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Using a general solution-generating technique for electrically charged relativistic stars with spherical
symmetry, we derive a new bound on the mass-radius ratio. This compactness bound is based on the
already established bounds for uncharged interior solutions and it will provide the corresponding generali-
zations in the presence of the electric charge.
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I. INTRODUCTION

According to the Birkhoff theorem the most general
description of the outside geometry of a nonrotating and
spherically symmetric relativistic star is provided by the
Schwarzschild solution. There is however some freedom in
choosing the specific interior solution for the compact star.
Ever since the beginning of the General Relativity (GR)
as a theory of gravity and the pioneering works of
Schwarzschild [1] and Tolman [2] compact objects were
usually modeled using spherically symmetric perfect fluid
solutions of the Einstein equations. There are known by
now various solution-generating techniques that allow us to
find new spherically symmetric solutions of the Einstein
equations sourced by perfect fluids [3–5]. One should also
note at this point that not all the perfect fluid solutions that
can be generated this way are also physical [6].
On the other hand, spherical symmetry also allows more

general anisotropic fluid configurations of the star’s
interior. For such fluid configurations the anisotropy means
that the pressure along the radial direction pr is usually
different from the pressures along the transverse directions,
pt. There are many reasons to consider anisotropic fluids as
interior models for relativistic stars [7]. The anisotropy of
the interior fluid distribution can arise from various
reasons: it can be due to a mixture of two fluid components
[8], the existence of a superfluid phase, the presence of a
magnetic field, etc., (for a review see [9] and references
there). There are also known other nontrivial examples of
anisotropic fluid distributions, such as the bosonic stars
(see for instance [10] and the references within), or
traversable wormholes [11], or the so-called gravastars
[12], which are systems where anisotropic pressures occur

naturally. Not surprisingly, in the past decades there has
been renewed interest in deriving new physical solutions
with interior anisotropic fluids (see for instance [13–24]).
In general, for a spherically symmetric compact object

the compactness is defined using the mass-to-radius ratio,
M
R . The compactness is essential in the determination of the
outside geometry of the star and it is also a measure of the
strength of the gravitational field of that compact object.
One can also perform direct experimental observations of
the compactness of a relativistic star since the compactness
is also related to the gravitational redshift of that object (see
for instance [25,26] and the references therein). Since the
seminal work of Buchdahl [27] it is well known that a
spherically compact object whose energy density decreases
monotonically will present an upper bound on the mass-to-
radius ratio:

M
R

≤
4

9
: ð1Þ

Here M is the Arnowitt-Deser-Misner mass of the compact
object and R is its radius. The critical value M

R ¼ 4
9

corresponds to the limit case of the interior
Schwarzschild solution [1] for which the pressure at the
center of the star becomes infinite. However, it was shown
in [28,29] that this bound also holds in more general
anisotropic configurations that satisfy the energy condition:

pr þ 2pt ≤ ρ; ð2Þ

where ρ is the fluid’s energy density. Moreover, for a more
general energy condition of the form pr þ 2pt ≤ Ωρ with
Ω > 0, it was shown in [28] that the mass-to radius ratio is
bounded by

M
R

≤
1

2

ð1þ 2ΩÞ2 − 1

ð1þ 2ΩÞ2 ; ð3Þ
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where ρ and p are nonnegative. For Ω ¼ 1 one obviously
recovers the bound (1).
Bounds for spherically symmetric static solutions of the

Einstein-fluid equations in the presence of a positive
cosmological constant have been found in [30,31]. For
configurations that describe noncompact objects the dis-
cussion is a bit more involved since these configurations do
not have a sharp boundary on which the radial pressure
vanishes. However, even in these cases Buchdahl-type
inequalities have been derived in [32].
For charged configurations the similar bounds have been

established in [33–35]. Of particular importance, due to its
simplicity is the bound derived in [33]:

M
R

≤
2

9
þ Q2

3R2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Q2

R2

r
: ð4Þ

This bound has been further generalized in [36] to allow for
the presence of a cosmological constant.
In this paper we will derive a similar simple bound for

electrically charged objects, solutions of the full Einstein-
Maxwell-fluid model. Our bound will be based on the
previously derived bounds for uncharged objects as given
in (1) or (3). From the uncharged interior solution we shall
construct the corresponding electrically charged solution.
We stress that this approach is based on an exact solution of
the Einstein-Maxwell-fluid equations of motion. One such
simple solution of the electrically charged interior solution
of the full Einstein-Maxwell-fluid theory, for more general
geometries with axial symmetry has been provided in [37].
In our work we shall adapt this method to the spherically
symmetric case and also use a slightly more general form
than that provided in [37]. The more general solution
contains an extra parameter that we shall judiciously
choose in order to obtain asymptotically flat exterior
solutions. By computing the mass and charge of the outside
geometry of the star, which is the Reissner-Nordström
solution, our Buchdahl-type bound for charged objects
takes the form

