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We compute the memory effect produced at the black hole horizon by a transient gravitational shock
wave. As shown by Hawking, Perry, and Strominger (HPS) such a gravitational wave produces a
deformation of the black hole geometry which from future null infinity is seen as a Bondi-Metzner-Sachs
supertranslation. This results in a diffeomorphic but physically distinct geometry which differs from the
original black hole by their charges at infinity. Here we give the complementary description of this physical
process in the near-horizon region as seen by an observer hovering just outside the event horizon. From this
perspective, in addition to a supertranslation the shock wave also induces a horizon superrotation. We
compute the associated superrotation charge and show that its form agrees with the one obtained by HPS at
infinity. In addition, there is a supertranslation contribution to the horizon charge, which measures the
entropy change in the process. We then turn to electrically and magnetically charged black holes and
generalize the near-horizon asymptotic symmetry analysis to Einstein-Maxwell theory. This reveals an
additional infinite-dimensional current algebra that acts nontrivially on the horizon superrotations. Finally,
we generalize the black hole memory effect to Reissner-Nordström black holes.

DOI: 10.1103/PhysRevD.98.124016

I. INTRODUCTION

Over the last few years we have learned that gravitational
and gauge field dynamics in asymptotically Minkowski
spacetime entails a rich mathematical structure whose
relevance for physics had been largely overlooked. This
observation led to a revision of the notion of vacua in gravity
and gauge theories in asymptotically flat spacetimes, which
is of crucial importance for the scattering problem. This
mathematical structure, expressed in the emergence of an
infinite set of symmetries, unveils a surprising connection
among three previously known but seemingly disconnected
topics: a) the soft theorems for the S matrix of gravity and
gauge theories in asymptotically flat spacetimes [1], b) the
enhanced symmetry group that governs the dynamics in the
asymptotic region [2–4], and c) the memory effect produced
by transient gravitational waves [5,6].

Recently, there has been substantial progress in under-
standing the three components of this triangle and how they
are interconnected. The new insights raise the hope for a
better understanding of scattering processes, especially
when gravitons, or even black holes are involved. Besides,
they could lead to a better comprehension of the physical
meaning of the infinite-dimensional symmetries exhibited
by Minkowski spacetime in its asymptotic domain.
The existence of a set of infinite-dimensional asymptotic

symmetries in the future (and past) null infinity region(s)
has been known for a long time [2–4]. However, only re-
cently the importance of these symmetries has been under-
stood and significant advances have been made [7–20].
The algebra generated by these symmetries, known as
Bondi-Metzner-Sachs (BMS) algebra, originally appeared
in the study of classical gravitational radiation in asymp-
totically flat spacetimes. The application of the BMS
symmetry algebra to study the S matrix in flat spacetime
has been proposed recently [11] and, since then, several
physical systems have been studied within this framework;
see Ref. [21] and references therein and thereof. In
particular, a revision of the problem of the formation
and evaporation of black holes has recently been initiated
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in Refs. [22–24], where it was suggested that the BMS
symmetry would be of importance for the information loss
problem.
Here, we will not address the information loss puzzle,

but rather another problem which is related to the black
hole memory: to understand how the BMS symmetry that
underlies scattering processes involving a black hole can be
measured by an observer hovering just outside the event
horizon. We will establish a connection between the
description of the black hole geometry in terms of the
BMS symmetries in the asymptotic region at null infinity
and its description in terms of the symmetries that emerge
in the near-horizon region by computing the gravitational
memory effect in the vicinity of the black hole horizon
produced by an incoming shock wave. We will refer to it as
the black hole memory effect [25]. A similar process has
recently been studied by Hawking, Perry, and Strominger
(HPS) [25], who showed that a transient shock wave
produces a disturbance in the spacetime corresponding
to a BMS supertranslation at null infinity. This provides a
concrete example of a physical process that endows a black
hole with BMS hair of the type suggested in Ref. [23].
However, it remained an open question how this phenome-
non is seen from the point of view of an observer close to
the horizon. Here, we will show that the BMS super-
translation hair of Ref. [25] can be understood as a
supertranslation1 composed with a superrotation from the
point of view of the near-horizon geometry. We compute
the conserved charge associated to this superrotation and
find that its form agrees with that of HPS.
This is relevant for several reasons. First, it describes a

physical process whose effect on the horizon geometry can
be captured by the symmetries discovered in Ref. [26].
Second, this shows that, in addition to horizon super-
translations [22], horizon superrotations are crucial to
describe the physics in the vicinity of the black hole.
Third, this gives a bulk complementary description of the
process studied in Ref. [25], which sheds light on the
connection between the symmetries emerging in different
regions of the spacetime.
We begin in Sec. II with a review of the results of

Ref. [25] of how the action of the BMS symmetries on the
Schwarzschild geometry can be understood as a perturba-
tion produced by a transient gravitational wave. In Sec. III,
we describe the same physical process from the point of
view of an observer in the near-horizon region using the
symmetry analysis of Refs. [26,27]. We compute the
superrotation and supertranslation charges associated to
the asymptotic symmetries, and we show how the charges
found in the near-horizon region relate to those computed at

null infinity. In Sec. IV, we extend the analysis to the case
of electrically and magnetically charged black holes. As a
prerequisite, we first generalize the near-horizon asymp-
totic symmetry analysis of Refs. [26,27] to Einstein-
Maxwell theory. This is shown to yield an additional
infinite-dimensional current algebra on which the horizon
charges of the gravity sector act nontrivially. We discuss the
physical interpretation of the extended symmetry and of
their associated charges by analyzing the particular case of
nonextremal Reissner-Nordström black holes. We evaluate
the zero modes of the charges on the dyonic solution and
discuss their interpretation. The extremal case, which
exhibits qualitatively different features, is analyzed sepa-
rately. In Sec. V, we generalize the black hole memory
effect to the Reissner-Nordström black hole. Section VI
contains our conclusions.

