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LIGO’s detection of gravitational waves marks a first step in measurable effects of general relativity on
quantum matter. In their current operation, laser interferometer gravitational-wave detectors are already
quantum limited at high frequencies, and planned upgrades aim to decrease the noise floor to the quantum
level over a wider bandwidth. This raises the interesting idea of what a gravitational-wave detector—or,
more generally, an optomechanical system—may reveal about gravity beyond detecting gravitational
waves from highly energetic astrophysical events, such as its quantum versus classical nature. In this paper
we develop a quantum treatment of gravitational waves and their interactions with the detector. We show
that the treatment recovers known equations of motion in the classical limit for gravity, and we apply our
formulation to study the system dynamics, with a particular focus on the implications of gravity
quantization. Our framework can also be extended to study alternate theories of gravity and the ways in
which their features manifest themselves in a quantum optomechanical system.
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I. INTRODUCTION

With LIGO’s detection of gravitational waves [1], there
has been interest in using gravitational-wave detectors
(including, e.g., VIRGO [2] and KaGRA [3]) to study
not only astrophysical sources, but the nature of gravity
itself, including modified theories [4–6] and quantum
gravity [7–9]. There are also important questions related
to the quantum nature of the LIGO probe in terms of the
implications for its sensitivity as a measurement device
[10–13], as well as the possibility of it being a test bed to
study the interplay of quantum mechanics and gravity.
However, up to this point, the quantum interaction

between gravitational waves and a LIGO-like (optome-
chanical) system has not been carefully studied from a
general-relativistic point of view, despite the interest in
using optomechanical systems to study low-energy gravity
effects. To date, the literature comprises mainly theoretical
studies of its interaction with classical Newtonian gravity
[14] and phenomenological models of quantum or semi-
classical gravity [15–18]. There are also general-relativistic
quantum formulations of weak gravity interactions with
bosonic fields [19–21], but these treatments do not easily
extend to more complex matter systems. In particular,
Oniga et al. [22] derived the master equation for a bound
scalar field, similar to an optical cavity, but in crucial
contrast to LIGO’s operation, did not allow for the
boundary length to change. Furthermore, because these
treatments focus on the decoherence of quantum matter,
they take the view of the gravitational field as an

equilibrated bath in which the effects of interaction per-
turbations cannot be observed.
In this paper, we develop a canonical formulation of

linear quantum gravity from Einstein’s theory of general
relativity interacting with a quantum LIGO-like system
(probe) in processes involving gravitational waves (GWs),
which in principle can be extended to study interactions of
quantum LIGO with GWs from other gravitational theories
derivable from the action principle, such as scalar-tensor
theories [23]. In contrast to the conventional role of GWs as
a classical and predetermined signal in LIGO, as well as
treatments of quantum gravity as a thermal bath coupled to
quantum matter, our formulation treats both the matter
probe and the GW field on equal footing with dynamical
degrees of freedom (d.o.f.) in an enlarged Hilbert space.
Importantly, this treatment allows the matter probe and GW
field to act mutually on each other, as compared to the
previous scenarios. This paper focuses their dynamics, and
in particular examines the testable physical implications of
GW quantization. We find that the probe → GW field
direction of interaction recovers Einstein’s field equations
for the generation of GWs, but where the stress-energy
tensor Tμν is quantum. Conversely, the GW → probe
direction of interaction recovers the same equations for
LIGO’s output field in the presence of a classical GW
signal, as was calculated previously [24–27].
That the formalism in the classical gravity limit recovers

well-known equations of GW detection and generation
provides a check on its validity, but it additionally predicts
effects for which the quantum nature of the GW field
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becomes essential. Specifically, we find that the mutual
interaction leads to quantum coherent backaction effects on
the probe in such a way that requires the presence of
quantum GW fluctuations in order to preserve commuta-
tion relations. Furthermore, these backaction effects can be
shown to be analogous to the radiation reaction damping
that comes from classical corrections to the Newtonian
potential [28]. This suggests that in order to include the
effects of weak GR corrections to Newtonian potential on
quantum matter consistently and without violating canoni-
cal quantization, those perturbations must themselves be
quantum.
As an interpretational tool, our formulation offers an

alternative (though physically equivalent) perspective of
the detection process—in previous treatments that consid-
ered test masses as quantum objects, LIGO’s GW detection
[24–27] was viewed in the Newtonian gauge, where the
GW signal is understood to act as a tidal force on LIGO’s
cavities’ mirrors (test mass), whose motion then modulates
the field inside the cavity. Most treatments using the
Newtonian gauge were valid in the long-wavelength
approximation, where the wavelength of the gravitational
wave is much greater than the interferometer’s arm length,
although it has been shown that such treatments can be
extended to full validity, such that they are equivalent to
results in the traceless-transverse (TT) gauge [29].
In our formulation in the TT gauge, the GWs interact

directly with the cavity field—similar to earlier treatments
of LIGO, e.g., that given by Ref. [30]. While all measurable
quantities are the same in either gauge, the latter facilitates
an intuitive and straightforward derivation of the probe’s
ultimate quantum-limited measurement sensitivity, known
as its quantum Cramer-Rao bound (qCRB) [10–13]. This
bound has interesting relations with GW radiation and
decoherence, which will be discussed in an accompany-
ing paper.
This paper is divided into the following sections:

Section II provides a description of the physical system
along with definitions and notations used in this paper.
Section III expounds our theoretical framework whereby
we develop a Hamiltonian formulation of the interacting
system, which we apply in Secs. IV and V to separately
study the GW field and probe dynamics in the presence of
their mutual interaction.

II. DESCRIPTION OF SYSTEM

In this section, we shall describe a second-generation
laser interferometer gravitational-wave detector, like those
in LIGO, VIRGO, and KaGRA.

A. The optomechanical system

Let us consider a Michelson interferometer containing a
Fabry-Perot cavity in each of its two arms shown in Fig. 1a,
which additionally has a power-recycling mirror to increase

the power circulating inside the arm cavities, as well as
a signal-recycling mirror to increase the bandwidth of
detection [1].
It has been shown that the antisymmetric mode of the

interferometer which carries the GW signal and the
quantum noises, including the power- and signal-recycling
and resonant sideband extraction enhancements [31–35],
can be mapped to a single detuned Fabry-Perot cavity with
an effective input mirror and a perfectly reflective end
mirror shown in Fig. 1b [36]. This introduces errors of
OðlSRC=LÞ for signal-recycling cavity length lSRC and
cavity arm length L, and so the assumption is valid when
lSRC ≪ L, which is the case in experiment.
Additionally, for simplicity, we attribute the effects of

radiation pressure to the end mirror alone, which is possible
if we assume that the input mirror is infinitely massive, or
by reducing the end mirror to half its actual mass, which
introduces errors of maxfΩL=c; Tg for input transmissivity
T [36]. In this way, we can assume that the input mirror
falls along its geodesic. Then, in the traceless-transverse
gauge, if we choose our coordinate frame so that its origin
coincides with the position of the input mirror at some point
along its worldline and its coordinate velocity is initially
zero, then the coordinates of the input mirror are fixed
in time.
Finally, we choose the cavity axis to be the x direction,

along which we constrain the mirror motion described by
its center-of-mass coordinate, thereby allowing us to model
the mirror as a massive point particle (valid for tm ≪ λGW
for mirror thickness tm). In reality, the LIGO mirrors are
suspended pendulums, but the error in making this
assumption is Oðq=lpÞ, where q is mirror displacement
due to GW and radiation pressure and lp is the pendulum
length. In summary, with the stated errors, the signal and
quantum noise analysis for the LIGO Michelson interfer-
ometer can be mapped onto that for a single one-dimen-
sional Fabry-Perot cavity and all the radiation pressure
effects attributed to the end mirror. We choose the origin of
our coordinate system to be the position of the input mirror,
which means that it is also not affected by metric peturba-
tions, and we can therefore hold this coordinate fixed. We
now have mapped LIGO to a basic optomechanical
system [37].

