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We show that the violation of the null energy condition by matter, required by traversable wormholes,
can be removed in spacetimes with torsion. In addition, we show that this violation can also be removed in
the conformal frame obtained by a Weyl transformation. This comes about because both conformally
transformed wormholes and wormholes in spacetimes with torsion become sustained thanks to a
combination of “normal” matter, that satisfies the null energy condition, and an induced “geometric”
energy-momentum tensor that is able to greatly violate the null energy condition.
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I. INTRODUCTION

Wormholes arose as extremely important theoretical
possibilities within general relativity [1]. However, the
discovery that, to be sustained, wormholes require the
violation of the null energy condition (NEC), and hence
the presence of the so-called “exotic” matter [2–5], pushed
these objects further into the realm of pure theoretical
curiosities. Just like for the possibility of curing the big
bang singularity [6–19], however, one might hope that by
adding torsion to spacetime, i.e., by using Riemann-Cartan
spacetimes, the need for exotic matter to make traversable
wormholes might also be removed.
In fact, various authors have investigated the issue and

came to the following different but complementary con-
clusions: (i) torsion might provide the required degree of
“exoticity” [20], (ii) a nonminimal coupling between
torsion and matter might relieve the latter from violating
the NEC [21], and (iii) for specific values of the matter spin
traversable wormholes might definitely be produced with-
out having matter violate the NEC [22]. These possibilities
can actually be understood from general backgrounds as
follows.
Recall that a given form of matter is said to satisfy the

NEC if its energy-momentum tensor TM
ab satisfies the

inequality TM
abξ

aξb ≥ 0 for any null vector ξa. Thus, thanks
to Einstein field equations Gab ≡ Rab − 1

2
gabR ¼ TM

ab,
1 the

NEC is also equivalent to the following statement in terms of
the Ricci tensor: Rabξ

aξb ≥ 0. It is specifically the violation
of this latter inequality that is required by traversable
wormholes and that consequently leads to the violation of
the NEC by matter. In the presence of torsion, however,
additional degrees of freedom (d.o.f.) are added to space-
time, and the field equations governing the latter are different
from Einstein equations as they contain on the right-hand
side extra terms arising from torsion. In fact, the field
equations, called Einstein-Cartan-Sciama-Kibble field equa-
tions, may be given a form similar to those of general
relativity: Rab−1

2
gabR¼TM

abþðtorsion termsÞabef. [23] for a
textbook introduction or the very comprehensive review in
Ref. [24]). It is then clear that the requirement Rabξ

aξb < 0,
imposed by traversable wormholes, would lead instead to an
inequality of the form ½TM

ab þ ðtorsion termsÞab�ξaξb < 0.
The presence of ðtorsion termsÞab besides the energy-
momentum tensor TM

ab inside the square brackets means
that matter does not necessarily have to violate the NEC for
the full inequality to hold.
Now, a very similar reasoning actually applies when

investigating the fate of the NEC around the throat of a
traversable wormhole built from a given traversable one by
subjecting the host spacetime to a Weyl transformation.
In fact, under a Weyl transformation, Einstein equations
also acquire an extra term and take the form G̃ab ¼
R̃ab − 1

2
g̃abR̃ ¼ TM

ab þ TInduced
ab [25]. The induced energy-

momentum tensor comes from the deformation of the
spacetime metric caused by the Weyl transformation.
Thus, a traversable wormhole, requiring R̃abξ̃

aξ̃b < 0 in
the conformal frame,would require an inequality of the form
ðTM

ab þ TInduced
ab Þξ̃aξ̃b < 0. Thanks to this extra term, we see
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indeed that matter does not also necessarily have to violate
the NEC for the full inequality to hold.
In Ref. [5], it has been proven on general grounds how

traversable wormholes do require the violation of the NEC.
In addition, it was shown in that reference that torsion does
not remove the violation of the NEC but aggravates it
instead. Our aim in this paper is to revisit such a derivation
for the case of spacetimes with torsion and then, under a
Weyl transformation, to show that the above hand-waving
arguments, that clash with the conclusions of Ref. [5] but
seem to agree with those of Refs. [20–22], could actually be
implemented more rigorously. In so doing, we are going to
pinpoint a key fact in Riemann-Cartan spacetimes that has
been missed in Ref. [5] and that led the authors to such an
incomplete conclusion about the NEC for wormholes in
Riemann-Cartan spacetimes. Nevertheless, the rigorous
study provided here shows that the conclusions are more
subtle than what the above hand-waving arguments seem to
suggest and thus cannot be as simple as those obtained in
Ref. [22], either.
The paper is organized as follows. In Sec. II, we expose

the various tools and equations necessary for the descrip-
tion of a spacetime wormhole and the derivation of the
NEC requirement. We also include briefly in the second
part of that section the derivation given in Ref. [5] for the
violation of the NEC in spacetimes with torsion and point
out the subtle issue in such a derivation. In the third part of
that section, we derive the correct Raychaudhuri equation
for null vectors in Riemann-Cartan spacetimes and use it to
rigorously examine the fate of the NEC in such spacetimes.
In Sec. III, we investigate the fate of the violation of the
NEC by traversable wormholes in the conformal frame,
both in Riemann and in Riemann-Cartan spacetimes. We
end this paper with a brief conclusion section to summarize
and discuss our findings.