II. GRAVITATIONAL SHOCK WAVES
AND BMS HAIR

We begin by reviewing the salient features of the BMS
analysis of Ref. [25] and their proposal for a dynamical
mechanism for generating BMS hair on black holes.
Consider a static Schwarzschild black hole whose line

element in advanced Bondi coordinates (v, r, zA) is given by

ds20¼ g0μνdxμdxν

¼−
�
1−

2M
r

�
dv2þ2dvdrþ r2γABdzAdzB; ð1Þ

wherev is the advanced time and zA (A ¼ 1, 2) represents the
angular position on the 2-sphere with unit metric γAB. The
horizon is located at rþ ¼ 2M.At past null infinityI−,which
is defined as the null surface obtained by taking the limit
r → ∞ while keeping (v, zA) fixed, the only nonvanishing
conserved charge is the massM and hence Eq. (1) represents
a bald Schwarzschild black hole. In Ref. [25], HPS con-
structed BMS supertranslation hair at null infinity and
showed that a physical process for the bald Schwarzschild
black hole to acquire such hair is given by perturbing the
geometry (1) with a linearized gravitational shock wave
prepared at advanced time v0 whose energy density to
leading order in large radial distance r is given by

Tvv ¼
μþ TðzÞ
4πr2

δðv − v0Þ: ð2Þ

The function TðzÞ characterizes the angular profile of the
shock wave and, following Ref. [25] we explicitly write its
monopole contribution μ separately. Solving the conserva-
tion equation for the stress tensor in the background (1) yields
the subleading contributions to Eq. (2) which break spherical
symmetry, namely,

1Supertranslations on the future horizon of Schwarzschild
black holes have been also studied in Ref. [23], where the
canonical construction of the Bondi-gauge-preserving super-
translations was given.
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Tvv ¼
�
μþ TðzÞ
4πr2

þDATAðzÞ
4πr3

�
δðv − v0Þ;

TvA ¼ TAðzÞ
4πr2

δðv − v0Þ: ð3Þ

Here, TA obeys the equation ðD2 þ 2ÞDATA ¼ −6MT,
with DA and D2 ≡ γABDADB being the covariant derivative
and theLaplacian on the 2-sphere, respectively. As explained
in Ref. [25], the solution to these equations can be conven-
iently expressed in terms of the Green function Gðz; wÞ
connecting two different angular positions zA and wA as
defined by

D2ðD2 þ 2ÞGðz; wÞ ¼ 4ffiffiffi
γ

p δð2Þðz − wÞ; ð4Þ

where γ denotes the determinant of the metric γAB on the
sphere. Defining

CðzÞ ¼
Z

d2wGðz; wÞTðwÞ; ð5Þ

the stress-tensor components (3) become

Tvv ¼
1

4πr2

�
μþ 1

4
D2ðD2 þ 2ÞC −

3M
2r

D2C

�
δðv − v0Þ;

TvA ¼ −
3M
8πr2

DACδðv − v0Þ: ð6Þ

This represents the energy-momentum contribution of the
linearized shock wave. Its effect on the background is to
produce a perturbed metric gμν ¼ g0μν þ hμν with the pertur-
bation hμν given by

hvv ¼
�
2μ

r
−
M
r2

D2C

�
Θðv − v0Þ;

hvA ¼ DA

�
r − 2M

r
Cþ 1

2
D2C

�
Θðv − v0Þ;

hAB ¼ −2r
�
DADBC −

1

2
γABD2C

�
Θðv − v0Þ: ð7Þ

This perturbation was shown in Ref. [25] to be equivalent to
acting on the Schwarzschild geometry (1) with a large
diffeomorphism hμν ¼ Lζg0μν generated by the asymptotic
BMS Killing vector

ζ ¼ ζv∂v þ ζA∂A þ ζr∂r; ð8Þ
with components

ζv ¼ f; ζA ¼ 1

r
DAf∂A; ζr ¼ −

1

2
D2f; ð9Þ

and where f ¼ −CðzÞΘðv − v0Þ; see Ref. [25] for more
details. This large diffeomorphism corresponds to a super-
translation that changes the BMS (superrotation) charges at

null infinity. The resulting supertranslated black hole metric
takes the form2

ds2 ¼ gμνdxμdxν

¼
�
2M
r

− 1þM
r2

D2f

�
dv2 þ 2dvdr

−DA

�
2f −

4M
r

f þD2f

�
dvdzA

þ ðr2γAB þ 2rDADBf − rγABD2fÞdzAdzB: ð10Þ

The location of the supertranslated event horizon is

ðrþÞf ¼ rþ þ 1

2
D2f; ð11Þ

and thus depends on the angular variables throughD2f. Note
that the solution (10) is exact in r but only linear3 in f and
therefore has to be understood up to order Oðf2Þ. The
supertranslated Schwarzschild black hole (10) is a different
physical configuration than the unperturbed bald geometry
(1) as it carries nonvanishing superrotation charge [23,25],

QHPS
Y ¼ 1

8π

Z
I−
þ
d2z

ffiffiffi
γ

p
YANA ¼ −

3M
8π

Z
I−
þ
d2z

ffiffiffi
γ

p
YA∂Af;

ð12Þ

where YA is any smooth vector field on the sphere, NA is the
angular momentum aspect, and I−þ is the 2-sphere that
represents the remote future of past null infinity4 I−.
For v < v0 the spacetime is described by the bald

Schwarzschild black hole (1). The perturbation by the
shock wave at v ¼ v0 turns on the nonvanishing super-
rotation charge (12) and for v > v0 the spacetime is
described by the supertranslated Schwarzschild geometry
(10); see Fig. 1. The action of large diffeomorphisms
corresponding to supertranslations on the Schwarzschild
geometry at null infinity can thus be understood as the
physical process of sending in a gravitational shock wave
with an asymmetric angular profile. This concludes our
review of Ref. [25] and their interpretation of the action of
BMS transformations at null infinity. We now turn to the
horizon.

2The extension of the supertranslated geometry into the bulk is
gauge dependent.Here it is done by requiring theBondi gauge to be
preserved [25]. It is perhapsworth emphasizing that themetric (10),
with a gauge choice, is valid all the way down to the horizon, for
finite r.

