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Multiparameter solutions to the Einstein equations in 2þ 1 dimensions are presented, with stress-energy
given by a rotating dust with negative cosmological constant. The matter density is uniform in the
corotating frame, and the ratio of the density to the vacuum energy may be freely chosen. The rotation
profile of the dust is controlled by two parameters, and the circumference of a circle of a given radius is
controlled by two additional parameters. Though locally related to known metrics, the global properties of
this class of spacetimes are nontrivial and allow for new and interesting structure, including apparent
horizons and closed timelike curves, which can be censored by a certain parameter choice. General
members of this class of metrics have two Killing vectors, but parameters can be chosen to enhance the
symmetry to four Killing vectors. The causal structure of these geometries, interesting limits, and
relationship to the Gödel metric are discussed. An additional solution, with nonuniform dust density in a
Gaussian profile and zero cosmological constant, is also presented, and its relation to the uniform-density
solutions in a certain limit is discussed.
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I. INTRODUCTION

In the past century of Einstein’s theory of gravity,
progress in general relativity has been shaped in large
part by the discovery of new exact solutions to the field
equations. From Schwarzschild’s work to the present day,
exact solutions provide useful laboratories for investigating
the properties of relativistic gravitating systems.
Two exact solutions of particular interest are Gödel’s

spacetime [1] describing a rotating dust and Bañados,
Teitelboim, and Zanelli’s (BTZ) black hole [2]. Both of
these solutions describe geometries in 2þ 1 dimensions,
with a negative cosmological constant. Gödel’s solution
demonstrated properties of closed timelike curves (CTCs)
in general relativity, while the BTZ geometry showed that
black holes can exist in three-dimensional gravity. General
relativity in three dimensions provides an interesting arena
in which to explore the geometric properties of spacetime,
without the complications endemic to a nonzero Weyl
tensor [3]. Moreover, (2þ 1)-dimensional spacetimes with
a negative cosmological constant are of current interest as a
result of the AdS=CFT correspondence [4–7], in particular,

aspects of the AdS3=CFT2 case (see Ref. [8] and references
therein for a review, as well as Ref. [9]).
In this paper, a class of axially symmetric spacetime

geometries in 2þ 1 dimensions is presented. The cosmo-
logical constant is negative, and the energy-momentum tensor
is described by pressureless, rotating dust, as in the Gödel
solution. However, this class of geometries is much more
general, with multiple free parameters describing the dust
density, (spatially dependent) rotation rate, and circumference
profile of the spacetime. Depending on the parameters, these
spacetimes can exhibit many interesting properties, including
CTCs, apparent horizons, spacetime boundaries, enhanced
symmetry algebras, and geodesic completeness.
This paper is organized as follows. In Sec. II, the class of

solutions is stated and the corotating timelike congruence
is examined. Next, in Sec. III the causal structure of the
spacetime is investigated, including null congruences,
Cauchy horizons, geodesic completeness, and censorship
of the CTCs. Particular limiting geometries are discussed
in Sec. IV, and the symmetries of the spacetime are found
in Sec. V. We examine various special cases of interest in
Sec. VI and conclude with the discussion in Sec. VII. In
Appendix, another new spacetime geometry is exhibited,
with a spinning dust with Gaussian density profile, which
in a certain limit reduces to a member of the family of
geometries we present in Sec. II.

II. A CLASS OF SPINNING DUST SOLUTIONS

Consider the following stationary metric in 2þ 1
dimensions:
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ds2 ¼ −dt2 − wðrÞdtdϕþDðrÞdϕ2 þ dr2
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Here, j1, j2, c1, c2, and M are unitless constants and
−∞ < t < ∞, 0 ≤ r < ∞, and 0 ≤ ϕ < 2π.1 This metric
describes a rotating, pressureless dust solution with
density 4M=L2 and with negative cosmological constant
Λ ¼ −1=L2. Defining ua ¼ ∂t ¼ ð1; 0; 0Þ for the reference
frame of the dust,2 the Einstein equations are satisfied,

Rab −
1

2
Rgab þ Λgab ¼

4M
L2

uaub: ð3Þ

The metric (1) has several interesting properties. Frame
dragging is evidenced by the nonzero dtdϕ component of the
metric. However, the dust in this solution does not rotate at
a constant rate, but instead at a rate dictated by wðrÞ.
In particular, if j1 and j2 have opposite signs, then the
dust rotates clockwise for small r and counterclockwise for
large r, or vice versa, and has vanishing rotation at some
radius r0 ¼ − j1

j2
L. We note that wðrÞ, DðrÞ, and NðrÞ in

Eq. (2) are related by the useful identity

j21L
6NðrÞ ¼ r4½4DðrÞ þ w2ðrÞ�: ð4Þ

Let us consider a timelike geodesic congruence corotat-
ing with the dust. We choose the initial tangent vector for
our congruence of geodesics to be ua, and since

ua∇aub ¼ 0; ð5Þ

we obtain a family of timelike geodesics that continue to
point along ua at all times. Since we can show that ua is a
global timelike Killing vector of the geometry (1), the

spacetime is stationary. However, it is not static for j1 ≠ 0,
since there do not exist hypersurfaces everywhere orthogo-
nal to orbits of the timelike Killing vectors, or equivalently
by Frobenius’s theorem [10], u½a∇buc� ≠ 0.
For this timelike congruence, we can define a spatial

metric hab¼gabþuaub; the extrinsic curvature is Bab¼∇bua. Then we find that the expansion, measuring the
logarithmic derivative of the area element along the con-
gruence, vanishes,

