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We examine the viability of Weyl conformal gravity as an alternative to the general theory of relativity.
By using the extended rotation curve of the Milky Way and velocity dispersions of four globular clusters,
we show that Weyl gravity predictions without resorting to dark matter comply with observations at the
galactic scale. For the Milky Way, we demonstrate that the uncertainty in baryonic modeling results
in a bracket of possible rotational velocities which well encompasses the diversity in rotation curve
construction. Such diversity generally arises from differences in measurements of velocity anisotropy
parameter, and the circular speed and Galactocentric distance of the Sun. Furthermore, we explore the
ability of Weyl gravity to account for the inferred acceleration of Abell cluster 1689.
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I. INTRODUCTION

The validity of Einstein’s general relativity (GR) is well
established in the solar-system neighborhood and binary
pulsar systems [1]. The recent detection of gravitational
wave by LIGO [2] has further extended its credibility to
dynamical strong gravity regimes. However, the theory is
plagued by an apparent “mass discrepancy” in galaxies and
clusters. These discrepancies have motivated the ad-hoc
addition of mysterious “dark matter” (DM) in the current
cosmological paradigm which considers GR to be valid
at all length-scales. However, ambitious experiments
designed to detect dark matter have so far failed to give
any positive results [3].
Alternatively, the mass discrepancy could be interpreted

as the manifestation of new gravitational physics. The
nature of gravity might be intrinsically different at galactic
and cosmological scales. This idea encouraged the emer-
gence of a number of modified or alternative theories of
gravity. One of the most popular alternative gravity models
is Weyl conformal gravity (CG). The theory has recently
gained momentum because of its grounding in field theory,
embedded local invariance principle and interesting cos-
mology with naturally arising inflation [4]. The promises of
fourth order terms in Weyl gravity to prevent the big bang
singularity of GR [5] and to be one-loop renormalized [6]
has created further interest. Moreover, Mannheim and
O’Brien have successfully explained the observed galactic

rotation curves for a number of galaxies using Weyl gravity
without invoking dark matter [7–10]. Subsequent studies
have confirmed that rotation curve analysis in Weyl gravity
is consistent with perihelion precession of mercury [11] and
bending of light issues [12–14].
One of the predictions of Weyl gravity is the eventual

decline of galactic rotational curves [9]. Galaxies with
observational data for rotational velocity profiles extending
way beyond the optical length could therefore be utilized to
testWeyl gravity. Over the last decade, observedMilkyWay
(MW) rotation curve has been obtained starting from its
innermost regions out to distances beyond 100 kpc from the
galactic center using kinematical data of a variety of tracer
objects [Sofue et al. (YS09) [15]; Xue et al. (X08) [16];
Sofue (YS12) [17]; Bhattacharjee et al. (BCK14) [18];
Huang et al. (YH15) [19]]. However, the construction of the
Milky Way rotation curve heavily relies on three galactic
parameters: galactocentric distance R0 and circular velocity
of the Sun V0 and anisotropy parameter β. Till date, these
three fundamental parameters remain remarkably uncertain.
O’Brien and Moss (OM15) [20] has recently compiled the
rotational velocity data from YS09, X08 and BCK14 and
fitted within the context of Weyl gravity with mass-to-light
ratio as the only free parameter in the model. Though they
have found an acceptable mass-to-light ratio, it is to be
noted that the differences between astronomical data sets
are often systematic. A straightforward fitting to the com-
bined data set from different surveys could therefore
potentially over or underestimate the total mass in the
Milky Way. Thus, a more stringent test for Weyl gravity
with extended MW rotation curve is due.
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Another intriguing set of testing grounds for modified
gravity theories is the galactic globular clusters (GCs). The
projected radial velocity dispersion for several GCs has
been found to be maximum at the center and then to
eventually decline toward an asymptotic constant value at
large radii [21–25]. However, GCs are generally believed
to contain little or no dark matter [26–28]. Therefore, the
velocity dispersion has been expected to follow a Keplerian
fall-off and ultimately vanish at larger radii if GR (and
Newtonian gravity, weak field limit of GR) would have
been valid at GCs. Although classical phenomenon like
tidal heating could have been a possible Newtonian gravity
explanation for the apparent increase of velocity dispersion
in the outskirts of GCs, no solid support for such hypothesis
has been found [29]. On the other hand, the eventual
flattening of velocity dispersions in GCs hints an interest-
ing analogy with flat rotation curves in elliptical galaxies.
Therefore, it might be more logical to argue that the flatting
out of velocity dispersions in different GCs have a common
origin and is linked to the breakdown of GR at those scale.
At this point, we identify a third front to test Weyl gravity

predictions. Recently, an acceleration profile of Abell
cluster 1689 has been inferred [30] from lensing data. It
has been claimed that popular alternative gravity theories
like modified Newtonian dynamics (MOND) [31] and
Moffat’s modified gravity (MOG) or scalar-tensor-vector-
gravity [32] cannot fit the acceleration profile unless an
additional dark matter profile (such as heavy neutrinos) is
assumed. The inferred acceleration profile of A1689 thus
provides a crucial extra-galactic test for Weyl gravity.
This article aims to explore the astrophysical viability of

Weyl gravity. Our work expands from galactic scale up to
the length-scale of clusters. First, we test Weyl gravity
against the Milky Way rotation curve data. Our approach
differs significantly from OM15 [20]. We intend neither to
compile rotational data from different surveys nor to fit
any of them. Rather, we adopt a state-of-art mass model
from [33–35] and predict the mean rotation profile for the
Milky Way up to around 120 kpc and then compare it with
observed rotational velocity curve reported by BCK14 [18].
The reason for choosing the data set from BCK14 [18] is
that the assumed values for the galactic constants [R0,V0]
in their study closely matches with the most up-to-date
measurements from VERA and VLBA surveys [36].
Furthermore, we show that the embedded uncertainties
in the mass model results in a “bracket” of rotational
velocities possible in the Milky Way within the context of
Weyl gravity. Whether this baryon bracketing of rotation
curve can successfully encompass the variation in obser-
vational data [17–19], which arises due to the uncertainty in
velocity anisotropy parameter and circular velocity at the
solar position, is a prime focus of our study. This analysis
is done in Sec. III. In the subsequent Sec. IV, we extend
our analysis to globular clusters. We choose a set of four
GCs whose distance (from galaxy center), luminosities, and

sizes are very different from each other. Therefore, we
expect that if there is any systematic in their velocity
dispersion which hints a Newtonian breakdown, Weyl
gravity would be able to capture that. In Sec. V, we
construct the baryonic mass profile of A1689 with para-
metrized models for the galaxies [37] and intercluster gas
[38] and compute the Weyl gravity acceleration for the
cluster. The predicted acceleration profile is then compared
with the one inferred from lensing surveys. Finally, in
Sec. VI, we discuss several aspects of our results and
draw conclusions.