3See Ref. [28] for finite BMS transformations at null infinity.
4The antipodal matching condition [14] relates the field

configurations at I−þ to those at Iþ
− , the latter corresponding

to the 2-sphere in the remote past of future null infinity Iþ. We
refer to Ref. [25] for the details about the prescription for the
matching conditions and integration.
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III. SOFT HAIR ON
SCHWARZSCHILD HORIZONS

We now discuss how the process of deforming the black
hole geometry by an incoming shock wave is seen by an
observer located close to the horizon and, moreover, how
supertranslations at null infinity get encoded in the sym-
metry transformations at the horizon. Since the super-
translated black hole solution (10) is valid for finite values
of the radial distance r, we can investigate this question
using the near-horizon analysis of Refs. [26,27]. There, it
was shown that if one starts from the general form of a near-
horizon metric

ds2 ¼ −2ρκdv2 þ 2dvdρþ 2ρθAdvdzA

þ ðΩAB þ ρλABÞdzAdzB þ…; ð13Þ

where the horizon is located at ρ ¼ 0, the ellipsis stands for
Oðρ2Þ terms, κ, θA, ΩAB, and λAB are in principle arbitrary
functions5 of the advanced time v and the angles zA, and
assuming the gauge-fixing conditions

gρρ ¼ 0; gvρ ¼ 1; gAρ ¼ 0; ð14Þ

then there exists a set of asymptotic diffeomorphisms
preserving Eq. (13) generated by an infinite-dimensional
algebra that includes both supertranslations and super-
rotations. These are diffeomorphisms

χ ¼ χv∂v þ χA∂A þ χρ∂ρ ð15Þ

of the form

χv ¼ f;

χA ¼ YA − ∂Bf
Z

ρ
dρ0gAB;

χρ ¼ −ρ∂vf þ ∂Af
Z

ρ
dρ0gABgvB; ð16Þ

where f and YA are ρ-independent functions whose v
dependence is constrained by

∂vYA ¼ 0; κ∂vf þ ∂2
vf ¼ 0: ð17Þ

These last two equations follow from demanding that the
leading terms of χ not depend on the fields, and from taking
the surface gravity κ to be constant. The diffeomorphisms
(16) subject to Eq. (17) have been shown to give rise to an
infinite-dimensional algebra consisting of two copies of the
Virasoro algebra generated by YA (superrotations) and two
Abelian current algebras generated by f (supertranslations).
For nonextremal black holes (κ ≠ 0), the time-independent
part of f can be interpreted as a supertranslation in the
retarded time v of the future horizonHþ. Its time-dependent
part can be thought of as a superdilation in v or, alternatively,
as a supertranslation in the affine parameter λ ¼ e−κv along
the event horizon. For extremal black holes (κ ¼ 0), the roles
of supertranslations and superdilations are interchanged.
The diffeomorphisms (16) subject to the constraints (17)

preserve the generic form of the metric (13), but change the
functions κ, θA, and ΩAB as follows:

δχκ ¼ 0;

δχθA ¼ LχθA þ f∂vθA − 2κ∂Af − 2∂v∂Af

þ ΩBC∂vΩABDCf;

δχΩAB ¼ f∂vΩAB þ LχΩAB: ð18Þ
Wewill now discuss how the transient gravitational shock

wave of HPS [25] and its deformation of the horizon can be
interpreted as the change (18) in the near-horizonmetric from
the bald Schwarzschild black hole (1) to the supertranslated
one (10). This relates theBMSsupertranslation at null infinity
to the horizon supertranslations and superroations (16)–(17).
To make contact with the asymptotic symmetry analysis

of Refs. [26,27]6 we can write the near-horizon metric of
the supertranslated (10) Schwarzschild black holes in the
form (13) by changing coordinates ρ ¼ r − ðrþÞf and
expanding Eq. (10) near the horizon. To leading order in
ρ, this gives

ds2 ¼ −
1

rþ
ρdv2 þ 2dvdρ −

2

rþ
ρDAfdzAdv

þ ðr2þγAB þ 2rþDADBfÞdzAdzB þ…; ð19Þ

FIG. 1. Penrose diagram of a Schwarzschild black hole. The
gravitational shock wave at v ¼ v0 describes a domain wall that
divides the exterior geometry into two regions, each with
different values of the asymptotic charges.

5The function λAB does not ultimately appear in the conserved
charges [27] and we will omit it in the following.

6The infinite-dimensional symmetries at the horizon have been
also discussed in Refs. [29–37]; see also references therein and
thereof.
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where we used dρ ¼ dr − ð1=2ÞDAD2fdzA. From this one
can read off theOðρ0Þ andOðρÞ contributions to the metric
components induced at the horizon of the supertranslated
Schwarzschild black hole, namely,

κ¼ 1

2rþ
; θA ¼−2κDAf; ΩAB ¼ r2þγABþ2rþDADBf:

ð20Þ

The corresponding metric functions for the bald
Schwarzschild geometry (1) are obtained by setting f ¼ 0
inEq. (20).GeneratingEq. (20) by actingwithEq. (18) on the
geometry of the unperturbed Schwarzschild horizon, we find

δχθA ¼−2κDAf; δχΩAB ¼ 2rþDADBf; ð21Þ

which corresponds to a horizon supertranslation composed
with a horizon superrotation, with the latter given by7

YA ¼ 1

rþ
DAf: ð22Þ

Here, f is the HPS supertranslation at null infinity Iþ which
turns out to coincidewith the horizon supertranslation atHþ.
This hence shows that the disturbance produced by the
gravitational shock wave, which from null infinity is seen as
the action of a pure BMS supertranslation on the
Schwarzschild geometry, is seen by the near-horizon
observer as a supertranslation f together with an induced
superrotation YA given by Eq. (22).
We can now compute the conserved charges at the horizon

associated to the horizon supertranslation and superrotation
symmetries. For spacetimes of the form (13) these charges
have been constructed in Refs. [26,27] using the covariant
formalism [38]. The horizon superrotation charge for the
perturbed Schwarzschild black hole (19) is

QY ¼ 1

8π

Z
d2z

ffiffiffi
γ

p
YAθAΩ ¼ M

8π

Z
d2z

ffiffiffi
γ

p
YA∂Af; ð23Þ

where the integration is over the constant-v section of the
horizon Hþ and ΩAB ¼ ΩγAB, so that Ω ¼ 4M2 þOðfÞ.
Note that the functional form of Eq. (23) is the same8 as that
of HPS given in Eq. (12). The additional horizon super-
rotations induce a supertranslation charge contribution

δQT ¼ κ

8π

Z
d2zfδð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detΩAB

p
Þ; ð24Þ

which is absent at null infinityI−. The physical interpretation
of the zero mode of Eq. (24) is clear: it encodes the variation

of the entropy (times the temperature) due to the transient
shock wave, namely,

δQT jf¼1
¼ κ

2π

δA
4

; ð25Þ

where δA is the variation of the horizon area in Planck units.9

That is, δQT jf¼1
¼ THδS, with S being the Bekenstein-

Hawking entropy and TH being the Hawking temperature.
This concludes our discussion of the black hole horizon

memory effect for Schwarzschild black holes. In the
following, we turn on gauge fields which will turn out
to act nontrivially on the horizon superrotation charge. To
do so, we first need to extend the asymptotic symmetry
analysis of Refs. [26,27] to the Einstein-Maxwell theory
and then generalize the discussion of the previous sections
to Reissner-Nordström black holes.

