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We study the quantum mechanics of homogeneous black hole interiors in the Russo-Susskind-
Thorlacius (RST) model of 2D gravity. The model, which contains a dilaton and metric, includes radiation
back-reaction terms and is exactly solvable classically. The reduced phase space is four dimensional. The
equations for one pair of variables can be trivially solved. The dynamics of the remaining degree of
freedom, namely the dilaton, is more interesting and corresponds to that of a particle on the half line in a
linear potential with time-dependent coupling. We construct the self-adjoint extension of the corresponding
quantized Hamiltonian and numerically solve the time-dependent Schrödinger equation for Gaussian initial
data. As expected the singularity is resolved and the expectation value of the dilaton oscillates between a
minimum and maximum, which both gradually decrease with time due to the time dependence in the
potential. In the classical black hole spacetime, the maximum value of the dilaton corresponds to the size of
the horizon while the minimum is the singularity. The quantum dynamics, therefore, corresponds at the
semiclassical level to an evaporating black hole. The rate of quantum fluctuations increases as the system
evolves, but, intriguingly, at longer times the expectation value of the radius undergoes “revivals” in which
the amplitude of oscillations between minimum and maximum temporarily increases. These revivals are
also characteristic of the quantum dynamics of the time independent quantum linear potential.
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I. INTRODUCTION

Since quantum gravity is experimentally inaccessible
and may remain that way for many years to come, one has
to demand certain theoretically motivated criteria from
any viable quantum gravity theory. Resolving black hole
singularities that appear in the classical theory is one of the
most important of these criteria. In addition, a viable
quantum gravity theory should be able to describe the
endpoint of black hole evaporation and resolve the infor-
mation loss paradox. In the early 1990’s, Callan et al. [1]
proposed to study these issues in the context of a two
dimensional toy model subsequently dubbed the CGHS
model. This model had the advantage that one can include
the Hawking radiation back reaction in a relatively simple
and rigorous form by computing the one-loop conformal
anomaly for a set of quantized N massless scalars. In the
limit of large N, the one loop term is exact. Since then, a
variety of classically solvable two-dimensional gravity
models, including spherically symmetric gravity, have been
used (for a review, see [2]) to tackle basic questions of
quantum gravity without having to deal with the technical
complications that appear in the full higher dimensional
theory. The CGHS model did not resolve the classical
singularity and was not solvable once Hawking radiation

was added. In order to fix the latter problem, Russo et al.
[3] added a local term to the anomaly, but the singularity
remained. In addition, the model was shown to violate
energy conservation in the form of an energy “thunderbolt”
that emanates from the endpoint of the collapse/radiation
process. This suggests, among other things, that the theory
as given is not complete. An important question is therefore
whether quantizing the gravitational degrees of freedom
in the model can resolve the singularity and the other
pathologies of the theory.
In recent years, interest in the CGHS model was revived

by the work of Ashtekar et al. [4] who reanalyzed Hawking
radiation in the model in the context of quantum geometry
and argued that information was not lost. A more recent
paper [5] did a numerical analysis of the semiclassical
model that revealed interesting universal behavior not
present in the purely classical case.
Of more direct relevance to the present work is the paper

by Levanony and Ori [6] who analyzed the near singularity
dynamics in the interior of a CGHS black hole quantum
mechanically. They argued that the fields would tend to
homogeneity in this limit and showed that the resulting
quantum theory resolved the singularity as required. More
recently Gegenberg et al. [7] applied an analysis similar to
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that of [6] to the homogeneous interior of black holes in the
Russo-Susskind-Thorlacius (RST) model. In particular,
they performed a complete analysis of the dynamics and
the space of solutions, identifying the singularity and
isolating the black hole sector. By first constructing the
Hamiltonian for the reduced phase space dynamics, they
were able to quantize the theory near the singularity and
show that the singularity can indeed be resolved. This
provided the first steps in a more complete quantization of
this system.
The purpose of the present paper is to proceed further in

this general program. We consider dynamics of the dilaton
field in the black hole interior using an approximation in
which the equation for the radiating degree of freedom is first
solved classically. After a suitable canonical transformation,
the remaining reduced Hamiltonian for the dilaton is equiv-
alent to that of a particle on the half line in a linear potential
with time-dependent, monotonically increasing, coupling.1