B. Inclusion of gravity

To describe space-time geometry, we assume weak
metric perturbations about flat spacetime, such that the
metric is given by gμν ¼ ημν þ hμν, where ημν is the
Minkowski metric with signature ð−þþþÞ and hμν is a
small perturbation which we treat up to linear order.
Although LIGO operates in Earth’s weak gravitational
field, this is a constant longitudinal component whose
effect on the test masses is balanced directly by the tension
in the pendulums. Since we only consider linear gravita-
tional perturbation, it is safe to ignore Earth’s gravity
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because it does not couple to gravitational-wave contribu-
tions to hμν at this order.

C. Terminology

Throughout this paper and unless otherwise noted, greek
indices μ, ν, ρ, etc. (with the exception of λ) denote
spacetime components of vectors and tensors; latin indices
i, j, k, etc. denote purely spatial components; λ denotes
graviton polarizations; boldface form v represents 3-vectors;
and v⃗ represents 4-vectors. We also use Einstein subscript
summation notation where contraction is with respect to the
background Minkowski metric (e.g., MμνMμν). Repeated
spatial indices denote summation regardless of upper or
lower position (e.g., vivi).
For terminology, “optical mode” refers to the optical

field inside the Fabry-Perot cavity; “test mass” refers to the
end mirror of the cavity; “probe” refers to the optome-
chanical system comprising the optical mode, the test mass,
and their interaction; “system” without a modifier refers to
the GW field and the probe together; “pump field” refers to

the optical input to the cavity; and “output field” refers the
cavity output on which measurement is performed.

III. THEORETICAL FRAMEWORK

To study the interaction of weak gravity with macro-
scopic matter systems in finite time, we can use the
canonical quantization formulation, even though a full
quantum theory of gravity is not yet available [38].
Canonical quantization can be quite straightforward in
systems with well-defined physical coordinates and veloc-
ities that appear in the Lagrangian in quadratic form, but
here there are two difficulties.
First is the fact that gravity has coordinate (or gauge)

d.o.f., which is mathematically reflected in the singularity
of its Lagrangian. This means a physical state can be
represented by multiple points that form a trajectory in
phase space. Dirac is credited with developing the
Hamiltonian formulation of such gauge theories, in which
the degeneracies in phase space due to gauge d.o.f. can be
eliminated by restricting the representation to a hypersur-
face which itself is foliated by gauge orbits. Quantization
can proceed in the usual way by ignoring the existence of
gauge freedom, but physical quantum states must satisfy
constraint conditions which ensure that the physical Hilbert
space slices across the gauge orbits [39]. Applying this
approach to linearized gravity, Gupta derived a Hamiltonian
for a puregravitational field and the constraint conditions that
must be satisfied by physical gravitational states. He also
demonstrated that a pure gravitational field has only two
physical gravitons, althoughmore exist invirtual states in the
presence of interaction [40]. However, we can greatly
simplify the quantization procedure by noting that, since
we are only interested in studying leading-order interactions
involving incoming or outgoing gravitons, we can restrict the
gravitational field to its two physical polarizations at the level
of the action, eliminating its longitudinal and timelike
components, which obviates the need for constraint con-
ditions on physical states. While such a method would not
give the correct result for interactions mediated by virtual
gravitons, i.e., self-gravity of the detector, it is appropriate for
studying leading-order interactions between the interferom-
eter and gravitational waves.
The second issue lies in obtaining the Hamiltonian for

the optomechanical interaction between the test mass and
the optical mode. To our best knowledge, to derive this
interaction, there currently only exist procedures which
assume that the equations of motion for a cavity are known
a priori, whereupon a suitable Lagrangian producing those
equations is constructed [41]. However, since our purpose
is to study the unknown behavior of an interacting system,
the equations of motion must follow from the action instead
of preceding it, and we develop an alternative approach so
that the equations for all dynamical quantities of the system
follow consistently from a canonical formulation beginning
with the action.

FIG. 1. Schematic of a second-generation laser interferometer
gravitational-wave detector. (a) The full Michelson interferom-
eter in its current configuration with power- and signal-recycling
mirrors (PRM and SRM) and the two Fabry-Perot arm cavities.
Here L denotes the length of the arm cavity, and lSRC denotes the
length of the signal-recycling cavity (shown here not to scale).
The arm cavities’ input mirror (ITM) has transmissivity T, and its
end mirror (ETM) is perfectly reflective with R ¼ 1. For low
frequencies Ω of the GW wave such that ΩL=c ≪ 1, and for
T ≪ 1, lSRC ≪ L, the quantum inputs and outputs of the
schematic in (a) can be mapped to those of a single one-
dimensional Fabry-Perot cavity as shown in (b).

QUANTUM INTERACTIONS BETWEEN A LASER … PHYS. REV. D 98, 124006 (2018)

124006-3



A. Gauge fixing for gravitational field

We begin with the linearized Einstein-Hilbert action for
the metric in the harmonic gauge with ∂μhμν ¼ 0, and write

SEH ¼ −
c4

32πG

Z
d4x

�
1

2
∂μhαβ∂μhαβ −

1

4
∂μh∂μh

�
; ð1Þ

where h ¼ hμμ is the tensor trace. As discussed previously,
to leading order the interactions between the interferometer
and gravitational waves only involve the physical polar-
izations of the field, which we have the freedom to express
in any gauge. Choosing the traceless-transverse (TT)
gauge, we eliminate any timelike component of the field
and expand its spatial components in the Fourier domain as

hTTij ðt;xÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p τλijðkÞhλðt;kÞeik·x; ð2Þ

where the index λ ¼ þ;× denotes the polarization. The
tensor τλijðkÞ is the unit tensor for the k-mode component,
and it satisfies orthogonality, transverse, and traceless
conditions:

τλijτ
λ0
jk ¼ δλ;λ0δik; k · τλðkÞ ¼ 0; Tr½τλ� ¼ 0: ð3Þ

Finally, the Einstein-Hilbert action can be rewritten as

SEH ¼ c4

32πG

Z
dt

Z
1
2

d3k

�
1

c2
j _hλðt;kÞj2 − k2jhλðt;kÞj2

�

≡
Z

dt
Z

1
2

d3kLð0Þ
GWðt;kÞ: ð4Þ

We remark that h is related to h� by

h�λðt;kÞτλijðk̂Þ ¼ hλðt;−kÞτλijð−k̂Þ: ð5Þ

Therefore, summing hλτλij over all of k space is physically
equivalent to summing hλτλij and h�λτ

λ
ij over half of k space.