IV. HORIZON SYMMETRIES FOR
EINSTEIN-MAXWELL

The near-horizon geometry of a four-dimensional charged
black hole takes the same convenient form in Gaussian null
coordinates as that of its uncharged counterpart, namely,
Eq. (13), which we repeat here for convenience,

gvv ¼ −2ρκ þOðρ2Þ;
gvA ¼ ρθAðzBÞ þOðρ2Þ;
gAB ¼ ΩABðzCÞ þ ρλABðzCÞ þOðρ2Þ; ð26Þ

and we assume the following gauge-fixing conditions for the
metric:

gρρ ¼ 0; gvρ ¼ 1; gAρ ¼ 0: ð27Þ
As inRef. [26], the functions θA andΩAB dependon zA but are
taken to be independent of the advanced time v; this
accommodates the case of isolated horizons studied here.10

The asymptotic boundary conditions for theMaxwell field are

Av ¼ Að0Þ
v þ ρAð1Þ

v ðv; zAÞ þOðρ2Þ;
AB ¼ Að0Þ

B ðzAÞ þ ρAð1Þ
B ðv; zAÞ þOðρ2Þ; ð28Þ

and we choose the radial gauge condition

Aρ¼ 0: ð29Þ

The Coulombian potential at the horizon Að0Þ
v is taken to be a

fixed constant, Að0Þ
B is assumed to depend only on zA, while

Að1Þ
v and Að1Þ

B are arbitrary functions of zA and v. These
conditions are analogous to those considered for Einstein-
Maxwell theory at null [39,40] and spatial [41] infinity. They7Notice that here we are not assuming that the vector YA is a

holomorphic function.
8There is an extra overall factor of −3when directly comparing

with the expression for QHPS
Y . These two charges are quantities

defined by integrating over different 2-surfaces.

9We use units where Newton’s constant G ¼ 1.
10One may relax this assumption, but then one has to treat

subtleties regarding the integrability of the charges; see Ref. [27].
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are slightly more general than the horizon conditions con-
sidered in Ref. [31]; in fact, they agree with the
boundary conditions considered in Ref. [42], and suffice to
discuss physically interesting solutions such as Kerr-Newman
black holes. We now study the horizon symmetries for
metrics and gauge fields obeying Eqs. (26)–(29). Depending
onwhat is more convenient in specific examples, wewill either
consider the angular coordinates zA to be parametrized by
complex variables (z, z̄) or by standard polar variables (θ, ϕ).
A set of field transformations at the horizon is given by

δðχ;ϵÞgμν ¼ Lχgμν; δðχ;ϵÞAμ ¼ LχAμ þ ∂μϵ; ð30Þ
where the vector field χ ¼ χμ∂μ generates diffeomorphisms
while ϵ is the gauge parameter. These transformations
represent symmetries at the horizon if they respect the
asymptotic form (26)–(28). The gauge-fixing conditions
(27) and (29) imply

Lχgρρ¼ 0; Lχgvρ¼ 0; LχgρA ¼ 0; LχAρþ∂ρϵ¼ 0;

ð31Þ
which yield the following form for χμ and ϵ:

χv ¼ fðv; zAÞ;

χρ ¼ Zðv; zAÞ − ρ∂vf þ ∂Af
Z

ρ

0

dρ0gABgvB;

χA ¼ YAðv; zAÞ − ∂Bf
Z

ρ

0

dρ0gAB;

ϵ ¼ ϵð0Þðv; zAÞ −
Z

ρ

0

dρ0AB∂ρχ
B; ð32Þ

where f, Z, YA, and ϵð0Þ are arbitrary functions of v and zA

that do not depend on ρ. Demanding that the leading piece
of the vector field χ only depends on the coordinates and
not on the fields (i.e., the arbitrary functions appearing in
the metric and gauge field) leads to Z ¼ 0 and ∂vYA ¼ 0
[27]. Implementing the boundary conditions for the remain-
ing metric components, namely,

Lχgvv¼Oðρ2Þ; LχgvA¼Oðρ2Þ; LχgAB¼OðρÞ; ð33Þ
yields the following components of the diffeomorphism-
generating vector field:

χv ¼ fðv; zAÞ;

χρ ¼ −∂vfðv; zAÞρþ
ρ2

2Ω
θAðzBÞ∂Afðv; zAÞ þOðρ3Þ;

χA ¼ YAðzBÞ − ρ

Ω
∂Afðv; zAÞ

þ ρ2

2Ω2
λABðzCÞ∂Bfðv; zAÞ þOðρ3Þ; ð34Þ

where we used the conformal gauge ΩAB ¼ ΩγAB,
which implies that the vector YA is a conformal
Killing vector on the 2-sphere. This ultimately yields

two copies of the Virasoro algebra as the superrotation
symmetry.11 For the gauge field, the boundary conditions
(28) imply

LχAv þ ∂vϵ ¼ OðρÞ; LχAB þ ∂Bϵ ¼ Oð1Þ; ð35Þ
yielding

ϵð0Þðv; zAÞ ¼ UðzAÞ − fðv; zAÞAð0Þ
v ; ð36Þ

where U is an arbitrary function of the angular coordinates
zA. This yields the gauge parameter

ϵ ¼ UðzAÞ − fðv; zAÞAð0Þ
v þ ρΩ−1∂Bfðv; zAÞAð0Þ

B ðzAÞ
þOðρ2Þ: ð37Þ

Thus, we find that the transformations (30) for the diffeo-
morphism vector field (34) and the gauge parameter (37)
generate the horizon symmetries. The variations of the
functions κ, θA, and ΩAB of the metric and the angular part
of the gauge field Av, AB are

δðχ;ϵÞκ ¼ 0 ¼ κ∂vf þ ∂2
vf;

δðχ;ϵÞθA ¼ LYθA þ f∂vθA − 2κ∂Af − 2∂v∂Af

þ ΩBC∂vΩAB∂Cf;

δðχ;ϵÞΩAB ¼ f∂vΩAB þ LYΩAB;

δðχ;ϵÞA
ð0Þ
v ¼ 0;