We construct a self-adjoint Hamiltonian for the system and
solve the resulting time-dependent Schrödinger equation for
Gaussian initial data that are meant to represent an initial
semiclassical blackhole.Weverify the accuracybyusing two
different methods: Crank-Nicholsen and a spectral method.
The calculations agree to numerical accuracy.
We note that the quantized linear potential on the half

line is relevant to recent quantum measurements of neu-
trons in a gravitational potential. (See for example [9].) In
addition, the time-dependent linear potential has numerous
physical applications (see [10] for more details). To the best
of our knowledge, the Schrödinger equation on the half line
with time-dependent linear potential has not been consid-
ered previously.
The paper is organized as follows: In the next section

we review the RST model and the analysis in [7].
Section III presents the Hamiltonian describing the dilaton
dynamics and constructs the corresponding time-dependent
Schrödinger equation. Section IV describes the numerical
calculation and exhibits the results. Section V presents the
numerical calculation in the case of a bounded coupling.
Finally, Section VI presents conclusions, speculations and
prospects for future work.

II. THE MODEL

We consider initially the classical CGHS model with N
conformally coupled massless scalar fields fi, i ¼ 1;
2;…; N:

I½gij;ϕ� ≔
1

2π

Z
d2x

ffiffiffiffiffiffi
−g

p
e−2ϕ½RðgÞ þ 4ðj∇ϕj2 þ λ2Þ�

þ 1

2π

Z
d2x

ffiffiffiffiffiffi
−g

p X
i

j∇fij2: ð1Þ

Quantizing the scalars yields the usual trace anomaly [11],
which we add to the above action in a local form that was
first introduced by Hayward [12]. We use the conventions
and notations of [7]. The local form of the action that forms
the basis of our analysis is

I½gij;ϕ; z� ≔
1

2π

Z
d2x

ffiffiffiffiffiffi
−g

p fe−2ϕ½RðgÞ þ 4ðj∇ϕj2 þ λ2Þ�

þ κ

2

�
RðgÞz − j∇zj2

2
− RðgÞϕ

��
; ð2Þ

after setting the sources fiðxÞ to zero. The first line in the
above is the classical CGHS Lagrangian, with vacuum
energy λ2, whereas the second line represents the one-loop
contribution from the conformal anomaly, with κ ≔ N=12
(ℏ has been set to one). In the limit of large N, the one loop
contribution is exact. The last term in the second line is the
local anomaly term added by RST [3] in order to make the
semiclassical model solvable.

A. Equations of motion

The equations of motion are given in Eqs. (3)–(5) of
Hayward [12] with the sources fiðxÞ set to zero:

A−Rμν þ 2Aþ∇μ∇νϕ −
κe2ϕ

4

�
2∇μ∇νzþ∇μz∇νz

−
1

2
gμνj∇zj2

�
¼ 0; ð3Þ

AþRþ 4ð∇2ϕ − j∇ϕj2 þ λ2Þ ¼ 0; ð4Þ

∇2zþ R ¼ 0; ð5Þ

where

A� ≔ 1� κe2ϕ

4
: ð6Þ

One can formally recover the usual nonlocal form of the
action by writing the solution to (5) as

z ¼ −
1

□
R; ð7Þ

where 1=□ (□≡∇2) refers to the scalar Green’s function.
Substituting (7) back into the z□z term in the action (2)
gives the usual nonlocal form R 1

□
R of the Polyakov action.