II. WEYL CONFORMAL GRAVITY

Though the conformal theory of gravity was originally
developed by Weyl, the theory has later been restudied by
Mannheim and Kazanas [4,39]. In addition to the coor-
dinate invariance, Weyl gravity employs the principle of
local conformal invariance of the space-time geometry

gμνðxÞ → Ω2ðxÞgμνðxÞ; ð1Þ

where ΩðxÞ is a smooth strictly positive function.
Imposition of such requirement leads to the unique action
in Weyl gravity

Iw¼−αg
Z

d4x
ffiffiffiffiffiffi
−g

p
CλμνκCλμνκ

¼−2αg
Z

d4x
ffiffiffiffiffiffi
−g

p �
RλμνκRλμνκ−2RμκRμκþðRν

νÞ2
3

�
; ð2Þ

where αg is a dimensionless coupling constant and Cλμνκ

is the Weyl tensor which is expressed as a combination of
the Riemann tensors, Ricci tensors and the Ricci scalar:

Cλμνκ ¼ Rλμνκ −
1

2
ðgλνRμκ − gλκRμν − gμνRλκ þ gμκRλνÞ

þ 1

6
Rα
αðgλνgμκ − gλκgμνÞ: ð3Þ

Conformal symmetry excludes the conventional Einstein-
Hilbert term and therefore does not provide any limit at
which Weyl gravity could reduce to the standard GR. The
symmetry also forbids the presence of any cosmological
constant and thus naturally addresses one of the notorious
problems in GR [4].
A functional variation of the Weyl action with respect

to the metric gμν results in the following fourth order
gravitational field equation in Weyl gravity:

4αgWμν ¼ 4αg

�
Cλμνκ
;λ;κ −

1

2
RλκCλμνκ

�
¼ Tμν; ð4Þ

where Tμν is the matter-energy tensor and “;” denotes
covariant derivative. Since Wμν vanishes when Rμν is zero,
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a vacuum solution of the field equation in GR is automati-
cally a vacuum solution of Weyl gravity. Thus, the
Schwarzschild solution is indeed an exact vacuum solution
of Weyl gravity. However, Wμν ¼ 0 does not necessarily
mean Rμν is zero. The highly nonlinear character of the
field equation makes it difficult to obtain any analytical
solution. However, Mannheim and Kazanas have been
able to find an exact vacuum solution in the case of a
static, spherically symmetric geometry [4,39] with the line
element

ds2 ¼
�
−BðrÞdt2 þ dr2

BðrÞ þ r2dΩ2

�
; ð5Þ

where the metric coefficient is given by

BðrÞ ¼ 1 −
2β

r
þ γr − kr2; ð6Þ

with β,γ, and k being constants.
In order to determine the gravitational potentials of

realistic sources, it is necessary to obtain solutions asso-
ciated with sources in the weak field limit. It could be
shown that, for spherically symmetric sources, the non-
linear field Eq. (4) dramatically reduces to a remarkably
simple fourth order Poisson equation [4]:

∇4BðrÞ ¼ 3

4αgBðrÞ
ðT0

0 − Tr
rÞ ¼ fðrÞ: ð7Þ

The function fðrÞ represents a convenient source function
whose form is not fixed a priori. The Newtonian limit or
nonrelativistic weak field limit only changes the source
function. In case of a perfect fluid, T00 ¼ ρðrÞBðrÞ and
Trr ¼ pðrÞ=BðrÞ, where pðrÞ and ρðrÞ are the pressure
and energy density respectively. Therefore T0

0 − Tr
r ¼

−ρðrÞ − pðrÞ. For slowly moving sources, pðrÞ ≈ 0 and
thus T0

0 − Tr
r ≈ −ρðrÞ where ρðrÞ is the mass density.

Therefore, the source function becomes fðrÞ ≈ −ρðrÞ.
The general solution of Eq. (7) could readily be obtained
employing Greens’ function method [4]:

BðrÞ¼−
r
2

Z
r

0

dr0r02fðr0Þ− 1

6r

Z
r

0

dr0r04fðr0Þ

−
1

2

Z
∞

r
dr0r03fðr0Þ−r2

6

Z
∞

r
dr0r0fðr0ÞþBhðrÞ; ð8Þ

where BhðrÞ obeys ▽4BhðrÞ ¼ 0. While the first two
integrals originate from the matter distribution inside the
source, the third and fourth integrals are attributed to the
global matter distribution exterior to it. Hence, a correct
study of rotational motions within galaxies and clusters
should include both the local contributions from luminous
sources in the galaxies/clusters and a global contribution of
mass outside the galaxy/cluster. A comparison between

Eqs. (8) and (6) helps to identify: γ ¼ − 1
2

R
r
0 dr

0r02fðr0Þ;
2β ¼ 1

6

R
r
0 dr

0r04fðr0Þ; and k ¼ r2
6

R
∞
r dr0r0fðr0Þ. It could

thus be concluded that β and γ originates completely from
the local mass distribution, and k has a global origin.
Identifying BðrÞ ¼ 1þ 2ϕ=c2, the gravitational potential
for a point source in static, spherically symmetric case is

thus: ϕðrÞc2 ¼ β
r þ γr

2
. Therefore, a star with massM, radius r0

and normalized source function f�ðrÞ ¼ fðrÞ=M⊙ will
yield a normalized gravitational potential featuring a
Newtonian term as well as a linear one:

V�
sourceðr > r0Þ ¼ −

β�c2

r
þ γ�c2r

2
; ð9Þ

where β� ¼ ðM⊙
M Þβ and γ� ¼ ðM⊙

M Þγ. The global effects in
Weyl gravity have two different origins: a homogeneous
and isotropic cosmological background, and large scale
inhomogeneities in the forms of galaxies, clusters and
filaments. The gravitational potential due to homogeneous

cosmological background could be expressed as Vhomo ¼
γ0c2r
2

[4,8]. On the other hand, the inhomogeneities in
the cosmological background will contribute through the
third and fourth integral of Eq. (8) and is found to be
V inhom ¼ −κc2r2 (where κ is a constant). Therefore, total
gravitational potential due to the global distribution of

matter is Vglobal ¼ γ0c2r
2

− κc2r2.

III. TESTING WEYL GRAVITY WITH THE
MILKY WAY ROTATION CURVE

A. Milky Way mass model

In this study, we use a simple but detailed mass model
of the Milky Way. We decompose the Milky Way into five
distinct axis-symmetric components: a spherical central
bulge, thin and thick stellar disks, and HI and molecular gas
disks. The parts of the galaxy we consider in this rotation
curve analysis lie beyond any central “hole” and thus the
presence of holes does not affect our results at all.
Therefore, we do not include any disk hole in our model.
Following McMillan [33] and Mannheim [4], we use
exponential mass profile with varying scale length for each
of the disk components: ΣiðrÞ ¼ Σ0

i e
−r=Ri (i refers to

individual disk components), where Σ, Σ0, and R denotes
the surface mass density, maximum surface density (at the
center) and scale length for respective components respec-
tively (Fig. 1). Disk mass enclosed within the distance R
could easily be calculated as:Mi ¼ 2πΣ0

i R
2
i . The values for

different parameters has been taken from McMillan [33]
and are listed in Table I.
For the stellar bulge, we adopt a more convenient

exponential density considered in [34]
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IðRÞ ¼ N
2πt2

e−R=t; ð10Þ

which yields a three dimensional mass density

σðrÞ ¼ N
2π2t3

K0ðr=tÞ; ð11Þ

where N is the total number of solar mass stars in the
bulge and t is the extent of the bulge. We have used
Mbulge ¼ 2.0� 0.3 × 1010 M⊙ [35] and t ¼ 1 kpc (follow-
ing [7]). The very definition and measurements of radial
extent varies in different studies. However, we identify
that such studies report a scale within a range of 0.6 to
2.0 kpc and thus we decide to stick to a crude but average
estimate of the bulge length t ¼ 1 kpc. The overall number
of the stars in the spherical bulge could be calculated via
N ¼ M

M⊙
. Finally, we have included a central supermassive

black hole with a mass Mbh ¼ 4.0� 0.3 × 106 M⊙ in our
model.

