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For isentropic fluids, dynamical evolution of a binary system conserves the baryonic mass and circulation;
therefore, sequences of constant rest mass and constant circulation are of particular importance. In this work,
we present the extension of our Compact Object CALculator (COCAL) code to compute such quasiequilibria
and compare them with the well-known corotating and irrotational sequences, the latter being the simplest,
zero-circulation case. The circulation as a measure of the spin for a neutron star in a binary system has the
advantage of being exactly calculable since it is a local quantity. To assess the different measures of spin, such
as the angular velocity of the star, the quasilocal, dimensionless spin parameter J=M2, or the circulation C, we
first compute sequences of single, uniformly rotating stars and describe how the different spin diagnostics are
related to each other. The connection to spinning binary systems is accomplished through the concept of
circulation and the use of the constant rotational velocity formulation. Finally,we explore amodification of the
latter formulation that naturally leads to differentially rotating binary systems.
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I. INTRODUCTION

Some of the most important problems in modern
astrophysics include a) the origin of the heavy elements
in the periodic table (heavier than iron), b) the behavior of
matter at densities beyond the nuclear, and c) the mecha-
nism behind the powerful electromagnetic events known as
gamma-ray bursts, which in a few seconds release as much
energy as the sun does throughout its entire life. The
extreme conditions necessary for the creation of these
phenomena can be found in a binary neutron star (BNS)
system through the combination of immense gravity,
electromagnetic fields, and nuclear forces. The 2017
detection of GW170817 confirmed these hypotheses and
marked the birth of “multimessenger astronomy” since for
the first time gravitational waves from a BNS system were
directly measured by the LIGO/VIRGO detector [1]
together with a short duration gamma-ray burst by the
Fermi Gamma-Ray Burst Monitor [2] and INTEGRAL [3].
One of the most important characteristics of a neutron

star (NS) is its rotational frequency, which in isolation has
been observed to be as high as 716 Hz, corresponding to a
period of 1.4 ms for PSR J1748-2446ad [4]. In the 18 BNS
systems currently known in the Galaxy [5,6], the rotational
frequencies are typically smaller. The NS in the system
J1807-2500B has a period of 4.2 ms, while systems J1946
+2052 [7], J1757-1854 [8], and J0737-3039A [9] have
periods 16.96, 21.50, and 22.70 ms, respectively.
Any evolution simulation of a BNS starts from initial

data that describe the system under consideration. The first

such binary initial data were calculated by Baumgarte et al.
[10,11] and Marronetti et al. [12] and described two NSs
tidally locked, as e.g., the Earth-Moon system. These were
the so-called corotating solutions, and although they gave
the first insight into the problem, they were rendered
unrealistic since the viscosity is too small in NSs to achieve
synchronization [13,14]. A more realistic scenario is the so-
called irrotational state where the two NSs have zero
vorticity. Such systems were more difficult to describe
and required an additional potential equation. Irrotational
BNS systems using different numerical methods were
presented by Bonazzola et al. [15], Gourgoulhon et al.
[16], Marronetti et al. [17,18], and Uryū et al. [19,20]. Even
today, the majority of the BNS simulations adopt these
methods and therefore assume that the spin of the indi-
vidual NSs is zero. Such an assumption, although adequate
in most cases, cannot e.g., describe systems J1946+2052,
J1757-1854, and J0737-3039A which, according to
Ref. [6], will have periods at merger of 18.23, 27.09,
and 27.17 ms, respectively. For accurate gravitational wave
analysis, one cannot consider these binaries to be irrota-
tional, and the spin of each NS must be taken into account.
Also, event GW170817 [1] was unable to rule out high spin
priors, and thus two sets of data (for low and high spins)
were consistent with the observations.
Going beyond the two extreme cases of corotating and

irrotational BNSs and constructing binaries with arbitrary
spin has proven to be more difficult due to the fact that the
Euler equation does not yield a trivial integral. The first
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attempt to address that problem was by Marronetti and
Shapiro [21], who used instead the Bernoulli equation (first
integral along flow lines and not globally) to construct
sequences of constant circulation. In Refs. [22,23],
Baumgarte and Shapiro presented an alternative formu-
lation to compute arbitrary spinning binaries by construct-
ing a new elliptic equation from the divergence of the Euler
equation. Although no solutions were presented there,
violations of the Euler equations were expected since their
rotational part was not required to vanish. The only self-
consistent formulation to obtain BNSs with arbitrary
spinning initial data was presented by Tichy [24], and
quasiequilibrium sequences were computed in Ref. [25]. In
these studies, a first integral of the fluid flow was obtained
under suitable assumptions, and binary sequences with
approximately constant rotational velocity of each compo-
nent were calculated. From a different perspective,
Tsatsin and Marronetti [26] presented a method to produce
initial data for spinning BNSs that allowed for arbitrary
orbital and radial velocities, but without satisfying the
Hamiltonian and momentum constraints.
In this work, we present the extension of our Compact