M
R

≤
4

9

2
645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9Q2

16R2

s
− 4

3
75: ð5Þ

The structure of this paper is as follows: in the next
section we present the general electrically charged version
of a spherically symmetric interior solution. In Sec. III we
show how to derive the charged bound (5) by using the
bound (1) for the uncharged solution of the Einstein
equations. The final section contains a summary of our
work and avenues for further work.

II. THE ELECTRICALLY CHARGED SOLUTION

Our starting point is the solution-generating techni-
que presented in [37]. We will adapt here their results for
a spherically symmetric spacetime with the line element:

ds2 ¼ −gttðrÞdt2 þ grrðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ: ð6Þ

In general, this geometry is a solution of the Einstein-
fluid equations:

Gμν ¼ 8πT0
μν; ð7Þ

where the stress energy T0
μν of the anisotropic distribution

of matter has the form

T0
μν ¼ ðρ0 þ p0

t Þu0μu0ν þ p0
t g0μν þ ðp0

r − p0
t Þχ0μχ0ν: ð8Þ

Here ρ0 is the fluid density, p0
r is the radial component of

the pressure, while p0
t represents the transverse compo-

nents of the pressure. Moreover, u0μ is the 4-velocity of

the fluid while ðχ0Þμ ¼
ffiffiffiffiffiffiffi
g−1rr

p
δμr is the unit spacelike

vector in the radial direction.
According to the results in [37], the corresponding

electrically charged solution is

ds2 ¼ −
gttðrÞ
Λ2

dt2 þ Λ2½grrðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ�;
ð9Þ

where we defined Λ ¼ 1−U2gttðrÞ
C . This is an exact solution of

the Einstein-Maxwell-fluid equation:

Gμν ¼ 8πTEM
μν þ 8πTaf

μν ; Fμν
;ν ¼ 4πJμ; ð10Þ

where the stress-energy tensor of the anisotropic fluid is
given by

Taf
μν ¼ ðρþ pt þ σeÞuμuν þ ptgμν þ ðpr − ptÞχμχν: ð11Þ

Here ρ ¼ ρ0

Λ2 is the energy density of the fluid, pr ¼ p0
r

Λ2

is the radial pressure and pt ¼ p0
t

Λ2 is the transverse
pressure of the fluid. The charge density of the fluid
is given by

σe ¼
2

C
ðρþ pr þ 2ptÞ

U2gttðrÞ
Λ

: ð12Þ

Finally, the electromagnetic stress-energy tensor in (10)
is defined as

TEM
μν ¼ 1

4π

�
FμαFν

α −
1

4
F2gμν

�
: ð13Þ
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Here the Maxwell field is described by the 4-potential

Aμ ¼ ðUgttðrÞ
Λ ; 0; 0; 0Þ and it is sourced by the electric

4-current Jμ ¼ ðjt; 0; 0; 0Þ where

jt ¼ −
2

C
ðρþ pr þ 2ptÞ

UgttðrÞ
Λ2

: ð14Þ

Note that the above solution contains two parameters U
and C and it is slightly more general than the one presented
in [37].

III. THE CHARGED BOUND FOR THE
MASS-TO-RADIUS RATIO

For a regular uncharged compact object the exterior
geometry is that of the Schwarzschild vacuum solution:

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ dr2

1 − 2m
r

þ r2ðdθ2 þ sin2θdφ2Þ;

ð15Þ

where m is the mass of the uncharged configuration.
The uncharged interior solution (6) will match the
Schwarzschild exterior geometry (15) on the star’s surface,
which is defined by p0

rðr0Þ ¼ 0. In the electrically charged
solution the exterior geometry corresponds to the charged
version (9) of (15),1 which should be the Reissner-
Nordström solution. Indeed, in order to have an asymp-
totically flat exterior solution it is convenient at this point to
pick the value of the constant C ¼ 1 −U2. It is now easy to
see that by performing the coordinate transformation,

r ¼ R −
2mU2

1 − U2
; ð16Þ

the exterior geometry becomes the Reissner-Nordström
solution written in the canonical form:

ds2 ¼ −
�
1 −

2M
R

þQ2

R2

�
dt2 þ dR2

1 − 2M
R þ Q2

R2

þ R2ðdθ2 þ sin2θdφ2Þ;