θ ¼ habBab ¼ 0: ð6Þ

Similarly, the shear vanishes, implying that the dust is rigidly
rotating,3

ςab ¼ BðabÞ −
1

2
θhab ¼ 0: ð7Þ

However, the vorticity tensor4 Ωab ¼ B½ab� does not vanish,

Ωabdxa ∧ dxb ¼ 2Ωrϕdr ∧ dϕ ¼ −
j1L2

r2
dr ∧ dϕ: ð8Þ

Since the vorticity is nonzero, the geodesic congruence
formed by ua is not hypersurface orthogonal [10]. This is
another manifestation of the fact that the spacetime, while
stationary, is not static.
An extensive review of other dust solutions can be

found in Ref. [12]. In more recent work, Refs. [13,14]
gave the general (2þ 1)-dimensional solutions for an
irrotational dust and a null dust, respectively.5 As we will
see in Sec. VI A, while our family of metrics contains the
Gödel universe as a special case, it is in general distinct from
Gödel’s solution. Our metric is axially symmetric but is not
locally rotationally symmetric in the sense of Ref. [11]. It is
distinct from the van Stockum [15] (or more generally,
Lanczos [16]) solution, which has nonhomogeneous dust
density. The tracelessRicci tensorRab − 1

3
Rgab for themetric

given in Eqs. (1) and (2) is proportional to gab þ 3uaub, so it
is of Petrov-Segre type Dt in the notation of Ref. [17]. The
metric is related by a local diffeomorphism to a timelike-
squashed AdS3 solution of topologically massive gravity
[17,18] and by a different local diffeomorphism to the

1As we will show in Sec. VII, having chosen a value of L,
which specifies the overall length scale, the coefficients
ðM; j1; j2; c1; c2Þ indeed specify a five-parameter family of
distinct geometries; that is, for generic values of these constants,
the geometry one obtains is not equivalent to another member of
this family under diffeomorphism.

2Unless indicated otherwise, we use an axial ðt; r;ϕÞ coor-
dinate system throughout.

3A theorem of Gödel [1,11] states that if a spacetime possesses
spacelike homogeneous hypersurfaces and a timelike geodesic
congruence with vanishing expansion and shear, then the metric
must locally correspond to either the Gödel universe or the
Einstein static universe. For the metric Eq. (1), the matter density
is homogeneous,M ¼ const, but the metric is not. Hence, Eq. (1)
is allowed to differ from the Gödel or Einstein static universe,
which it manifestly does in general, sinceM is independent of Λ.

4This object is sometimes called the twist [10]. However, to
avoid confusion with the twist one-form we will later define for
null congruences, we use this alternative nomenclature.

5In contrast, the dust solution described in this paper is
timelike and has nonvanishing vorticity.
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four-parameter family of solutions of Lubo, Rooman, and
Spindel [19]. Our class of metrics possesses five unitless
parameters, plus a length scale L, and as we will discuss in
Sec. VII, the family of globally distinct solutions is five-
dimensional; the extra freedom comes from the fact that our
metric (1) is an analytic extension of the metric in Ref. [19]
and, for various parameter choices, can have different global
properties. As we will see in this work, these global proper-
ties lead to interesting physical differences in three-
dimensional gravity, including considerations of topology,
causal structure, horizons, boundaries, geodesic complete-
ness, and singularities.

III. CAUSAL STRUCTURE

To investigate the causal structure of the spacetime, it is
useful to first construct some null congruences. We will
find apparent horizons, spacetime boundaries, and CTCs,
and also discover how to censor them.

A. Null congruences

Consider a surface σ at constant r, for some r chosen
such that NðrÞ and DðrÞ are positive. There are two future-
pointing null geodesic congruences generated by the null
vectors with initial tangents ka and la orthogonal to σ,

ka¼ 1ffiffiffi
2

p

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ w2ðrÞ
4DðrÞ

q ;
ffiffiffiffiffiffiffiffiffiffi
NðrÞ

p
;

wðrÞ
2DðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2ðrÞ

4DðrÞ
q

1
CA;

la¼ 1ffiffiffi
2

p

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ w2ðrÞ
4DðrÞ

q ;−
ffiffiffiffiffiffiffiffiffiffi
NðrÞ

p
;

wðrÞ
2DðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2ðrÞ

4DðrÞ
q

1
CA: ð9Þ

Despite the fact that kϕ, lϕ ≠ 0, one can verify that
kaϕa ¼ laϕ

a ¼ 0, for ϕa ¼ ∂ϕ ¼ ð0; 0; 1Þ giving the unit
tangent to σ. We note that k2 ¼ l2 ¼ 0, and we have

chosen the relative normalization such that k · l ¼ −1. Both
k and l are future pointing (i.e., kt ≥ 0 and lt ≥ 0), and k is
outward pointingwhilel is inward pointing (i.e., kr ≥ 0 and
lr ≤ 0). In Eq. (9), we need 1þ w2ðrÞ=4DðrÞ ≥ 0, which is
justified by Eq. (4) alongwith our choice of r such thatNðrÞ
and DðrÞ are both positive. See Fig. 1 for an illustration of
the congruences.
From the congruences, we define the induced metric

qab ¼ gab þ kalb þ kbla, the null extrinsic curvature

BðkÞ
ab ¼ qcaqdb∇dkc (and analogously for l), and the null

expansion θk½σ� ¼ qabBðkÞ
ab (which measures the logarith-

mic derivative of the area element along the affine param-
eter of the null geodesic). After explicit computation,
we have

θk½σ� ¼ −θl½σ� ¼
D0ðrÞ ffiffiffiffiffiffiffiffiffiffi

NðrÞp
2

ffiffiffi
2

p
DðrÞ : ð10Þ

The shear of the congruences vanishes,

ςðkÞab ¼ BðkÞ
ðabÞ − θkqab ¼ 0;

ςðlÞab ¼ BðlÞ
ðabÞ − θlqab ¼ 0; ð11Þ

which is a consequence of the fact that the shear tensor is by
definition traceless and that the null congruence is codi-
mension-two (and hence one-dimensional in this three-
dimensional spacetime). The vorticity tensors also vanish,