II. ORIGINAL FRAME

A. Without torsion

We devote this first subsection to the main definitions
used in torsion-free spacetimes for the description of
traversable wormholes and the proof that traversable
wormholes require the violation of the null energy con-
dition as given in more detail in Ref. [5].
Awormhole is characterized by its throat, which, in turn, is

best described through the behavior of light rays on that throat
and in its vicinity as those rays propagate in the background
spacetime hosting thewormhole. In fact, tomake the throat of
a traversable wormhole, the spacetime should focus ingoing
light rays toward theminimal surface, representing the throat,
from both sides of the latter and defocus them away from the
minimal surface from both sides as well.
Mathematically, this is expressed [5] using the expansion

parameter θ� of the geodesic congruence of the ingoing
and outgoing light rays. Given the symmetry of the

description, however, we are going to consider only either
one and therefore choose to use the “neutral” expansion θ
which would stand for both. In a spacetime with metric gab,
one can always define a transverse metric hab with respect
to a given null direction ξa defined as the tangent to a
congruence of null geodesics. Such a transverse metric is
given by2

hab ¼ gab þ ξaNb þ ξbNa; ð1Þ

where Na is the auxiliary null vector of which the
normalization is chosen such that ξaNa ¼ −1. It is easy
to check that habhab ¼ 2 and ξahab ¼ 0 ¼ Nahab. By
taking the trace of the projection Bab ≡ hcahdbBcd of
the “deviation” tensor Bab ≡∇bξa on the transverse space
given by this transverse metric, one obtains the expansion
parameter,

θ ¼ gabBab: ð2Þ

By extracting the antisymmetric part and then the sym-
metric-traceless part of the same projection of Bab on the
transverse metric, one obtains, respectively, the twist tensor
ωab and the shear tensor σab as follows:

ωab ¼ B½ab�; ð3Þ

σab ¼ BðabÞ −
1

2
θhab; ð4Þ

Bab ¼ σab þ ωab þ
1

2
θhab: ð5Þ

The evolution of the expansion θ in terms of an affine
parameter λ along the null direction ξa of the congruence
is governed by Raychaudhuri’s equation, which reads
[26,27],

d
dλ

θ ¼ −
1

2
θ2 − σabσ

ab þ ωabω
ab − Rabξ

aξb: ð6Þ

Then, using Einstein equations Rab − 1
2
gabR ¼ TM

ab and
taking into account that ξa is a null vector, one can express
Raychaudhuri’s equation in terms of the energy-momentum
tensor of matter TM

ab responsible for creating such a
wormhole as follows:

d
dλ

θ þ 1

2
θ2 þ σabσ

ab ¼ ωabω
ab − TM

abξ
aξb: ð7Þ

The fact that the throat of a traversable wormhole is, by
definition, supported by a minimal surface in the spacetime

2For a nice textbook introduction to the notation used and the
formulas presented in this subsection, refer to Refs. [26,27].
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is expressed mathematically by the two conditions θ ¼ 0
and dθ=dλ > 0, both to be satisfied on the throat [5]. On
the other hand, given that a null vector is automatically
hypersurface orthogonal, we conclude that the twist tensor
ωab vanishes. This is known as Frobenius’s theorem (see,
e.g., Ref. [27] for a detailed derivation). In addition, the
product σabσ

ab is everywhere positive given the space-
like nature of the shear tensor as it follows from Eq. (4).
Taking into account these three facts in Eq. (7), the latter
implies that

TM
abξ

aξb ¼ −
d
dλ

θ − σabσ
ab < 0: ð8Þ

This is what proves the necessity of the violation of the
NEC for making a traversable wormhole [5].

B. With torsion

In this subsection, we expose the steps followed in
Ref. [5] to argue for the aggravation of the violation of the
NEC by wormholes in spacetimes with torsion. Riemann-
Cartan spacetimes are characterized by a nonsymmetric
connection Cc

ab, the symmetric part of which is different
even from the Christoffel connection Γc

ab, in contrast to
what is stated in Ref. [5]. This connection provides one
with the covariant derivative and the torsion (notice that
here we are using the convention of Ref. [28] for torsion),

∇aξ
b ¼ ∂aξ

b þ Cb
acξ

c; ð9Þ

∇aξb ¼ ∂aξb − Cc
abξc; ð10Þ

Cc
ab − Cc

ba ≡ Tc
ab: ð11Þ

The antisymmetric part Tc
ab of the connection is a tensor,

antisymmetric in its last two indices, and is called the
torsion tensor. Note also that, throughout the paper, the
metricity condition ∇agbc ¼ 0 will be assumed.
Raychaudhuri’s equation in the presence of torsion, as

given in Ref. [5], was, unfortunately, based again on the
same deviation tensor Bab ¼ ∇bξa of torsion-free space-
times. The equation thus found in Ref. [5] has the form

d
dλ

θ ¼ −
1

2
θ2 − σabσ

ab þ ωabω
ab − R

∘
abξ

aξb

− 2TabcBcaξb þ Tab
cTabdξ

cξd: ð12Þ

Here, R
∘
ab is the Riemannian (torsion-free) Ricci tensor. At

this point, the authors introduced a simplifying assumption
to get to the main conclusion faster. The simplifying
assumption was to choose Tc

ab to be a totally antisymmetric
tensor. This consists, for example, in identifying it with the
Kalb-Ramond field of string theory built from the potential

two-form Aab, i.e., H ¼ dA. Because of such a total
antisymmetry of the tensor, the authors substituted Bca in
Eq. (12) by the twist tensor ωca. The authors then argued
that, because ξa is a null vector, i.e., a hypersurface
orthogonal vector, one has ωab ¼ 0 thanks to Frobenius’s
theorem [27]. This allowed them to remove both terms
containing ωab from Eq. (12). Finally, the authors used
Einstein-Cartan-Sciama-Kibblemetric field equations in the

form G
∘
ab ¼ TM

ab þ 3TacdTb
cd − 1

2
gabTcdeTcde, where the

left-hand side is the torsion-free Einstein tensor, thanks to
which they turned Eq. (12) into [5]

d
dλ

θ þ σabσ
ab ¼ −TM

abξ
aξb − 2Tab

cTabdξ
cξd: ð13Þ

The total antisymmetry of torsion allows one to express it in
the form Tcab ¼ ϵcabdvd, with ϵabcd being the totally
antisymmetric Levi-Civita tensor and vd being an arbitrary
vector [5]. With this form, the last term in Eq. (13) reads
2Tab

cTabdξ
cξd ¼ 2ðvaξaÞ2. Thus, given that the left-hand

side of Eq. (13) is positive, one finds TM
abξ

aξb < −2ðvaξaÞ2,
from which it was concluded in Ref. [5] that torsion
enhances the degree of violation of the NEC. Moreover,
the authors have argued that this should hold even without
the assumption of total antisymmetry for torsion.
In the next subsection, we shall see that the issue with

this derivation is threefold. The first resides in using the
same deviation tensor Bab as in torsion-free spacetimes.
The second is ignoring the fact that torsion allows hyper-
surface orthogonal vectors to acquire a nonzero twist ωab
[28]. The third issue is the form of the above Einstein-
Cartan-Sciama-Kibble field equations used in the deriva-
tion. By dealing with these issues, the conclusion one
arrives at becomes completely reversed with respect to that
given in Ref. [5] in the sense that the violation of the NEC
by matter might become completely removed.

