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In the present manuscript, I examine an intriguing relation at the classical level between General
Relativity and a theory where matter couples uniquely multiplicatively to geometry in the Lagrangian
density. Interestingly, the gravitational constantG is replaced by a novel fundamental constant, whose value
is not tied to any classical phenomenon; while the value of G itself becomes related to the dynamics of the
universe. I concentrate on different aspects of the Equivalence Principle, as the theory is expected to violate
all of its different formulations.
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I. INTRODUCTION

In most attempts to find a new theory of gravity, parts
of the Lagrangian that correspond to matter are usually
considered separately from the geometric one, before being
summed. In other words, one assumes that the two sectors
of nature can be described separately before being put
together in order to consider them simultaneously.
From a historical perspective, it is a rather legitimate

assumption, given the fact that a good description of matter
fields has originally been (and still mostly is) formulated in
the context of Special Relativity—for which gravity is
entirely absent. Hence, from this “experience,” it seems
legitimate to assume that at the level of the action, matter
and gravity can be described by distinct Lagrangians,
which can then be summed in order to describe both of
the two worlds at the same time.
Besides, beyond its apparent legitimacy, this assumption

also played a central role in order to find General Relativity—
which, perhaps more than anything else, is a very satisfactory
(a posteriori) justification of the Equivalence Principle that
continues to be respected to always higher accuracy, e.g.,
[1–3].
Nevertheless, one may question whether assuming that

matter fields and gravity are described by separate
Lagrangians is a good guiding principle in order to search
for a better picture of fundamental physics than the current
accepted model. For instance, in 1918, Einstein stated in a
letter to Weyl [4]: “Ultimately it must turn out that action
densities must not be glued together additively. I too,
concocted various things, but time and again I sank my
head in resignation.”

In particular, it is tantalizing to imagine a greater inter-
connection betweenmatter fields and geometry in the context
of a general quantum theory of fundamental physics.
A surprising theory that goes beyond this assumption has

recently been suggested [5]. It is based on a fðR;LmÞ action
in four dimensions [6]. As we shall see, (at least) part of its
phenomenology may nevertheless be very similar to the one
of General Relativity in some of its (classical) limits.

II. THE THEORY

The action of the “surprising theory” reads as follows:

S ¼ −
ξ

2c

Z
d4x

ffiffiffiffiffiffi
−g

p L2
m

R
; ð1Þ

as opposed to the one of General Relativity, which reads

S ¼ 1

c

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
2κ

þ Lm

�
; ð2Þ

with κ ≡ 8πG=c4, c and G are the speed of light and
gravitational constant respectively, R is the Ricci scalar,
while Lm represents the Lagrangian of matter fields and ξ
is a constant with the dimension of κ.1 The most important
thing to notice right away is that in this framework, it no
longermakes sense to considermatter without geometry, and
vice versa. In particular, according to Eq. (1), onemay expect
any space-time that gives R ¼ 0 (including Minkowski’s
space-time) not to be an exact solution of this theory. The
metric field equation derived from (1) reads

Rμν −
1

2
gμνR ¼ −

R
Lm

Tμν þ
R2

L2
m
ð∇μ∇ν − gμν□ÞL

2
m

R2
; ð3Þ
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1Note that, for dimensional reasons, ξ is a numerator while κ is
a denominator, even though they have the same dimension.
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with the usual stress-energy tensor definition:

Tμν ≡ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð4Þ

One important thing to notice is that the constant ξ does not
appear in the classical equations of motion. Therefore, this
constant can only be relevant at the quantum level—through,
for instance, the path functional integration of action (1).
In what follows, I concentrate on the classical side of the

theory. Wewill see that the trace of the metric field equation
is particularly illuminating. It reads

3
R2

L2
m
□
L2
m

R2
¼ R

�
1 −

T
Lm

�
: ð5Þ

III. BUILDING SOME INTUITION

One may ask, however, how such a theory may have
any similarity with General Relativity. A first hint to this
question comes from assuming that the on-shell Lagrangian
can be equal to the trace of the stress-energy tensor—at
least in some specific situations. By that, I mean that
I assume that there may be solutions to the matter field
equations that are such that Lm ¼ T when the actual
solutions of the fields are injected in the formal equation
of Lm. In those situations, the right-hand side of Eq. (5)
vanishes, such that Lm=R ¼ constant is a solution of
Eq. (5). For this solution, Eq. (3) reduces to the equation
of General Relativity:

Rμν −
1

2
gμνR ¼ 8πG

c4
Tμν; ð6Þ

with the following identification:

R
Lm

¼ −
8πG
c4

; ð7Þ

which—since Lm ¼ T—turns out to be nothing else than
the trace of the Einstein equation R ¼ − 8πG

c4 T. This would
mean that in this context, the constant of Newton is not a
fundamental constant of the theory, but emerges as a
(specific) solution of the dynamics of the field equations.2

On the other hand, whenever Lm ≠ T, Eq. (5) drives R=Lm
away from a constant, and therefore, Eq. (3) drives the
theory away from General Relativity.
In General Relativity already, one may expect both

situations (Lm ¼ T and Lm ≠ T) to occur, depending on
the underlying physics.3 For instance, take an electric field

in a given direction, the on-shell Lagrangian reduces to the
energy density, while the electromagnetic tensor is traceless
(hence Lm ≠ T). On the other side, for an electromagnetic
radiation, given that the modulus of the electric and
magnetic fields are equal, the on-shell Lagrangian vanishes,
just as the trace of the electromagnetic stress-energy tensor
does (hence Lm ¼ T). For a dust field on the other side, one
deduces from S ¼ −mc2

R
dτ that the Lagrangian is propor-

tional to the rest-mass energy density (hence Lm ¼ T), etc.
However, the relation with matter fields in the present

theory becomes more involved because the matter field
equations are also modified with respect to General
Relativity, as soon as R=Lm ≠ constant. Indeed, for any
tensorial field χ, the Euler-Lagrange equation is modified
according to

∂Lm

∂χ −
1ffiffiffiffiffiffi−gp ∂σ

�∂ ffiffiffiffiffiffi−gp
Lm

∂ð∂σχÞ
�

¼ ∂Lm

∂ð∂σχÞ
∂σ ln

�
Lm

R

�
: ð8Þ

Of course, the conservation equation is in general modified
as well, such that one has

∇σ

�
Lm

R
Tασ

�
¼ Lm∇α

�
Lm

R

�
; ð9Þ

almost necessarily leading to a violation of the Equivalence
Principle as soon as Lm=R ≠ constant.4 But again, if one
assumes that Eq. (7) is possible in some limit—given that
Lm may be equal to T in some limit—then it is possible that
the theory becomes classically equivalent to General
Relativity in this limit.
It may be worth noticing that in the general context of

fðR;LmÞ theories, it has been argued that the average on-
shell Lagrangian of localized concentrations of energy
with fixed rest mass and structure (solitons) is the trace of
the stress-energy tensor [7]. If correct, it gives an example
for which the theory in Eq. (1) can reduce to General
Relativity—perhaps independently of the underlying spe-
cifics of the matter sector.

IV. AN ALMOST EQUIVALENT THEORY

A convenient way to understand the classical equiva-
lence with General Relativity in the limit such that Lm ¼ T
is to use the scalar-tensor (almost) equivalent action to
Eq. (1), which reads [5]

S ¼ 1

c
ξ

κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR
2κ

þ
ffiffiffiffi
ϕ

p
Lm

�
: ð10Þ

Indeed, one can show that it classically corresponds to
Eq. (1) with the identification

ffiffiffiffi
ϕ

p ¼ −κLm=R [5].5

Equation (10) leads to the following equations of motion:2That is, G≡ c4R
8πLm

∼ constant.
3Of course, for General Relativity, this discussion would be

pointless given the fact that the Lagrangian does not explicitly
appear in the field equations.