δðχ;ϵÞA
ð0Þ
B ¼ YC∂CA

ð0Þ
B þ Að0Þ

C ∂BYC þ ∂BU: ð38Þ
These variations generate a Lie algebra. If the gauge
parameters χ and ϵ depended only on the spacetime
coordinates but not on the fields, the Lie product

½δðχ1;ϵ1Þ; δðχ2;ϵ2Þ�ðgμν; AμÞ ¼ δðχ̂;ϵ̂Þðgμν; AμÞ ð39Þ
would take a simple form with χ̂ ¼ ½χ1; χ2� and ϵ̂ ¼
χμ1∂μϵ2 − χμ2∂μϵ1; that is, the Lie bracket would be

½ðχ1; ϵ1Þ; ðχ2; ϵ2Þ� ¼ ðχ̂; ϵ̂Þ: ð40Þ
However, when the gauge parameters do depend on the
fields, as in Eqs. (34)–(37), one needs to resort to the
modified Lie bracket [9]

½ðχ1; ϵ1Þ; ðχ2; ϵ2Þ�M ¼ ðχ̂; ϵ̂Þ; ð41Þ

11The charge generators associated to the two Virasoro
currents is one way of representing the abstract definition of
horizon superrotation, but it is not the most general one; the same
is true for the BMS superrotations at Iþ–. This has been lucidly
discussed in Ref. [32], where it was pointed out that, from the
perspective of the membrane paradigm, it is natural to identify the
superrotation subgroup as the entire group of diffeomorphisms on
the 2-sphere.
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where now

χ̂ ¼ ½χ1; χ2� þ δðχ1;ϵ1Þχ2 − δðχ2;ϵ2Þχ1;

ϵ̂ ¼ χμ1∂μϵ2 − χμ2∂μϵ1 þ δðχ1;ϵ1Þϵ2 − δðχ2;ϵ2Þϵ1: ð42Þ

With this modified bracket, one finds that the parameters
(34) and (37) of the residual gauge symmetries form a
representation of the infinite-dimensional Lie algebra
which can be expressed as

½ðf1; YA
1 ; U1Þ; ðf2; YA

2 ; U2Þ� ¼ ðf̂; ŶA; ÛÞ; ð43Þ

with

f̂ ¼ f1∂vf2 þ YA
1∂Af2 − ð1 ↔ 2Þ;

ŶA ¼ YB
1 ∂BYA

2 − ð1 ↔ 2Þ;
Û ¼ YA

1∂AU2 − ð1 ↔ 2Þ: ð44Þ

From this point on, the asymptotic symmetry analysis has to
be treated separately for nonextremal and extremal horizons.

A. Nonextremal horizons

For isolated nonextremal horizons (κ ¼ const ≠ 0), the
first equation in Eq. (38) yields the linear equation

0 ¼ κ∂vf þ ∂2
vf; ð45Þ

which has a solution of the form

fðv; zAÞ ¼ TðzAÞ þ e−κvXðzAÞ: ð46Þ

We see from this that there are two distinct contributions to
the supertranslation generator which have different physi-
cal interpretations. The first term in Eq. (46) generates
supertranslation charge at the horizon. The exponential
decay in advanced time in the second term in Eq. (46)
resembles the so-called horizon redshift effect [43], where
the energy of a photon moving tangential to the horizon
undergoes a redshift proportional to e−κv. The wave analog
of this effect is important in proving the linear stability of
Schwarzschild and nonextreme Kerr spacetimes under
scalar perturbations [44,45]. In terms of these two different
contributions the algebra (43) closes with

T̂ ¼ YA
1∂AT2 − ð1 ↔ 2Þ;

X̂ ¼ YA
1∂AX2 − κT1X2 − ð1 ↔ 2Þ: ð47Þ

Expanding the superrotation, supertranslation, and
electromagnetic charge generators in modes,

Tðz; z̄Þ ¼
X
m;n

Tðm;nÞzmz̄n;

Xðz; z̄Þ ¼
X
m;n

Xðm;nÞzmz̄n;

YzðzÞ ¼
X
n

znYn;

Yz̄ðz̄Þ ¼
X
n

z̄nȲn;

Uðz; z̄Þ ¼
X
m;n

Uðm;nÞzmz̄n; ð48Þ

wherewe used complex coordinates for the angular variables
zA ¼ ðz; z̄Þ and m; n ∈ Z, the algebra (43) becomes

½Ym; Yn� ¼ ðm − nÞYmþn;

½Ȳm; Ȳn� ¼ ðm − nÞȲmþn;

½Yk; Tðm;nÞ� ¼ −mTðmþk;nÞ;

½Ȳk; Tðm;nÞ� ¼ −nTðm;nþkÞ;

½Yk; Xðm;nÞ� ¼ −mXðmþk;nÞ;

½Ȳk; Xðm;nÞ� ¼ −nXðm;nþkÞ;

½Xðk;lÞ; Tðm;nÞ� ¼ κXðmþk;nþlÞ;

½Yk; Uðm;nÞ� ¼ −mUðmþk;nÞ;

½Ȳk; Uðm;nÞ� ¼ −nUðmþk;nÞ; ð49Þ
with the remaining commutators being zero. This algebra
contains three sets of supertranslations currents, generated by
Tðm;nÞ, Xðm;nÞ, and Uðm;nÞ, and two sets of Virasoro (Witt)
modes Yn, Ȳn which are in semidirect sum with the super-
translations. The algebra contains ideals, generated by Xðm;nÞ
andUðm;nÞ. The supertranslation charge generator Tðm;nÞ does
not commute with Xðm;nÞ but does commute with the
generator of electromagnetic charge Uðm;nÞ. The supertrans-
lation zero mode Tð0;0Þ corresponds to the Killing vector
associated to rigid translations in the advanced time v, and
consequently is associated to a notion of energy. A large set of
generators Ym, Ȳm, Uðm;nÞ, and Tðm;nÞ commutes with this
energy operator; it is thus natural to refer to them as soft
horizon hairs. The generators Xðm;nÞ, in contrast, behave
under the action of Tð0;0Þ as an expansion: ½Xðm;nÞ; Tð0;0Þ� ¼
κXðm;nÞ. Hence, one may wonder about the existence of an
additional conformal symmetry. However, as we will show
next, X does not appear in the conserved charge, and so we
can conclude that it is pure gauge.
Diffeomorphisms and gauge symmetry transformations

generated by the modes (49) have an associated set of
conserved charges. The latter can be computed by again
using the method of Ref. [38], but now including the gauge
field contribution. We find12