ΩðkÞ
ab ¼ BðkÞ

½ab� ¼ 0;

ΩðlÞ
ab ¼ BðlÞ

½ab� ¼ 0; ð12Þ

which is a consequence of the fact that the congruences
are hypersurface orthogonal. The twist one-form gauge
field (i.e., the Hájíček one-form) is

rC

rC

r0

r0

t

t

φ

φ

r

r

r

φ

r0

rC

FIG. 1. Illustration of the null congruences orthogonal to circles of fixed r (gray arcs) on some slice of constant t (green surface). The
outgoing and ingoing orthogonal null congruences have tangents given in Eq. (9) by ka and la and are illustrated by red and blue arrows,
respectively. For this illustration, j1j2 was chosen to be negative, so the frame dragging vanishes on the surface at radius r0 (dotted line)
where wðr0Þ ¼ 0 and goes in the þϕ or −ϕ direction inside and outside, respectively. As the Cauchy horizon rC (dashed line) is
approached, the orthogonal null congruences are dragged around the angular direction. For r < rC, the congruence is not defined.
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ωa ¼
1

2
qabLklb ¼ −qablc∇bkc

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðrÞ

1þ w2ðrÞ
4DðrÞ

vuut wðrÞD0ðrÞ −DðrÞw0ðrÞ
8DðrÞ2

× ðwðrÞ; 0;−2DðrÞÞ; ð13Þ
where Lk denotes the Lie derivative along k.
Were we to choose parameters for which we can have

DðrÞ > 0 when NðrÞ ¼ 0, the metric in Eq. (1) would have
apparent horizons, where θk or θl vanish, at the zeros of
NðrÞ located at r ¼ r�,

r� ¼ L
�
j1j2 þ c1
j22 þ c2

�24−1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 −MÞ j21ðj22 þ c2Þ

ðj1j2 þ c1Þ2

s 3
5:

ð14Þ
Whether these zeros exist (i.e., whether r� is real and
positive) in the spacetime depends on the relative signs and
magnitudes of j1, j2, c1, c2, and M.
To guarantee that the angular direction is not timelike at

large r, we must take c2 ≥ 0. If we choose c1 > 0, then

DðrÞ would reach a maximum at r ¼ rm ¼ j2
1

c1
ML. In this

case, the signs of θk and θl would flip at rm.Wewould have
an apparent horizon at rm, where the null expansions can
vanish. For the rest of this paper, we will consider c1 ≤ 0,
so that D0ðrÞ > 0; this ensures that circles of constant r
have circumferences that grow with r asymptotically, as we
would intuitively expect. In that case, σ is a normal surface,
i.e., a surface for which the outward future-pointing null
congruence has positive expansion and the inward future-
pointing null congruence has negative expansion.

B. Cauchy horizon and boundary

This spacetime can exhibit Cauchy horizons, defining
the boundary of the nonchronological region of the
spacetime where DðrÞ < 0. In this region, circles in ϕ at
constant t and r are CTCs.6 The Cauchy horizons are given
by the zeros of DðrÞ,

rC� ¼ −L
�
c1
c2

�0@1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j21Mc2

c21

s 1
A: ð15Þ

By the null energy condition, we will takeM ≥ 0, so that
the dust has non-negative density. Further, taking c2 ≥ 0
and c1 ≤ 0 as noted previously, the nonchronological
region is given by r < rC, where we write rC for rCþ, the
single Cauchy horizon,

rC ¼ −L
�
c1
c2

�0@1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j21Mc2

c21

s 1
A: ð16Þ

We then have the following conditions for the existence of
the zeros of NðrÞ in Eq. (14):

Case I :0<M<1; j1j2þc1>0⇒nozero;

Case II :0<M<1; j1j2þc1<0⇒ twozeros at r�;rþ<r−;

Case III :M≥1; j1j2þc1>0⇒onezero at rþ;

Case IV:M≥1; j1j2þc1<0⇒one zero at r−: ð17Þ

See Fig. 2 for an illustration. The nonchronological region
can extend outside the apparent horizon; i.e., it is possible
to have rC > r�. Indeed, with our assumptions c1 ≤ 0 and
c2 ≥ 0, one can show that the Cauchy horizon always
satisfies rC ≥ r�, which implies that the congruence in
Sec. III A cannot be extended down to r� [since the
construction of the congruence required DðrÞ > 0 by
Eq. (4)]. Hence, if c1 ≤ 0 and c2 ≥ 0, the zeros of NðrÞ
are not truly apparent horizons where θk or θl vanish, since
the congruence does not exist there.
In the region where NðrÞ < 0, we can consider a surface

μ at constant r. Let us attempt to construct the orthogonal

FIG. 2. Cases in Eq. (17) for geometry with metric given in
Eqs. (1) and (2). The singularities in the rr component of the
metric [the zeros of NðrÞ] are r�, while the Cauchy horizon rC is
determined by the zero of the ϕϕ component of the metric DðrÞ.
In Cases I and II, 0 < M < 1, while in Cases III and IV, M ≥ 1.
In Cases I and III, j1j2 þ c1 > 0, while in Cases II and IV,
j1j2 þ c1 < 0. If c2 ≥ 0 and c1 ≤ 0, then rC ≥ r�.