Object CALculator (COCAL) code for BNSs [27–29] to
compute quasiequilibrium binary sequences of constant
rest mass and circulation. For isentropic fluids, dynamical
evolution of a binary system conserves the baryonic mass
and circulation; therefore, sequences that conserve these
quantities can be considered realistic “snapshots” of an
evolutionary scenario. We use Tichy’s spinning formulation
[24] as we did in Ref. [28], where sequences of constant
rest mass alone were computed, but focus here on the
different spin measures that are currently used [30–32] in
order to make a critical assessment. Using the circulation
and rest mass as fundamental properties, a connection
between spinning companions in binaries and single
axisymmetric stars is established, and differences are
discussed. Finally, we present a decomposition alternative
to Ref. [24], which slightly simplifies the equations to be
solved and leads naturally to differentially rotating binary
systems. Binary sequences of that kind are computed
and compared with the ones coming from the original
formulation [24].
In this paper, spacetime indices are greek, spatial indices

are latin, and the metric signature is −þþþ. For writing
the basic equations, geometric units with G ¼ c ¼ 1 are
used, while in all numerical solutions, G ¼ c ¼ M⊙ ¼ 1
units are used for convenience.

II. EQUATIONS AND GENERAL ASSUMPTIONS

According to the first law of thermodynamics for binary
systems by Friedman et al. [33,34], if one assumes a spatial
geometry Σt that is conformally flat, neighboring equilibria
of asymptotically flat spacetimes with a helical Killing
vector satisfy

δM ¼ ΩδJ þ
Z
Σt

½T̄ΔdSþ μ̄ΔdMB þ VαΔdCα�

þ
X
i

1

8π
κiδAi: ð1Þ

Here,M and J are the Arnowitt-Deser-Misner (ADM) mass
and angular momentum of the spacetime, while Ω is the
orbital angular velocity; T̄ and μ̄ are the redshifted temper-
ature and chemical potential; dMB is the baryon mass of a
fluid element; dCα is related to the circulation of a fluid
element and Vα is the velocity with respect to the corotating
frame; and κi and Ai are the surface gravity and the areas of
black holes. For isentropic fluids, dynamical evolution
conserves the baryon mass, entropy, and vorticity of each
fluid element, and thus the first law yields δM ¼ ΩδJ.
Equation (1) implies that a natural measure to characterize
the spin of a NS in a binary setting is its circulation in a
manner similar to the way rest mass characterizes the mass.
Since different spin measures are used in BNS studies
[30–32], one question that arises is how all these diag-
nostics are related to the conserved quantity of circulation.
Before answering this question, we will investigate the
relationship of these quantities for single, axisymmetric,
rotating stars. We will adopt the 3þ 1 formulation of [35]
in order to make contact with the theory of a single rotating
star, while for BNS systems, we will use the notation of
Ref. [28]. The equations solved are reported in detail in
those two papers, so here we will only review the necessary
definitions and assumptions in a unified way.
We assume that the spacetime M is asymptotically flat

and is foliated by a family of spacelike hypersurfaces
ðΣtÞt∈R, parametrized by a time coordinate t ∈ R as
M ¼ R × Σt [36]. The future-pointing unit normal 1-form
to Σt, nα ≔ −α∇αt, is related to the generator of time
translations tα as tα ≔ αnα þ βα, where tα∇αt ¼ 1. α and
βα are, respectively, the lapse and shift, and βα is spatial,
βα∇αt ¼ 0. The projection tensor to Σt γα

β is introduced as
γαβ ≔ gαβ þ nαnβ. The induced spatial metric γab on Σt is
the projection tensor restricted to it. Introducing a conformal
factor ψ, and a conformally rescaled spatial metric γ̃ab, the
line element on a chart ft; xig of Σt is written as

ds2 ¼ −α2dt2 þ ψ4γ̃ijðdxi þ βidtÞðdxj þ βjdtÞ: ð2Þ
The conformal rescaling is determined from a condition
γ̃ ¼ f, where γ̃ and f are determinants of the rescaled
spatial metric γ̃ab and the flat metric fab. In what follows,
we will assume that γ̃ij ¼ fij for both single and binary star
computations.
The extrinsic curvature of each slice Σt is defined by