12The convention for the action used here is given in Eq. (52)
below.
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Q½T; YA; U� ¼ 1

16π

Z
d2z

ffiffiffi
γ

p
Ωð2Tκ − YAθA − 4UAð1Þ

v

− 4Að0Þ
B YBAð1Þ

v Þ; ð50Þ

where there is indeed no contribution from X. The
first three terms in Eq. (50) correspond to the horizon
charges computed in Ref. [27], while the fourth term is
purely of electric origin, and the last term mixes the
electromagnetic field with the superrotation vector field
contribution. The charge (50) evaluated on the modes (49)
obeys the algebra

fYm;Yng ¼ ðm − nÞYmþn;

fȲm; Ȳng ¼ ðm − nÞȲmþn;

fYk; T ðm;nÞg ¼ −mT ðmþk;nÞ;

fȲk; T ðm;nÞg ¼ −nT ðm;nþkÞ;

fYk;Uðm;nÞg ¼ −mUðmþk;nÞ;

fȲk;Uðm;nÞg ¼ −nUðm;nþkÞ; ð51Þ

whereYn, Ȳn, T ðm;nÞ, andUðm;nÞ are the charges associated to
the modes Yn, Ȳn, Tðm;nÞ, and Uðm;nÞ, respectively. The
brackets in Eq. (51) are defined as in Ref. [27]. The charge
(50) and the algebra (51) generalize the results of Ref. [26] to
includeUð1Þ gauge fields. The generalization to the case ofN
Abelian gauge fields is straightforward by considering
Uðm;nÞ → UI

ðm;nÞ with I¼1;2;…N with fUI
ðm;nÞ;U

J
ðk;lÞg¼0.

In order to investigate the physical meaning of the
charge (50), we can consider the static Reissner-
Nordström solution to Einstein-Maxwell theory. The action
of the theory is

S ¼ 1

16π

Z
d4x

ffiffiffi
g

p ðR − FμνFμνÞ: ð52Þ

The dyonic Reissner-Nordström solution in advanced
Eddington-Finkelstein coordinates (v, r, θ, ϕ) and a
suitable gauge13 is given by the following metric and
gauge field:

ds2 ¼ −
Δ
r2
dv2 þ 2dvdrþ r2ðdθ2 þ sin2θdϕ2Þ;

A ¼ −
q
r
dv − pðcos θ − kÞdϕ; ð53Þ

whereΔ ¼ r2 þ e2 − 2Mrwith e2 ¼ q2 þ p2, where q and
p are the electric and magnetic charges, respectively. The
outer horizon is located at rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − e2

p
. The

constant k appearing in the gauge field is in principle
arbitrary and can be changed by a gauge transformation.
However, for k ¼ �1 the solution exhibits a special

property: provided p ≠ 0, the gauge field configuration
above is singular on the axis θ ¼ 0, where a Dirac
string exists. Then, following standard practice, one can
choose different gauges in each hemisphere, in such a way
that either the north pole or the south pole is singularity
free. This is achieved by choosing k ¼ 1 or k ¼ −1,
respectively.
After the coordinate transformation ρ ¼ r − rþ, the

(outer) horizon is located at ρ ¼ 0 and the metric and
the gauge field take a form suitable for comparison with the
asymptotic symmetry analysis of the previous section.
Expanding the metric near the horizon and comparing to
Eq. (26), we can read off

κ¼ðrþ−MÞ
r2þ

; θA ¼ 0; Ωθθ ¼ r2þ;

Ωϕϕ¼ r2þsin2θ; Ωθϕ ¼ 0: ð54Þ

The expansion of the gauge field near ρ ¼ 0 yields

Aρ¼0; Að0Þ
v ¼−

q
rþ

; Að1Þ
v ¼ q

r2þ
; Að0Þ

B ¼−pðcosθ−kÞδϕB:

ð55Þ
The surface charge at the horizon for this static configu-
ration with Eqs. (54) and (55) yields

Q½T; Yϕ; U� ¼ 1

16π

Z
dθdϕ sin θð2ðrþ −MÞT

− 4qU þ 4pqðcos θ − kÞYϕÞ; ð56Þ
where the range of integration over the constant-v section
of the horizon has to be chosen such that the singularities of
A at θ ¼ 0 and θ ¼ π are avoided. This yields the zero
modes14

T ð0;0Þ ≡Q½1; 0; 0� ¼ κ
r2þ
2
;

Uð0;0Þ ≡Q½0; 0; 1� ¼ −q;

Yð0;0Þ ≡Q½0; 1; 0� ¼ 0: ð57Þ

These three different contributions have the following
interpretation. The first one, T ð0;0Þ, has a simple interpre-
tation in the context of black hole thermodynamics, as it
gives the product between the Hawking temperature TH ¼
κ=ð2πÞ and the Bekenstein-Hawking entropy S ¼ πr2þ. The
second contribution, Uð0;0Þ, corresponds to the electric
charge of the black hole. Finally, the third contribution,
Yð0;0Þ, gives the angular momentum of the black hole [26].
In the case of the static Reissner-Nordström solution, this

13This amounts to performing a gauge transformation with the
parameter dλ ¼ −qΔ−1rdr on the standard form of the gauge field.

14The charge Yð0;0Þ, associated to the rigid translations ∂ϕ, in
terms of the complex variables z, z̄ is given by the chargeY0 − Ȳ0.
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gives zero15 which is consistent with the fact that the
contribution of the electromagnetic field of the dyonic
black hole to the total angular momentum is zero [46,47].