B. Weyl gravity prediction

We model each disk component of galaxies with a
typical exponential surface mass distribution ΣðrÞ ¼
Σ0e−r=R0 where R0 ¼ 1=α is the scale length and N ¼
2πΣ0R2

0 is the total number of stars [4,8,10]. Each star in

the disk generates a potential V�
starðr > r0Þ ¼ − β�c2

r þ γ�c2r
2
.

The resultant potential due to a disk component of the
galaxy could thus be obtained by an integration over the
entire disk. The total contribution to rotational velocities
from the luminous mass within the disk is found to be [4]

v2diskðrÞ ¼
Nβ�c2r2

2R3
0

×

�
I0

�
r

2R0

�
K0

�
r

2R0

�
− I1

�
r

2R0

�
K1

�
r

2R0

��

þ Nγ�c2r2

2R0

I1

�
r

2R0

�
K1

�
r

2R0

�
; ð12Þ

where I0, I1, K0, and K1 are modified Bessel functions.
While the first term in Eq. (12) is the contribution from the
Newtonian term β, the second term originates from the
linear potential. On the other hand, spherical bulge with
mass profile similar to the one in Eq. (11) yield circular
velocities of the form [4]

v2bulgeðrÞ ¼
Nγ�c2r

π

Z
r=t

0

dzz2K0ðzÞ

−
Nγ�c2t2

3πr

Z
r=t

0

dzz4K0ðzÞ þ
2Nγ�c2r3

3πt2
K1ðr=tÞ:

ð13Þ

One thus obtains the rotational velocity prediction for the
Milky Way galaxy due to the local mass distribution as

v2locðrÞ ¼ v2bulgeðrÞ þ v2disk;thinðrÞ þ v2disk;thickðrÞ
þ v2disk;HIðrÞ þ v2disk;H2ðrÞ: ð14Þ

Finally, on including the global effects we find the net
rotational velocity in Weyl gravity

v2totðrÞ ¼ v2locðrÞ þ
γ0c2r
2

− κc2r2: ð15Þ

Previous Weyl gravity fit to rotation curves of 111 galaxy
samples by Mannheim and O’Brien [7–9] yielded the
following best-fit values for the four universal Weyl gravity
parameters: β� ¼ 1.48 × 105 cm; γ� ¼ 5.42 × 10−41 cm−1;
γ0 ¼ 3.06 × 10−30 cm−1 and κ ¼ 9.54 × 10−54 cm−2. In
this study, we will use this set of parameter values to
compute the predicted velocity (or acceleration) profile in
Weyl gravity.

FIG. 1. Plot shows the surface mass density of different disk
components of Milky Way up to r< 20 kpc. Stellar mass
dominates the gas mass in this region.

TABLE I. Parameters for the Milky Way mass model [33].

Σ0
thin 886.7� 116.2 M⊙pc−2

Rthin 2.6� 0.52 kpc
Σ0
thick 156.7� 58.9 M⊙pc−2

Rthick 3.6� 0.72 kpc
MHI 1.1 × 1010 M⊙
RHI 7.0 kpc
MH2 1.2 × 109 M⊙
RH2 1.5 kpc
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C. Rotation curve data

BCK14 [18] have constructed high quality rotation curve
of the Milky Way starting from its very inner regions (few
hundred pc) out to a large galactocentric distance beyond
∼100 kpc using kinematical data of different tracer objects
moving in the gravitational potential of the Galaxy, without
assuming any theoretical models of the visible and dark
matter components of the Galaxy. The circular velocities
and their respective errors for each of the disk tracer
samples have been calculated directly from its known
radial distance and measured line-of-sight velocity. On
the other hand, for nondisk tracers, rotational velocity has
been extracted using Jeans equation which relates the
number density and their galactocentric radial velocity
dispersion. It has been found that the mean rotational
velocities steadily decreases beyond 60 kpc.

D. Results

1. Weyl gravity: Prediction vs observation

We present the mean predicted rotational velocity profile
in Weyl gravity (using the parameter values mentioned at
the end of Sec. III B) for the Milky Way along with the data
from BCK14. To begin with, we have particularly chosen
the rotation curve data constructed with galactic constant
½R0; V0� ¼ ½8.3 kpc; 244 km=s�. This particular choice of
galactic constants is more consistent with recent observa-
tions of masers and stellar orbits around SgrA*, the central
super-massive blackhole in our galaxy [40]. Figure 2 shows

that Weyl gravity prediction is in reasonable agreement
with rotation curve data. The predicted rotation curve
remains almost flat from 30 to 70 kpc beyond which it
gradually falls. In Weyl gravity, a competing effect between
local and global contributions results the ultimate velocity
curve. In Fig. 2, we also show the contributions from local
source mass distribution as well as global effects separately.
While local effects dominate within 30 kpc, global effects
become the deciding factor beyond 60 kpc. This results an
immediate fall-off. Furthermore, the increase in rotational
velocities from local contribution due the linear term in the
region between 30 and 70 kpc is compensated by a decrease
originating from the negative quadratic term associated
with the global contributions.

2. Effects of the supermassive black hole

Weyl gravity prediction not only captures the overall
decline in the rotation curve beyond 60 kpc, it is also
found to be able to describe an apparent dip around 3 kpc.
Within the radius of 3 kpc, rotational velocities continue to
rise toward the center. This generally hints at the existence
of a central black hole in the galaxy. We have already
mentioned in Sec. III A that our mass model includes a
central super-massive blackhole of mass around 106 M⊙.
This helps us to better match with observation in the
innermost region of our galaxy (Fig. 3). A mass model
without a central black hole results a huge discrepancy
between the predicted and observed galactic rotational
velocity. Predicted velocities differ by almost two orders
of magnitude. However, the prediction improves dramati-
cally once we consider a supermassive black hole in the
model.

FIG. 2. Plot shows Weyl gravity prediction (thick red) along
with data from BCK14 [18]. Contribution from different mass
components have been shown separately: stellar disk (cyan dash
dotted), gas disk (green thick dotted), stellar bulge (yellow double
dashed), black hole (red thin dotted). Total local contribution has
been plotted in black (thin, lined) while global contributions are
shown in thick dashed (due to quadratic term) and thick dash
dotted (due to linear term) curves.