Kab ≔ −
1

2
γαaγ

β
bLnγαβ;

¼ −
1

2α
∂tγab þ

1

2α
Lβγab; ð3Þ
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where ∂tγab is the pullback of Ltγαβ to Σt, Lt is the Lie
derivative along the vector tα defined on M, and Lβ is the
Lie derivative along the spatial vector βa on Σt. Hereafter,
we denote the trace of Kab by K and the trace-free part of
Kab by Aab ≔ Kab − 1

3
γabK. For both single and BNS

systems, we will assume the maximal slicing condition

K ¼ 0: ð4Þ
In this paper, we consider perfect-fluid spacetimes in

which the stress-energy tensor is written as [28]

Tαβ ≔ ðϵþ pÞuαuβ þ pgαβ; ð5Þ
where ϵ is the energy density, p is the pressure, and uα is the
4-velocity. The relativistic enthalpy h is defined as

h ≔
ϵþ p
ρ

; ð6Þ

where ρ is the rest-mass density. The 4-velocity of the fluid
can be written as uα ¼ utð1; viÞ and, in analogy to a
Newtonian decomposition, we can split the spatial com-
ponent vi into two parts: one that follows the rotation
around the center of mass, Ωϕi, and one that represents the
velocity in the corotating frame Vi,

uα ≔ utðtα þ vαÞ ¼ utðkα þ VαÞ; ð7Þ
where vα ¼ ð0; viÞ ≔ Ωϕα þ Vα, and

kα ≔ tα þΩϕα ¼ αnα þ ωα: ð8Þ
Here, the helical Killing vector kα applies to either a binary
system having orbital angular velocity Ω or a single
rotating star (axisymmetric or not) having the same con-
stant, rotating angular velocity. The vector ωα ≔ βα þΩϕα

is the so-called corotating shift. For single rotating stars as
well as for corotating binaries, Vα ¼ 0.
Fluid variables will be computed through the conserva-

tion of the energy-momentum tensor

0 ¼ ∇αTα
β

¼ ρ½uα∇αðhuβÞ þ∇βh − T∇βs� þ huβ∇αðρuαÞ
¼ ρ½uαωαβ − T∇βs� þ huβ∇αðρuαÞ ð9Þ

and local conservation of rest mass

∇αðρuαÞ ¼ 0: ð10Þ
Assuming isentropic configurations, the relativistic Euler
equation becomes uαωαβ ¼ 0, where

ωαβ ≔ ∇αðhuβÞ −∇βðhuαÞ ð11Þ

is the relativistic vorticity tensor, which is zero for irrota-
tional flow [37].

In 3þ 1 language, the Euler equation and the rest-mass
conservation equation become [28]

γαiLkðhuαÞ þDi

�
h
ut

þ hujVj

�
þ Vjωji ¼ 0; ð12Þ

LkðρutÞ þ
1

α
DiðαρutViÞ ¼ 0; ð13Þ

where D is the covariant derivative with respect to the
spatial metric, Daγij ¼ 0.
For single rotating stars, as well as for corotating binaries

under the helical symmetry assumption, Eq. (13) is trivially
satisfied, while the Euler equation results in a simple
algebraic equation,

h
ut

¼ C; ð14Þ

where C is a constant to be determined and ut ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ωiω

i
p

.
For irrotational binaries [38–41], we have ωαβ ¼ 0, so

the specific enthalpy current huα can be derived from a
potential huα ¼ ∇αΦ. In order to allow for arbitrary
spinning binary configurations, a 3-vector si is introduced
according to [24]

ûi ≔ γαi huα ¼ DiΦþ si; ð15Þ
where theDiΦ part corresponds to the “irrotational part” of
the flow and si the “spinning part” of the flow. In our code,
vector si is the input quantity, and si ¼ γijsj. For a general
vector si, one can have a binary system that exhibits
differential rotation. Irrotational binaries are recovered
for si ¼ 0. According to Ref. [25], a choice that minimizes
differential rotation is a rigid rotation law,

si ≔ Ωa
sϕ

i
sðaÞ; ð16Þ

where ϕiðaÞ
s ¼ ϵiajXj denotes the rotation vectors along the

NS’s three axes. The index i corresponds to the component

of the vector ϕðaÞ
s , while the index inside the parentheses

names the three different vectors. Vector ϕið3Þ
s , which in the

following sections is denoted by ϕi
s, is the rotation vector

along the star’s X3 axis, in contrast to ϕi which is the
rotationvector along the z axis. For single rotating stars, these
two vectors are identical. We denote by xi ¼ fx; y; zg the
coordinates around the center of mass of the binary system
and by Xa ¼ fX1; X2; X3g the coordinates centered at the
maximum density point of each NS. The orbital vector ϕi

refers to fx; y; zg, while the spin vector si refers to
fX1; X2; X3g. In this work, we assume that the rotation of
the neutron stars is around X3. The z axis and theX3 axis are
parallel and perpendicular to the orbital plane. The coef-
ficients Ωa

s are parameters that control the rotational spin
around the NS’s three axes Xa. These parameters, although