B. Extremal horizons

In the above discussion of the horizon symmetries of the
Reissner-Nordström black hole we assumed κ ¼ const ≠ 0.
The extremal limit, corresponding to κ ¼ 0, has to be treated
separately. In particular, in this case Eq. (45) becomes

∂2
vf ¼ 0; ð58Þ

whose solution

f ¼ Tðz; z̄Þ þ vXðz; z̄Þ ð59Þ

contains a linearly growing term in advanced timev rather than
an exponentially decayingone as inEq. (46). Thismodifies the
condition for closure of the algebra from Eq. (47) to

T̂ ¼ T1X2 þ YA
1∂AT2 − ð1 ↔ 2Þ;

X̂ ¼ YA
1∂AX2 − ð1 ↔ 2Þ: ð60Þ

Expanding in modes, we find the following algebra:

½Ym; Yn� ¼ ðm − nÞYmþn;

½Ȳm; Ȳn� ¼ ðm − nÞȲmþn;

½Yk; Tðm;nÞ� ¼ −mTðmþk;nÞ;

½Ȳk; Tðm;nÞ� ¼ −nTðm;nþkÞ;

½Yk; Xðm;nÞ� ¼ −mXðmþk;nÞ;

½Ȳk; Xðm;nÞ� ¼ −nXðm;nþkÞ;

½Xðk;lÞ; Tðm;nÞ� ¼ Tðmþk;nþlÞ;

½Yk; Uðm;nÞ� ¼ −mUðmþk;nÞ;

½Ȳk; Uðm;nÞ� ¼ −nUðmþk;nÞ; ð61Þ

with the other commutators being zero. It is interesting to
compareEq. (61)withEq. (49). From the nonextremal algebra
(49) one would naively expect Xðk;lÞ and Tðm;nÞ to commute
when κ ¼ 0. However, Eq. (61) shows that this is clearly not
the case; the limit κ → 0 is not continuous.Further comparison
of the commutator [Xðk;lÞ, Tðm;nÞ] reveals that the roles of
Xðmþk;nþlÞ and Tðmþk;nþlÞ are interchanged between nonex-
tremal and extremal horizons.

The set of conserved charges associated to Eq. (61) is

Q½X; YA; U� ¼ 1

16π

Z
dzdz̄

ffiffiffi
γ

p
Ωð2X − YAθA

− 4UAð1Þ
v − 4Að0Þ

B YBAð1Þ
v Þ: ð62Þ

Notice that in contrast to Eq. (56) there is no dependence on
T in Eq. (62). From this we conclude that the modes
associated to T become pure gauge in the extremal case.
The algebra generated by these charges is the same as the

one obeyed by the vector fields (61), namely,

fYm;Yng ¼ ðm − nÞYmþn;

fȲm; Ȳng ¼ ðm − nÞȲmþn;

fYk;X ðm;nÞg ¼ −mX ðmþk;nÞ;

fȲk;X ðm;nÞg ¼ −nX ðm;nþkÞ
fYk;Uðm;nÞg ¼ −mUðmþk;nÞ;

fȲk;Uðm;nÞg ¼ −nUðm;nþkÞ: ð63Þ

This is similar to the nonextremal case (51): the algebra
contains two copies of the Virasoro algebra, generated by
Yn and Ȳn, and two affine currents, generated now by
X ðm;nÞ and Uðm;nÞ.
Repeating the steps of Sec. IVA for extremal Reissner-

Nordström black holes, which have jej ¼ M, yields the
metric functions

κ ¼ 0; θA ¼ 0; Ωθθ ¼ r2þ;

Ωϕϕ ¼ r2þsin2θ; Ωθϕ ¼ 0 ð64Þ

and gauge field components

Aρ ¼ 0; Að0Þ
v ¼ −

q
rþ

; Að1Þ
v ¼ q

r2þ
;

AB ¼ −pðcos θ − kÞδϕB: ð65Þ

Evaluating the surface charge at the horizon on this
extremal configuration gives

Q½X; Yϕ; U� ¼ 1

16π

Z
dθdϕ sin θr2þ

�
2X − 4

q
r2þ

U

þ 4
pq
r2þ

ðcos θ − kÞYϕ

�
; ð66Þ

whose zero modes are

X ð0;0Þ ≡Q½1; 0; 0� ¼ r2þ
2
;

Uð0;0Þ ≡Q½0; 0; 1� ¼ −q;

Yð0;0Þ ≡Q½0; 1; 0� ¼ 0: ð67Þ

15The computation of this charge yields Yð0;0Þ ¼
−ðqp=2ÞðR π=2

0 dθ sinθðcosθ− 1Þ þ R
π
π=2 dθ sinθðcosθþ 1ÞÞ ¼ 0.

Notice that had we performed the integral over the range θ ∈
½0; π� without changing the gauge in each hemisphere, we would
have instead obtained the result Yð0;0Þ ¼ −pqk. This nonvanish-
ing result comes from integrating a singular configuration of A: it
can be interpreted as the contribution from the Dirac string.
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The thermodynamic interpretation of X ð0;0Þ is slightly
different from that of T ð0;0Þ of the nonextremal case since
the Hawking temperature vanishes for extremal black
holes. Nevertheless, if we treat the S1 defined by the
electromagnetic field as a geometrical fiber as in Ref. [48],
we can define a geometric temperature Tq ¼ 1=ð2πqÞ. The
Uð1Þ gauge symmetry gets extended to a Virasoro algebra
and the central charge associated to the fiber direction is
c ¼ 6qðq2 þ p2Þ. This yields the black hole entropy S ¼
ðπ2=3ÞcTq ¼ πM2 ¼ πr2þ via the Cardy formula. The zero
mode X ð0;0Þ is then interpreted as the product between the
geometric temperature and Bekenstein-Hawking entropy:
qTqS. This is analogous to what happens with extremal
Kerr black holes in Ref. [27], where the charge X ð0;0Þ gives
the product of the black hole entropy and the geometrical
temperature TL that appears in the Kerr/conformal field
theory analysis of the extremal Frolov-Thorne vacuum. As
in the nonextremal case, the zero modes Uð0;0Þ and Yð0;0Þ
give, respectively, the electric charge of the black hole and
the total angular momentum.

V. SOFT HAIR ON REISSNER-NORDSTRÖM
HORIZONS

We are now ready to discuss the horizon memory effect
for charged black holes. As for the Schwarzschild geometry
in Secs. II–III, we will first determine the supertranslated
Reissner-Nordström solution obtained from the action of a
BMS supertranslation at null infinity.16 We then study
whether it is possible to reinterpret this new solution to
Einstein-Maxwell theory as the action of the horizon
symmetry generators found in Sec. IVon the bald geometry
and identify the relation between the symmetry generators
at I− and Hþ.
We consider a diffeomorphism generated by an asymp-

totic BMS vector ζ ¼ ζv∂v þ ζA∂A þ ζr∂r at past null
infinity I− which preserves the gauge-fixing conditions
(27) and (29) together with the falloffs (26) and (28) at large
radial distance r. The gauge-fixing requirements translate
into the conditions

LζgrA ¼ ∂Aζ
v þ gAB∂rζ

B ¼ 0;