C. Revisiting the original frame with torsion

Our first aim in this subsection is to show that in
Riemann-Cartan spacetimes the twist tensor does not
indeed vanish even for hypersurface orthogonal vectors.
Let us therefore reexamine Frobenius’s theorem that proves
the vanishing of ωab in torsion-free spacetimes by adapting
the steps followed in its derivation [27] to the case of
spacetimes with torsion.
In the derivation of Frobenius’s theorem, one starts by

showing that the product ξ½a∇bξc� vanishes identically for
hypersurface orthogonal vectors ξa. In the presence of
torsion, however, it is easy to see that such a product does
not vanish. The proof of this claim is already nicely
presented in Appendix B of Ref. [28]. The result, after
putting back a missing factor of 1

6
in the expression given

in Ref. [28], is
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ξ½a∇bξc� ¼ −
1

6
ðξaTd

bc þ ξcTd
ab þ ξbTd

caÞξd: ð14Þ

Unlike Ref. [28], in which this result has been used to
indirectly infer that in general ωab ≠ 0, here we are going to
arrive at the same conclusion by finding instead an explicit
expression for ωab in terms of torsion. This explicit expres-
sion will indeed serve us later in this section when dealing
with Raychaudhuri’s equation in relation to wormholes.
Start by taking into account that in Riemann-Cartan

spacetimes the deviation tensor Bab is not simply equal to
∇bξa but is given instead by [28]

Bab ¼ ∇bξa þ ξcTacb: ð15Þ

From this, we can easily deduce, after using the fact that ξa

is everywhere a null vector, and hence ξa∇aξ
b ¼ 0 for an

affine parametrization, and ξa∇bξa ¼ 0, that

ξaBac ¼ ξaξbTabc and ξaBca ¼ 0: ð16Þ

On the other hand, the definitions (1) and (15), together
with identities (16), provide us at once with the relation
between the purely spatial tensor Bab and the full tensor
Bab, from which we also deduce the relation between ωab

and Bab, as well as the product BabBba:

Bab ¼ Bab þ NcðξbBac þ ξaBcbÞ þ Naξ
eξcTecb

þ NdðξaξbNcBcd þ Naξbξ
eξcTecdÞ; ð17Þ

ωab ¼ B½ab� þ NcðξbB½ac� þ ξaB½cb�Þ
þ ξeξcðTec½bNa� þ NdTecdN½aξb�Þ; ð18Þ

BabBba ¼ BabBba

þ ξaξbNdð2BcdTabc þ NcTabcξeξfTefdÞ: ð19Þ

Next, besides expression (14), we can also find, thanks to
the definition (15) and after recalling that Tc

ab ¼ −Tc
ba, an

alternative expression for ξ½a∇bξc� in terms of both Bab and
Tc

ab that reads

ξ½a∇bξc� ¼
1

3
ðξa∇½bξc� þ ξc∇½aξb� þ ξb∇½cξa�Þ

¼ 1

3
ðξaB½cb� þ ξcB½ba� þ ξbB½ac�Þ

þ 1

3
ξdðξaT ½cb�d þ ξcT ½ba�d þ ξbT ½ac�dÞ: ð20Þ

By contracting both sides of identities (14) and (20) by Na

and then comparing with Eq. (18), we easily obtain the
sought-after expression for ωab purely in terms of torsion as
follows:

ωab ¼ ξc

�
1

2
Tc

ab − T ½ab�c
�
þ ξcNeðξ½aTb�ec − 2ξ½aTðe

b� cÞÞ

þ ξcξeðNfTecfN½aξb� − Tec½aNb�Þ: ð21Þ
It is much clearer now from this expression that the twist
tensor does not indeed vanish in general unless all the terms
in expression (21) do. More specifically, we easily check
that the twist tensor simplifies but does not vanish for the
special case of a totally antisymmetric torsion either, a case
which will be of interest to us below. In fact, for such a
special case, the twist tensor (21) reduces to

ωab ¼ −
1

2
ξcðTcab þ NeξbTaec − NeξaTbecÞ: ð22Þ

Let us now find Raychaudhuri’s equation for the geo-
desics congruence of the null vectors ξa. Since our goal
here is to use such an equation to clearly see the effect of
torsion on wormholes, the form of the equation as given
recently in Ref. [29] cannot be of much use to us. Indeed,
we would like to have such an equation written in terms of
the torsion tensor and its derivatives, but without the
deviation tensor Bab. Let us use the usual convention
and define the trace of torsion by Ta ¼ Tb

ab. In addition,
let us keep in mind that ξa∇aξ

b ¼ 0, ξa∇bξa ¼ 0,
ξa∇aNb ¼ 0,3 and in spacetimes with torsion we have
½∇a;∇b�ξd ¼ −Rabc

dξc − Tc
ab∇cξ

d [23]. Then, with the
use of Eqs. (2), (5), (15), and (17), we find a first form of
Raychaudhuri’s equation as follows:

d
dλ

θ ¼ ξa∇aθ ¼ ξa∇a∇bξ
b þ ξa∇aðξcTc þ NbξcξdTcdbÞ

¼ ξa∇b∇aξ
b − ξaRabd

bξd − ξaTc
ab∇cξ

b þ ξcξa∇aTc þ ðξa∇aNbÞξcξdTcdb þ Nbξcξdξa∇aTcdb

¼ −∇bξa∇aξb − Rabξ
aξb − ξaTcabBbc þ ξaTcabξdTbdc þ ξcξa∇aTc þ Nbξcξdξa∇aTcdb

¼ −BabBba − Rabξ
aξb þ ξaTcabBbc þ ξcξa∇aTc þ Nbξcξdξa∇aTcdb: ð23Þ

3This can easily be seen by noticing that Nbξ
a∇aNb ¼ 0, implying that ξa∇aNb ¼ fNb for some scalar f. But, since ξbξa∇aNb ¼ 0,

we immediately conclude that f ¼ 0.
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Our next goal now is to trade the quadratic term BabBba

in this form of Raychaudhuri’s equation for the product
BabBba that will allow us, thanks to Eq. (5), to recast the
equation purely in terms of the expansion, the shear, the
twist, the Ricci tensor, and torsion. For that purpose, we
notice first that Na∇aξb ¼ fξb for some scalar f because
ξbNa∇aξb ¼ 0. Therefore, using the definition (15), we
deduce that