4This remark will become clearer with Eq. (10).
5Obviously, the correspondence breaks at R ¼ 0.
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Gαβ ¼ κ
Tαβffiffiffiffi
ϕ

p þ 1

ϕ
½∇α∇β − gαβ□�ϕ; ð11Þ

where Gαβ is the Einstein tensor, as well as

3

ϕ
□ϕ ¼ κffiffiffiffi

ϕ
p ðT − LmÞ; ð12Þ

and the conservation equation reads

∇σð
ffiffiffiffi
ϕ

p
TασÞ ¼ Lm∇α

ffiffiffiffi
ϕ

p
: ð13Þ

At the same time, the matter field equations are modified
with respect to the case where General Relativity is
minimally coupled to matter. Indeed, one has

∂Lm

∂χ −
1ffiffiffiffiffiffi−gp ∂σ

�∂ ffiffiffiffiffiffi−gp
Lm

∂ð∂σχÞ
�

¼ ∂Lm

∂ð∂σχÞ
∂σ ln

ffiffiffiffi
ϕ

p
: ð14Þ

See a specific case for instance in [8]. The correspondence
with Eqs. (3), (5), (8) and (9) is obvious. Also, if Lm ¼ T,
ϕ ¼ ϕ0 ¼ constant is a solution of the scalar-field equa-
tion. In that situation, one recovers the equations of General
Relativity minimally coupled to matter fields, as Eqs. (11)
and (13) then reduce respectively to

Gαβ ¼ κ
Tαβffiffiffiffiffi
ϕ0

p ; and ∇σTασ ¼ 0; ð15Þ

while the matter field equations also reduce to the equations
that are derived in General Relativity.
On the other side, whenever Lm ≠ T, then the scalar-

field cannot be a constant, such that it should lead to a
violation of the universality of free fall [9,10] and to various
violations of the Equivalence Principle (e.g., at the cos-
mological level [8]) that are severely constrained by
observations. Therefore, one has to check whether or not
the actual scalar-field solution can be close enough to be a
constant that the theory can pass Equivalence Principle tests.

V. COSMOLOGICAL PHENOMENOLOGY
AND THE EQUIVALENCE PRINCIPLE

It can easily be checked that if one assumes a flat
Friedmann-Lemaître-Robertson-Walker (FLRW) metric
for the universe, the scalar-field is indeed quickly driven
toward a constant—at least during the matter era [11,12].
However, the theory described by Eq. (10) alone cannot
account for the acceleration of the expansion of the universe,
because it converges toward General Relativity without a
cosmological constant—as one can check from [11].
Therefore, one may have to consider quantum corrections
to Eq. (1) in order to get a theory that seems consistent with
cosmological observations.

A. The cosmological constant

Still, note that it has been shown that a quadratic potential
in addition to the Lagrangian given in Eq. (10) can lead to an
acceleration of the expansion of the universe, without
spoiling the constancy of the scalar field at the cosmological
level [11], and therefore without spoiling the satisfaction of
the Equivalence Principle at the cosmological level [8].
However, unless the quantum field theory applied on
Eq. (1) can generate corrections such as a quadratic potential
when the theory iswritten in its scalar-tensor formEq. (10), it
seems unlikely that the theory given in Eq. (1) can be
consistent with cosmological observations. Nevertheless,
one can see that if such a “corrected theory” had to pass
cosmological tests, it could read as follows:

S ¼ −
ξ

2c

Z
d4x

ffiffiffiffiffiffi
−g

p �
L2
m

R
þ α

L4
m

R4

�
; ð16Þ

where α is a constant with the dimension such that α=κ2 ≡
2Λ has the dimension of an inverse squared length. Indeed,
regarding the extra termas a perturbation andusing the zeroth
order identification

ffiffiffiffi
ϕ

p ¼ −κLm=R, this action reduces to

S ¼ 1

c
ξ

κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2κ
ðϕR − 2Λϕ2Þ þ

ffiffiffiffi
ϕ

p
Lm

�
: ð17Þ

It is important to stress, however, that if the additional term in
Eq. (16) is not a perturbation of the original theory—but
rather is a part of the zeroth order classical field equations—
then Eq. (16) does not correspond to Eq. (17), because the
variation of ϕ with respect to the metric would no longer
cancel for all the terms in the action. It is therefore a rather
strong restriction, which may turn out to be a shortcoming of
the theory. [Note, however, that Eq. (17) can be considered as
a stand-alone theory—although it would bemuch less exotic
and intriguing than the fðR;LmÞ theory I started with]. But
the cosmological (flat FLRW) solution of the theory
described by Eq. (17) exponentially converges toward
General Relativity with a cosmological constant Λ during
the matter and dark energy eras—as can be seen in Sec. III E
of [11]—without spoiling the Equivalence Principle in
cosmological observables since the scalar-field is exponen-
tially driven toward a constant (at least during the matter and
dark energy eras)—as one can infer from [8,11].

