

ð9Þ

This equation is equivalent to that obtained by BP
(cf. Eq. (4.29) in Ref. [2]) which indeed studied the axial
perturbations of a strictly static fluid.
Although Ref. [2] reported that Eq. (9) is also equivalent

to Eq. (31) in DN [1], this is actually not the case, as already
noticed in Ref. [9]. We shall elucidate the reason for this
discrepancy in the next section.
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B. Time-dependent axial perturbations

Let us consider the Fourier transform of the perturba-
tions, i.e., hiðt; rÞ ¼

R
dthiðω; rÞe−iωt, with a slight abuse

of notation. In this case Eq. (7) can be solved for h0 in terms
of h1 and its derivative:

h0ðω; rÞ ¼ i
eðν−λÞ=2

ω
ðψrÞ0: ð10Þ

Notice that the above equation does not have a well-defined
limit as ω → 0. Inserting Eq. (10) into Eq. (5) yields

eðν−λÞ=2ðeðν−λÞ=2ψ 0Þ0

þ
�
ω2−eν

�
lðlþ1Þ

r2
−
6M
r3

þ4πðρ−pÞ
��

ψ ¼ 0; ð11Þ

which is the standard Regge-Wheeler equations for axial
perturbations inside the star (see e.g., Ref. [32]). In the limit
ω → 0 this equation coincides with Eq. (31) in DN [1].
We shall now show that the ω → 0 limit of Eq. (11) is

inequivalent to Eq. (9). The underlying reason for this fact
can be traced back to the perturbation of the fluid velocity,
which for ω ≠ 0 is (see, e.g., [32])

U ¼ −4πðρþ pÞe−νh0: ð12Þ

The above equation can be obtained by an appropriate
combination of the components of Einstein’s equations or,
more directly, by the axial component of the stress-energy
tensor conservation. Therefore, even when ω → 0 the fluid
velocity is nonvanishing and the configuration is not strictly
static. By replacing Eq. (12) into Eq. (6), it is straightfor-
ward to obtain an equation for h0 which, in the limit ω → 0,
reads

e−λh000−4πrðpþρÞh00−
�
lðlþ1Þ

r2
−
4M
r3

−8πðpþρÞ
�
h0¼0:

ð13Þ

This equation coincides with Eq. (5.6) in LP for an
irrotational fluid (λ ¼ 1 in their notation). As noticed in
LP, Eq. (13) is actually very similar to Eq. (9) for the static
case, the only difference being the opposite sign in front of
the (ρþ p) term.
One can easily check that the fluid in this configuration

is irrotational, i.e., the vorticity vector ωα ¼ 1
2
ϵαβμνuβ;μuν

identically vanishes [33]. This corresponds to the configu-
ration studied by LP [3]. In our case this condition is
enforced by Eq. (12), while in the static case U ¼ 0.
The fact that Eqs. (9) and (13) are inequivalent shows

that the limitω → 0 of the axial sector is discontinuous, i.e.,
in this limit the Regge-Wheeler equation is not equivalent

to Eq. (9) which describes the static case, ω ¼ 0 ¼ U. The
latter is an isolated point in the space of the solutions.

III. DISCUSSION

In summary, we showed that the equation describing the
magnetic TLNs computed by DN coincide with that
computed by LP for an irrotational fluid. This is due to
the zero-frequency limit of the Regge-Wheeler equation,
which forces the fluid to be irrotational rather than static.
This fact also explains why the master equations computed
by DN and by BP are inequivalent, because in the former
case the fluid is irrotational, whereas in the latter case the
fluid is static. To the best of our knowledge, this connection
was not pointed out in the past.
In particular, the relation between the magnetic TLNs

computed by DN (denoted as jl) and those computed by
LP (denoted as k̃mag

l ) for an irrotational fluid is (see also
Eq. (6) in Ref. [15] for the l ¼ 2 case)

jl ¼ 4ðlþ 2Þðlþ 1Þ
lðl − 1Þ

�
M
R

�
k̃mag
l : ð14Þ

Note that the two definitions differ by a factor of the
compactness, M=R, where M ¼ MðRÞ and R are the
stellar mass and radius, respectively.
Yagi [21] used the master equation derived by DN so he

actually computed the magnetic TLNs jl which, as we have
just shown, correspond to the case of an irrotational fluid.
In particular, the static and irrotational magnetic TLNs
satisfy two different approximately-universal relations,
as discussed in Refs. [18,20], where some fits for such
relations are provided in both cases.
Finally, since the irrotational case is obtained as the zero-

frequency limit of the Regge-Wheeler equation, we con-
sider it to be more physical, which is also on the line of
recent numerical relativity simulations of binary neutron
star mergers [34–37], and therefore we expect it should
describe more accurately relevant astrophysical configura-
tions [3,26,38].
It is also worth mentioning that the magnetic TLNs

of static and of irrotational fluids are similar in absolute
values (and of opposite sign). This implies that in both
cases their contribution to the waveform is very small,
and might be possibly be relevant only for third-generation
gravitational-wave detectors, as recently analyzed in
detail [18].
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