The latter method allows us to treat hλ and h�λ as independent
d.o.f., in a similar approach to that of Ref. [42] for the
Hamiltonian formulation of electrodynamics.

B. Optomechanical interaction

In this section, we briefly summarize the first-principles
derivation of the optomechanical interaction between the
optical mode and test mass from the electromagnetic (EM)
field action. The details of the derivations, including
relativistic corrections and extension to multimodes, will
be published in an accompanying paper. (Note that this
derivation does not follow the work of Law [41] because,
due to the presence of other interactions, we cannot posit
a priori equations of motion for the test mass and optical
mode as is done in Ref. [41].) For simplicity, we present the

derivation in Minkowski space, although adding the metric
perturbation to our analysis is straightforward. As we will
show, the optomechanical interaction is hidden in the
spatial boundary conditions of the EM field. With the
appropriate coordinate transformation, the boundary con-
dition appears as an explicit term in the action instead of
being embedded in the integration limits. We consider the
ideal case, where the cavity has perfectly reflective boun-
daries R ¼ 1, although we will relax this assumption later
on to allow transmission of the pump and output fields.
Let us first write down the EM action in Minkowski

space, denoting the EM vector potential by Aμ. Since there
are no charged currents, we can apply the Coulomb gauge
and set the time component of the vector potential to zero,
or A0 ¼ 0, and write

SηEM ¼ 1

2μ0

Z
Vcav

d4x

�
1

c2
_A2
j − ð∂iAjÞ2

�
¼

Z
dtLη

EM; ð6Þ

with the η superscript denoting Minkowski space.
Importantly, Vcav specifies the spatial limits of the EM
field contained inside the Fabry-Perot cavity. We can
approximate this field as having a constant mode profile
transverse to the cavity axis, so that only the part of the
field which propagates along the cavity axis is dynamical.
The vector potential is then separable as Ajðt;xÞ ¼
uðy; zÞAjðt; xÞ, where j can only take values of y, z to
satisfy the Coulomb gauge condition. Then, defining the
mode volume U ¼ R

dy
R
dzjuðy; zÞj2, the Lagrangian Lη

EM
in Eq. (6) can be written as an integral along the cavity axis:

Lη
EM ¼ U

2μ0

Z
L0

0

dx

�
1

c2
_A2
j − ∂xA2

j

�
; ð7Þ

where L0 is the coordinate length of the cavity, or
equivalently the position of the test mass, and is a
dynamical quantity. The optomechanical interaction
derives from this dynamical boundary condition, which
comes from the physical constraint that the EM field must
vanish at the cavity’s perfectly reflecting mirrors, such that
Ajðt; 0Þ ¼ Ajðt; L0Þ ¼ 0. We perform the following coor-
dinate transformation so that the test-mass position appears
explicitly in the Lagrange density (note that by “coordinate
transformation,” we are referring to the coordinates which
themselves and whose velocities appear in the Lagrangian,
and not spacetime coordinates):

Ajðt;xÞ ¼
c2

ω0L0ΦjðtÞ sinðκxÞ; κ¼ nπ
L0 ; n∈Z; ð8Þ

where ω0 ¼ nπc=L is the resonant frequency of the cavity
at its equilibrium length L. The coordinate transformation
of Eq. (8) automatically satisfies the boundary conditions
and separates the spatial part of the field, which is subject to
a time-dependent boundary condition from the naturally
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time-varying part. The coordinate ΦjðtÞ is no longer a field
defined at each point in spacetime, but now represents
excitations of the spatially extended optical mode. The
collection of all modes ΦjðtÞ with different values of n
contains the same information as Ajðt; xÞ, but in this paper
we only consider a single mode which is closest to the
pumping frequency.
Then, defining q ¼ L0 − L to be the motion of the test

mass about equilibrium and substituting Eq. (8) into Eq. (7),

to leading order in q=L, we find Lη
EM ¼ Lð0Þ

EM þ LOM, where

Lð0Þ
EM ¼ U

2μ0

�
1

2ω0

_Φ2
jðtÞ −

ω0

2
Φ2

jðtÞ
�
; ð9aÞ

LOM ¼ U
2μ0

ω0q
L

Φ2
jðtÞ; ð9bÞ

where summation over j (through y and z) is implied.
The test-mass position q now appears explicitly in the
Lagrangian, and we also find the optomechanical interaction
term LOM.

C. Interaction between GWs and probe

The probe consists of the optical mode and the test mass,
whose actions in perturbed spacetime can be written as
Sprobe ¼ SηEM þ ShEM þ Sq, where S

η
EM was the EM action in

Minkowski space and was defined in Eq. (6), and ShEM
is the first-order term in the expansion of SEM ∝
−
R
d4x

ffiffiffiffiffiffi−gp
gαμgβνFμνFαβ with respect to hμν, which we

write below:

ShEM ¼ −
1

2μ0

Z
Vcav

d4xhij

�
1

c2
_Ai

_Aj − ð∂iAkÞð∂jAkÞ

− ð∂kAiÞð∂kAjÞ
�
¼

Z
dtLh

EM: ð10Þ

Similarly, we expand the action for the test mass
Sq ¼ −mc

R
dτ to leading order in hμν and obtain

Sq ¼
m
2

Z
dt½ _x2

q þ hijðt;xqÞ_xiq _xjq� ¼
m
2

Z
dt _q2; ð11Þ

where to obtain the second equality we have ignored terms
ofOðv2=c2Þ as well as the test mass’s d.o.f. of motion in the
y, z directions, which are noninteracting and trivial. We

write the corresponding Lagrangian as Lð0Þ
q ¼ m _q2=2.

Thus, we find that the interaction between the GW and
the probe only concerns the EM field, and, denoting this
interaction by Lint

GW, we have L
int
GW ¼ Lh

EM. Substituting hij
in Eq. (10) with its expansion into transverse-traceless
Fourier modes given in Eq. (2), and performing the same
coordinate transformation to the EM vector potential as
given in Eq. (8), we obtain

Lint
GW ¼ −

U
2μ0

Z
1
2

d3k½JλijðkÞhλðt;kÞ þ Jλ�ij ðkÞh�λðt;kÞ�

×

�
1

2ω0

_Φi
_Φj −

ω0

2
ðΦiΦj þ δixδjxΦ2

kÞ
�
; ð12Þ

where JλijðkÞ is a GWmode profile function and is given by

JλijðkÞ ¼
−iðeikxL − 1Þ

kxL

τλijðkÞffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p : ð13Þ

The factor of −iðeikxL − 1Þ=kxL derives from the varia-
tion of the gravitational wave over the spatial extent of the
optical mode. For long-wavelength GWs such as those
from LIGO’s astrophysical sources, kxL ≪ 1, and JλðkÞ
simply reduces to the interacting polarization tensor com-
ponent. However, in order to study backaction due to GW
radiation from LIGO itself, one must include this factor to
ensure convergence, since the backaction effect requires
that radiated GW vary over the length of the cavity.