A more careful analysis [12] verifies that this heuristic
process does indeed work.
The dynamical content of the theory can be understood

as follows. There are initially five independent fields (gμν, z,
ϕ). z is effectively the radiation field and is zero in the
absence of the radiation term in the action. There are two
constraints associated with the diffeomorphism invariance

1A pedagogical analysis of the quantum dynamics of the time
independent version of this “bouncing-ball” potential can be
found in [8].
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that in turn are associated with two gauge degrees of
freedom, which leaves a single propagating dynamical field
theoretic degree of freedom. In the absence of the radiating
field, the CGHS model has no propagating fields.
In the following we will be examining the homogeneous

interior of a static black hole so that we need consider only
quantum mechanics and not quantum field theory. As will
become apparent below, the physical phase space is four
dimensional, consisting effectively of the black hole mass
and its conjugate, as well as the black hole temperature and
its conjugate. The mass and temperature are independent in
this model.
We work in conformal gauge:

ds2 ¼ e2ρðtÞð−dt2 þ dx2Þ; ð8Þ

where t and x are spatial and time coordinates, respectively.
In this gauge, the metric equations, Eq. (3), reduce to [7]:

−A−ρ̈þ 2Aþðϕ̈ − _ϕ _ρÞ þ κe2ϕ

2

�
−̈zþ _z _ρ−

1

4
_z2
�

¼ 0;

ð9Þ

A−ρ̈ − 2Aþ _ϕ _ρþ κe2ϕ

2

�
_z _ρ−

1

4
_z2
�

¼ 0: ð10Þ

The off-diagonal component of the Einstein equation is
trivial in this case. The dilaton equation of motion, Eq. (4), is

Aþρ̈ − 2ϕ̈þ 2 _ϕ2 þ 2λ2e2ρ ¼ 0: ð11Þ

Finally, the z equation of motion, Eq. (5), is simply

̈z ¼ 2ρ̈: ð12Þ

By subtracting (9) from (10), and substituting (12), one
obtains:

ρ̈ ¼ ϕ̈: ð13Þ

Equations (12) and (13) are trivially solved to yield:

zðtÞ − 2ρðtÞ ¼ z1tþ z0; ð14Þ

ρðtÞ − ϕðtÞ ¼ p1tþ p0; ð15Þ

which determine the radiating field and conformal mode of
the metric in terms of four parameters ðz1; z0Þ and ðp1; p0Þ.
Using (14) and (15), the dilaton equation (11) and metric

equation (10) give the following two second order equa-
tions, respectively, for ϕðtÞ:

A−ϕ̈ − 2 _ϕ2 − 2p1A− _ϕþ κe2ϕ

2

�
p2
1 −

z21
4

�
¼ 0; ð16Þ

−A−ϕ̈þ 2 _ϕ2 þ 2λ2e2ðϕþp1tþp0Þ ¼ 0: ð17Þ

Clearly they cannot be independent. In fact there is a
consistency condition that is essentially the Hamiltonian
constraint, a consequence of time translation invariance.
Using the solutions (14) and (15) the consistency condition
reduces to:

−2p1A− _ϕþ e2ϕ
�
κ

2

�
p2
1 −

z21
4

��
þ 2λ2e2ðp1tþp0Þ

�
¼ 0:

ð18Þ

As we will see, this constraint determines either z1 or p1

associated with (14) or (15), respectively, in terms of the
constant of motion that results from integrating (18). Time
translation invariance implies that either p0 or z0 can be set
to zero without loss of generality, resulting in a solution
space that consists of four physical parameters.

B. Classical solutions

First we make the field redefinition [7],

R̃ ≔ e−2ϕ: ð19Þ

The dilaton field equation (17) becomes

̈R̃ ¼ −
κ

4

_̃R _̃R

R̃ðR̃ − κ=4Þ − 4λ2e2ðp1tþp0Þ R̃

R̃ − κ=4
: ð20Þ

It can easily be verified that (20) is generated by the
following Hamiltonian:

HR ¼ Π2
R̃

2

�
R̃

R̃ − κ=4

�
2

þ 4λ2e2ðp1tþp0Þ
�
R̃ −

κ

4
ln R̃

�
:

ð21Þ

Moreover, (20) has the first integral

_̃R

R̃

�
R̃ −

κ

4

�
þ 2λ2

p1

e2ðp1tþp0Þ ¼ c1 ¼ constant: ð22Þ

Comparing (22) to the consistency condition (18)

requires c1 ¼ p2
1 −

z2
1

4
.