FIG. 3. Innermost region: inclusion of a supermassive black
hole in the mass model helps better account for the data. Weyl
gravity prediction with black hole has been plotted in red (lined)
while prediction without a black hole is shown in black (dotted).
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3. Radial acceleration relation (RAR)

Recently, McGaugh et al. [41] have established a strong
correlation between the observed centripetal acceleration

(aobs ¼ V2
obs
r ) and the expected ones (anewt) from luminous

mass of galaxies. In general, anewt denotes the expected
centripetal acceleration in the context of GR (or equivalently
in Newtonian gravity) without resorting to dark matter. The
advantage of aobs vs anewt plot lies in the fact that both aobs
and anewt are independent of each other. While aobs is
directly obtained from the observed rotational curve, anewt
is generally computed through rigorously solving the
Poisson’s equation using observed baryonic mass profile
as input. There is no guarantee that these two quantities
should be correlated if dark matter dominates. Therefore,

such strong correlation nullifies the need for dark matter and
hints to themodification of the laws of gravitation in galactic
length scale. This correlation has been found in all types of
galaxies irrespective of whether they fall in the low accel-
eration regime (10−10 m=s2–10−12 m=s2) or in the high end
(10−8 m=s2–10−10 m=s2). The case forMilkyWay is special
as its extended rotation curve data spans both the high and
low acceleration domain [from 10−8 m=s2 to 10−12 m=s2;
Fig. 4(a)] and thus offers an unique probe to test any
modified gravity model against the radial acceleration
relation in the MilkyWay. In Fig. 4(a), we plot the observed
centripetal acceleration as a function of radial distances.
We present the radial acceleration relation curve in
Fig. 4(b). In both cases, Weyl gravity predictions have been

(a)

(c)

(b)

(d)

FIG. 4. (a) Loglog plot of observed centripetal acceleration (inferred from BCK14) as a function of radial distances along with
predictions in different gravity models; (b) loglog plot of observed centripetal acceleration as a function of Newtonian expectation.
Predicted profiles in different gravity theory as a function of Newtonian expectation are superimposed. (c) Predicted rotation curves
in different gravity models along with data from BCK14; (d) Residual profiles of the rotation curve fit in different gravity models; [color
code: Weyl gravity (red, lined), MOND (black, dashed), GR only (green, dash dotted)].
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superimposed (in red, lined). The plots reveal that Weyl
gravity can very well describe the radial acceleration
relation.

4. Comparison with MOND

In the case of MOND [31], below a critical value of
acceleration a0, the acceleration law is phenomenologically
modified by the introduction of an interpolating function
μðxÞ such that

μ

�
a
a0

�
a ¼ aN: ð16Þ

The interpolating function μðxÞ≈xwhen x≪1 and μðxÞ≈1
when x ≫ 1. Therefore, at large acceleration Newtonian
behavior is recovered. Although the theory can accom-
modate different forms of interpolating functions, we
assume a simple form of μðx ¼ a

a0
Þ [31]

μðxÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ x2Þ

p ð17Þ

with a0 ¼ 1.21 × 10−10 m=s2. This results the following
MOND acceleration [31]

aMOND ¼ aNffiffiffi
2

p
�
1þ

�
1þ

�
2a0
aN

�
2
�

1=2
�
1=2

; ð18Þ

where aN is the Newtonian acceleration associated with
baryonic masses. The corresponding rotational velocity
thus becomes

v2MONDðrÞ ¼ aMOND × r: ð19Þ

We now compare the ability of Weyl gravity to account
for the Milky Way rotation curve with popular modified
gravity alternative MOND. In Fig. 4(c), we plot the
predictions of Weyl gravity (red, lined), MOND (black,
dashed) and GR only (without resorting to dark matter)
(green, dash dotted) along with data from BCK14. We find
that Weyl gravity and MOND predictions seem to be
almost consistent with the data. However, a fall-off in
rotation curve beyond 70 kpc is prominent in Weyl gravity.
This feature is absent in MOND prediction. In MOND, the
predicted rotation curve becomes almost flat for the entire
region 30 kpc < r < 120 kpc. It therefore misses to match
the last couple of data points. As expected, GR only (i.e., no
dark matter) fails to fit the rotation profile alone. However,
we must note that when added with a dark matter profile, it
should come in agreement with the data.
In Fig. 4(d), we have plotted the residuals of rotation

curve fit (predictions) as a function of distances from the
Galactic center. It could be easily seen that Weyl gravity
and MOND produce similar residual profiles. However,
residual values for MOND are higher in the outermost

region of the galaxy. In order to quantitatively identify the
best gravity model, we calculated the reduced chi-square
values for the fitting (as a measure for the goodness of fit)
and found that Weyl gravity (χ2=dof ¼ 7.6) and MOND
(χ2=dof ¼ 8.3) yield almost similar values. Thus the
performance of these two gravity models is comparable.
We now plot the predicted centripetal acceleration in
MOND and GR as a function of radial distances in log-
log scale in Fig. 4(a). Though the plot does not hold any
new information, it stresses the inability of GR (without
dark matter) to comply with the observed acceleration
profile. We can easily see that the GR (no dark matter
assumed) expectation deviates from observation beyond
10 kpc, where the acceleration falls below 10−10 ms−2.
Figure 4(b) presents the radial acceleration relation which
shows a strong correlation between baryonic mass and
observed centripetal acceleration. It has already been noted
that Weyl gravity can easily account for the radial accel-
eration relation; but Fig. 4(b) suggests that MOND does the
same and thereby challenges the notion of dark matter.
However, a careful analysis shows that MOND overshoots
the data in the extreme low end of the acceleration.

5. Baryon bracket in Weyl gravity

Weyl gravity has indeed been found to comply with
the Milky Way rotation curve quite well. Still, a more
vigil eye would be able to identify a troublesome region:
15 kpc < r < 20 kpc, where the predicted values are
significantly lower than observation. While one may set
to hunt down possible reasons in the assumed mass
model, there is another angle worth exploring. First, we
point out that we have tested the Weyl gravity prediction
against rotation curve data (BCK14 [18]) which has
been constructed with galactic constant ½R0; V0� ¼
½8.3 kpc; 244 km=s� (BCK14b). While these values of
galactic constants are in agreement with a couple of recent
studies [36,40], their values remain remarkably uncertain in
the literature. Even BCK14 have explored two more sets
of galactic constants ([8.5 kpc, 220 km=s] (BCK14c),
[8.0 kpc, 200 km=s]) (BCK14a) in their reconstruction
of rotation profile. Their study assumes a radially varying
anisotropy parameter β. BCK14 have found that rotation
curve construction is highly sensitive to the choice of R0

and V0 in small radial distances. At larger distances,
rotation profiles are hugely dependent on anisotropy
parameter. Thus, different choices of R0, V0 and β will
lead to variations in the Milky Way rotation curves.
Second, to compute Weyl gravity prediction, we chose to