6Note that the appearance of CTCs does not run afoul of the
theorem in Ref. [20], since the CTCs extend arbitrarily close to
r ¼ 0, and thus constitute “boundary CTCs” in the sense of
Ref. [20].
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null congruences from μ. Writing one of the tangent vectors
to such a congruence as k̄a, we must have k̄ϕ ¼ 0 for the
congruence to be orthogonal to μ. Thus, we have

k̄2 ¼ ðk̄rÞ2NðrÞ − ðk̄tÞ2
1þ w2ðrÞ

4DðrÞ
: ð18Þ

Since we have NðrÞ < 0 on μ and since Eq. (2) requires
j1 ≠ 0, Eq. (4) implies that we must have DðrÞ < 0 on μ.
By Eq. (4) again, we then have 1þ w2ðrÞ=4DðrÞ > 0 on μ,
which by Eq. (18) makes the requirement k̄2 ¼ 0 impos-
sible to satisfy for any choice of k̄t and k̄r. Hence, the null
congruences from μ do not exist; i.e., the region NðrÞ < 0

is of non-Lorentzian causal structure. We therefore exclude
this region from the spacetime and take a surface at r ¼ r�
to be a boundary of the geometry.

C. Geodesics and completeness

Let us consider the evolution of a timelike geodesic in
this spacetime. The geodesic equation,

d2xa

dτ2
þ Γa

bc
dxb

dτ
dxc

dτ
¼ 0; ð19Þ

implies

j21L
6NðrÞ
r4

d2t
dτ2

− 2wðrÞD0ðrÞ dr
dτ

dϕ
dτ

þ w0ðrÞ dr
dτ

�
2DðrÞ dϕ

dτ
þ wðrÞ dt

dτ

�
¼ 0;

d2r
dτ2

−
N0ðrÞ
2NðrÞ

�
dr
dτ

�
2

þ NðrÞ
2

dϕ
dτ

�
w0ðrÞ dt

dτ
−D0ðrÞ dϕ

dτ

�
¼ 0;

j21L
6NðrÞ
r4

d2ϕ
dτ2

þ dr
dτ

�
ð4D0ðrÞ þ wðrÞw0ðrÞÞ dϕ

dτ
− 2w0ðrÞ dt

dτ

�
¼ 0; ð20Þ

where we used Eq. (4) to write 4DðrÞ þ w2ðrÞ in terms of
NðrÞ. Now, near r ¼ r�, NðrÞ is small, so to leading order
in this limit, we must have

d2r
dτ2

−
N0ðrÞ
2NðrÞ

�
dr
dτ

�
2

¼ 0; ð21Þ

where we can approximate NðrÞ by N0ðr�Þðr − r�Þ. Thus,
near r�, we have the solution

rðτÞ − r� ¼ ri − r� þ viτ þ
v2i τ

2

4ðri − r�Þ
; ð22Þ

where ri and vi are constants. Note that ri can be either
larger or smaller than r�, so this solution applies to timelike
geodesics that originate on either side of r�. We find from
Eq. (22) that the geodesic can never cross the surface at
r ¼ r�: rðτÞ has a turning point when τ ¼ −2ðri − r�Þ=vi,
at rðτÞ ¼ r�. That is, the timelike geodesic can just touch
the surface and bounce off of it, but cannot pass through;
see Fig. 3. Replacing τ by an arbitrary parameter λ
respecting the affine connection, the analogous conclusion
applies for both null and spacelike geodesics, which also
bounce off of this boundary. (Given ri and vi, whether the
geodesic is timelike, null, or spacelike can be specified by
choosing the initial data in the t and ϕ components of the
geodesic equation.) This justifies our considering r� to be
boundaries of the spacetime. That is, the connected regions
of the fixed sign of NðrÞ (i.e., the three regions r < rþ,
rþ < r < r−, and r > r− in Case II; the two regions r < rþ

and r > rþ in Case III; and the two regions r < r− and
r > r− in Case IV) can be essentially regarded as separate
spacetimes. Indeed, if we replace the right-hand side of the
geodesic equation with the proper acceleration, we see that
any trajectory with nonzero dr=dτ at r ¼ r� will neces-
sarily undergo infinite proper acceleration; the barrier at
r ¼ r� is insurmountable.
This example suggests that the spacetime in the region

where NðrÞ is positive, bounded by r�, is, in fact, geodesi-
cally complete. Indeed, we can verify this with the help of
the theorem proven in Ref. [21]. In the classification of

FIG. 3. Geodesics bouncing off of a boundary at r ¼ r�.
Depicted is a family of geodesics with different initial data ri
and vi chosen to all intersect the boundary at some fixed
spacetime location (black dot). The bounce occurs for geodesics
originating on either side of the boundary.

NEW SPACETIMES FOR ROTATING DUST IN (2þ 1)- … PHYS. REV. D 98, 124008 (2018)

124008-5



Ref. [21], the family of metrics given in Eq. (1) fits
the definition of a Gödel-type spacetime provided
w2ðrÞþ4DðrÞ>0.7 By Eq. (4), this is true whenever
j1 ≠ 0 and NðrÞ > 0. Hence, our geometry is within the
class of Gödel-type metrics (a class that includes the Gödel
universe, some Kerr-Schild metrics, some plane wave
metrics, etc.) whenever we are outside the NðrÞ ¼ 0 boun-
dary. Applying Theorem 4.1 of Ref. [21], we observe that
since ½1 −DðrÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þDðrÞÞ2 þ w2ðrÞ

p
�−1 is bounded

from above, it follows that our geometry, with r� as its
boundary, is geodesically complete.