D. Canonical quantization

The full Lagrangian for the system is then

L ¼ Lð0Þ
q þ Lð0Þ

EM þ
Z

dt
Z

1
2

d3kLð0Þ
GWðt;kÞ þ LOM þ Lint

GW:

ð14Þ

We then proceed with canonical quantization, first
performing a Legendre transform to identify conjugate
pairs fhλðkÞ;Π�

λðkÞg; fΦi;Pig; fq; pg. We remark that
although the photon polarizations appear coupled in
Lint
GW in Eq. (12), the interactions between the different

polarizations occur on much shorter timescales than those
of interest. To show this, and also to express the
Hamiltonian in more familiar variables, we perform the
following canonical transformation on the EM conjugate

pair by defining αðiÞ1 ; αðiÞ2 such that

Φi ¼
ffiffiffiffiffiffiffi
2μ0
U

r
½αðiÞ1 cosω0tþ αðiÞ2 sinω0t�; ð15aÞ

Pi ¼ −

ffiffiffiffiffiffiffi
U
2μ0

s
½αðiÞ1 sinω0t − αðiÞ2 cosω0t�; ð15bÞ

where the superscript (i) represents photon polarization.
Anticipating that the optical mode is driven by a resonant
pump field, here we have separated the fast time depend-
ence of the pump which is rotating at ω0 in the tuned
configuration, thereby going into the interaction picture
with respect to the optical carrier frequency. In this
corotating frame we find terms oscillating at 2ω0. Since
these effects occur on much shorter timescales than the
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interaction dynamics, for weak interactions we ignore them
under the rotating wave approximation (RWA) [43], and we
find that the two photon polarizations interact with the test
mass and GWs independently and in identical ways. We
therefore suppress the photon polarization superscript and

obtain the Hamiltonian H ¼ Hð0Þ
q þHð0Þ

GW þHOM þHint
GW.

Here Hð0Þ
q and Hð0Þ

GW are the free Hamiltonians for the test
mass and metric perturbation, respectively; HOM ¼
−ω0ðα̂21 þ α̂22Þq̂=2L is the optomechanical interaction;
and Hint

GW is the interaction between the GW field and
the probe, given by

Hint
GW ¼ −

ω0

4
ðα̂21 þ α̂22Þ

Z
d3kJλðkÞĥλðt;kÞ; ð16Þ

where we have used Jλ to represent Jλxx. We point out that
only the xx component of the GW field interacts with our
probe, where x is the direction of propagation of the
dynamical photons in the optical mode.
We then quantize canonically by imposing the commu-

tation relations

½q̂; p̂� ¼ iℏ; ½α̂1; α̂2� ¼ iℏ; ð17aÞ

½ĥλðkÞ; Π̂†
λ0 ðk0Þ� ¼ ½ĥ†λðkÞ; Π̂λ0 ðk0Þ� ¼ iℏδλλ0δ2ðk − k0Þ:

ð17bÞ

In order to perform measurements on the probe
state while maintaining a constant amplitude inside the
cavity, we must relax the perfect reflectivity condition to
couple the probe to an external pump field whose ingoing
photons drive the optical mode and whose outgoing
photons are measured by the photodetector. The outgoing
photons may also be thought of as ancillae, which ensures
that the probe state evolves unitarily during continuous
measurement without measurement-based feedback. We
enlarge our Hilbert space to include the external pump by
adding Hext ¼ i

ffiffiffiffiffi
2γ

p ½â†ĉx¼0 − âĉ†x¼0� − i
R∞
−∞ dxĉ†x∂xĉx to

account for the interaction between the pump and
probe (going directly to the interaction picture with respect
to the free evolution of the pump field). Here â, â† are
raising and lowering operators of the optical mode, defined
such that α̂1 ¼

ffiffiffiffiffiffiffiffi
ℏ=2

p ðâþ â†Þ and α̂2 ¼ −i
ffiffiffiffiffiffiffiffi
ℏ=2

p ðâ − â†Þ.
We shall refer to α̂1;2 as the amplitude and phase
quadratures.
Relaxing the condition of perfect reflectivity also allows

LIGO to operate in the detuned configuration, where the
pump field has the off-resonant frequency ωL ¼ ω0 þ Δ.
The fast evolution in the canonical transformation in
Eq. (15a) is then given by ωL instead of ω0, and this
results in an additional term in the Hamiltonian given
by HΔ ¼ −Δðα̂21 þ α̂22Þ=2.

Assuming large average amplitude inside the cavity,
we linearize the Hamiltonian by writing α̂1 → ᾱþ δα̂1
and α̂2 → δα̂2. Then, keeping only terms linear in
small quantity δ in the interaction terms (which are
already small), we write down the final form of our
Hamiltonian:

H ¼ Hð0Þ
q þHð0Þ

GW þHext −
Δ
2
ðα̂21 þ α̂22Þ

− ω0ᾱα̂1

�
q̂
L
þ 1

2

Z
d3kJλðkÞĥλðt;kÞ

�
; ð18Þ

where we take Δ → 0 to recover the tuned configuration.
For notational simplicity, we denote the integral over

GW k modes by ĥðtÞ, or

ĥðtÞ≡
Z

d3kJλðkÞĥλðt;kÞ; ð19Þ

and point out that in the long-wavelength approximation
where kxL ≪ 1 we have ĥðtÞ ¼ ĥTTxx ðt;x ¼ 0Þ according
to Eq. (2).
For a strong excitation of the GW field from an

astrophysical event such as a BBH merger, we can separate
the GW field into a large classical component along with
quantum fluctuations and write ĥðtÞ → hsðtÞ þ ĥðtÞ, and
the interaction Hamiltonian becomes

Hint ¼ −
ω0ᾱα̂1

2
½hsðtÞ þ ĥðtÞ�: ð20Þ

We also point out that Hext was not derived from a
fundamental action and was added phenomenologically in
accordance with the standard formulation for input-output
theory in quantum optics [43]. The only concern here
would be the interaction between the external pump and the
GW field, but that interaction is negligible, since the power
in the pump without the amplification effects of a Fabry-
Perot cavity is orders of magnitude smaller than that of the
optical mode.

E. Equations of motion

We identify the input and output pump field from the
external field operators ĉx [37],

âin¼ ĉx¼0− ; âout¼ ĉx¼0þ ; ĉx¼0¼
ĉx¼0− þ ĉx¼0þ

2
; ð21Þ

and denote their corresponding amplitude and phase

quadratures by α̂ð1;2Þin . From the Hamiltonian in Eq. (18)
we derive the following Heisenberg EOM for the probe and
the GW field:

_̂q ¼ p=m; _̂p ¼ ω0ᾱα̂1=L; ð22Þ
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_̂α1 ¼ −Δα̂2 − γα̂1 þ
ffiffiffiffiffi
2γ

p
α̂in1 ; ð23aÞ

_̂α2 ¼ Δα̂1 − γα̂2 þ
ffiffiffiffiffi
2γ

p
α̂in2

−
ω0ᾱ

2

�
hsðtÞ þ

Z
d3kJλðkÞĥλðkÞ

�
−
ω0ᾱ

L
q̂; ð23bÞ

_̂hλðkÞ ¼
1

MG
Π̂λðkÞ; ð24aÞ

_̂ΠλðkÞ ¼ −ω2
kMGĥλðkÞ þ

ω0ᾱ

2
J�λðkÞα̂1; ð24bÞ

where ωk ¼ cjkj and we have defined MG ¼ c2=32πG.