calculate the rotation curve only from the mean mass
profile. As our mass model usually allows a maximum and
minimum value for different disk and bulge parameters, it is
definitely possible to compute the maximum and minimum
rotation curve profiles in Weyl gravity. The region between
the minimum and maximum rotation curves will represent
the allowed values of rotational velocities in Weyl gravity
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given the baryonic profile of the Milky Way. Thus, the final
piece of analysis would be to compute this band of possible
rotational velocities in Weyl gravity and test it against
the family of the Milky Way rotation curves. To obtain the
minimum rotation curve in Weyl gravity, we use the
following values for the mass model parameters: Σ0

thin ¼
770.5 M⊙pc−2, Rthin ¼ 2.08 kpc, Σ0

thick ¼ 97.8 M⊙pc−2,
Rthick ¼ 2.88 kpc, Mbulge ¼ 1.7 × 1010 M⊙ and Mbh ¼
3.7 × 106 M⊙. Similarly, we compute the maximum rota-
tion curve using Σ0

thin¼1002.9M⊙pc−2, Rthin ¼ 3.12 kpc,
Σ0
thick ¼ 215.6 M⊙pc−2, Rthick ¼ 4.32 kpc, Mbulge ¼

2.3 × 1010 M⊙, and Mbh ¼ 4.3 × 106 M⊙. The values of
MHI , RHI , MH2, RH2, and t remains same during this
exercise as our mass model assumes only the mean values
for these five parameters. We now choose five sets of
updated rotation curves upto ≈100 kpc: BCK14 (a,b,c
respectively) (½R0; V0� ¼ ½8.0 kpc; 200 km=s�, [8.3 kpc,
244 km/s], [8.5 kpc, 220 km/s]; radially varying β) [18],
YS12 (½R0; V0� ¼ ½8.0 kpc; 200 km=s�) [17] and YH15
[19] (½R0;V0�¼½8.34kpc;240km=s�; radially varying β)
[19]. In Fig. 5, we plot the rotational velocity band from
the assumed mass model as well as rotation curve data
linked to different sets of galactic constants. We see that the
bracket easily encompasses the observed variations in
the Milky Way rotation curve construction in all radial
distances. Though the mean values of a couple of data
points (15 kpc < r < 25 kpc) lie outside the bracket,
their error bars definitely fall within the allowed region
and thus do not necessarily indicate a mismatch. This
particular direction of analysis seals the success of Weyl
gravity in explaining the observed Milky Way rotation
curves. Furthermore, it shows that our results are robust
against the existing uncertainty over galactic constants and
anisotropy parameter.

IV. INVESTIGATING VELOCITY DISPERSION
OF GLOBULAR CLUSTERS

A. Velocity dispersion

The velocity dispersion of galactic GCs is generally
obtained as a function projected distance between the GC
center and the stars (within GC) being observed. Such
observations have unraveled an unusual feature in GC
velocity dispersion. Velocity dispersion profiles have ini-
tially been observed to follow a monotonous decline similar
to the Keplerian one. However, once it reaches a critical
acceleration value a0, generally associated with MOND
regime, dispersion profile deviates from Newtonian expect-
ation and shows a flattening trend. The asymptotic value
of velocity dispersion varies from cluster to cluster. This
eventual flattening is difficult to comprehend in the context
of Newtonian gravity (or GR) mainly because of the lack of
dark matter in galactic globular clusters. One may therefore
look for possible explanation in different modified gravity
theories. Here, we restrict ourselves to Weyl gravity only.
The Weyl gravity velocity dispersion profiles for

galactic GCs could be easily derived using the Jeans
equations. Almost spherical shape and isotropic dispersion
profile of GCs indicate that they are spherically symmetric.
Additionally, we assume GCs to be nonrotating. The Jeans
equation for the velocity dispersion σðrÞ thus takes the
following form [42]:

∂ðρσ2Þ
∂r þ 2ρðrÞβσ2ðrÞ

r
¼ −ρðrÞ ∂Φ∂r ; ð20Þ

where r is the radial distance from the GC center, ρðrÞ is
the radial density distribution function, and ΦðrÞ is the
gravitational potential. We identify acceleration aðrÞ ¼
∂Φ=∂r and utilize the constraint limr→∞σ

2ðrÞ ¼ 0.
Additionally, we assume anisotropy parameter β ¼ 0.
Equation (20) thus gives

σ2ðrÞ ¼ 1

ρ

Z
∞

r
ρaðr0Þdr0: ð21Þ

Finally, the corresponding projected line-of-sight (LOS)
velocity dispersion reads [see Eqs. (14–16) in [43] ]:

σ2LOSðRÞ ¼
R∞
R rσ2ðrÞρðrÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − R2

p
drR

∞
R rρðrÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − R2

p
dr

; ð22Þ

where R is the projected distance between the GC center
and the stars being observed.

B. Density distribution

Because of the spherically symmetric nature, we can
model GCs using simplistic Hernquist [44] profile

FIG. 5. Baryon bracketing in Milky Way in the context of Weyl
Gravity. Data from three different groups (BCK14, YS12, YH15)
have been superimposed.
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ρhernðrÞ ¼
Mr0

2πrðrþ r0Þ3
; ð23Þ

where M is the total mass of the cluster, and r0 is a
characteristic radius. For GCs, we take the half-light radius
as r0. Our sample of GCs include NGC288, NGC1851,
NGC1904, and NGC5139. Total luminosity and half-light
radius for these globular clusters have been tabulated in
Table II. Although, several other models can also be used to
describe GCs, Moffat and Toth [43] found that there is no
significant impact of the choice of a particular mass model
on the final velocity dispersion profile. For a spherically
symmetric and extended mass distribution (like GCs), the
acceleration in Weyl gravity can be obtained as [45]

−∇ϕðrÞ ¼ G

�
−
I0ðrÞ
r2

þ 1

R2
0

�
I2ðrÞ
3r2

−
2

3
rE−1ðrÞ − I0ðrÞ

��

þGM0

R2
0

− κc2r; ð24Þ

where In and En are the interior and exterior moments of
the mass profile defined respectively as

InðrÞ ¼ 4π

Z
r

0

ρðxÞxnþ2dx; ð25Þ

and

EnðrÞ ¼ 4π

Z þ∞

r
ρðxÞxnþ2dx: ð26Þ

The constants R0 (¼ 24 kpc) and M0 (¼ 5.6 × 1010 M⊙)
replaces the usual Weyl gravity parameters γ0 and γ�. The
first two terms in the Weyl gravity acceleration originates
from the local mass distribution while the third term is the
constant acceleration independent of the local source and
linked to the universal Hubble flow. The fourth term, on the
other hand, incorporates the effect of inhomogeneities on
galactic or cluster motions.

C. Results

NGC 288 is a low concentration cluster and is located
at a distance of 11.6 kpc from the galactic center. This
particular globular cluster has an internal acceleration
everywhere below the critical MOND value, a0 ¼
1.14 × 10−10 m=s2. For this particular cluster, dispersion
data is available up to 18 pc from the cluster center.