D. Censoring CTCs

To avoid rC > r− (while keeping c1 ≤ 0 and c2 ≥ 0), we
must take either Case II or Case IV above and further
require the tuning of c1 and c2 such that

2
c1
j1

þ j2M ¼ c2
j2

ð23Þ

and also j1j2 < 0. With the choice (23), the radius of the
outer of the NðrÞ ¼ 0 surfaces, which we will call rH, is
located at

rH ¼ r− ¼ rC ¼ r0 ¼ −
j1
j2
L ¼

���� j1j2
����L: ð24Þ

In this case, the radius r0 where the frame-dragging
reverses direction, the NðrÞ ¼ 0 surface at r−, and the
Cauchy horizon at rC all coincide. While requiring c1 ≤ 0
and c2 ≥ 0, it is not possible for the Cauchy horizon
to be located a finite distance inside the NðrÞ ¼ 0 surface,
i.e., rC≮r�.
The choice of coefficients in Eq. (23), necessary to

censor the CTCs, immediately leads us to an observation
about the boundary. Since Eq. (23) implies thatDðrHÞ ¼ 0,
one finds from Eq. (10) that limr→rHθk is not zero but is
instead infinite. However, the twist ωa vanishes as r → rH
with the choice in Eq. (23). Hence, for generic c1 and M,
the choice in Eq. (23) is incompatible with a smooth,
marginally trapped event horizon. We stress that this is not
a curvature singularity (neither s.p. nor p.p. type in the
sense of Ref. [23]), since all curvature scalars for this metric
are regular and, moreover, explicit computation shows that
the full Riemann tensor is everywhere finite in a local
Lorentz frame.8 Instead, rH is a boundary in the Lorentzian
structure of the manifold, a singularity in the causal
structure in the sense of Ref. [24].

IV. LIMITING GEOMETRY

In this section, we will keep the choice in Eq. (23) that
we made in Sec. III D, allowing us to exclude the CTCs
from the geometry; as we saw in Sec. III C, we can drop the
region r < rH from the geometry with impunity. We would
like to investigate the behavior of the metric for r → ∞
and for r → rH.

A. Asymptotic geometry

The metric (1) at large r looks like

ds2 ¼ −dt2 − 2d1dtdϕþ d22dϕ
2 þ d43

r4
dr2; ð25Þ

where d1 ¼ Lj2, d22 ¼ c2L2, and d43 ¼ L4j2
1

4ðj2
2
þc2Þ. Defining

r0 ¼ d23=r, t
0 ¼ tþ d1ϕ, and d24 ¼ d21 þ d22, we have

ds2 ¼ −ðdt0Þ2 þ d24dϕ
2 þ ðdr0Þ2; ð26Þ

which is just the geometry of a flat Lorentzian cylinder,
R1;1 ⊗ S1, of radius d4. In particular, at constant ϕ, this is
simply two-dimensional Minkowski space, and the asymp-
totic causal structure includes null infinity. However, the
time coordinate t0 has a “jump” or “winding” property due
to its dependence on ϕ, as discussed in Ref. [25].

B. Near-boundary geometry

Let us define a near-boundary coordinate x, where
x2 ¼ r−rH

rH
. For small x, the metric becomes

ds2 ¼ −dt2 − 2j2Lx2dtdϕ −
2L3

rH
ðc1 þ j1j2MÞx2dϕ2

−
j22LrHdx

2

2ðc1 þ j1j2MÞ
¼ −dt2 − 2l3x2dtdϕþ l2

1x
2dϕ2 þ l2

2dx
2; ð27Þ

where we eliminated c2 using Eq. (23) and defined

l2
1 ¼ − 2L3

rH
ðc1 þ j1j2MÞ, l2

2¼− j2
2
LrH

2ðc1þj1j2MÞ, and l3 ¼ j2L.

Recalling that c1 ≤ 0, j1j2 < 0, and M ≥ 0, we have
c1 þ j1j2M ≤ 0, and hence the dϕ2 and dx2 terms are
spacelike. The dtdϕ term still induces frame dragging,
but let us consider spatial slices at constant t. The spatial
metric is just

l2
1

l2
2

ðx0Þ2dϕ2 þ ðdx0Þ2; ð28Þ

where we have defined x0 ¼ l2x. This is simply the metric
of a two-dimensional plane with a conical defect. Defining
ϕ0 ¼ l1

l2
ϕ so that the spatial metric is simply ðx0Þ2ðdϕ0Þ2þ

ðdx0Þ2, ϕ0 takes the range 0 ≤ ϕ0 < 2πδ, where

7Note that the conclusion of Ref. [22], which exhibited a class
of metrics equivalent to the Gödel universe, does not apply to our
metric (1), since we will see in Sec. VI A that our class of metrics
is strictly larger than the Gödel solution.

8That is, eμaeνbeρceσdRμνρσ is finite, where the dreibein eμa is
defined as gμν ¼ eμaeνbηab for flat metric η.
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δ ¼ l1

l2

¼ 2

���� c1j1 þ j2M

����: ð29Þ

We could make this conical defect vanish by enforcing
l1 ¼ l2, i.e., δ ¼ 1, in which case we could simply take the
entire surface at r ¼ rH to be a single point, with a flat spatial
metric, albeit with frame dragging present. Without this
condition, we have a conical singularity if we take r ¼ rH
to be identified as a single point. Interpreting the conical
defect as a mass m in a flat background [25,26], we have
m ¼ ð1 − δÞ=4G. Since δ is manifestly positive, we have
m<1=4G, so the universe is not overclosed.When δ>1, this

effective mass is negative. Indeed, m is unbounded from
below; as we increase M, δ can grow without limit, and m
can become arbitrarily large and negative.