B. Dynamical coupling constants

What the convergence toward General Relativity would
also mean is that the Newtonian constant today,

Gtoday ≡ c4R
8πLm

����
z¼0

; ð18Þ

where z is the cosmological redshift, is the result of the
cosmological evolution of the field equations (3). Besides,
since the scalar-field degree of freedom (nonminimally)
couples to matter in Eq. (17), the same goes for other

RETHINKING THE LINK BETWEEN MATTER AND GEOMETRY PHYS. REV. D 98, 124020 (2018)

124020-3



coupling constants [9,10]—such as the fine structure con-
stant [8]. In the end, one would have replaced absolute (or
“rigid”) structures (the coupling constants) by dynamical
(or “elastic”) entities (see [13] for a discussion on these
aspects). It is rather interesting to remark that another
approach that initially aimed atmergingmatter and geometry
in the same Lagrangian—the Kaluza-Klein theory—also led
to a relaxation of (part of the) absolute structures [13]. In
other words, the theory presented in Eq. (1) is a way tomerge
matter and geometry in a unique Lagrangian that is an
alternative to the (old) Kaluza-Klein idea of adding dimen-
sions. But it is important to stress how little room seems to be
left for modifying the function fðR;LmÞ in Eq. (1), if one
wants the following three properties to be satisfied: (i) matter
and geometry are not separable in the action, (ii) the
dynamics should tend toward General Relativity in some
(observable) limits and (iii) the Equivalence Principle should
not be “strongly” violated in (observable) situations. Indeed,
the intrinsic decoupling that leads to the (potential) good
behavior of the theory comes from an exact cancellation of
different terms in the field equations. Hence, it does not seem
likely that any other fðR;LmÞ theory can satisfy the three
premises stated above.
In some sense, in order to get the action Eq. (1)—instead

of the action Eq. (2)—one has to relax the Equivalence
Principle as a fundamental guiding principle,6 and to use
another guiding principle that demands geometry to be tied
to matter in an inseparable way. Then, the fact that the
theory must explain observations seems to fix the remain-
ing freedom in choosing the action.

C. Another perspective: A conformal representation

The relation of the theory described by Eq. (17) with
General Relativity with a cosmological constant is more
direct in a conformal representation such that g�αβ ¼ ϕgαβ.
Indeed, in this conformal representation, the kinetic gravi-
tational term takes the form of General Relativity with a
cosmological constant Λ and a scalar-field decoupled from
the Ricci scalar:

ffiffiffiffiffiffi
−g

p 1

2κ
ðϕR − 2Λϕ2Þ

¼
ffiffiffiffiffiffiffiffi
−g�

p 1

2κ

�
R� − 2Λ −

1

2
gαβ� ∂αφ∂βφ

�
; ð19Þ

with φ≡ ffiffiffi
3

p
lnϕþ arbitrary constant—up to a total

derivative that does not contribute to the equations of
motion. The asterisk indicates that a quantity is defined
with the conformal metric g�αβ. At the same time, the scalar-
field equation is only sourced by a term proportional to
L�
m − T�,7 which is (close to be) null for a nonrelativistic

matter content—even with the cosmological term in
Eq. (19). As a consequence, the cosmological friction term
related to the Hubble-Lemaître function H ¼ _a=a quickly
freezes the scalar field to its local value during the evolution
of the universe—at least after the radiation era. Hence, it
gives another perspective as to why the theory described by
Eq. (17) indeed cosmologically converges toward General
Relativity with a cosmological constant (henceforth sat-
isfying the Equivalence Principle to some degree)—at least
after the radiation era.