CONSTANT CIRCULATION SEQUENCES OF BINARY … PHYS. REV. D 98, 124019 (2018)

124019-3



lacking of physical (i.e., invariant) meaning, approximately
represent the angular velocity of the rotating star.
FromEqs. (7) and (15), the spatial velocityVi of the flow is

Vi ¼ DiΦþ si

hut
− ωi: ð17Þ

For arbitrary spinning binaries, the Euler equation (12)
becomes

γαi ½LkðhuαÞ þ LVðsαÞ� þDi

�
h
ut

þ VjDjΦ
�

¼ 0; ð18Þ

which under the assumptions of helical symmetry and the
additional assumption of

LVðsαÞ ¼ 0 ð19Þ
yields

h
ut

þ VjDjΦ ¼ C; ð20Þ

where again C is a constant to be determined. Although the
Euler integral has the same form for both irrotational and
spinning binaries, it produces a different equation since the
3-velocity Vi is different in these two cases. Assumption
(19) means that changes of the spin vector with respect to
the corotating velocity are small.
The normalization condition uαuα ¼ −1, together with

Eqs. (15), (17), and (20), yield

hut ¼ λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 4α2siðDiΦþ siÞ

p
2α2

; ð21Þ

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðhutÞ2 − ðDiΦþ siÞðDiΦþ siÞ

q
: ð22Þ

Here, λ ≔ Cþ ωiDiΦ. For purely irrotational binaries,
hut ¼ λ=α2 and h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2=α2 −DiΦDiΦ

p
. The fluid poten-

tial Φ is computed from the conservation of rest mass (13)
and the use of Eqs. (20) and (17) [28].

III. MEASURES OF SPIN AND CONSTANT
CIRCULATION SEQUENCES

A. Single stars

For single rotating stars, one has a variety of ways to
characterize the spin. Among them are its angular velocity
Ω (we assume constant rotation), its ADM angular
momentum J

J ¼ 1

8π

Z
S∞

Ka
bϕ

bdSa; ð23Þ

or the dimensionless spin J=M2, whereM is the ADMmass.
Using Gauss’s theorem, Eq. (23) can be written as

J ¼ 1

8π

Z
Vt

DaðKa
bϕ

bÞdΣ −
1

8π

Z
S
Ka

bϕ
bdSa

¼ 1

8π

Z
Vt

Ka
b∂aϕ

bdΣ −
1

8π

Z
S
Ka

bϕ
bdSa; ð24Þ

where ∂Vt ¼ S∞ ∪ S. To go from the first volume integral to
the second, we used the maximal slicing assumption and the
momentum constraintwith zero sources sinceS is taken to be
outside the fluid volume. Without loss of generality, we can
assume the S is a sphere just outside the surface of the NS.
When the conformal geometry is flat (as happens in most

binary neutron star calculations), ϕa is a Killing vector of
the conformal geometry, and therefore the volume integral
in Eq. (24) is zero. We call the remain integral the
quasilocal spin angular momentum

Jql ¼
1

8π

Z
S
Ka

bϕ
bdSa; ð25Þ

where here the unit normal is outward. Thus, under the
assumptions of conformal flat geometry and maximal
slicing,

J ¼ Jql ðsingle starsÞ: ð26Þ

Another way to measure the spin of a rotating star is by
its circulation. For rotation around the z axis,

C ≔
I
c
huαdxα ¼

I
c
hutψ4δijðβi þ ΩϕiÞdxj; ð27Þ

where c can be taken to be a fluid equatorial ring. One of
the advantages of using the circulation as a spin diagnostic
is the fact that Eq. (27) is local in character and involves
quantities that are exactly known (essentially the fluid
velocity). Although all single rotating star models reported
in this paper are axisymmetric, we have checked our
circulation code in the case of single triaxial stars
[35,42], where the curve c is no longer a circle but close
to an ellipse.
In order to understand how the different measures of spin