F. Discussion of gauge choice

We point out that, as expected, in the TT gauge the
metric perturbations do not affect the coordinate motion of
a particle moving along a geodesic [28] to order ðv2=c2Þ, as
is evident in Eq. (11). Additionally, if the particles are
initially at rest (such that v ¼ 0), and experience no other
forces, then linear metric perturbations will not affect
coordinate motion for even appreciable values of v=c.

This is because the gauge symmetry for gravitational fields
is a diffeomorphism, or a local symmetry, and so the
coordinate length between two free-falling particles is
gauge dependent. However, all physical quantities must
be gauge invariant, and in particular, the proper time
elapsed from when a photon enters the cavity to when it
is reflected back (i.e., with respect to an observer sitting on
the input mirror) is the same in either gauge, despite the
difference between the two gauges in terms of the coor-
dinate distance that the photon travels. It should be noted
that for our system, the test mass is not actually a free-
falling particle, since it interacts optomechanically with the
optical mode. This means that its position coordinate may
be affected by metric perturbations even in the TT gauge,
and in fact is, through the coupling of LOM to hij. However,
this term is of Oðhq=LÞ, which is second order in small
quantities and therefore ignored in Eq. (12).
As shown in Fig. 2, the consequence of the TT gauge

choice is that in this picture, the GWs interact directly with
the optical mode, in contrast to the point of view that GWs
exert a tidal force onto the test mass, whose motion then
causes a phase shift, which has so far been taken in
treatments in which the test masses were considered
quantum [26]. The TT gauge view allows for straightfor-
ward derivation of the qCRB for LIGO, or the fundamental
limit to measurement sensitivity. We will discuss the details
of this and its implications in an accompanying paper.

IV. GENERATION OF QUANTUM
GRAVITATIONAL WAVES

Since our formalism treats the GW field and the probe on
equal footing, the interaction between them is bidirectional,
meaning that in addition to the Hamiltonian in Eq. (18)
describing how the probe evolves under GW interaction, it
also governs how the probe affects the dynamics of the GW
field. Specifically, we recover the quantum analogue of the
classical quadrupole moment formula as derived from
Einstein’s field equations [28]:

ĥTTij ðt;xÞ ¼
2G
c4

̈ÎTTij ðt − jxj=cÞ
jxj ; ð25Þ

where ÎTT is the TT projection of the mass quadrupole
moment. The result is unsurprising, but it serves as a
demonstration of the equivalence in the relations between
perturbative quantum gravity interacting with quantum
matter and those of the classical scenario, specifically that
quantum stress energy radiates GW in the same way as
classical matter, and moreover that the radiation is quan-
tum. This is in contrast to semiclassical gravity, which
postulates that spacetime is classical while matter fields are
quantum, such that the expectation value must be taken

over ̈Î. We emphasize that the semiclassical and fully
quantum viewpoints are in nature different and indeed

FIG. 2. Representations of the GW interaction in the Newtonian
versus TT gauges. In the Newtonian gauge, the gravitational
wave exerts a tidal force FGW so that the test-mass position is
driven by both radiation pressure and gravitational-wave forces.
In contrast, in the TT gauge, the GW interacts directly with the
optical cavity mode, and the test-mass position is driven by the
radiation pressure force alone. The two pictures are physically
equivalent descriptions of the dynamics of a cavity whose mirrors
fluctuate about their geodesic due to radiation pressure. In the
presence of an incoming GW, the geodesics of the two mirrors
deviate, and the time delay for a photon entering to be reflected
back changes. In the Newtonian gauge, the change in time delay
is reflected in the test-mass coordinate, while in the TT gauge this
effect is directly accounted for by a phase shift in the cavity mode.
The TT gauge viewpoint allows for a canonical description of the
interaction.
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have testable physical implications, at least in principle.
First, Eq. (25) implies that nonclassical states of quantum
matter will result in nonclassical states of GWs, and second,
the quantum generation of GWs will result in quantum
coherent backaction effects on matter, which has not been
previously considered andwill be discussed further in Sec.V.
To obtain Eq. (25), we solve the set of coupled differ-

ential equations in Eqs. (24a) and (24b) in the frequency
domain. Defining the Fourier pair using the conventions

ÔðΩÞ ¼
Z

∞

−∞
dtÔðtÞe−iΩt; ÔðtÞ ¼

Z
∞

−∞

dΩ
2π

Ôe−iΩt;

ð26Þ

we have

τijðkÞĥλðΩ;kÞ ¼
ω0ᾱ

2MG

τijðkÞJλðkÞ
ðω2

k − Ω2Þ α̂1ðΩÞ: ð27Þ

Since the probe is a Newtonian source, we can apply the
slow-motion condition and make the simplifying approxi-
mation that jkjL ≪ 1, so that JλðkÞ → τxxðkÞ=

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
.

Remembering that we are already in the TT gauge, the
inverse spatial Fourier transform of Eq. (27) will give us the
gauge-fixed GW field in configuration space, or ĥTTij ðΩ;xÞ.
Then, from our equations of motion we obtain

ĥTTij ðΩ;xÞ ¼
1

2MG

Z
d3k
ð2πÞ3

ω0ᾱα̂1ðΩÞτλijðkÞτλxxðkÞeik·x
ω2 −Ω2

;

ð28Þ

which can also be written as

ĥTTij ðΩ;xÞ ¼
1

2MG
LTTðxÞ

�Z
d3k
ð2πÞ3

T̂ijðΩ;kÞeik·x
ω2
k −Ω2

�
; ð29Þ

where T̂ijðΩ;kÞ is the time and spatial Fourier transform of
the stress energy tensor of the probe, and, neglecting terms
ofOðq=LÞ andOðv2=c2Þ, is simply the stress energy tensor
of the optical mode T̂EM

ij . It is given by

T̂ijðΩ;kÞ ¼ T̂EM
ij ðΩ;kÞ ¼ δixδjx

ω0ᾱ

c2
α̂1ðΩÞ: ð30Þ

The notation LTTðxÞ is shorthand for the TT projection
operator, which projects each Fourier component T̂ijðΩ;kÞ
to its TT components with respect to propagation vector k,
and accounts for the presence of the polarization tensors in
Eq. (28). Explicitly, this operation on some general tensor
field fijðxÞ is given by

LTTðxÞ½fijðxÞ�

¼
Z

d3x0
Z

d3x00flmðx00Þ
�
Pilðx;x0ÞPjmðx0;x00Þ

−
1

2
Pijðx;x0ÞPmnðx0;x00Þδnl

�
; ð31Þ

where Pijðx;x0Þ is the transverse projection operator for
vector plane waves, such that