NbBab ¼ fξa þ NbξcTacb: ð24Þ

This identity will allows us to get rid of any appearance of
Bab—such as TcabBbc—in the final Raychaudhuri equa-
tion. Indeed, using identity (24) together with Eqs. (17) and
(19), and the last equality in Eq. (23), we get finally
Raychaudhuri’s equation in the sought-after pure form as
follows:

d
dλ

θ ¼ −
1

2
θ2 − σabσ

ab þ ωabω
ab − Rabξ

aξb

þ ξaTcab

�
σbc þ ωbc þ

1

2
θhbc

�

þ ξcξa∇aTc þ Nbξcξdξa∇aTcdb: ð25Þ

We now come to the final step that would reveal the
effect the nature of matter has on the wormhole by making
the energy-momentum tensor appear on the right-hand side
of Eq. (25). For that purpose, we need Einstein-Cartan-
Sciama-Kibble metric field equations, which read as
follows [23,24]:

Gab ¼ TM
ab þ

1

2
ð∇c þ TcÞðTcab þ Tacb þ TbcaÞ

þ ð∇c þ TcÞðgacTb − gabTcÞ: ð26Þ

Contracting both sides of these equations by ξaξb, we
immediately extract the term Rabξ

aξb in terms of the matter
energy-momentum tensor and torsion. Substituting the
result inside Raychaudhuri’s equation (25), we find

d
dλ

θ ¼ −
1

2
θ2 − σabσ

ab þ ωabω
ab − TM

abξ
aξb

þ ξaTcab

�
σbc þ ωbc þ

1

2
θhbc

�

− ξaξbðTcTacb þ TaTbÞ
− ξaξbðNdξc∇cTadb þ∇cTacbÞ: ð27Þ

Contemplating this expression, we immediately notice
that the last line contains derivatives of torsion. The sign
contribution of such derivatives to the whole equation
cannot be determined without knowing the spin matter
distribution around the throat. As such, no general con-
clusion about the fate of the NEC of matter could be

reached, either, in contrast to the conclusions made in
Refs. [5,22]. As a consequence, a case-by-case study
should be conducted instead. For this reason, we shall
pursue our study by distinguishing four types of spin matter
fields that have been well studied in the literature in relation
to torsion.

1. With scalar, Maxwell, and Yang-Mills fields

A scalar field has spin zero, and thanks to the second set
of Einstein-Cartan-Sciama-Kibble field equations that
relate the spin-density tensor to torsion [23,24], the latter
also vanishes. In this case, we conclude that scalar fields
have to violate the NEC to make a traversable wormhole in
agreement with Ref. [22].
In the case of the Maxwell field, like the gauge Yang-

Mills fields, it is known that a minimal coupling of these
with torsion violates gauge invariance [24]. Therefore,
because of gauge invariance, Maxwell and Yang-Mills
fields are not allowed to minimally couple to torsion,
and the latter does not consequently arise in the presence of
such fields. Thus, these fields also have to violate the NEC
to make a traversable wormhole. We keep away from the
extra complications of nonminimal coupling with torsion in
this paper as such coupling involves some degree of
arbitrariness that cannot be of much relevance to our
present goal.

2. With a fermion field

In the presence of a fermion field ψ of spin 1
2
minimally

coupled to spacetime torsion, the latter is given by [24]

Tabc ¼ 1

4
ψ̄γ½aγbγc�ψ : ð28Þ

Here, the matrices γa are the spacetime Dirac matrices
related to the constant Dirac matrices γi through the tetrad
fields by γa ¼ eai γ

i [24]. It is clear from Eq. (28) that
torsion for Dirac fermions is completely antisymmetric.
Setting θ ¼ 0 and taking a totally antisymmetric torsion,
Eq. (27) simplifies greatly and reduces to

d
dλ

θ þ σabσ
ab ¼ ωabω

ab − TM
abξ

aξb þ ξaTcabωbc: ð29Þ

Thus, to have a traversable wormhole in this case, the
requirement is that the energy-momentum tensor of the
fermions TM

ab satisfies the following inequality:

TM
abξ

aξb < ωabω
ab þ ξaTcabωbc: ð30Þ

Setting Tabc ¼ ϵabcdvd, for an arbitrary vector va, and
substituting inside expression (22) of the twist tensor, we

find, after using the identities ϵabcdϵaefg ¼ −6δ½be δcfδ
d�
g and

ϵabcdϵabef ¼ −4δ½ce δd�f [26], that the right-hand side of
inequality (30) takes the form
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ωabω
ab þ ξaTcabωbc ¼

1

2
ðξavaÞ2 − ðξavaÞ2 < 0: ð31Þ

Thus, the contraction TM
abξ

aξb has to be negative. This
shows that making a traversable wormhole with a Dirac
field requires the latter to violate the NEC even if one is
working in Riemann-Cartan spacetime.