are related to each other for single uniformly rotating stars,
we use the COCAL code [35] to build sequences of constant
angular momentum J, circulation C, angular velocity Ω,
and dimensionless spin J=M2, together with the spherical
(TOV) and mass-shedding (Kepler) limits as in Fig. 1. For
the equation of state (EoS), we have chosen the piecewise
representation of ALF2 [43,44], which according to event
GW170817 it is still a viable choice. Having said that, we
point out that the results of this work do not depend on this
choice and any other EoS would have been as good for
conveying the ideas we put forward here. In our code, we
compute the circulation both as the line integral (27) and
also as a surface integral using Stokes’s theorem. Both
quantities agree to the precision of our calculation, which is
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less than 1%. The curve c is chosen to be along the surface
of the star in the xy plane, which, according to our
normalization scheme (use of surface fitted coordinates),
is the unit circle [35]. From the computational point of
view, one important aspect of the COCAL code is the use of
normalized coordinates for both single rotating stars [35] as
well as binaries [28],

x̂i ≔
xi

R0

; Ω̂ ≔ ΩR0: ð28Þ

The normalization factor that determines the length scale
R0 is only found at the end of the iteration procedure and
varies at every iteration. The constants R0, Ω̂, and C [from
the hydrostatic equilibrium (14), (20)] are determined
through a solution of a nonlinear 3 × 3 system as described
in Refs. [28,35].
In terms of the normalized quantities,

C ¼ R0

I
c
hutψ4δijðβi þ Ω̂ϕ̂iÞdx̂j: ð29Þ

As one can see from Fig. 1, all curves that measure the
spin of a rotating star are in general distinct. If a set of
curves A is “parallel” to another set of curves B, this means
that a star that is moving along a constant A sequence will
also move along a constant B sequence, or in other words,
conservation of quantity A will imply the conservation
quantity B. As far as the different spin measures J;Ω;
C; J=M2 for rotation close to the mass-shedding limit (red
curve), this cannot happen since all sets of curves are
distinctly different. By contrast, close to the spherical limit,
one can see that constant circulation sequences are almost

parallel to constant J=M2 sequences. This means that the
curve C ¼ c1 will nearly coincide with a curve J=M2 ¼ c2,
(for two constants c1 ≠ c2) when rotation is slow, and
therefore if during a process one parameter is conserved, so
is the other. In Fig. 2, we plot the dimensionless spin J=M2

and angular velocity Ω vs the circulation for a sequence of
constant rest mass M0 ¼ 1.5. Dashed black lines connect
the first points of the sequences to the static limit (TOV).
Along that sequence, the ADM mass varies approximately
from 1.35 to 1.39. As we can see for dimensionless spins up
to ∼0.4, the two quantities vary linearly, but for higher
spins, especially close to the mass-shedding limit, this
dependence becomes quadratic. Beyond this point, increas-
ing the circulation results in a smaller increase in J=M2.

B. Binary stars

For a corotating binary, the circulation of each star is
given by the same formula as in a single rotating star (27)
where now the vector ϕi is the z-rotational vector (we
assume the binary orbit to be in the xy-plane) around the
center of mass. In Fig. 3’s top panel, we plot the circulation
C and the “coordinate circulation” Cβ ≔

H
c hu

tψ4δijβ
idxj

for a constant rest-mass sequence with M0 ¼ 1.5 as a
function ofΩ. In the bottom panel, we plot the approximate
coordinate equatorial area of each star A ≈ 2πRxRy, nor-
malized by its initial value in the sequence A0. As we
can see, the circulation increases linearly with respect
to the angular velocity, which provides yet another argu-
ment as to why the corotating state is not realistic for
BNS systems with isentropic fluids. In the Newtonian
limit, C ¼ 2AΩ, where A is the equatorial area of the NS.
From the bottom panel of Fig. 3, we see that the equatorial
area is approximately conserved along the sequence.
Therefore, the circulation of the corotating sequence follows

FIG. 1. Mass vs rest-mass density for sequences of uniformly
rotating single stars with constant angular momentum J, rest
mass M0, circulation C, angular velocity Ω, dimensionless spin
J=M2, together with the spherical (TOV) and mass-shedding
(Kepler) limits.