Over this whole range of radii, the dispersion velocity is
observed to be constant with an average value of
2.3� 0.15 km=s [Fig. 6(a)]. For NGC 1851 [Fig. 6(b)],
the velocity dispersion data extends up to 30 pc and
converges towards a constant value 4.0� 0.5 km=s. The
velocity dispersion fluctuates quite significantly due to the
lack of sufficient amount of data. Still, the overall trend is
prominent. In case of NGC 1904 [Fig. 6(c)], the dispersion
velocities both increases and decreases a couple of times
before settling down to a constant value of 2.25�0.3km=s.
For this globular cluster, dispersion data covers the range
of radii up to 30 pc from the cluster center. Beyond 10 pc,
the dispersion fluctuates around the mean constant value.
Our final GC is NGC 5139 [Fig. 6(d)] or otherwise known
ωCen. The cluster lies almost 6.4 kpc away from the
Milky Way center and is one of the most massive clusters
known. The dispersion profile of this cluster settles down to
an asymptotic value of 7.0 km=s beyond a distance of 32 pc
from the center of the cluster. Although the flattening is
modest, it is easy to notice.
Rather than exactly fitting the velocity dispersion curve

for these four GCs, our aim remains to qualitatively analyze
the possibility of whether Weyl gravity can account for the
observed dispersions. In our model, the only free parameter
remains to be the mass-to-light ratio (M=L). We explore
different values for M=L to check whether an acceptable
value can reproduce the dispersion data. Furthermore, this
approach will also help us to understand the dependence of
dispersion profile on the assumed M=L values. For NGC
288, we find a good agreement with dispersion data with
M=L ¼ ½0.5; 0.6; 0.7� (in solar unit). The resultant Weyl
gravity dispersion profile becomes almost flat (with an
asymptotic value of 2.2 km=s) beyond 6 pc from the center.
The same set of values for M=L yields similar degree of
success for NGC 1904. However, the flattening in the
predicted dispersion curve is subtle. In the case of NGC
1851, we obtain excellent fit with M=L ¼ 1.3. The pre-
dicted profile eventually settles to 3.9 km=s. We have also
computed Weyl gravity predictions with M=L ¼ 0.6 and
2.0 and have found that they lie either below or above the
observed values. However, the differences between pre-
dictions and observation is nominal. Furthermore, we
successfully fit the dispersion profile of NGC 5139 with
M=L ratio 1.8, 1.9 and 2.0. In short, our analysis finds
good fit with data with mass-to-light ratios in the range
0.5 < M=L < 2.0, which is consistent with previous pho-
tometric and population synthesis studies [46–48].

V. CONFRONTING ACCELERATION
OF ABELL CLUSTER 1689

A. A1689 baryonic mass profile

Galaxy clusters are themost massive gravitationally bound
objects in the universe. In recent times, Abell 1689 (A1689)
has caught enough interest among both modified gravity and

TABLE II. Globular cluster mass distribution profile.

Half-light radius (pc) Luminosity (L⊙)

NGC 288 [22] 2.9 3.9 × 104

NGC 1851 [21] 1.83 1.8 × 105

NGC 1904 [21] 3.0 1.2 × 105

NGC 5139 [24] 7.7 1.1 × 106
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dark matter proponents. A1689 is located at a redshift
z ¼ 0.1832. It is one of the largest and the most massive
clusters ever observed. The cluster has been extensively
studied using weak and strong lensing, Sunyaev-
Zel’dovich effect, and x-ray observations [37,49]. These
observations have estimated the galaxy and gas contents
of A1689 with high accuracy. Nieuwenhuizen has recently
inferred the acceleration profile for the cluster from the
lensing data and claimed that modified gravity theories
find it difficult to fit the A1689 acceleration data without
assuming dark matter [30]. However, Moffat and Haghighi
[50] have noted that the acceleration data could be well
fitted by MOG while MOND is found not to comply with
the inferred data. In a subsequent paper, Hodson and Zhao
[51] have investigated the possibility to explain the inferred
acceleration profile in two modified MOND frameworks
without resorting to dark matter. In this section, we would
look into the possibility to account for the acceleration data
in the context of Weyl gravity.

We now present the baryonic mass model for the cluster,
A1689. We assume the cluster to be spherically symmetric
[49]. Generally, clusters consist of two main sources of
baryonic mass: galaxies and intracluster gas. While cluster
center is dominated by galaxies, gas dominates the outer
region. Though there are many galaxies in the cluster, we
assume that the galaxy mass density of A1689 is dominated
by the brightest cluster galaxy (BCG) residing in the center
of the cluster and will extrapolate the corresponding mass
density over the whole cluster. We use the BCG density
profile proposed by Limousin et al. [37]:

ρgalðrÞ ¼
McgðRco þ RcgÞ

2π2ðr2 þ R2
coÞðr2 þ R2

cgÞ
; ð27Þ

where Mcg and Rcg are the mass and radial extent of the
central galaxy, respectively, while Rco is the core size.
This BCG profile does not include any dark matter

(a) (b)

(c) (d)

FIG. 6. Observed velocity dispersions of four globular clusters have been plotted as a function of projected radial distances:
(a) NGC288 (b) NGC1851 (c) NGC1904 (d) NGC5139. Weyl gravity predictions for different mass-to-light ratios have then been
superimposed in green (dashed), red (lined) and violet (dash dotted).
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contribution and is solely linked to the stellar contents
of the galaxies. For the gas, we use a cored Sersic
electron density profile obtained from CHANDRA x-ray
observations [38]:

neðrÞ ¼ n0e exp

�
kg − kg

�
1þ r2

R2
cg

� 1
2ng

�
; ð28Þ

and

ρgasðrÞ ¼ 1.167mNneðrÞ; ð29Þ

where n0e is the central electron number density and Rg is
the radial extent of the intracluster gas. kg and ng controls
the shape of the density profile. Both the galaxy and gas
mass density profiles considered in our work have pre-
viously been employed in [50,51]. Values for different mass
profile parameters used in this work have been listed in
Table III.
The total baryonic mass density of the cluster is now

ρbarðrÞ ¼ ρgalðrÞ þ ρgasðrÞ ð30Þ

and total baryonic mass Mbar (Fig. 7) could be obtained by
integrating ρbar over the volume of the cluster

MbarðrÞ ¼ 4π

Z
r

0

ρbarðr0Þr02dr: ð31Þ

We note that Hodson and Zhao [51] also used an
empirical Hernquist galaxy mass profile for A1689.
They argued that this particular model exhibits a desired
behavior for the baryons in the interior of the cluster within
modified gravity regime. Though this particular mass
profile is obtained empirically, we use it to see whether
choosing a different galaxy mass profile will alter Weyl
gravity acceleration significantly. The Hernquist profile
[44] is described by (Fig. 7)

MHðrÞ ¼
Mhr2

ðrþ hÞ2 ; ð32Þ

where Mh and h are the total mass and radial extent of the
galaxies respectively. Mh has been taken as 3 × 1013 M⊙
while h has been set to 150 kpc (following [51]).
Weyl gravity acceleration could now be readily obtained

from the total baryonic mass profile as [similar expression
used earlier for GCs; Eq. (24)]:

acluster ¼ G

�
−
I0ðrÞ
r2

þ 1

R2
0

�
I2ðrÞ
3r2

−
2

3
rE−1ðrÞ − I0ðrÞ

��

þ GM0

R2
0

− κc2r; ð33Þ

where InðrÞ and EnðrÞ are interior and exterior mass
moments defined in Eqs. (25) and (26) respectively.