3. With a Proca field

A Proca field is a massive spin-1 vector field Aa.
Introducing the usual tetrad-based notation e≡ ffiffiffiffiffiffi−gp

, with
g being the spacetimemetric determinant, the Lagrangian of a
Proca field of massm [24] as well as the field equations one
extracts from a given Proca Lagrangian [30] are, respectively,

L ¼ −
1

2
eð∇½aAb�∇½aAb� −m2AaAaÞ: ð32Þ

∂aðe∇½aAb�Þ þ 1

2
eTb

ac∇½aAc� þ em2Ab ¼ 0: ð33Þ

By using themetricity condition, as well as the two identities,
∂ae ¼ eCb

ab and Cb
ba ¼ Cb

ab − Ta, which one can deduce
using g−1∂ag ¼ −gbc∂agbc [26] as well as Eqs. (9) and (11),
the previous field equations can be recast into the following
form more useful to us:

ð∇a þ TaÞ∇½aAb� þm2Ab ¼ 0: ð34Þ
On the other hand, the spin-density tensor of a Proca field as
presented inRef. [24] gives rise to the following torsion tensor
and its trace:

Tabc ¼ Ab∇½cAa� − Ac∇½bAa�

þ 1

2
Adðgab∇½dAc� − gac∇½dAb�Þ: ð35Þ

Tb ¼ −
1

2
Aa∇½aAb�: ð36Þ

Let us now compute individually each of the terms in
Raychaudhuri’s equation (27) in terms of the vector field Aa

and its derivatives using expressions (35) and (36).

ξaTcabσbc ¼ −ξaσbcAb∇½aAc�;

ξaTcabωbc ¼ ξaAaωbc∇½bAc� − Abω
bcξa∇½aAc�;

ξaξbTcTacb ¼ −ðξaTaÞ2 þm2ðξaAaÞ2
þ ξaAaξb∇c∇½cAb�;

ξaξbNdξc∇cTadb ¼ −ξc∇cðξaξbNdAb∇½dAa� − Tbξ
bÞ;

ξaξb∇cTacb ¼ −ξaξbðAb∇c∇½cAa�
þ∇½cAa�∇cAb þ∇aTbÞ: ð37Þ

Substituting these inside Eq. (27), and taking into account
that θ ¼ 0, many terms cancel among themselves, and the
equation simplifies to the following:

d
dλ

θþ σabσ
ab ¼ωabω

ab −TM
abξ

aξb

þ ξaAbðσbcþωbcÞ∇½cAa� þ ξaAaωbc∇½bAc�

−m2ðξaAaÞ2þ ξaξb∇½cAa�∇cAb

þ ξaξbNdAaξ
c∇c∇½dAb�: ð38Þ

We see from this equation that, even with the help of the
simplified field equations (34), it is still impossible to find
the overall sign of all those extra terms on the right-hand
side without solving the field equations (34) first. Indeed,
only by solving those second order equations of motion for
Aa—by taking into account the boundary conditions of the
system—will one be able to find the various gradients of
the field Aa in Eq. (38). This is in complete contrast to what
was concluded in Ref. [22]—without using Raychaudhuri’s
equation—about the general nonviolation of the NEC by
the Proca field to make a traversable wormhole.
Fortunately, however, the structure of those extra terms

still allows one to extract some important conclusions with
regard to some special cases even without solving the
vector field’s equations of motion. In fact, we notice that
the majority of those terms contain the contraction ξaAa.
Therefore, choosing a polarization for the vector Aa such
that ξaAa ¼ 0 will cancel many of the terms in Eq. (38).
Such a constraint on the vector field Aa would just mean
that either the vector is parallel to the null direction ξa or
that the vector just has all its components lie in the
transverse space.
Let us start with the case Aa ¼ fξa, for some scalar f.

We immediately see, by recalling that ξa∇aξ
b ¼ 0 and that

both σab and ωab are transverse, that the majority of the
extra terms in Eq. (38) vanish and the latter reduces to

d
dλ

θ þ σabσ
ab ¼ ωabω

ab − TM
abξ

aξb: ð39Þ
On the other hand, with Aa ¼ fξa, we have Aa∇bAa ¼ 0
and Aa∇aAb ¼ AbAa∇a ln f. Using these identities,
together with Eq. (21), we find that ωab ¼ 0. Therefore,
we conclude that in the case of a null Proca vector field the
requirement for a traversable wormhole in the Riemann-
Cartan spacetime is TM

abξ
aξb < 0; i.e., the NEC has to be

violated by the field’s energy-momentum tensor.
Let us now consider the case of a transverse field. This case

implies that we have again the identity ξaAa ¼ 0. In addition,
if we insist that the vector field remains permanently trans-
verse, we also have its derivatives constantly lying in the
transverse space. This translates into ðva∇aAbÞξb ¼ 0 for any
arbitrary vector va. Implementing these extra conditions
inside Eq. (38), many of the extra terms disappear again,
and we are left with the following equation:

d
dλ

θ þ σabσ
ab ¼ ωabω

ab − TM
abξ

aξb

þ ξaAbðσbc þ ωbcÞ∇½cAa�: ð40Þ
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We are going to show that the first term ωabω
ab on the

right-hand side of this equation does not vanish, while the
sum in the second line of the equation does. Let us start
with the latter. For θ ¼ 0, which is the case in Eq. (40), we
have σab þ ωab ¼ Bab. Then, using Eqs. (15) and (17), we
have the following:

ξaAbBbc∇½cAa� ¼ −ξaAbBbc∇aAc

¼ −ξaAbð∇cξb þ ξeTbecÞ∇aAc

− ξaAbNeðξcBbe þ ξbBecÞ∇aAc

− ξaAbNbξ
eξfTefc∇aAc

− ξaAbNdξbξcNeBed∇aAc

− ξaAbNdNbξcξ
eξfTefd∇aAc: ð41Þ

In the first line, we have used the identity ðva∇aAbÞξb ¼ 0.
Now, with a repeated use of this identity, we easily see that
each term of the subsequent two lines in Eq. (41) vanishes.
In addition, each term of the three last lines vanishes also
because of the fact that Aa lives in the transverse space. The
only term for which it is not straightforward to see why it
vanishes is the term ξaAbξeTbec∇aAc. We can check that
this term is zero by substituting expression (35) for the
torsion tensor and then performing the contractions by, in
addition, taking into account the fact that ξa∇aðAbAbÞ ¼ 0.
This condition is necessary for the magnitude of the field
Aa to always remain bounded along the null direction ξa.
Thus, we conclude that Eq. (40) reduces to Eq. (39). Let us
then finally check the fate of the twist tensor ωab for this
special case of a purely transverse field Aa.
Substituting the expression (35) of torsion inside Eq. (21)

and then taking into account the two identities ξaAa ¼ 0 and
ðva∇aAbÞξb ¼ 0, we end up with

ωab ¼
1

2
Acðξ½a∇cAb� − ξ½a∇b�AcÞ: ð42Þ

Without any additional constraint on the vector field Aa,
the right-hand side of this identity does not vanish
in general. Given that ωab is, in addition, purely spatial,
we conclude that ωabω

ab > 0. Thus, the requirement
for having a traversable wormhole in this case reduces only
to TM

abξ
aξb < ωabω

ab and the energy-momentum tensor of a
transverse Proca field does not have to violate the NEC.