FIG. 2. Dimensionless spin parameter J=M2 and angular
velocity Ω vs circulation C along a sequence of uniformly
rotating, single stars with constant rest mass M0 ¼ 1.5.
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essentially the Newtonian law apart from a redshift factor.
We also observe that, even when they are close to each
other, the circulation of the corotating binaries is relatively
small compared to the maximum circulation Cmax ≈ 30 for
the ALF2 EoS for single rotating stars. From Fig. 2, this
implies dimensionless spins lower than say ∼0.4 (we
calculate below the exact values). The coordinate circu-
lation Cβ (green curve) has opposite sign from C and
typically grows also linearly and is ∼20% of C. For all
binary calculations in this work, we used grid values as
reported in Table I. In order to create binaries at different
separations, we choose rc ∈ f1.125; 1.25; 1.50; 1.75g,
where 1.125 leads to close binaries, while 1.75 leads to
widely separated ones [28].
For an irrotational binary, the circulation is zero since the

enthalpy current huα is a total derivative. For spinning
binaries with 4-velocity (15) and spin along the orbital axis,
the circulation becomes

C ¼
I
c
sidxi ¼ R0

I
c
ψ4δijΩ̂sϕ̂

i
sdx̂i; ð30Þ

where code (normalized) coordinates (28) are used. Here,
Ωa

s ¼ ð0; 0;ΩsÞ and si ≔ Ω3
sϕ

i
sð3Þ. Sequences of constant

rest mass for fixed values of Ω̂s have been calculated in
Ref. [28]. Here, we have extended our COCAL code [27,28]
in order to compute binary sequences of both constant
circulation and rest mass. In order to do that, a multiroot
secant method was implemented, which in principle can
iterate over different quantities like densities, spins, or
distances in order to achieve some target values. The
computational cost, though, for such a finder increases
considerably. In particular, the method converges after
approximately ten cycles, and for each cycle, one needs
Ni converged solutions, where Ni is the number of
quantities that we are targeting. For equal-mass binaries
that we calculate here, in order to find a sequence of
constant rest mass and circulation, (Ni ¼ 2) ∼20 converged
solutions are needed. If one also insists these binary
separations are at a certain distance (or angular velocity),
then Ni ¼ 3. For each converged solution, one needs ∼500
iterations. Also in this work, we assume symmetric aligned
or antialigned binaries; i.e., we only have to search for one
out of the six spin components. For the general case, the
computational cost will increase by an order of magnitude.
In Fig. 4, we plot the total angular momentum of the

system for a sequence of constant circulation C ¼ 4,
together with the familiar irrotational and corotating
sequences. Also, the corresponding post-newtonian (PN)
curves are plotted. The qualitative feature of a constant
circulation curve is that it runs parallel to the irrotational
curve at a higher angular momentum level for aligned spin
binaries. This is not surprising since an irrotational curve
has constant circulation C ¼ 0. Higher spinning binaries
have curves shifted upward, and antialigned spinning
binaries have curves parallel and below the level of the
irrotational one. Another feature is that at large separations
the constant circulation curve does not converge to the PN
curves, which is also expected since these binaries have

FIG. 3. The top panel shows circulation C and coordinate
circulation Cβ for a corotating BNS sequence of constant rest
mass M0 ¼ 1.5. The bottom panel shows the approximate
equatorial area A ≈ 2πRxRy of the each NS along the sequence.
Values are normalized by A0, the area of the first member of the
sequence.

TABLE I. Grid structure parameters used for the binary computation in COCAL. ra is the radial coordinate where the grids start, rb the
radial coordinate where the grids end, rc the center-of-mass point (excised sphere is located at 2rc), re is the radius of the excised sphere,
rs is the radius of the sphere bounding the star’s surface, Nr is the number of intervals Δri in r ∈ ½ra; rb�, N1

r is the number of intervals
Δri in r ∈ ½0; 1�, Nf

r is the number of intervals Δri in r ∈ ½0; rs�, Nm
r is the number of intervals Δri in r ∈ ½ra; rc�, Nθ is the number of

intervals Δθj in θ ∈ ½0; π�, Nϕ is the number of intervals Δϕk in ϕ ∈ ½0; 2π�, and L is the order of included multipoles. Distances are in
normalized quantities, and rs varies during the iterations in order for a specific distance (angular velocity) to be reached. For more
details, see Refs. [27,28].

Type Patch ra rs rb rc re Nf
r N1

r Nm
r Nr Nθ Nϕ L

Hd2.0 COCP-1 0.0 varies 102 varies 1.125 50 64 80 192 48 48 12
COCP-2 0.0 varies 102 varies 1.125 50 64 80 192 48 48 12
ARCP 5.0 � � � 106 6.25 � � � 16 � � � 20 192 48 48 12
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spin angular momentum independent of the orbital angular
momentum. That is also the reason why they intersect the
corotating sequence curve which has small spin angular
momentum at infinity and becomes larger as one moves
toward smaller distances. Given the fact that a dynamical
evolution conserves the rest mass, entropy, and circulation,
a physical spinning sequence representing a merging binary
is going to be like the red or blue one in Fig. 4. Points
marked with a larger black circle denote the approximate
innermost stable circular orbit (ISCO). Locating the ISCO
is not essential for this work; therefore, its location as
denoted in Figs. 4 and 5 can be further refined.
In Fig. 5, different spin measures are plotted along