The general solution to Eq. (20) is [7]:

R̃ðtÞ ¼ e−2ϕðtÞ ¼ e−WðfðtÞÞþ2
κθðtÞ; ð23Þ

where WðxÞ is the Lambert W function [13] defined
implicitly by WðxÞeWðxÞ ¼ x and

fðtÞ ≔ −
4

κ
e2θðtÞ=κ; ð24Þ
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θðtÞ ≔ −2e−2ϕ − κϕ

¼ 2λ2

p2
1

e2ðp1tþp0Þ þ c1tþ θ0: ð25Þ

The Lambert W function has a branch point singularity at
x ¼ −1=e. This singularity corresponds to a curvature
singularity in the metric and occurs at R̃ ¼ κ=4. On the
principal branch of WðxÞ for which WðxÞ > Wð−1=eÞ,
WðxÞ → ∞ as x → ∞. On the other branchWðxÞ → −∞ as
x → 0. The latter is the physical branch. The stationary
black hole sector of the solution space corresponds to
c1 ¼ 0. In this case there is a Killing horizon at finite
θ ¼ θH where the metric component e2ρH ¼ 0 and the
curvature is finite. It was shown in [7] that the solution can
be analytically extended past this point, and a suitable
radial coordinate r defined in the exterior region such that
r → ∞ corresponds to the asymptotic exterior region of the
black hole. It was shown that this solution corresponds to
the RST solution [3] for P ¼ 0 and mass M ¼ θ0λ

ffiffiffi
κ

p
,

which, as noted by Birnir and Giddings has a physical
interpretation as a semiclassical black hole in thermal
equilibrium with their environment at a fixed temperature
TBH ¼ p1

2π that is independent of the mass.
So far only the matter field that gave rise to the

conformal anomaly has been quantized. We will now
proceed to quantize the single reduced gravitational degree
of freedom represented by the dilaton. Note that we have
solved for the radiation field and conformal mode of the
metric classically so that, in particular, the parameter p1,
which corresponds to the black hole temperature TBH in the
classical solution, does not fluctuate quantum mechani-
cally. However, the dilaton, and, therefore, the parameter
c1, will undergo fluctuations so that the system will not be
in equilibrium. The quantum dynamics will therefore be
considerably more interesting than the classical dynamics.

III. QUANTUM MECHANICS OF THE
DILATON FIELD

We now proceed to quantize the dilaton field on the
Hamiltonian constraint surface. It was shown in [7] that one
can quantize (21) in the limit R̃ → κ and resolve the
singularity to get a big bounce. In the following we will
quantize (21) exactly. We do this by first implementing a
canonical transformation that significantly simplifies the
Hamiltonian. We define:

y ¼
�
R̃ −

κ

4
ln R̃

�
− η;

Πy ¼ ΠR̃

�
R̃

R̃ − κ=4

�
; ð26Þ

where η ¼ κ
4
− κ

4
ln κ

4
. The location of the black hole singu-

larity at R̃ ¼ κ=4 corresponds to y ¼ 0, so that we will need
to restrict the physical phase space to the half line y > 0.
In terms of y and its conjugateΠy the Hamiltonian becomes