R
d3x0Pijðx;x0Þvjeik·x0 ¼

v⊥i eik·x, and is equal to

Pijðx;x0Þ ¼ δijδ
3ðx − x0Þ − ∂iGðx;x0Þ∂j0 ; ð32Þ

whereGðx;x0Þ ¼ −1=ð4πjx − x0jÞ is the Green function of
the ∇2 operator. The equivalence of Eq. (29) to Eq. (28)
then follows readily from applying Eqs. (30) and (31).
From Eq. (29), we may obtain the result from Einstein’s

field equations by identifying

T̂ijðΩ;kÞ ≈
Z

d3xT̂ijðΩ;xÞ; ð33Þ

which holds under the slow-motion approximation and
which states that the Fourier k mode of the stress-energy
tensor is approximately equal to its own volume integral.
Then, performing the inverse transform on Eq. (29) into the
time domain in the far zone, we obtain from the equations
of motion in Eq. (24) our final expression for the GW field:

ĥTTij ðt;xÞ ¼
4G
c2

LTTðxÞ
�R

d3x0T̂ijðt − jxj=c;x0Þ
jxj

�
: ð34Þ

To see that this is equivalent to the quadrupole formula in
Eq. (25), we point out that in the far zone approximation,
the argument of the TT projection operator LTT depends
only on the distance r ¼ jxj, and therefore Eq. (31) reduces
to a simple form, where it can be written in terms of the
transverse projection operator for radially traveling waves:

LTT½fij� ¼ PilflmPmj −
1

2
PijTrfPfg; ð35Þ

where Plm ¼ δlm − xlxm=r2. In this way, it follows that
Eqs. (34) and (25) are equivalent (with a final cosmetic step
invoking stress-energy conservation [28]), and therefore
that our equations of motion are consistent with classical
general relativity.
In summary, we have reproduced the quadrupole formula

for gravitational-wave generation using a fully quantum
formalism. This serves as a check to our theoretical
framework, as well as a theoretical basis for discussing
quantum GW states generated by quantum matter.
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V. PROBE DYNAMICS

Previously, we pointed out that in the presence of a
large excitation, the GW field can be decomposed
into classical and quantum components, whereby the
interaction Hamiltonian takes the form of Eq. (20). Cor-
respondingly, the GW effects that appear in _̂α2 consist of a
predetermined classical component hsðtÞ as well as a
quantum component involving ĥλðkÞ. In previous treat-
ments, one considered only hsðtÞ, which acts on the probe
as a fixed external force [26]. However, as discussed in
Sec. IV and as is evident in Eq. (28), ĥλðkÞ has contribu-
tions from the probe itself, which is responsible for
quantum coherent GW backaction. In this section, we
obtain the equations of motion incorporating this quantum
contribution and discuss their consequences.

A. Solving equations of motion in the Laplace domain

Let us solve for α̂1; α̂2’s equations of motion in
Eqs. (23a) and (23b) in the Laplace domain, defining
t ¼ 0 to be the time of the probe’s initial state preparation
and using the transform pair

ÔðsÞ¼
Z

∞

0

dtÔðtÞe−st; ÔðtÞ¼ 1

2πi

Z
i∞þϵ

−i∞þϵ
dsÔðsÞest:

ð36Þ

Then, each k mode of the GW field is given by

ĥλðs;kÞ ¼
s

s2 þ ω2
k

ĥλð0;kÞ þ
1

MG

Π̂λð0;kÞ
s2 þ ω2

k

þ ω0ᾱ

2

1

MG
J�λðkÞ

α̂1ðsÞ
s2 þ ω2

k

: ð37Þ

The difference between Eq. (37) and our previous result in
Eq. (28) is that the Laplace transform solution accounts for
the initial values of the field, whereas the Fourier transform
solution does not. These initial values, given by the first
two terms on the right-hand side of Eq. (37), represent the
input quantum GW fluctuations which we collectively
denote by ĥin, while the last term is the part of the GW
field generated by the probe that leads to backaction.
Using Eq. (37) and also substituting q̂ðsÞ ¼

ω0ᾱα̂1=mLs2 into Eq. (23b) (ignoring the initial state of
the test mass, which is irrelevant for the interaction
dynamics), we solve Eqs. (23a) and (23b) for the optical
mode in terms of the input field quadratures α̂in1;2; α̂

out
1;2,

which are associated with the mode operators defined in
Eq. (21), and obtain

�
sþ γ Δ

−ð1þ ξBAÞΔ sþ γ

��
α̂1

α̂2

�

¼
ffiffiffiffiffi
2γ

p �
α̂in1
α̂in2

�
þ ω0ᾱ

2

�
0

1

�
½hs þ ĥin�; ð38Þ

where ξBA is the modification to the optical mode response
due to backaction from the test mass and GW field and is
given by

ξBAðsÞ ¼
1

Δ

�
ϵq
s2

þ ϵGWs

�
ð39Þ

with

ϵq ¼
ðω0ᾱÞ2
mL2

; ð40aÞ

ϵGW ¼ 8G
15c5

ðω0ᾱÞ2; ð40bÞ

and where we have included the effect of the predetermined
classical component of the field hs in our solution. Here ϵq
arises due to interaction between light and the test mass,
while ϵGW arises due to interaction between light and the
gravitational field.
We remark that for GW backaction we have only

considered effects due to outgoing gravitational waves.
The leading-order Feynman diagrams for backaction proc-
esses involve a graviton propagator between in and out
matter states, which in principle should include contribu-
tions from longitudinal and timelike gravitons if we were to
account for all gravitational effects. Restricting our atten-
tion to the TT modes ignores time-symmetric self-gravity
effects such as the Newtonian self-potential, but those are
well separated from the leading-order time-asymmetric
term that is the GW backaction.

B. Tuned configuration

At times long enough such that the initial state of the
probe is forgotten, for the tuned configuration with Δ ¼ 0
we obtain the cavity mode solutions

α̂1 ¼
ffiffiffiffiffi
2γ

p
sþ γ

α̂in1 ; ð41aÞ

α̂2 ¼
ffiffiffiffiffi
2γ

p
sþ γ

α̂in2 þ ξBA

ffiffiffiffiffi
2γ

p
ðsþ γÞ2 α̂

in
1 þ ω0ᾱ

2
ðhs þ ĥinÞ: ð41bÞ

Inspecting the above equations, we see that the backaction
term does not modify the dynamical response of either
quadrature. Instead, it introduces additional fluctuations to
the phase quadrature α̂2, which modifies the shape of the
output noise ellipse. This is shown explicitly in the noise
input-output relations given by
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α̂outj ¼ α̂inj −
ffiffiffiffiffi
2γ

p
α̂j ð42Þ

for j ¼ 1, 2, and the input-output relations themselves can
be derived from the EOM for the external pump field using
Hext. Substituting the solutions for α̂j given in Eqs. (41a)
and (41b), we find the fluctuating parts of the outgoing
quadratures