constant circulation sequences as well as a corotating one.
M1 ¼ 1.36 corresponds to the ADM mass of a single star at
infinity, and J1;ql corresponds to its quasilocal spin as
calculated from Eq. (25) but with the rotational vector ϕi

s
(which generates rotations around the star’s center) instead of
ϕi. J is the total angularmomentumof the binary system, and
Jirr is the total angularmomentumof the irrotational binary at
the same angular velocity. From the corotating (purple)
sequence, one can see that the dimensionless spin J1;ql=M2

1

grows linearly as the separation decreases. Also, even at very
close separation (ISCO), this dimensionless spin is relatively
small < 0.35. This linear growth of the quasilocal spin is
consistent with Figs. 2 (and 3), which also shows that
behavior for small J=M2 in single rotating stars.
Sequences of constant circulation C ¼ 4, 8 are also plotted
in Fig. 5. The curves (blue and red) show that within the
accuracy of our computation the dimensionless quasilocal
spin (or equivalently the quasilocal angular momentum) is
also conserved along these sequences when the binaries
are widely separated. As one moves toward the ISCO, we

observe a ∼10%–15% increase, which is consistent with the
increase found in evolutions [45]. This behavior is also
consistent with Fig. 1, which shows that for slowly rotating
single stars sequences of constant circulation are parallel
to sequences of constant J=M2. Another measure of spin
typically quoted in the literature is the difference between the
angular momentum at infinity of the irrotational solution
from the corresponding spinning solution. In Fig. 5, we plot
this spinmeasure of theC ¼ 4 sequence by comparing it with
the corresponding irrotational sequence (green curve). The
plot shows that, although at larger separations the two
diagnostics agree with each other, as one moves to closer
separations, they start to diverge. This is to be expected since
the J − Jirr angular momentum contains negative terms
(1.5 PN) related to the spin orbit coupling [46].

IV. MODIFIED SPIN FORMULATION

Motivated by the circulation expression for single stars
and corotating binaries (27), we investigate a modification
for the decomposition (15) proposed by Tichy [24]; i.e., we
take

ûi ≔ γαi huα ¼ DiΦþ hutsi ð31Þ

but otherwise adopt the same assumptions. In doing so, the
circulation of a spinning star in a binary will be

C ¼ R0

I
c
hutψ4δijΩ̂sϕ̂

i
sdx̂i; ð32Þ

FIG. 4. Angular momentum curve for a binary sequence with
constant circulation C ¼ 4 and rest mass M0 ¼ 1.5, along with
the typical corotating and irrotational sequences of the same rest
mass. Points marked with a larger black circle denote the
approximate ISCO. Realistic physical sequences have constant
circulation and rest mass, such as the red or blue one.

FIG. 5. Spin measures for an individual star in a binary setting.
M1 corresponds to the ADM mass of a single star at infinity, and
J1;ql corresponds to its quasilocal spin. Except for the green
curve, all others show the quasilocal spin of a single star along a
sequence. The green curve estimates the spin by comparison with
an irrotational sequence at the same orbital angular velocity
points. Points marked with a larger black circle denote the
approximate ISCO.
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which apart from the coordinate terms (due to shiftβi) closely
matches Eq. (27) of the circulation of a single rotating star.
Now, the velocity with respect to the corotating frame
becomes

Vi ¼ DiΦ
hut

− ðωi − siÞ; ð33Þ

The form of this velocity field resembles the one of the
irrotational case with a replace

ωi ↔ ωi − si; ð34Þ

where again here ωi ¼ βi þ Ωϕi is the corotating shift. The
Euler first integral now becomes

h2 þDiΦDiΦ ¼ λhut; ð35Þ

where λ ≔ Cþ ðωi − siÞDiΦ. It turns out now that the
equations are simplified and the relative quantities can be
computed through a linear equation in hut,

hut ¼ λþ 2siDiΦ
α2 − sisi

: ð36Þ

The denominator in the expression above is larger than zero,
since even for very compact stars α2 > 0.1, which is
approximately 1 order of magnitude larger than the square
of the spin magnitude. Once hut is computed from Eq. (36),
the enthalpy is calculated from Eq. (35).
The velocity potential is determined from the conserva-