Hy ¼
Π2

y

2
þ 4λ2e2ðp1tþp0Þðyþ ηÞ: ð27Þ

This resembles the Hamiltonian for a bouncing particle in a
linear gravitational potential, with reflecting boundary
conditions at y ¼ 0. The key difference in our case is that
the slope of the potential increases exponentially with
time. In the gravitational potential analog, this means the
gravitational acceleration g increases exponentially with
time, which in turn results in the maximum height of the
bounce decreasing with time. We will see that the corre-
sponding expectation value in the quantum theory does
precisely this, with interesting consequences for the quan-
tum black hole.
The constant η corresponds to a time-dependent, but

spatially independent, shift in the potential. We will see in
the following that this can always be absorbed into a time-
dependent phase in the wave function that does not affect
expectation values. It does, however, need to be taken into
account when calculating the energy of the system as a
function of time.
We quantize in the Schrödinger representation, so that

ŷ ¼ y, with measure

hψ1jψ2i ¼
Z

∞

0

dyψ�
1ðyÞψ2ðyÞ: ð28Þ

The boundary condition at y ¼ 0 implies that the conjugate
to ŷ, namely Π̂y ¼ −iℏ∂y, does not exist as a self adjoint
operator [14]. A one parameter family of self-adjoint
extensions of the Hamiltonian operator on y ∈ ½0;∞� does
exist, corresponding to the boundary conditions

ψð0Þ þ Lψ 0ð0Þ ¼ 0: ð29Þ
For simplicity we set the extension parameter L ¼ 0, i.e.,
choose Dirichlet boundary conditions, which are the natural
boundary conditions to choose for the bouncing ball
problem. In the case of quantum gravity, it is less obvious
what the choice is, except that if one considers the infinite
wall at y ¼ 0 to be a limiting case of a finite potential, it has
been shown [15] that Dirichlet boundary conditions are
generic in the sense that obtaining any other boundary
conditions as the infinite limit of a finite potential requires
fine tuning of parameters as the limit is taken.
The task, then, is to solve the Schrödinger equation of the

form

i
∂ψðy; tÞ

∂t ¼ HyðtÞψðy; tÞ

¼ 1

2

�
−

∂2

∂y2 þ Vðy; tÞ
�
ψðy; tÞ; ð30Þ

under Dirichlet boundary conditions for interesting initial
data. This needs to be done numerically. The calculation is
described in the next section.
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IV. NUMERICAL CALCULATION

We use two different numerical methods to solve this
problem, the Crank-Nicholson method and a spectral
method. We first describe the details of the spectral method
which follows the implementation in [16].

A. Spectral method

We start by finding solutions to the instantaneous
eigenvalue problem

HyðtÞψnðy; tÞ ¼ EnðtÞψnðy; tÞ; ð31Þ

with normalized eigenstates

Z
∞

0

dyψ�
mðy; tÞψnðy; tÞ ¼ δmn: ð32Þ

We then write

ψðy; tÞ ¼
X∞
n¼0

cnðtÞeiθnðtÞψnðy; tÞ; ð33Þ

and choose _θnðtÞ ¼ −EnðtÞ so that (31) becomes

X∞
n¼0

ð_cneiθnψn þ cneiθn _ψnÞ ¼ 0: ð34Þ

We now take the inner product by integrating the expres-
sion above with

R
∞
0 dyψ�

m and use the orthonormality
condition, which gives

_cmeiθmðtÞ ¼ −
X∞
n¼0

cnðtÞeiθnðtÞ
Z

∞

0

dyψ�
mðy; tÞ _ψnðy; tÞ:

ð35Þ

We then calculate the right hand side of (35) starting from

Z
∞

0

dyψ�
m
d
dt

ðHyψnÞ ¼
Z

∞

0

dyψ�
m
d
dt

ðEnψnÞ; ð36Þ

and using _H ¼ _V=2, we get

ðEm − EnÞ
Z

∞

0

dyψ�
m _ψn

¼
Z

∞

0

dyψ�
mðy; tÞ

�
_EnðtÞ −

1

2
_Vðy; tÞ

�
ψnðy; tÞ; ð37Þ

where we have used the self-adjointness of the
Hamiltonian:

Z
∞

0

dyψ�
mHy _ψn ¼

Z
∞

0

dyðHyψmÞ� _ψn

¼ Em

Z
∞

0

dyψ�
m _ψn: ð38Þ

When m ¼ n, Eq. (37) becomes
Z

∞

0

dyψ�
nðy; tÞ

�
_EnðtÞ −

1

2
_Vðy; tÞ

�
ψnðy; tÞ ¼ 0; ð39Þ

which implies h _Ei ¼ 1
2
h _Vi. This is consistent with the basic

relationship

d
dt

hEi ¼ d
dt

hHyi

¼
�∂Hy

∂t
	
þ i
ℏ
d
dt

h½Hy;Hy�i

¼
�∂Hy

∂t
	
: ð40Þ

When m ≠ n, one can use the orthonormality of the basis
states to conclude that

Z
∞

0

dyψ�
mðy; tÞð _EnðtÞÞψnðy; tÞ ¼ _Ehψmjψni ¼ 0 ð41Þ

so that Eq. (37) gives

_cmðtÞ ¼
X
n≠m

χmnðtÞcnðtÞ; ð42Þ

where

χmnðtÞ ≔
1

2

eiðθnðtÞ−θmðtÞÞ

ðEmðtÞ − EnðtÞÞ
_VmnðtÞ; ð43Þ

_Vmn is the matrix element

_VmnðtÞ ≔ hψmj _VðtÞjψni

¼
Z

∞

0

dyψ�
mðy; tÞ _Vðy; tÞψnðy; tÞ ð44Þ

and

θnðtÞ ¼ −
Z

t

0

dt̃Enðt̃Þ þ θnð0Þ: ð45Þ

Note that θnð0Þ are arbitrary integration constants that do
not affect the physical state since they introduce time and
space independent phases that can always be absorbed into
the basis functions ψnðy; tÞ [cf. Eq. (33)].
What we need to do now is solve for the ψnðy; tÞ, EnðtÞ,

and VmnðtÞ for our model. In our case, we wish to solve the
problem with a linear potential,

i
∂ψðy; tÞ

∂t ¼ 1

2

�
−

∂2

∂y2 þ fðtÞðyþ ηÞ
�
ψðy; tÞ: ð46Þ
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The Eigenvalue problem at fixed t then becomes

1

2

�
−

∂2

∂y2 þ fðtÞy
�
ψnðy; tÞ ¼

�
EnðtÞ −

1

2
fðtÞη

�
ψnðtÞ:

ð47Þ

We can see that the term involving η just contributes a time-
dependent shift to the linear potential and can be absorbed
into the energy term by redefining EnðtÞ. This introduces a
time-dependent phase change to ψ that does not affect
expectation values. Since we are interested in the expected
value of position, we take η ¼ 0 without loss of generality.
Note, however, the contribution from the η term needs to be
included when calculating the total energy as a function of
time. The above expression can be modified by defining
x ¼ f1=3y:

�
−

∂2

∂x2 þ x
�
ψnðxÞ ¼ λnψnðxÞ: ð48Þ

Note that the time dependence has disappeared from the
Eigenvalue equation; i.e., it has been absorbed into the
coordinate x so that the eigenfunctions ψnðxÞ and eigen-
values λn ¼ 2f−2=3ðtÞEnðtÞ are independent of time.
The general solution to (48) is

ψnðxÞ ¼ B1Aiðx − λnÞ þ B2Biðx − λnÞ; ð49Þ

where the AiðxÞ and BiðxÞ are Airy functions of the first
and second kind. Since BiðxÞ diverges as x → ∞, the
requirement of normalizability implies that B2 ¼ 0. The
eigenfunctions are, therefore,

ψnðy; tÞ ¼ BnðtÞAiðf1=3y − λnÞ; ð50Þ

where the normalization factors are determined from

1 ¼ jBnðtÞj2
Z

∞

0

dyjAiðf1=3y − λnÞj2

¼ jBnðtÞj2f−1=3ðtÞh2n: ð51Þ
Here,

h2n ¼
Z

∞

0

dxjAiðx − λnÞj2 ð52Þ

is a time independent number.
The eigenvalues λn are determined from the boundary

conditions needed to make the operator ∂2=∂x2 self-adjoint
on the half line. The general Robin boundary conditions are