B. A1689 acceleration data

To investigate the acceleration profile of A1689 in the
light of Weyl gravity, we take the following approach. First,
we infer the acceleration data from strong and weak lensing
observation. For that, we adopt the method prescribed by
Nieuwenhuizen [30]. This approach requires the knowl-
edge of two observables: surface mass density ΣðrÞ (strong
lensing) and transversal shear gtðrÞ (weak lensing). For
strong lensing, surface mass density is related to accel-
eration through

aðrÞ ≲ 2πGΣðrÞ; ð34Þ

where G is the Newtonian gravitational constant. In case of
weak gravitational lensing, one can obtain a similar relation
between acceleration and transversal shear:

aðrÞ≲ 2πGΣcgtðrÞ; ð35Þ

where Σc is the critical surface mass density. It must be
noted that this acceleration is approximate in nature and
indicates the upper limit of the acceleration. However, it
would still provide a good estimate for acceleration profile
of A1689 and thus could be used as a probe for modified
gravity theories like Weyl gravity. Simultaneously, we
would compute the acceleration within the context of
Weyl gravity from the baryonic mass model presented in
Sec. VA using Eq. (33). We would like to see whether
the computed acceleration from baryons matches with the
inferred profile from lensing data or not.

C. Results

We first obtain the acceleration profile combining strong
lensing (SL) observation from Limousin et al. [37] and
weak lensing (WL) data from Umetsu et al. [49]. While the
data from [37] extends up to 500 kpc from the center of the
cluster, WL data [49] covers the range of radii in between
200 and 3000 kpc. Thus a combination of SL and WL
data helps us to probe both the interior and exterior of

TABLE III. Table of parameters for the galaxy mass profile and
the gas profile as taken from [30,37].

Parameter Value Unit

Mcg 3.2 × 1013 M⊙
Rco 5 kpc
Rcg 150 kpc
ne0 0.0673 cm−3

Rg 21.2 kpc
ng 2.91 n/a
kg 1.9 n/a
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the cluster. We now present the normalized inferred
acceleration in Fig. 8. The inferred acceleration is found
to be steadily decreasing. The transition between the
strong acceleration (>10−10 m=s2) and weak acceleration
(<10−10 m=s2) regime is smooth and featureless.
Up next, we use the baryonic mass model of galaxies and

gas of the cluster to compute the Weyl gravity acceleration
using Eq. (33). We use the parameter values R0 ¼ 24 kpc

andM0 ¼ 5.6 × 1010 M⊙ obtained earlier from the Galaxy
rotation curve studies [7–10]. The resultant acceleration
profile shows an increasing trend contrary to the fall-off
exhibited in the profile inferred from lensing data (Fig. 8).
The discrepancy between inferred acceleration (from lens-
ing) and computed Weyl gravity acceleration (from bary-
ons) increases with increasing radial distances from the
center of the cluster. At the outskirts (r ∼ 1 Mpc), Weyl
gravity predictions are found to be, on an average, almost
two to three orders of magnitude higher than the inferred
acceleration.
We note that similar kind of analysis with Weyl gravity

has also been done by Horne [45] for A2029. Using
CHANDRA x-ray data, Horne showed that the total mass
(within the radial distance of 300 kpc) obtained through
integrating the x-ray gas density profile is roughly 10 times
more than the mass one would expect in Weyl gravity given
hydrostatic equilibrium is maintained. The acceleration
profile obtained from x-ray hot gas hydrostatic equilibrium
for A2029 [45] (Thick black curve in Fig. 1(f) of [45])
and acceleration obtained through lensing for A1689 [30],
within the radial distance of 300 kpc, (red squares and
green dots in Fig. 8) look strikingly similar. Both have a
slowly decreasing trend beyond 30 kpc from cluster center.
In both the cases, derived acceleration from total reported
baryon mass (compare black thin continuous line in
Fig. 1(f) of [45] with blue/black continuous/dashed line
in Fig. 8) is found to increase, and becomes stronger than
either the value extracted from hydrostatic equilibrium
(Fig. 1(f) of [45]) or the acceleration inferred from lensing
(Fig. 8). Our result is therefore similar to what Horne found
out: conformal gravity becomes stronger in the cluster scale.
We also find that the choice of galaxy profiles does not

alter our conclusion. However, acceleration predicted in
BCG model is higher in the central part of the cluster. This
difference becomes negligible in the outer part of A1689
(beyond 300 kpc from the cluster center). Furthermore,
we have considered the possibility where Weyl gravity
parameters R0,M0, and κ might be allowed to take different
values at the scale of clusters. We note that the overall effect
of M0 in the acceleration profile will not be significant.
A higher value of κ could have been effective to arrest the
increasing acceleration (from baryons) at the outer part
of the cluster. However, there is no apparent reason for
these parameters to assume different values at extra-galactic
scales.
One could also derive the required enclosed mass for

A1689 in Weyl gravity from the radial profile of accel-
eration obtained from lensing (and from hydrostatic equi-
librium) alone. The nonlocal nature of gravity in conformal
theory will make this work difficult though. Additionally,
the immediate nonavailability of the data for the radial
profiles of temperature, density and pressure in the gas is an
issue. Though we agree that such an analysis could expand
the scope of this paper, it is beyond the illustrative purpose

FIG. 7. Plot shows the total galaxy mass profile of cluster
A1689 for both the mass model: BCG model (in blue), and
Hernquist model (in green). The total gas mass of the cluster has
then been plotted in red (dashed). It is easy to notice that galaxy
mass dominates in the central part and gas becomes dominant in
the outer region.

FIG. 8. Plot shows the predicted Weyl gravity acceleration in
A1689 for both BCG galaxy model (blue, lined) and Hernquist
model (black, dashed) (in loglog scale). Acceleration data derived
from strong lensing analysis of Limousin et al. (Limousin07) and
weak lensing analysis of Umetsu et al. (Umetsu14) is plotted in
red squares and green circles, respectively.