tion of rest mass,

∇2Φ ¼ −
2

ψ
∂iψ∂iΦþ ψ4∂i½hutðωi − siÞ�

þ 6hutψ3ðωi − siÞ∂iψ

− ∂i ln

�
αϕ

h

�
½∂iΦ − ψ4hutðωi − siÞ� ð37Þ

with boundary condition

f½−∂iΦþ ψ4hutðωi − siÞ�∂iρgsurface ¼ 0: ð38Þ

In Fig. 6, we plot a sequence of constant rest massM0 ¼
1.5 and constant circulation C ¼ 4 using decomposition
(31) along with the same sequence using the original
decomposition (15) that we plotted in Fig. 4. We also
show the corotating sequence for comparison. It is evident
that the way one decomposes the velocity ûi introduces an
arbitrariness in the circulation, which in the present case
results in a higher angular momentum for the system. This
is not difficult to explain since the parabolic functional
form of the hut factor in Eq. (31) results in a differentially
rotating BNS, which increases the angular momentum of
the system. On the other hand, this differential rotation,

which naturally results from Eq. (31), can be canceled or
modified by an appropriate choice of the input vector si,
which must have a varying parameter Ωs. Since spinning
BNSs are expected to have a rotation law which is close to
rigid rotation, decomposition (15) is closer to astrophysical
expectations over (31). The latter can still produce almost
uniformly rotating objects, but the spin input vector si is
nontrivial.

V. DISCUSSION

Dynamical evolution of isentropic fluids conserves the
baryon mass, entropy, and vorticity. Therefore, along with
the rest mass, one can use the circulation of a neutron star to
compute realistic sequences of binary neutron stars and
measure their individual spin. In this paper, we extended
our COCAL code to compute such equilibria and used it to
make a critical assessment of various spin measures for
BNS, as well as a connection with the spin of single
rotating stars.
By computing sequences of constant angular momentum

J, angular velocity, circulation, and dimensionless spin
J=M2 for single axisymmetric stars, we showed that in
general all such family curves are distinct. For small spins,
though, curves of constant circulation “run parallel” to
those of constant J=M2; therefore, conservation of circu-
lation implies conservation of J=M2 and vice versa. Using
the approximation of conformal flatness and maximal
slicing (which is typically used for BNS calculations),
the angular momentum J equals the quasilocal spin Jql,
which is widely used to measure the angular momentum of
a compact body in a binary scenario. For BNSs, neighbor-
ing equilibria satisfy the first law of thermodynamics by
Friedman et al., and by computing sequences of constant

FIG. 6. Angular momentum curve for a binary system with
constant circulation C ¼ 4 and rest mass M0 ¼ 1.5, using
decomposition (31), along with the same sequence as presented
in Fig. 4, which uses the original decomposition Eq. (15). Also
shown is the corotating sequence.
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rest mass and circulation, we show that the dimensionless
spin is also approximately conserved at least for low spin
binaries.
Motivated by the expression of circulation in single

rotating stars, we explored an alternative decomposition for
the 4-velocity than the one originally proposed by Tichy,
which naturally led to differentially rotating binary sys-
tems, and discussed a potential ambiguity that results from
any such decomposition.
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APPENDIX: SPIN PARAMETER Ωs ALONG A
CONSTANT CIRCULATION AND REST-MASS

SEQUENCE

In Fig. 7, we plot the spin parameter, both the originalΩs

and the normalized one Ω̂s, for the C ¼ 4 sequence. To a
high degree, a constant circulation sequence corresponds to
a constant spinning parameter Ωs for widely separated
binaries [see Eq. (16)], but the normalized parameter Ω̂s,
which is used in our code, varies considerably along the
sequence. Along a constant circulation sequence, the
maximum variation of Ωs happens at the ISCO and is
∼4%. Having said that, we must keep in mind that Fig. 7
corresponds to C ¼ 4 or according to Fig. 5 quasilocal spin
of ∼0.17. For high enough spins (> 0.5), this behavior
may not be true. Also, if for the spin vector si, Eq. (16), one
uses a more complicated expression (e.g., with multiple

parameters), the behavior can change analogously. For the
new sequence plotted in Fig. 6 using decomposition (31),
the variation of Ωs is twice of that of Fig. 7 using Eq. (15).
In other words, the decomposition (15) introduces an
arbitrariness to ûi through the input spin vector si, which
is necessary for computing the circulation. In a realistic
scenario, any given spinning BNS has a particular ûi, which
is the result of hydrostatic equilibrium and its evolutionary
history, and this determines its circulation. Targeting the
circulation alone does not uniquely specify the velocity
profile in the configuration. Hence, we can construct two
sequences with the same circulation, one with a constant
and the other with differential angular velocity, as we have
seen in the last section above.
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