ψnð0; tÞ þ L
∂ψnðy; tÞ

∂y





y¼0

¼ 0: ð53Þ

Since we know explicitly the time dependence of EnðtÞ, i.e.,

EnðtÞ ¼
1

2
f2=3ðtÞλn; ð54Þ

we can calculate

θnðtÞ ¼ −λn
Z

t

0

dtf2=3ðtÞ: ð55Þ

We can also calculate Vmn, since

_VmnðtÞ ¼ _fBmðtÞBnðtÞ
Z

∞

0

dyAiðf1=3y − λmÞyAi

× ðf1=3y − λnÞ

¼
_ff−1=3

hnhm

Z
∞

0

dxAiðx − λmÞxAiðx − λnÞ: ð56Þ

In the case fðtÞ ¼ 2e2t, in which we have taken η ¼ 0
and 2λep0 ¼ p1 ¼ 1, we can solve for ψ by starting with a
series combination of Airy functions, ψn, that approximates
the Gaussian wave packet given by

FIG. 1. Expectation value of the position and the norm of the Gaussian wave packet are plotted as a function of time t. We take η ¼ 0
and 2λep0 ¼ p1 ¼ 1. The units we use are ℏ ¼ c ¼ 1.
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ψðy; t ¼ 0Þ ¼
ffiffiffi
2

p

π1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ erfð5Þp h

e−
ðy−5Þ2

2

i
e−5iy; ð57Þ

where erfðxÞ ¼ 2ffiffi
π

p
R
x
0 e

−t2dt is the error function.

The expected value of ŷ is shown in Fig. 1. The factor
e−5iy in Eq. (57) gives the wave packet an initial velocity
toward the singularity, which allows the bouncing behavior
in hŷi to happen earlier. Due to the high number of
oscillations in the solution, we also verified that the norm
of the wave function remained constant as a check that our
numerical method was behaving properly. The norm is also
shown in Fig. 1.

B. Crank-Nicholson method

The Crank-Nicholson method is a well-known finite
difference method used to find numerical solutions to
partial differential equations. In this case, to apply the
boundary condition of an infinite wall at y ¼ 0 we replace

the time-dependent linear potential 4λ2e2ðp1tþp0Þðyþ ηÞ
with 4λ2e2ðp1tþp0Þðjyj þ ηÞ. We now can allow an initial
wave of the form
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ð58Þ
to approach the singularity at y ¼ 0. The above wave
packet is composed of two antisymmetric Gaussian wave
packets, which are located on the positive and negative
y-axis equidistant from y ¼ 0. Again, we have included
factors of e�5iy to give the wave packets an initial velocity
toward the singularity. As the two Gaussian wave packets
interact, the result on the interval ½0;∞Þ is identical to the
behavior of a bouncing Gaussian wave packet on an infinite
potential at 0. We found that the solutions using the Crank-
Nicholson method converged to those of the spectral
method as we decreased the step size.

V. BOUNDED COUPLING

The coupling in the linear potential in Eq. (27) diverges
exponentially as time evolves. This divergence appears due
to the fact that in deriving the Hamiltonian (21) we treated
the field ρðtÞ − ϕðtÞ in Eq. (15) classically. In a fully
quantized quantum model, such divergences should not
appear. Such a quantization is beyond the scope of the
present work, but in order to see qualitatively what might
happen in the absence of such a divergence, we replace the
term λ2e2p1t with the regularized form:

λ2e2p1t

1þ λ2e2p1t

Λ2

: ð59Þ

In Fig. 2, we plot the expected value of the Hamiltonian
(27) for the unbounded and bounded cases. In Fig. 3, we
plot the expected position of the wave packet of the dilaton
field along with the norm of the wave packet. Note that in

FIG. 2. The expectation value of the Hamiltonian versus time t.
The red dashed line represents our exponentially increasing linear
potential. The solid line represents the case where the coupling is
bounded. We take η ¼ 0, 2λep0 ¼ p1 ¼ 1 and Λ ¼ ffiffiffiffiffiffiffiffi

500
p

λ. The
units we use are ℏ ¼ c ¼ 1.