At ¼ U þQ
R
; ð17Þ

where the Arnowitt-Deser-Misner massM and charge Q of
the exterior solution are given by

M ¼ 1þ U2

1 −U2
m; Q ¼ 2mU

1 −U2
: ð18Þ

This exterior geometry will match continuously the
charged interior on the star surface r ¼ r0. Note that using
the new radial coordinate R the star surface is now located
at R0 ¼ r0 þ 2mU2

1−U2 . Moreover, since m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
one

has Q
M ≤ 1. Finally, the mass-to-radius ratio for the

uncharged configuration can be cast into the form

m
r0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
R0 −M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p : ð19Þ

Assuming now that the Buchdahl bound (1) is valid for
the uncharged configuration, then using the above relation
it is easy to derive the corresponding compactness bound in
the electrically charged case:

M
R0

≤
4

9

"
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9Q2

16R2
0

s
− 4

#
: ð20Þ

It should be obvious that in the uncharged case Q ¼ 0 the
above inequality reduces to the Buchdahl bound (1). It is
also possible to restate the above inequality from (19) by
using the extremality parameter Q

M instead of q ¼ Q
R0
. In this

case one has

M
R0

≤
4

4þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q2

M2

q : ð21Þ

In the extremal case Q
M ¼ 1 and the bound becomes M

R0
≤ 1.

It would be interesting to compare the above charged
bound (5) with the previously known bound (4) found in
[28]. Defining the ratio q ¼ Q

R0
we shall consider the

difference between the two bounds:

fðqÞ ¼ 4

9

"
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9q2

16

r
− 4

#
−
�
2

9
þ q2

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3q2

q �
:

ð22Þ
In Fig. 1 we plot the difference (22) between the two

inequalities for the physical values of the charge-to-radius
parameter q from 0 to 1. Note that this function is always
negative in this interval and therefore our bound in (5)
limits the compactness values for charged objects even
more than the bound in (4). However, one should note at
this point that in our solution-generating technique the
value of the tt-component of the metric in the charged
solution (9) [let us denote it here by (−Gtt)] is related to the
electric potential in the charged solution by a Weyl-type
relation of the form

Gtt ¼ A2
t þ

C
U
At: ð23Þ

This relation between the metric component Gtt and the
electric potential At is not the most general that one could

1For the exterior solution the fluid density and pressures
vanish.

NEW BOUND OF THE MASS-TO-RADIUS RATIO FOR … PHYS. REV. D 98, 124022 (2018)

124022-3



envisage. For instance, there are known other exact
solutions of the Einstein-Maxwell-fluid equations that
generalize the above relation. One such example is pro-
vided by the Guilfoyle stars [38]. In [39] it was shown that
the Andreasson bound (4) is saturated for a particular
Guilfoyle solution for which −Gtt ¼ aA2

t . However, this
solution is not covered by our solution-generating tech-
nique so we will not discuss it here.
One might wonder what is the charged configuration that

could reach the upper bound in (5). For instance, in the
uncharged case the Buchdahl inequality is saturated by the
interior Schwarzschild solution if the compactness is m

r0
¼ 4

9
.

As it turns out, our inequality is saturated by the corre-
sponding charged version of the interior Schwarzschild
solution, as expected.
Finally, let us mention that by using (19) and (3) one

could easily generalize the bound (5) for the case in which

Ω ≠ 1. However, the result is not particularly illuminating
and we will not list it here.

IV. CONCLUSIONS

In this work we found a new bound for the mass-to-
radius ratio for charged compact objects. Our bound is
based on the well-known Buchdahl bound for uncharged
objects. The novelty of our approach is that we used a
solution-generating technique to find the corresponding
charged solution. In this way we were able to find directly
the relation between the compactness of the charged star
and the compactness for the corresponding uncharged star.
Our bound turns out to be smaller than the previous charged
bound found by Andreasson in [28]. However, we found
that the charged interior solution that saturates the bound is
the charged interior Schwarzschild solution in the particular
limit case in which the radial pressure blows up at origin, as
expected.
As avenues for further work, it would be interesting to

find extensions (if any) of our solution-generating tech-
nique to the more general cases that might include the
Guilfoyle solutions [more general Weyl ansatzes in (23)].
Also it might prove instructive to find similar bounds for
electrically charged interior solutions in higher dimensions.
Work on these issues is in progress and it will be reported
elsewhere.
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