Lζgrr ¼ 2∂rζ
v ¼ 0;

r
2
gABLζgAB ¼ rDAζ

A þ 2ζr ¼ 0;

LζAr þ ∂rϵ ¼ 0: ð68Þ

A solution to Eq. (68) is given by

ζ¼ f∂vþ
1

r
DAf∂A−

1

2
D2f∂r; ϵ¼−

1

r
ABDBf; ð69Þ

with ∂rf ¼ ∂vf ¼ 0. Following Ref. [25], the asymptotic
Killing vector (69) extends the asymptotic expansion of the
supertranslations on I− to the entire region covered by the
advanced Eddington-Finkelstein coordinates, which
includes Hþ. The action of Eq. (69) on the bald
Reissner-Nordström metric (53) gives

Lζgvv ¼
�
M −

e2

r

�
D2f
r2

;

LζgAv ¼ −DA

�
Δ
r2
f þ 1

2
D2f

�
;

LζgAB ¼ −rγABD2f þ 2rDADBf;

LζAv þ ∂vϵ ¼ −
1

2
D2fFrv;

LζAB þ ∂Bϵ ¼ −
q
r
DBf þ 1

r
FABDAf; ð70Þ

where Frv ¼ q=r2 and FAB ¼ ϵABp sin θ. The infinitesi-
mally supertranslated Reissner-Nordström geometry is thus
given by

ds2 ¼ −
�
Δ
r2

−
�
M −

e2

r

�
D2f
r2

�
dv2 þ 2dvdr

− 2DA

�
Δ
r2

f þ 1

2
D2f

�
dvdzA

þ ðr2γAB þ 2rDADBf − rγABD2fÞdzAdzB: ð71Þ

The location of the supertranslated (outer) horizon at linear
order in D2f is

ðrþÞf ¼ rþ þ 1

2
D2f; ð72Þ

with rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − e2

p
.

We can now ask whether the spacetime (71) can be
obtained by acting on the bald Reissner-Nordström solution
(53) with horizon symmetry generators of the type (34) and
(37) studied in Sec. IV. To do so, we first need to bring the
supertranslated metric (71) to the near-horizon form (26).
This is achieved by the following coordinate transformation:

ρ¼ r− ðrþÞf; dρ¼ dr−
1

2
DAD2fdzA: ð73Þ

At order OðfÞ, this yields the metric functions

κ¼rþ−M
r2þ

; θA¼−2κDAf; ΩAB¼r2þγABþ2rþDADBf:

ð74Þ

16In Ref. [21], a physical process that can be thought of as
reciprocal to the one discussed here was considered. There, a null
incoming shock wave with asymmetric null charge is sent into an
uncharged black hole in such a way that large gauge currents are
excited at null infinity.
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Generating Eq. (74) by acting on the bald geometry with
Eq. (38), we find that it is achieved by the horizon super-
rotation17

YA ¼ 1

rþ
DAf: ð75Þ

Heref is theBMS supertranslation atI− but, as in the case of
Schwarzschild, it coincides with the supertranslation atHþ.
Note that this computation is also valid in the extremal case.
Let us now consider the gauge field. In the coordinates

(73), the transformed gauge field at the horizon takes the
form

Av þ δðζ;ϵÞAv ¼ −
q
rþ

;

AB þ δðζ;ϵÞAB ¼ −pδϕBðcosθ− kÞ− 1

rþ
ðqDBf −FABDAfÞ:

ð76Þ

This is consistent with the boundary conditions (28),

with the field variations δðζ;ϵÞA
ð0Þ
v ¼ 0 and δðζ;ϵÞA

ð0Þ
B ¼

−ðqDBf − FABDAfÞ=rþ. Then, from Eq. (38) and taking
into account Eq. (75), we find the gauge parameter

U ¼ −
q
rþ

f −
1

rþ
Að0Þ
B DBf; ð77Þ

which, as in the case of the metric, yields a nontrivial charge.
Therefore, we conclude that Eqs. (74) and (76) can indeed be
interpreted as the action of the horizon symmetry trans-
formations (38) on the bald Reissner-Nordström solution.

VI. CONCLUSIONS

Motivated by the problem of establishing a connection
between the symmetries emerging in the near-horizon region
of black holes and the symmetries in the far asymptotic
region, in this paper we studied the memory effect produced
at the horizon by an incoming gravitational shock wave.
From the point of view of an observer in the asymptotic
region, this process was studied in Ref. [25], where it was
shown that the shock wave produces a disturbance in the
black hole geometry that can be interpreted as a BMS
supertranslation at null infinity. Here we have shown that,
from the perspective of an observer hovering close to the
event horizon, the shock wave produces not only a super-
translation but also a horizon superrotation. The zero-mode
contribution of the horizon superrotation charge is found to
take the same form as the one computed by HPS at infinity,

while the zero-mode contribution of the horizon super-
translation charge captures the change in the black hole
entropy in the process [26].
We also considered the case of charged black holes,

which required a generalization of the near-horizon asymp-
totic symmetry analysis to Einstein-Maxwell theory. We
found that this yields an additional set of supertranslations
that consists of an infinite-dimensional extension of gauge
symmetries on which the horizon superrotations act in a
nontrivial way. We discussed the physical interpretation of
the symmetries and the associated Noether charges for
electrically and magnetically charged Reissner-Nordström
black holes. Finally, we generalized the black hole memory
effect to the Reissner-Nordström black holes showing that a
supertranslation at null infinity can be expressed as a
composition of supertranslations, superrotations, and large
gauge transformations at the horizon.
Some questions remain open and require further study.

The most important one is to find the correct interpretation
of the horizon symmetries and their associated charges.
While these quantities may be properly defined from the
mathematical point of view, the physical interpretation of
horizon symmetries and their local measures is not free of
conceptual difficulties. On the one hand, in the quantum
theory the horizon is a transitory state, which after having
formed from gravitational collapse undergoes a Hawking
process and eventually evaporates. On the other hand, the
horizon is teleological. Therefore, any attempt to make
sense of it as a region of the spacetime that encodes relevant
information of physical processes taking place in the bulk
might be puzzling. A third reason why the physical
interpretation of the near-horizon charges remains some-
what puzzling is the fact that the extension of the metric
(10) down to the horizon is gauge dependent. Despite these
circumstances, the explicit evaluation of the horizon
charges seems to capture relevant information [23,25–27]
and it is worthwhile to keep investigating its mathematical
and physical properties.
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