FIG. 3. Expectation value of the position and the norm of the wave packet are plotted as a function of time t for bounded coupling.
We take η ¼ 0, 2λep0 ¼ p1 ¼ 1 and Λ ¼ ffiffiffiffiffiffiffiffi

500
p

λ. The units we use are ℏ ¼ c ¼ 1.
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the bounded case, the expected position of the wave packet
oscillates but no longer decreases to zero. This suggests that
under this scenario the end point of the radiation would be a
stable remnant rather than complete evaporation as occurs
in the unregulated case.
We have verified that the precise form of the regularized

coupling term does not qualitatively change the above
picture, although the details of the transition to the steady
state do change somewhat.

VI. SUMMARY AND CONCLUSION

We have shown that the quantum dynamical evolution of
the dilaton field in the interior of a homogeneous RST
black hole is determined by a Schrödinger equation with a
linear potential with time-dependent coupling on the half
line. We used two different numerical methods, spectral and
Crank-Nicholson, to determine the evolution of a Gaussian
wave packet of the dilaton field. The expectation value of
the wave packet resembles that of a bouncing ball in the
presence of an increasing gravitational field. The maximum
height of the bounce, which classically determines the
horizon radius for the black hole, decreases with time. The
quantum dynamics, therefore, appear to provide an in-
triguing description of an evaporating black hole. We also
observe in Fig. 1 that as the expectation value decreases, the
oscillation frequency increases. At late times in the process,
the expectation value of the radius undergoes “revivals” in
which the amplitude of oscillations between minimum and
maximum temporarily increases, but within the numerical
accuracy of the calculation, the maximum appears to
decrease smoothly to zero, suggesting that the black hole
evaporates completely. We have also looked at an alter-
native scenario where the time-dependent coupling is
bounded. This leads to a semiclassical description of
black hole evaporation in which a stable finite radius is
approached asymptotically. In this case the frequency of the
oscillations approaches a constant and the interesting
behavior in the amplitude of the oscillations, corresponding
to pulsations of the black hole radius, is more pronounced
and easier to resolve numerically. See Fig. 3. A similar

pattern of revivals, or pulsations, as those mentioned above
was noticed earlier in the context of a time independent
linear potential in [8]. In fact, the late time behavior
observed in Fig. 3 is very similar to that seen in [8], which
is not surprising since for late times the bounded coupling
is nearly time independent.
We note that the exponential increase in energy that

we have observed at long times is a direct result of the
exponential growth of the linear potential in the
Hamiltonian. This energy increase does not have direct
physical significance for several reasons. First, the
Hamiltonian in Eq. (27) was not derived directly from a
phase space reduction of the full model. It was instead
constructed to yield the correct dynamics for the dilaton.
One is therefore free to add to it an arbitrary function of
time that can be used to cancel this long term exponential
growth. Second, one of the peculiarities of the original RST
model is the behavior of the energy. For generic values of
the solution parameters, the energy of the radiation field
extends to infinity so that the ADM energy is not finite [3].
Moreover, the semiclassical formation and evaporation of
an RST black holes results in a naked singularity and
potential emission of a “thunderbolt” of infinite energy.
This rather unphysical property of the model was the main
motivation for abandoning the model in the 1990’s, but as
noted in [3], it may be cured by a full quantum treatment.
As mentioned previously, we have quantized only the

dilaton ϕ, treating the dynamical degree of freedom
associated with the radiation field classically. It is clearly
of interest to do a more complete quantization of both the
dilaton and the radiation field. Such an investigation,
which is considerably more challenging and may require
novel techniques to obtain results, is currently under
investigation.
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