KOUSHIK DUTTA and TOUSIF ISLAM PHYS. REV. D 98, 124012 (2018)

124012-12



of this work. We thus leave this piece of analysis for future
explorations. However, as the acceleration generated from
the reported baryon mass in the cluster is found to exceed
the inferred acceleration, one can expect that the enclosed
mass required to fit the acceleration profile would be
smaller than the reported baryon mass. Thus, the discrep-
ancy would then shape itself in terms of total enclosed mass
(as reported in [45]).
At this point, it is crucial to note that, in Weyl gravity, the

local dynamics is influenced by both the local and global
distribution of matter. To account for the global contribu-
tion to the gravity within the cluster, we have included two
global terms having different origins. However, the effect of
the nearby external matter may not be well captured by
these global terms. In fact, the contribution from nearby
external mass distribution (particularly from low density
voids) could in principle result a shielding mechanism and
may potentially reduce the gravity of the interior matter
[45]. Incorporating such effects might not be straightfor-
ward given the highly nonlocal nature of the gravitational
field and is beyond the scope of this paper.

VI. DISCUSSION AND CONCLUSIONS

We have tested Weyl gravity from galactic scale up to the
scale of galaxy clusters. At galactic scale, we test the
viability of Weyl gravity with the extended rotation curve
of the Milky Way and velocity dispersions of four globular
clusters. In our quest to find clues for modified gravity in
the Milky Way rotation curve, we first identified that, as
predicted in Weyl gravity, the rotation curve indeed falls at
larger distances. We have demonstrated that including a
central supermassive blackhole in the mass model improves
the Weyl gravity predictions manifold. Furthermore,
we find Weyl gravity predictions to be consistent with
radial acceleration relation (RAR) in the Milky Way.
Additionally, we compute a bracket of rotational velocities
possible in the Milky Way within the context Weyl gravity
and found that this bracket accommodates the diverse
rotation curves for the Milky Way, which is a result of
inherent assumptions for the different values of R0, V0, and
β, made during the construction of rotation curve profile. In
our analysis, we have used rotation curve data from three
different groups: BCK14, YS12, and YH16 [17–19]. The
range of values for several galactic constants assumed in
these studies are: 8.0 kpc < R0 < 8.5 kpc; 200 km=s <
V0 < 244 km=s and 0 < β < 1. Thus, rotational curve data
used in our work truly represents the family of the MW
rotation curves. Our result is therefore immune to current
observational errors and uncertainties. This study thus is
not only different from previous Weyl gravity analysis of
the Milky Way rotation curve [20], it is actually comple-
mentary to that.
In the case of GCs, we have calculated the velocity

dispersions for NGC 288, NGC 1851, NGC 1904, and
NGC 5139. We assumed the GCs to be spherically

symmetric and nonrotating. Furthermore, we adopted
simple Hernquist mass profile for GCs. However, in reality,
NGC 1851, NGC 1904 and NGC 5139 has been observed
to be slowly rotating. Moreover, our analysis does not
include any complicated tidal effects or external field
effects due to the gravitational pool of the Milky Way.
Still, we find good fits to the observed dispersion profiles
with reasonable values of mass-to-light ratio. We note that
Moffat and Toth have obtained a similar fit within the
context of MOG with M=L ¼ 4.38 for NGC 288 and
M=L ¼ 2.79 for NGC 5139 [43]. On the contrary, our
analysis results 0.5 < M=L < 2.0. This range of mass-to-
light ratio is more consistent with recent estimates [46–48].
On top of that, our samples of GCs are extremely diverse.
They have different sizes, different luminosities, different
concentrations, different dynamical histories and they lie at
different radial distances from the galactic center. Thus,
they experience different strength of gravitational pull.
Still, simple Weyl gravity model can more-or-less describe
their dispersion profile which is otherwise difficult to
explain in Newtonian dynamics (or in GR). Such universal
explanation for the eventual flattening of dispersion profiles
in GCs should definitely be taken as a triumph for modified
gravity and in particular for Weyl gravity.
We have then extended our study to Abell cluster 1689

(A1689). For A1689, we modeled the galaxy cluster in
Weyl gravity and compared the results with inferred
acceleration profile from lensing data. Weyl gravity accel-
eration has been found to keep increasing with distances
from the center of the cluster and exceed the inferred profile
by almost two to three orders of magnitude in the outer
region (beyond 300 kpc). The essence of our result is
similar to the claims of Horne [45] and Diaferio and
Ostorero [52]. Horne [45] found that Weyl gravity analysis
of x-ray gas in Abell 2029 yields a total mass profile which
is nearly 10 times greater than what is required to hold the
hot gas in hydrostatic equilibrium. Such disagreement with
observation has then further extended to temperature profile
by Diaferio and Ostorero who used adiabatic N-body/
hydrodynamical simulations of isolated self-gravitating gas
clouds in galaxy clusters within the framework of Weyl
gravity and noted that the predicted temperature profile
rises, rather than following a decreasing trend observed in
real clusters. It suggests that the success of Weyl gravity at
the galactic scale does not get translated in the scale of
clusters.
However, we note that, in dark matter formalism, the

acceleration (or velocity) is determined almost by dark
matter distribution. Thus, a little uncertainty in baryonic
mass does not affect the overall expectation. That is not the
case for modified gravity theories like Weyl gravity. As the
observed acceleration (or equivalently velocity) is com-
pletely determined by the visible baryonic mass distribu-
tion, extra caution must be taken while adopting a particular
mass model. It is worth pointing out that the presence of
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foreground and background structures in the line of sight
of A1689 can increase the uncertainty in the estimated mass
(from lensing data) [53]. Even any departure from spherical
symmetry will have a similar effect [54]. However, even if
these factors have somehow contributed to the uncertainty
of the mass profile used, it is highly unlikely that they will
severely alter our result. Furthermore, the inferred accel-
eration data is no way an explicit acceleration profile. It
shows a trend similar to the ones observed in several
galaxies. Therefore, the inferred profile may be a good
estimate for the actual centripetal acceleration profile. Still,
it is not clear whether that is indeed the case. Existence of
several structures aligned along the line of sight makes
kinematic studies difficult at present [55]. On a more
theoretical ground, the appropriate inclusion of the shield-
ing effects of nearby external matter of the cluster could
help Weyl gravity to reconcile with inferred acceleration
profile. However, such effects are currently poorly under-
stood in Weyl gravity. Thus much more work is required in
both Weyl gravity as well as kinematic studies of A1689
before reaching any strong conclusion and is left for future.
Before we conclude, we would like to point out a

generally overlooked but important aspect of Weyl gravity.
Weyl gravity, like all other fourth order gravity theories,
does not possess any dimensional constant. Instead, it
features a dimensionless constant αg which has a value of
order unity. However, when Weyl gravity is coupled with
matter, the presence of a dimensional constant (namely

Newtonian gravitational constant G) is assumed. There lies
some well supported motivations behind such exercise.
In fact, such dimensional constant is shown to be induced
by different interactions in (quantum) Weyl gravity [56].
In summary, we have demonstrated that Weyl gravity can

achieve high degree of success in describing the observed
rotation curves of the Milky Way without invoking any
dark matter profile. Our study has then extended the
credibility of Weyl gravity to the scale of globular clusters.
However, the Weyl gravity acceleration generated from the
reported baryon mass in the cluster is found to exceed the
inferred acceleration from lensing data. This apparent
discrepancy may in principle be tackled by properly
including the effects of the nearby external matter. This
particular avenue of research needs to be explored further
before reaching a final conclusion.
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