V. SYMMETRIES

Let us now consider the symmetries of our metric in
Eq. (1). For a region where NðrÞ > 0 (e.g., r > max r�),
the family of geometries described by Eq. (1) has a Lie
algebra of Killing vectors v each satisfying the Killing
equation ∇ðavbÞ ¼ 0. The basis of this algebra is given by

ua ¼ ð1; 0; 0Þ ¼ ∂t;

ϕa ¼ ð0; 0; 1Þ ¼ ∂ϕ;

χa ¼
ffiffiffiffiffiffiffiffiffiffi
NðrÞ

p �
−
2w3ðrÞ d

dr ðDðrÞ
w2ðrÞÞ

4DðrÞ þ w2ðrÞ sin αϕ;−2α cos αϕ;
d
dr ½4DðrÞ þ w2ðrÞ�
4DðrÞ þ w2ðrÞ sin αϕ

�
;

ψa ¼
ffiffiffiffiffiffiffiffiffiffi
NðrÞ

p �2w3ðrÞ d
dr ðDðrÞ

w2ðrÞÞ
4DðrÞ þ w2ðrÞ cos αϕ;−2α sin αϕ;−

d
dr ½4DðrÞ þ w2ðrÞ�
4DðrÞ þ w2ðrÞ cos αϕ

�
; ð30Þ

where

α ¼ −
2

j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1j2c1 þ c21 þ j21½ðM − 1Þc2 þ j22M�

q
: ð31Þ

The vector ua is the global timelike Killing field we
encountered previously, while the vector ϕa is the angular
Killing field associated with the axial symmetry of the
spacetime. The Killing vectors χ and ψ exist only if α is an
integer, so that χ and ψ are single-valued. That is, for
general values of the parameters ðM; j1j2; c1; c2Þ, the
symmetry algebra is two-dimensional.
If ψ and χ are well-defined periodic Killing vectors,

so that the Lie algebra of symmetries is four-dimensional,
then α ¼ n, i.e.,

2j1j2c1 þ c21 þ j21½ðM − 1Þc2 þ j22M� ¼ n2j21
4

ð32Þ

for some integer n. In that case, we can reach any spacetime
point in the connected region where NðrÞ > 0 using these
Killing vectors, by moving in t using ua, in ϕ using ϕa, and
in r using χa or ψa in combination with ua and ϕa. Hence,
as in the Gödel metric, the isometry group acts transitively
and the spacetime region for NðrÞ > 0 is homogeneous.
Thus, if Eq. (32) is satisfied but not Eq. (23), so that CTCs
extend to the region where NðrÞ is positive, the spacetime
is everywhere vicious outside the boundary, with CTCs
through every point (so the Cauchy horizon disappears).
We will discuss the relationship between Eq. (1) and the
Gödel metric further in Sec. VI A.

VI. SPECIAL CASES

Let us now compute some special cases and limits of
Eq. (1) that are of physical interest, including the choice of
parameters that leads to the Gödel metric and the behavior
of the geometry in theΛ→0, nonspinning, andM→0 limits.

A. Relationship to Gödel universe

Choosing

M ¼ 1

2
;

j1 ¼ −2;

j2 ¼ 0;

c1 ¼ 1;

c2 ¼ 0; ð33Þ
and defining new unitless radial and time coordinates
r0 ¼ arcsinh

ffiffiffiffiffiffiffiffi
L=r

p
and t0 ¼ t=

ffiffiffi
2

p
L, our metric in Eq. (1)

reduces to the metric of the Gödel universe in 2þ 1
dimensions [1,23]:

ds2 ¼ 2L2½−dt02 þ dr02 − ðsinh4r0 − sinh2r0Þdϕ2

þ 2
ffiffiffi
2

p
sinh2r0dϕdt0�: ð34Þ

Hence, our metric constitutes a generalization of the
Gödel metric. Unlike the Gödel universe, in Eq. (1) the
general class of metrics (i) corresponds to a matter density
∝ M that is a free parameter, rather than being pinned to
the cosmological constant, (ii) has two distinct angular
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momentum parameters j1 and j2, allowing the spin of the
dust to be nonuniform and even reverse direction at different
radii, and (iii) can have apparent horizons for certain choices
of the parameters.
One can alternatively view the Gödel solution not as

simply describing a dust with negative cosmological
constant, but instead as describing arbitrary matter content
for which the Einstein tensor in a local Lorentz frame
satisfies Gab ∝ diagð1; 1; 1Þ. For example, describing a
perfect fluid with arbitrary pressure, plus a cosmological
constant, in order to correspond to the Gödel solution one
must satisfy (in 8πG ¼ 1 units) ρ − p ¼ −2Λ. That is, in
the Λ ¼ 0 case, the Gödel universe corresponds to a stiff
fluid with ρ ¼ p [27]. Similarly, one can view the energy-
momentum source for our metric in Eq. (1) as describing an
arbitrary perfect fluid plus cosmological constant for which
the Einstein tensor is L2Gab ¼ diagð4M − 1; 1; 1Þ in a local
Lorentz frame, that is, ρþ Λ ¼ 4M−1

L2 and p − Λ ¼ 1
L2.

Taking the cosmological constant to vanish, the equa-
tion-of-state parameter p=ρ ¼ 1

4M−1 corresponds to a stiff
fluid when M ¼ 1

2
in accordance with Eq. (33), a cosmo-

logical constant when M ¼ 0, phantom energy when
0 < M < 1

4
, radiation whenM ¼ 3

4
, and dust whenM → ∞.

It will be illuminating to impose various energy con-
ditions on this combined perfect fluid [28]. Imposing the
null energy condition, Rabkakb ≥ 0 for all null ka, we
require ρþ p ≥ 0, or equivalently, M ≥ 0. Similarly, the
strong energy condition, Rabtatb ≥ 0 for all timelike ta,
implies ðD − 3Þρþ ðD − 1Þp ≥ 0 in D spacetime
dimensions as well as ρþ p ≥ 0, so in our case it merely
stipulates thatM ≥ 0. Imposing the weak energy condition,
Gabtatb ≥ 0 for all timelike ta, we require ρ ≥ 0 and
ρþ p ≥ 0, or equivalently, M ≥ 1

4
. Finally, imposing the

dominant energy condition that−Ga
btb be causal and future

directed for all causal, future-directed ta, we have ρ ≥ jpj,
so M ≥ 1

2
.