D. Potential new prospects for early-universe models

On the other side, since the scalar-field equation is
sourced by a term proportional to L�

m − T�, if the universe
had happened to be dominated by a scalar-field during its
infancy—say, by the kinetic energy of the infant Higgs field
—then one can expect that it would have led to a different
dynamics than for General Relativity with a cosmological
constant and a scalar field. Indeed, one has L�

m − T� ≠ 0
for scalar fields. Therefore, one may use this property in
order to build new early-universe models.

VI. THE UNIVERSALITY OF FREE FALL

Inferring whether or not the theory described by Eq. (1)
respects the universality of free fall—at least to a given
level accuracy—may also be extremely complicated.
Indeed, in the current picture of fundamental physics—
General Relativity with a cosmological constant plus the
standard model of particles—most of the mass of atoms
comes from quantum (trace) anomalies of matter fields
[14]. Hence, it seems that one has no choice but to
investigate the quantum side of the theory described by
Eq. (1) in order to figure out whether or not it respects the
universality of free fall, at least to a given level of accuracy.
Nevertheless, in the framework of a scalar-tensor theory
with nonminimal couplings to matter—such as the theory
described by Eq. (10) or (17)—it has been shown in [10]
that if the scalar field universally couples to the trace of the
“quantum corrected” matter stress-energy tensor,8 and if
this coupling is the square root of the coupling with the
Ricci scalar—which is the case in Eqs. (10) and (17)—then
the scalar field actually decouples from the matter dynam-
ics, and one recovers the universality of free fall as well
as the rest of the phenomenology of General Relativity.
Therefore, it seems plausible that the theory given by
Eq. (1)—or by Eq. (17)—respects the universality of free
fall—at least to a certain level of accuracy—even though it
may be very demanding to actually evaluate it.

6Note that it has already been argued that the Equivalence
Principle should not be counted among the basic principles of
physics, see e.g., [13].

7This can be inferred from Eq. (10) in [12].

8See also [15] for a discussion on the relevance of also taking
into account the QED trace anomaly, while in [10], Hees and
I only considered the QCD trace anomaly—following the seminal
work of Damour and Donoghue [9]. Note, however, that the
splitting between purely QCD and QED effects is ambiguous
when QED is also turned on [16].
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VII. CONCLUSION

In conclusion, the theory presented in this manuscript
presents several interesting features:

(i) It is simple in its formulation, and yet (very) exotic.
In particular, it does not require any new field.
Furthermore, at the classical level, it has one
parameter less than General Relativity, because
the Newtonian constant G becomes a dynamical
entity, while the coupling constant ξ [replacing κ ¼
8πG=c4 in the action Eq. (1)] can be relevant at the
quantum level only.

(ii) It has a richer dynamics than General Relativity,
but its classical dynamics tends toward the one of
General Relativity during the expansion of the
universe. Notably, features usually expected from
the Equivalence Principle (e.g., the universality of
free fall) would no longer be fundamental in this
theory, but emergent.

(iii) It is a new way to “entangle”matter and geometry in
a single Lagrangian—which is, otherwise, often
achieved by adding dimensions.

(iv) It seems that it cannot be “deformed” if one wants to
recover General Relativity and the Equivalence
Principle in some limits.

(v) The Planck units are no longer tied to a fundamental
gravitational parameter in this theory. However, new
fundamental units could in principle be defined from
the novel coupling constant ξ in Eq. (1). Moreover,
given the fact that ξ does not appear in the classical
field equations, it is tempting to conjecture that this
parameter may indeed be related to a quantum field
theory that encompasses both the matter and the
gravitational sectors.

On the other hand, one has to investigate the complicated
quantum field theory side of the theory in order to
quantitatively estimate its viability—in particular with
respect to both the acceleration of the expansion of the
universe and the universality of free fall issues. However, if
this theory has any truth in it, it seems very likely that the
matter sector will also have to be modified with respect to
the current “standard”—which was designed in the context
of Special Relativity.
Finally, because it cannot be excluded a priori that nature

has several ways that entangle matter and geometry simul-
taneously, let us note that it may also be interesting to see
how this particular theory behaves in more than four
dimensions, as well as to check whether or not there exist
alternative functions fðR;LmÞ that possess a similar “intrin-
sic decoupling” in four—or more than four—dimensions.
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