4. With a Rarita-Schwinger field

A Rarita-Schwinger field ψa is a spin-3
2
vector-spinor

field—that we take to be massless for simplicity—the spin-
density tensor of which creates a torsion tensor given by [6]4

Tc
ab ¼

1

2
ψ̄aγ

cψb: ð43Þ

This field is, in addition, constrained to satisfy the condition
γaψa ¼ 0 [31]. This immediately yields a traceless torsion
since Ta ¼ Tb

ab ¼ 0. Thanks to this fact and setting θ ¼ 0,
Eq. (27) simplifies to

d
dλ

θ þ σabσ
ab ¼ ωabω

ab − TM
abξ

aξb þ ξaTcabðσbc þ ωbcÞ
− ξaξbðNdξc∇cTadb þ∇cTacbÞ: ð44Þ

As for the case of the Proca field, the subsistence of the
torsion gradients in this equation makes it impossible
to conclude anything about the sign contribution of these
gradients without having their values. In fact, although
the equation of motion for the field ψa is first order
and reads γaðDaψa −DbψaÞ ¼ 0 [31], where Da is the
covariant derivative operator that acts on spinors,
these equations cannot be of any help without solving
them first. This is due to the various contractions with the
null vector, like ξaTcab ¼ 1

2
ξaψ̄

aγcψb and the derivatives of
ξbTacb ¼ 1

2
ξbψ̄cγaψb, the values of which depend on the

specific form of the field ψa. Nevertheless, the specific
structure of these terms that hinders us from reaching any
conclusion suggests the possibility of treating instead the
special case of ξaψa ¼ 0. This, like for the Proca field, just
means that the vector-spinor field is chosen either parallel
or transverse to the null direction. As we shall see now, the
conclusion one gets for this special case does not depend on
which of these two possibilities one chooses.
By implementing this restriction inside Eq. (44), all the

extra terms—apart from the first one—on the right-hand
side disappear, and we are left with Eq. (39). All we have to
do then is to find the value of the twist tensor. Plugging
expression (43) inside Eq. (21) and taking into account the
constraint γaψa ¼ 0, we find

ωab ¼
1

4
ψ̄aξcγ

cψb; ð45Þ

which is clearly nonvanishing without any further con-
straint on ψa. As before, given the purely spatial nature of
the twist tensor, we conclude that ωabω

ab > 0. Hence, the
energy-momentum tensor of the spin-3

2
field under this

special constraint does not have to violate the NEC as all
that is required to have a traversable wormhole
is TM

abξ
aξb < ωabω

ab.

III. CONFORMAL FRAME

A. Without torsion

To find Raychaudhuri’s equation in the conformal frame,
one either finds first the conformal transformation of each
of the quantities (shear, twist, null vector, and Ricci tensor)
inside that equation and then proceeds with the usual
derivation of the equation based on these new quantities or
just notices that the equation is purely geometric in nature4We use here the normalization conventions of Ref. [31].
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and therefore automatically remains invariant under the
conformal transformation [32]. This means that all one has
to do to write down the conformally transformed version is
decorate every symbol inside the original equation (6) by
tildes. The resulting equation is thus

d

dλ̃
θ̃ ¼ −

1

2
θ̃2 − σ̃abσ̃

ab þ ω̃abω̃
ab − R̃abξ̃

aξ̃b: ð46Þ

The next step is to notice that the null vector ξ̃a of
the conformal frame remains hypersurface orthogonal, such
that, based on Frobenius’s theorem for torsion-free
spacetimes, we also have ω̃ab ¼ 0. In addition, the shear
tensor σ̃ab remains spacelike, thereby making σ̃abσ̃

ab

positive everywhere. On the other hand, recall that under
a Weyl transformation Einstein equations transform as
follows [25]:

G̃ab ¼ TM
ab −

2∇̃a∇̃bΩ
Ω

þ g̃ab

�
2□̃Ω
Ω

−
3∇̃cΩ∇̃cΩ

Ω2

�
: ð47Þ

After contracting both sides of these equations by ξ̃aξ̃b, we
obtain the desired contraction −R̃abξ

aξb in terms of the
energy-momentum tensor TM

ab. Substituting the resulting
expression inside Eq. (46), and then recalling that TM

ab ¼
Ω2T̃M

ab [25], we find

d

dλ̃
θ̃ þ σ̃abσ̃

ab ¼ −Ω2T̃M
abξ̃

aξ̃b þ 2ξ̃aξ̃b∇̃a∇̃bΩ
Ω

: ð48Þ

We clearly see now that the energy-momentum tensor of
matter T̃M

ab, as perceived from the conformal frame, does
not necessarily have to violate the null energy condition but
is only required to satisfy the following inequality,

T̃M
abξ̃

aξ̃b <
2ξ̃aξ̃b∇̃a∇̃bΩ

Ω3
; ð49Þ

with the right-hand side not being necessarily negative.5

Let us examine a simple example. Take the conformally
transformed tidal force-free Morris-Thorne wormhole met-
ric [2,5],

ds̃2 ¼ Ω2ðtÞ
�
−dt2 þ dr2

1− bðrÞ=rþ r2dϑ2 þ r2 sin2 ϑdϕ2

�
:

ð50Þ

Here, bðrÞ is a function such that bðr0Þ ¼ r0 at the location
r0 of the throat [2]. We chose here the conformal factor
ΩðtÞ to depend only on time for simplicity. With this
conformal metric g̃ab, we easily find a null vector ξ̃a as
follows [5]:

ξ̃a ¼ ð
ffiffiffi
2

p
ΩÞ−1ð1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðrÞ=r

p
; 0; 0Þ: ð51Þ

In addition, with the metric (50), we can also easily
compute the Christoffel symbols Γ̃c

ab to be used inside
the covariant derivatives ∇̃a. The nonvanishing ones that
are of interest to us here are Γ̃0

00 ¼ _Ω=Ω and Γ̃0
11 ¼

_Ω=½Ωð1 − bðrÞ=rÞ�. With these at hand, we obtain

ξ̃aξ̃b∇̃a∇̃bΩ ¼ 1

2Ω2

�
Ω̈ −

2 _Ω2

Ω

�
: ð52Þ

An example of a conformal factor that makes the content of
the parentheses positive is ΩðtÞ ¼ t−1=3 (a wormhole
embedded in a contracting universe.)
This shows that the right-hand side of inequality (49)

does not indeed necessarily have to be negative. We
conclude that matter does not necessarily have to violate
the NEC in the conformal frame either. This confirms
again our hand-waving argument presented in the
Introduction.

B. With torsion

To investigate the effect of torsion in the conformal
frame, we need to also specify the conformal transforma-
tion of torsion. It turns out, however, that because torsion is
a separate d.o.f. of spacetime in addition to the metric, there
is not one but three possibilities proposed in the literature
for how torsion might transform under a Weyl mapping (see
Ref. [35] and references therein). The three possible ways
are the following:

T̃c
ab ¼ Tc

ab; ð53Þ

T̃c
ab ¼ Tc

ab þ αðδca∂b − δcb∂aÞ lnΩ; ð54Þ

5Note that in Ref. [33], where the nature of the four Brans
solution classes of Brans-Dicke theory were studied in detail, a
field redefinition was performed after applying the conformal
transformation. That field redefinition was made to obtain a
simple expression for the scalar field’s energy-momentum tensor
on the right-hand side of Einstein equations. For all four classes,
the field redefinitions displayed there would make the NEC
satisfied in the conformal frame despite the existence of Brans
wormholes in the new frame. In addition, such field redefinitions
induced a disagreement with the sign of the Einstein tensor, and
hence of the Ricci scalar, discussed for the class IV solution
recently in Ref. [34] (F. H. is grateful to Valerio Faraoni for
bringing this reference to his attention, which led to the
discussion in this footnote). These two disagreements are actually
simply due to a missing factor of the pure imaginary i in the field
redefinitions (2.26), (3.20), (4.26), and (5.15) given in Ref. [33].
Putting this factor back, one easily recovers the violation of the
NEC and the missing negative (−) sign in the Ricci scalars given
for each of the corresponding solution classes there.
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T̃a ¼ Ta þ α∂a lnΩ: ð55Þ

Here, α is some arbitrary parameter [35].6

On the other hand, the expression (21) of the twist tensor
having been obtained from purely geometric definitions
and the derivations being based on purely geometric steps,
we know that the conformally transformed twist tensor ω̃ab
will keep the same form as in Eq. (21), only decorated
everywhere with tildes. Similarly, Raychaudhuri’s equation
for Riemann-Cartan spacetimes in the form (25), being also
a purely geometric equality, implies that the conformally
transformed version keeps the same form, only decorated
everywhere with tildes. As a consequence of this, we see
that, just as in the original frame, the presence of the
divergence term ∇̃aT̃bac would not allow one to conclude
anything about the NEC without knowing the dynamics of
the matter spin in the conformal frame.
To be able to easily see the effect of torsion on the fate of

the NEC in the conformal frame, we should therefore make
again the simplifying assumption of a totally antisymmetric
torsion tensor in the new frame as well. In this case,
however, only the first possibility (53) for the transforma-
tion of torsion would be meaningful as the other two would
not allow for total antisymmetry of T̃c

ab. Implementing this
option inside expression (21), we find the same form for the
twist tensor as that of Eq. (22), but decorated of course with
tildes.
Next, to find the equivalent of Eq. (27)—involving

matter via the energy-momentum tensor—we need the
conformal transformation of Einstein-Cartan-Sciama-
Kibble metric field equations. However, because the
Riemann tensor contains products of the form C̃c

abC̃
a
cd

and the Christoffel symbols inside C̃c
ab are affected by the

transformation, the field equations will acquire more addi-
tional terms on the right-hand side than what Einstein
equations do after a conformal transformation even in the
case of an invariant torsion. These extra terms would arise
from the mixed products of the form Γ̃c

abT
a
cd.

Fortunately, all we actually need from the field equations
is to extract the contraction R̃abξ̃

aξ̃b and express it in terms
of TM

ab. For this purpose, it turns out that a simple inspection
would reveal the transformation of such a term. Indeed, the
full Ricci tensor in the conformally transformed Riemann-
Cartan spacetime reads [23,24]

R̃c
acb ¼ ∂cC̃

c
ab − ∂bC̃

c
ac þ C̃c

ceC̃
e
ab − C̃c

beC̃
e
ca: ð56Þ

To obtain the term R̃abξ̃
aξ̃b, we would have to insert the

conformal expression of each of the connection terms and
then contract both sides of this identity by ξ̃aξ̃b. However,
given that we work with a totally antisymmetric torsion and
that C̃c

ab ¼ Γ̃c
ab þ 1

2
ðT̃c

ab þ T̃a
c
b þ T̃b

c
aÞ, we immediately

see that the transformed R̃abξ̃
aξ̃b would involve only

exactly the same terms arising when performing a con-
formal transformation in torsion-free spacetimes. Thus,
Raychaudhuri’s equation in the conformal frame with
matter and totally antisymmetric torsion takes the same
form as Eq. (29) with one extra term borrowed from
Eq. (48):

d

dλ̃
θ̃ þ σ̃abσ̃

ab ¼ ω̃abω̃
ab −Ω2T̃M

abξ̃
aξ̃b þ ξ̃aT̃cabω̃bc

þ 2ξ̃aξ̃b∇̃a∇̃bΩ
Ω

: ð57Þ

Therefore, all that is required of matter in the conformal
frame in order to have a traversable wormhole is to satisfy
the following inequality:

T̃M
abξ̃

aξ̃b <
ω̃abω̃

ab

Ω2
þ ξ̃aT̃cabω̃bc

Ω2
þ 2ξ̃aξ̃b∇̃a∇̃bΩ

Ω3
: ð58Þ

This just shows again that the energy-momentum tensor of
matter, as perceived from the conformal Riemann-Cartan
spacetime, does not necessarily have to violate the NEC to
sustain a traversable wormhole in such a spacetime.