Since Eq. (33) does not satisfy Eq. (23), the Gödel metric
exhibits the CTCs for which it is known. While the Gödel
universe is, in fact, totally vicious—i.e., it has CTCs through
every point, since all points are equivalent as a consequence
of its larger algebra of Killing vectors—this is not the case in
general. That is, since for general choices of coefficients in
our metric (1) the tuning in Eq. (32) is not satisfied,
homogeneity is broken, and we have no reason to expect
CTCs for r > rC. Moreover, if we impose the tuning (32),
so that the metric for r > max r� is homogeneous, we can
sequester the CTCs behind the boundary if we simulta-
neously impose Eq. (23). In that case, homogeneity guar-
antees that there are no CTCs outside the boundary. The
requirements of Eqs. (32) and (23) can simultaneously be
satisfied by first imposing Eq. (23) and then requiring
2jc1 þ j1j2Mj ¼ −j1n.
With the choice of parameters (33), the parameter α in

Eq. (31) is simply 1, so the Gödel metric has four Killing

vectors as expected, with Eq. (32) satisfied with n ¼ 1.
Note that the converse is not necessarily true, however:
satisfying α ¼ 1 does not imply that the metric is diffeo-
morphic to the Gödel universe, since Eq. (32) does not
pin the dust density to the cosmological constant (i.e.,
set M to 1=2) as is the case in the Gödel metric.

B. Λ → 0 limit

For fixed ðM; j1; j2; c1; c2Þ, the Λ → 0 (i.e., L → ∞)
limit of the metric described in Eqs. (1) and (2) is singular.
However, let us define the rescaled parameters

ι1 ¼ L3j1;

ι2 ¼ Lj2;

κ1 ¼ L3c1;

κ2 ¼ L2c2;

μ ¼ M
L2

; ð35Þ
and then take the L → ∞ limit, holding ι1, ι2, κ1, κ2, and μ
constant. In this case, the metric becomes

ds2¼−dt2−2ι2dtdϕþΔðrÞdϕ2þ ι21
4r4ðΔðrÞþ ι22Þ

dr2;

ð36Þ

where

ΔðrÞ ¼ −
ι21μ

r2
þ 2κ1

r
þ κ2: ð37Þ

This metric satisfies Einstein’s equation with zero cosmo-
logical constant, for a dust with uniform density 4μ in the
corotating frame,

Rab −
1

2
Rgab ¼ 4μuaub: ð38Þ

Defining the winding time coordinate t̄ ¼ tþ ι2ϕ as in
Sec. IVA [25], a new periodic coordinate φ ¼ ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ ι22

p
,

and a radial coordinate ρ ¼ jι1j=2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ ι22

p
, the metric

(36) becomes

ds2 ¼ −ðdt̄Þ2 þ fðρÞdφ2 þ dρ2

fðρÞ ; ð39Þ

where

fðρÞ ¼ 1 − 4μρ2 þ 4κ1
jι1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ ι22

p ρ: ð40Þ

We note, remarkably, that if κ1 ¼ 0, then the spatial sector
of Eq. (39) is simply a Euclideanized two-dimensional
de Sitter (dS) space in static slicing; to make the analogy
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precise, one would require κ2 þ ι22 ¼ 1=4μ, so that the
periodicity in φ (the Wick-rotated time coordinate of the
dS2 space) matches the dS length.

C. Nonspinning limit

The geometry described in Eqs. (1) and (2) must always
be spinning; there is no way to smoothly take the joint j1,
j2 → 0 limit while keeping the metric nonsingular.
Specifically, the form of NðrÞ and DðrÞ dictate that we
cannot take j1 → 0.
However, we can set j2 to zero. In this case, the dtdϕ term

in the metric asymptotes to zero for large r. The vorticity
tensor (8) for the timelike congruence along ∂t then satisfies
limr→∞Ωab ¼ 0, but the twist one-form for the null geo-
desics described in Sec. III A satisfies limr→∞ωa ¼
ð0; 0;∓ ffiffiffiffiffi

c2
p Þ, where the þ case occurs if and only if j1

is negative (and vice versa). Thus, even when we send j2 to
zero, information about the spin of the dust is imprinted on
the twist of null geodesics at arbitrarily large r, even though
the frame-dragging wðrÞ asymptotically vanishes.

D. Vacuum limit

Let us consider the vacuum limit of the geometry
described in Eq. (1). Taking the gas density (∝ M) to zero,
we find that the Cauchy horizon is located at

rC ¼ −2
c1
c2

L: ð41Þ

For r > rC, let us define

r̃ ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c1L
r

þ c2

r
; ð42Þ

so DðrÞdϕ2 → r̃2dϕ2. If we continue to impose the con-
dition (23) (which has simply become c2=j2 ¼ 2c1=j1 for
M ¼ 0) in order to sequester the CTCs behind a boundary,
then the metric becomes

ds2 ¼ −dt2 −
j1r̃2

c1L
dtdϕþ r̃2dϕ2 þ

�
4c21
j21

þ r̃2

L2

�−1
dr̃2:

ð43Þ

The boundary is located at r̃ ¼ 0, so the CTC region behind
the boundary corresponds to the analytic continuation of r̃2

to negative values; cf. Ref. [24].
Next, we can rescale the radial coordinate again, define

r̂ ¼ j j1
2c1

jr̃, and also define ϕ̂ ¼ 2c1
j1
ϕ, 0 ≤ jϕ̂j < j 4πc1j1

j, so

ds2 ¼ −dt2 −
2r̂2

L
dtdϕ̂þ r̂2dϕ̂2 þ

�
1þ r̂2

L2

�−1
dr̂2: ð44Þ

We can turn Eq. (44) into a metric that locally corresponds
to AdS3 in global coordinates by defining ϕ̄ ¼ ϕ̂ − t