α̂out1 ¼ e2iβα̂in1 ; ð43aÞ

α̂out2 ¼ e2iβ½α̂in2 − ðKpd þ iKGWÞα̂in1 � −
ffiffiffi
γ

2

r
ω0ᾱ ĥin
ðsþ γÞ ; ð43bÞ

where β is an uninteresting overall phase factor, and Kpd

and KGW are the backaction terms due to the test mass and
GWs, respectively. Making the identification s → −iΩ, we
have β ¼ arctanðΩ=γÞ þ π=2 and

KpdðΩÞ ¼
1

m

�
ω0ᾱ

L

�
2 2γ

Ω2ðγ2 þ Ω2Þ ; ð44aÞ

KGWðΩÞ ¼
2ΩγϵGW
γ2 þΩ2

: ð44bÞ

On the right-hand side of Eq. (43b), the term that contains
Kpd gives rise to the well-known ponderomotive effect,
which causes a rotation and squeezing of the input noise
ellipse, with rotation angle θ ¼ arctanðKpd=2Þ, squeeze
angle ϕ ¼ arccotðKpd=2Þ=2, and squeeze factor r ¼
arcsinhðKpd=2Þ [26]. On the other hand, the term contain-
ing KGW, which gives rise to GW backaction, is imaginary,
and therefore must be associated with additional fluctua-
tions in α̂out2 in order for ½α̂out2 ðtÞ; α̂out2 ðt0Þ� ¼ 0. Since α̂out1;2ðtÞ
are outgoing fields at different moments of time, and
therefore are independent d.o.f., this commutation relation
must be satisfied.
Indeed, we see in Eq. (43b) that there are fluctuations

from the GW field which ensure that the output phase
quadrature commutes at different times, and additionally
enlarges the total area of the output noise ellipse.
Unfortunately, these additional fluctuations cannot be
removed without access to quantum GW d.o.f. and will
therefore introduce additional noise, albeit at Oðϵ2GWÞ.

C. Detuned configuration

When the optical drive is detuned from cavity resonance,
the amplitude and phase quadratures of the cavity mode
rotate into each other. In the presence of backaction, this
results in modifications to their dynamical response func-
tions, in contrast to the tuned configuration. For simplicity,
we ignore the ponderomotive backaction due to the test
mass by taking m → ∞ and focus solely on gravitational
effects. Then, solving Eq. (38) for Δ ≠ 0, we find

α̂1 ¼
ffiffiffiffiffi
2γ

p
½χ1α̂in1 − χ2α̂

in
2 � −

ω0ᾱ

2
χ2ðhs þ ĥinÞ; ð45aÞ

α̂2 ¼
ffiffiffiffiffi
2γ

p ��
1þ ϵGWs

Δ

�
χ2α̂

in
1 þ χ1α̂

in
2

�

þ ω0ᾱ

2
χ1ðhs þ ĥinÞ ð45bÞ

for the response functions

χ1 ¼
sþ γ

ðsþ γÞ2 þ Δ2 þ ϵGWΔs
; ð46aÞ

χs ¼
Δ

ðsþ γÞ2 þ Δ2 þ ϵGWΔs
: ð46bÞ

The optical mode’s response to external drive is modified
through ϵGW, which can be encapsulated by shifts in the
effective damping and detuning of the optical mode:

γ̃ ¼ γ þ ϵGWΔ
2

; Δ̃ ¼ Δ −
ϵGWγ

2
: ð47Þ

Since Δ can take positive or negative values, the back-
action can either augment or reduce the effective cavity
damping rate γ. This is due to the amplitude quadrature
being coherently added to itself as the amplitude and phase
quadratures rotate into each other through the Δâ2 term in
its own EOM. Depending the sign of Δ, it can beat either
destructively (Δ > 0 or red-detuned) or constructively
(Δ < 0 or blue-detuned). The reddetuned case is shown
schematically in Fig 3.

D. Backaction in the Newtonian gauge

To understand the GW backaction more intuitively, we
now go to the Newtonian gauge and show that it is in fact
the quantum analogue of the radiation reaction potential.
The radiation reaction potential, or Φreact, is the leading-
order time-asymmetric GR correction to the Newtonian
potential and derives from the outgoing GWs radiated by
the probe’s time-dependent mass quadrupole moment. The
correction accounts for the consequent loss of energy which
leads to damping of the motion, an effect known as
radiative damping [28]. To see this explicitly, we write
the EOM of the test mass in the Newtonian gauge under
radiation pressure and the radiation reaction force:

̈̂q¼−
∂
∂xΦreactþ

ω0ᾱ

mL
α̂1; ΦreactðxÞ¼

G
5c5

I ð5Þ
jk x

jxk; ð48Þ

where I jk is the reduced-mass quadrupole moment tensor,
and the superscript represents the number of time deriv-
atives. We find that the reaction force on the system
evaluates to
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Freact ¼ −
8G
15c5

mL2q̂ð5Þ: ð49Þ

Since the reaction force is dependent on q̂ itself, it serves to
modify the response of q̂ to radiation pressure force. Here
we are interested only in the backaction effects of GW
interaction and have therefore suppressed the input GW
field. Assuming that the probe is operating under a steady
state, we may solve the probe EOM in the Fourier domain,

q̂ðΩÞ ¼ ½χð0Þq þ δχq�
ω0ᾱ

L
α̂1ðΩÞ; ð50Þ

for free mass susceptibility χð0Þq and its perturbation δχq:

χð0Þq ¼ −
1

mΩ2
; δχq ¼ −i

8G
15c5

mL2Ω3χð0Þq : ð51Þ

In theNewtonian gauge, the opticalmode does not interact
gravitationally, and the Heisenberg EOM for its quadratures
depends only on the input optical field and the test-
mass dynamics, which in the tuned configuration is given
by α̂1ðΩÞðγ − iΩÞ ¼ ffiffiffiffiffi

2γ
p

α̂in1 ðΩÞ and α̂2ðΩÞðγ − iΩÞ ¼
ðω0ᾱ=LÞq̂ðΩÞ þ

ffiffiffiffiffi
2γ

p
α̂in2 ðΩÞ. Substituting Eq. (50) into the

expression for α̂2, we find

α̂1 ¼
ffiffiffiffiffi
2γ

p
γ − iΩ

α̂in1 ; ð52aÞ

α̂2 ¼
ω2
0ᾱ

2

L2
ðχð0Þq þ δχqÞ

α̂1
γ − iΩ

þ
ffiffiffiffiffi
2γ

p
γ − iΩ

α̂ð2Þin ; ð52bÞ

where χð0Þq ¼ −ðmΩ2Þ−1 is the free test-mass response and
δχq is the GW correction. Making the substitution−iΩ → s,
we find that the modification to the test-mass response
deriving from Φreact exactly corresponds to the GW back-
action term in Eq. (38) for Δ → 0:

�
ω0ᾱ

L

�
2 δχq
γ − iΩ

→
ϵGWs
sþ γ

: ð53Þ

From here, it follows that identical input-output relations to
Eqs. (43a) and (43b) may be obtained. Here we note that the
fifth-order time derivative in Eq. (49) makes the radiation
reaction force time asymmetric, which results inKGW being
imaginary.
It is straightforward to see that an analysis for the

detuned configuration would yield a similar result, since
the only difference in the EOMs for α̂1 and α̂2 between the
tuned and detuned cases in the Newtonian gauge would be
the addition of the terms −Δα̂2 to the rhs of Eq. (52a) and
Δα̂1 to that of Eq. (52b). This yields identical expressions
to Eq. (38).
We have confirmed that in both gauges, the same

backaction effect appears in the output field which is being
measured, as must be the case. However, there are
some interesting points that arise from comparing the
different interpretations offered by each gauge. First, in
the Newtonian gauge, the underlying physical mechanism
for the backaction is the modification of test-mass response
to radiation pressure due to the radiative damping.
Thus, the GW backaction can be interpreted as a correction
to the response function of the test mass to external
forces (i.e., radiation pressure), given by δχq in Eq. (51).
Correspondingly, KGW can be interpreted as a correction to
the ponderomotive backaction Kpd in Eq. (44). Viewed in
this way, one might intuitively expect that in the limit
m → ∞ the infinitely massive mirror would be unperturbed
by radiation pressure, and therefore both Kpd and its
correction KGW should go to zero. However, as demon-
strated in the TT gauge, the GW backaction appears
without consideration of test-mass dynamics, and without
regard to its mass. A more careful look at the Newtonian
gauge reveals that this result is consistent, due to the fact
that Freact is mass dependent, and therefore, under weak

equivalence, the inertial mass in χð0Þq which appears in the
denominator of δχq cancels the gravitational mass in Freact

which appears in its numerator. The gravitational radiation
reaction therefore ensures that even an infinitely massive
object will respond to external forces.
The second point of contrast is that in the Newtonian

gauge, the motion of the test mass is indeed damped due to
energy loss though GW radiation. However, in the TT
gauge, neither the test mass nor the optical mode experi-
ences damping. Again, this seemingly paradoxical obser-
vation may be resolved when one recognizes that the
energy that drives the test-mass motion is from the optical
pump, which also provides the energy radiated away in
GWs. This is clear from Eqs. (34) and (38), where the
generation of GWs is shown to depend on Tij ∼ α̂1,
which depends only on the input optical field, as shown
in Eq. (52a). That the energy lost to GW radiation is
sourced from the external optical pump also addresses the

FIG. 3. Illustration of quantum coherent backaction effects on
the cavity mode due to GW interaction in the presence of
detuning. The GWs generated by α̂1 acts back on α̂2 in such a
way that causes the field to beat coherently with itself. The above
shows the case for red-detuning where Δ > 0. The solid red line
represents the cavity mode in the absence of backaction, while
the dotted red line represents the contribution due to GW
backaction. This effect is quantified by changes to the cavity’s
effective damping and detuning rate so that γ̃ ¼ γ þ ϵGWΔ=2 and
Δ̃ ¼ Δ − ϵGWγ=2.
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counterintuitive result that GW backaction can reduce the
effective cavity damping rate, since the damping of the
cavity mode does not directly correspond to energy
exchange with the GW field.

E. Role of quantum GW fluctuations in backaction

Although radiation reaction can be traced back to the
classical radiation reaction potential, in order to consistently
include its effects on quantum matter, one must necessarily
quantize the GW fluctuations. This is clear from Eqs. (45a)
and (45b),where including the ϵGW backaction effectwithout
also including the ĥin fluctuations will result in a modified
commutator between the cavity mode quadratures

½α̂1ðtÞ; α̂2ðtÞ� ¼ iℏ

�
1 −

ϵGWΔ
2γ

ð1 − e2γ̃tÞ
�
; ð54Þ

and only by also including ĥin will we recover the canonical
commutation relation ½α̂1ðtÞ; α̂2ðtÞ� ¼ iℏ. This result furthers
our understanding of how gravity interacts with quantum
matter and advances the point of view that gravity must
ultimately be quantum, since the predictions of semiclassical
gravity upon including the radiation damping correction will
result in Eq. (54), in violation of the uncertainty principle.

VI. CONCLUSION

To summarize, in this work we developed a framework
for the Hamiltonian formulation of the interaction between
LIGO or a similar laser interferometer with gravity, such
that both the GW field and the matter probe are dynamical
d.o.f. of the total system. To do so, we needed to address the
issues of (i) gauge fixing for the gravitational field and
(ii) formulating the optomechanical interaction using the
action principle when the equations of motion are
unknown. With regard to the former, we have argued that
keeping only leading-order interactions between the detec-
tor and gravitational waves allows us to fix the action in the
TT gauge. For the latter, we have shown how to derive the
optomechanical interaction from the action of an electro-
magnetic field with a dynamical boundary condition. Our
completed formulation allows for the leading-order quan-
tum treatment of the interactions between LIGO and
gravitational waves, which, in the limit of classical gravity,
recovers known equations of motion for LIGO’s output
fields as well as the quadrupole moment formula for GW
generation. This serves as a verification for the framework,
which, allowing for quantum gravity, additionally predicts
quantum coherent backaction effects that correspond to the
classical radiation reaction potential in general relativity.
We have shown that in order for this well-studied potential
to be consistently applied to quantum matter such that

commutation relations are preserved, the gravitational field
itself must be quantum. This suggests that testing the
effects of gravity at post-Newtonian orders may offer some
insight into the quantum versus classical nature of gravity.
Even in the classical limit for gravity, our formulation

presents an alternative interpretation of LIGO’s detections.
In the Newtonian gauge used by previous analyses, the
interaction occurs between the test mass and the signal
which subsequently modulates the cavity mode; in the TT
gauge, the interaction occurs directly with the cavity mode.
While the signal appears in the same way in the output
fields that we measure, the latter point of view provides a
rigorous foundation for calculating the fundamental limit to
LIGO’s detection sensitivity in the form of its qCRB. The
qCRB follows readily [10,13] from the Hamiltonian in
Eq. (20) and can be expressed in the form of a minimum
bound on the noise spectral density for the estimation error
on hsðtÞ, or

SΔhsðΩÞ ≥
ℏ2

ðω0ᾱÞ2Sα1ðΩÞ
; ð55Þ

where ΔhsðtÞ is the residual between the signal and our
estimate, and the noise spectral density for any stationary
process xðtÞ is given by

SxðΩÞ ¼
Z

∞

−∞
dτeiΩτhxðtþ τÞxðtÞi: ð56Þ

We also point out that we have not considered the
decohering effects of GW fluctuations, which again follow
from the formalism. In fact, it can be shown that the qCRB,
decoherence, and radiation are fundamentally and quanti-
fiably related, and we therefore delay a more detailed
discussion of these processes and their relations to an
accompanying paper. Finally, we remark that our frame-
work offers a theoretical foundation consistent with current
observations that can be extended to study alternative
theories of gravity in LIGO in the form of modifications
to the Einstein-Hilbert action. It provides a basic model for
investigating the quantum versus classical nature of GR or
modified gravity and how their features manifest them-
selves in quantum measurement.
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