IV. SUMMARY AND DISCUSSION

The fate of the violation of the NEC required by
traversable wormholes has been found to be affected both
by adding torsion to spacetime and by performing a Weyl
conformal transformation on the latter. We learned, though,
that no general rule could be drawn for the effect of torsion
on the NEC because a case-by-case study is needed to
figure out the sign contribution of the torsion terms to
Raychaudhuri’s equation. Nevertheless, we found special
cases of matter configurations for which a definite answer
could be provided.
We found that for a Dirac field, for which spacetime

torsion is a totally antisymmetric tensor, the NEC still has
to be violated to make a traversable wormhole. The
required degree of violation of the NEC for this case is
found to be enhanced compared to what is required in the
absence of torsion. It is worth noting that such a violation
has actually emerged merely from the total antisymmetry of
the spacetime torsion and did not depend in any case on the
specific value of the torsion generated by the Dirac field.
In other words, when the tensorial piece of torsion is absent
and only the vectorial piece is present, one is guaranteed to

6These transformations are given in Ref. [35] with reference to
a nonminimal coupling between a scalar field and torsion.
A derivation of these transformations based on the conformal
transformation of the tetrads, eai ¼ Ω−1eai , and a conformal
invariance of the Lorentz connection ϖa

ij, which are both
fundamental gauge fields of Einstein-Cartan gravity, is given
in Ref. [36].
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have the NEC violated by traversable wormholes. As such,
our result rather suggests the following more general
conclusion: in spacetimes with a totally antisymmetric
torsion tensor, traversable wormholes are bound to greatly
violate the NEC regardless of the specific nature of the
matter that creates such torsion and such wormholes.
In contrast, we found that with Proca and Rarita-

Schwinger fields, subject to specific constraints, torsion,
as with conformal transformations, helps remove com-
pletely the requirement to have exotic matter to sustain a
traversable wormhole. The needed exoticity, supposed to be
carried by matter in Riemannian spacetimes, becomes
available within the geometry of the spacetime itself in
both cases. In the case of Riemann-Cartan spacetimes,
torsion induces an effective energy-momentum tensor that
might mimic that of an exotic matter. In the case of a
Riemannian spacetime built by conformally transforming
another Riemannian spacetime the exotic matter is pro-
vided by the induced energy-momentum tensor arising
from the deformation brought to the metric.
In addition, we found that the conformal transformation

has the same effect also in Riemann-Cartan spacetimes.
However, in this case, as in the original frame, we showed
that only for the special case of a totally antisymmetric
torsion tensor can one clearly see how geometry is always
able to provide the required level of exoticity. This is due to
the torsion derivatives involved in Raychaudhuri’s equation
as well as the products of Christoffel symbols and torsion
inside the Riemann tensor, making the conformal trans-
formation of the latter much more involved than that in
torsion-free spacetimes.
In this work, we have dealt solely with Einstein-Cartan

gravity. It is well known, however, that the latter theory of
gravity, together with general relativity, are just dynamical
degenerate cases of the more general Poincaré gauge theory
of gravity (see, e.g., Ref. [37]). It is therefore interesting to
investigate whether the results we found here would still
hold in such a more general theory of gravity with torsion.
Such an investigation would not be trivial, though. In fact,
as can be seen from the field equations (26), used to find
Raychaudhuri’s equation (27), even within a theory linear
in torsion, nonlinear terms in torsion pop up in the field
equations. Notwithstanding this computational limitation,
our present work is general enough to allow us to look at
the special case of totally antisymmetric torsion even within
such a general theory. Indeed, Raychaudhuri’s equation, in
its purely geometric form (25), is independent of the
underlying field equations of the background spacetime.
This makes the equation then valid in any Poincaré gauge
theory of gravity. For a totally antisymmetric torsion,
however, Eq. (25) always reduces to Eq. (29). The latter,
in turn, always leads to Eqs. (30) and (31) for a totally
antisymmetric torsion, regardless of the field equations of

the theory. It is then clear that the NEC would always have
to be violated for such a specific torsion even in the more
general Poincaré gauge theory of gravity.
Another interesting side of this work is that it shows how

much geometry can become involved in the interpretations
we make of phenomena displaying the interaction between
matter and spacetime. Indeed, a great similarity between
the effects provided by torsion on the (non)violation of the
NEC by matter and those induced by a conformal trans-
formation have been revealed. In this sense, if one is willing
to consider torsion and its effect on physical phenomena as
real, one is also bound to consider as real the effect a
conformal transformation has on the way physical phe-
nomena would be perceived in the conformal frame.7 This
conclusion does not, however, constitute a definitive
solution to the issue of the physical (non)equivalence
of the two frames. A more specialized and rigorous study
of this issue will be presented elsewhere (see, however,
Ref. [40]).
Nevertheless, this conclusion supports at least what has

already been found concerning the nontrivial fate of
wormholes and black holes in the conformal frame
in Refs. [41,42]. This concordance just speaks once more
in favor of viewing Weyl conformal transformations as
a nontrivial tool for learning about the deep connection
between geometry and matter. As already shown in
Refs. [43,44], although geometry itself could mimic
energy, or equivalently mass, under a conformal trans-
formation, the true geometric nature of such a quantity
always reveals itself as distinct from that of pure matter. In
this work, an analogous, but reversed, scenario came out.
What was an exotic feature only to be carried by matter to
make a traversable wormhole has been transferred into pure
geometry thanks to either (i) additional geometric d.o.f.
already stored in Riemann-Cartan spacetimes or (ii) a
deformation brought—à la Weyl—to the spacetime.
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