L, in
terms of which we have

ds2 ¼ −
�
1þ r̂2

L2

�
dt2 þ

�
1þ r̂2

L2

�−1
dr̂2 þ r̂2dϕ̄2: ð45Þ

If t is allowed to take values in all of R, then ϕ̄ spans the
real numbers and the metric in Eq. (45) describes a covering
space of AdS3 with decompactified time and angular
coordinate. To correspond to AdS3, we should make t
periodic, 0 ≤ t < 2πL. For consistency, we can then take
2c1=j1 ¼ 1 so that ϕ̂ ∈ ½0; 2πÞ, and we are left with the
global AdS3 geometry. We note that if 2c1=j1 is any integer
n, we have ϕ̂ ∈ ½0; 2πnÞ, which (for appropriate periodicity
in t) corresponds simply to an n-fold cover of AdS3, which
we may quotient by Zn to recover the single copy of the
geometry. For any n, Eq. (23) and our M ¼ 0 choice
together then imply that Eq. (32) is satisfied, enhancing the
symmetry algebra (which is expected, since AdS3, in fact,
possesses six Killing vectors).
Hence, we find that in the CTC-free case where we

impose Eq. (23), our metric (1) obeys the extension of
Birkhoff’s theorem to 2þ 1 dimensions [29], which states
that any solution of the (2þ 1)-dimensional vacuum
Einstein equations with a negative cosmological constant
that is free of CTCs must correspond to AdS3, a BTZ
geometry [2], or a Coussaert-Henneaux [30] solution.

VII. DISCUSSION

The metric in Eq. (1) contains six free parameters: a
length L and five unitless constants ðM; j1; j2; c1; c2Þ.
Choosing a value of L effectively sets the length scale
of the geometry (relative to the three-dimensional Newton’s
constant). The remaining five parameters specify a five-
dimensional space of geometries that, for general choices of
the constants, remain distinct under diffeomorphisms. The
parameter M can be measured in the geometry through the
value of Rtt, while c2 can be measured by the proper
circumference of the spacetime at large r. Moreover, the
existence and location of the zeros of NðrÞ, DðrÞ, and wðrÞ
(i.e., r�, rC, and r0, respectively) allow various combina-
tions of the remaining three parameters to be measured in
the spacetime. These locations are all physically mean-
ingful: the rr component of the metric flips sign at r�,
CTCs appear at rC, and the frame dragging vanishes at r0.
The relative order and proper distances among these
locations and the axis of rotation allow us to conclude
that ðM; j1; j2; c1; c2Þ indeed specifies a five-dimensional
family of globally inequivalent geometries.
This paper leaves multiple interesting avenues for further

research. We leave for future work the subjects of the
dynamical stability of these geometries and their formation
from the collapse of a cloud of dust. The question of what
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other three-dimensional geometries exhibit an analogue of
the bouncing boundary discussed in Sec. III C is also a
compelling one. Further, it would be interesting to study the
causal structure of the c1 > 0 case mentioned in Sec. III A,
in which an apparent horizon appears at radius rm andDðrÞ
asymptotically decreases. The appearance of the analyti-
cally continued de Sitter metric in Sec. VI B also merits
investigation; the double Wick rotation is reminiscent of
the “bubble of nothing” solution of Ref. [31]. Finally, an
examination of the spatial geodesics of this class of metrics,
how they can be embedded within a surrounding vacuum to
produce an asymptotically anti–de Sitter geometry, and a
subsequent computation of their Ryu-Takayanagi surfaces
[32] are well-motivated future directions from a holo-
graphic perspective.
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APPENDIX: GAUSSIAN DUST SOLUTION

In this Appendix, we discuss an additional, apparently
new solution of the Einstein equations in 2þ 1 dimensions.
Although not globally a member of the family of metrics
presented in Eqs. (1) and (2), we will find that it is related in
a certain limit. Consider a dust solution to the Einstein
equations with zero cosmological constant,

Rab −
1

2
Rgab ¼ mðrÞuaub; ðA1Þ

with vector ua ¼ ∂t as before. Here, let us take the density
mðrÞ to have a Gaussian profile,

mðrÞ ¼ 1

a2
e−r

2=a2 ; ðA2Þ

for some length parameter a. The metric for the solution is

ds2 ¼ −dt2 − 2adtdϕþ ðr2 − a2Þdϕ2 þ er
2=a2dr2: ðA3Þ

The solution has a two-dimensional isometry algebra
generated by Killing vectors ua and ϕa. Since ua∇aub¼0,
ua generates a timelike congruence as before, for which we
find that the expansion θ, shear ς, and vorticityΩ all vanish.
The solution is clearly distinct from Gödel’s universe [1]
(since the dust density is not uniform) and van Stockum’s
solution [15] (since the dust density is finite in the closure of
the geometry and goes to zero at the boundary). Such a
rotating dust solution, with higher density in the center and
exponentially falling density at large distances, may be of
astrophysical use if extended to four dimensions. In a sense,
this solution may be thought of as corresponding to a
(2þ 1)-dimensional galaxy. However, the solution pos-
sesses CTCs for r < a.
Taking the small-r limit of the rr component of the

metric in Eq. (A3), we can write, for r ≪ a,

ds2 ≃ −dt̂2 þ r2dϕ2 þ dr2

1 − r2

a2
; ðA4Þ

where we define t̂ ¼ tþ aϕ. The metric (A4) is a member
of the family of Λ ¼ 0 solutions discussed in Sec. VI B;
if we set the parameters in Eq. (35) to μ ¼ 1=4a2,
κ1 ¼ ι2 ¼ 0, κ2 ¼ a2, write t in Eq. (36) as t̂, and send
r in Eq. (36) to jι1j=2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − r2

p
, we recover Eq. (A4).

Thus, as we would expect, the small-r (and thus nearly
constant density) limit of the metric (A3) corresponds to a
member of the family of uniform-density rotating dust
solutions in Eq. (1).
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