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Propagation of gravitational waves in teleparallel gravity theories
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We investigate the propagation of gravitational waves in the most general teleparallel gravity model with
second order field equations as perturbations around the Minkowski background. We argue that in this case
the most general Lagrangian at the first nonvanishing order of the perturbations is given by a linear
combination of quadratic invariants and hence coincides with the well-known new general relativity model.
We derive the linearized field equations and analyze them using the principal polynomial and the Newman-
Penrose formalism. We demonstrate that all gravitational wave modes propagate at the speed of light, and
there are up to six possible polarizations. We show that two tensorial modes of general relativity are
always present, and the number of extra polarizations depends on the free parameters of the new general

relativity model.
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I. INTRODUCTION

Modified gravity theories are a viable alternative to dark
energy in addressing the problem of accelerated expansion
of the Universe [1,2]. A novel class of modified gravity
models that caught a lot of attention recently is the so-called
modified teleparallel theories. These theories are motivated
by the fact that the ordinary general relativity (GR) can be
reformulated using the teleparallel geometry, resulting in a
theory known as the teleparallel equivalent of general
relativity (TEGR) or shortly just teleparallel gravity [3—10].

Whereas TEGR is equivalent to the ordinary formulation
of GR in terms of curvature in all physical predictions, this
equivalence is lost when we consider modified gravity
theories based on these different underlying geometries.
The most well-known example is the case of f(T) gravity,
constructed in analogy with f(R) gravity, where the
Lagrangian is taken to be an arbitrary function of the
so-called torsion scalar, which defines the TEGR action
[11-14]. When a nonlinear function f is considered, the
resulting f(T') theory represents a novel gravity model with
rich dynamics distinctive from f(R) gravity. See [15] for an
extensive overview.

The recent discovery of gravitational waves [16,17]
opened a new way to test various modified theories of
gravity [18-24]. This motivates a study of gravitational
waves in modified gravity theories and proper understand-
ing of their fundamental properties. Particularly interesting
are the questions about the number of polarization modes of
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gravitational waves and their corresponding propagation
velocities. The case of f(R) gravity is well-understood,
and it has been shown that these theories all possess an
additional massive scalar gravitational wave mode [25-28]
compared to GR.

In the case of modified teleparallel theories, gravitational
waves have been studied first in the case of f(7') gravity
[29,30], where, in contrast to the f(R) case, it was shown
there are no extra propagating gravitational modes compared
to GR. As we will argue later, this follows from a simple
observation that f(T) gravity effectively reduces to TEGR at
the perturbative level, and hence we obtain only the usual two
GR polarizations. Only very recently [31,32], it was shown
that new polarization modes appear if we extend f(7') gravity
by introducing scalar fields or higher-derivative terms of the
torsion in the case of so-called f (7, B) [33]and f(T, T) [34]
theories, where B is the boundary term relating the
Riemannian curvature scalar with the torsion scalar and 7';
is the teleparallel equivalent of the Gauss-Bonnet term.

In this paper we follow another approach and study
gravitational waves propagating around the Minkowski
background in the model known as new general relativity
(NGR) [35], where the Lagrangian is taken to be a most
general linear combination of quadratic parity preserving
torsion invariants." Our study is motivated by a simple
observation that, unless we introduce higher derivatives
or scalar fields, the most general teleparallel gravity
Lagrangian at the perturbative level is given by the linear

'Note that sometimes “new general relativity” refers only to a
special subclass of these theories in which only one of the three
parameters we consider here is left free and two are fixed to a
specific value.
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combination of quadratic invariants of the torsion, i.e.,
NGR. For example, recently proposed f(T ., Tiens Tvec)
gravity [36] and the so-called axiomatic electrodynamics
inspired models [37], which are both very general frame-
works designed to include all previously studied tele-
parallel models as special instances, reduce to the case
of NGR at the perturbative level.

We analyze the gravitational waves in the NGR model
using two methods. First, we consider a perturbative
analysis of the NGR model following the example of
[38,39] and analyze the resulting linearized field equations
by the method of the principal symbol. Second, we use the
Newman-Penrose formalism [40] and classify the resulting
polarizations according to the classification scheme intro-
duced in [41,42]. We show that all gravitational modes
propagate at the speed of light and derive how the number
of polarization modes depends on the free paramaters of the
NGR Lagrangian.

The outline of this paper is as follows. In Sec. I we
briefly introduce teleparallel geometry and the NGR model
as the most general teleparallel gravity at the perturbative
level. In Sec. III we introduce the principal symbol and
determine that all gravitational wave modes propagate at
the speed of light. In Sec. IV we use the Newman-Penrose
formalism to analyze the possible polarizations of gravi-
tational waves and show how they depend on the free
parameters of the NGR Lagrangian. We conclude this paper
with a brief discussion and outlook in Sec. V.

In this article we use the following notation. Latin letters
a, b, ... are Lorentz indices, and Greek letters u, v, ... are
spacetime coordinate indices. The Minkowski metric is
denoted by # and has components 7,, = diag(—1,1,1,1).

II. LINEARIZED TELEPARALLEL GRAVITY

We begin this article with a short review of the required
geometric notions in teleparallel gravity in Sec. Il A. We
then recall the NGR Lagrangian in Sec. II B, where we also
derive the corresponding linearized field equations.

A. Teleparallel geometry

The fundamental variables in theories of gravity formulated
in terms of teleparallelism are the tetrad 1-forms 6, their dual
vector fields e, and the curvature free spin connection ®“,
generated by local Lorentz transformations A“,. In local

coordinates on spacetime they can be expressed as

0=0",dx", e,=e, 0,

o, (A) =%, (A)dx* :A“qd(A‘l)"h :A“qﬁﬂ(A‘l)"hdx”.
(1)

Moreover the tetrad 1-forms and their duals satisfy

0(e)) = 0t =88, Oel =8, (2)

and define a Lorentzian spacetime metric via

9w = nabeaﬂgbw g;u/ = nabeaﬂeby' (3)
Tensor fields can be expressed either in a coordinate or tetrad
basis. For a (1,1)-tensor Z we may for example write

Z=27'dx" ® 3, =7%0" ® e,. (4)

Thus when we change an index from Latin to Greek, this
operation is done via multiplication with 69, or e/,
respectively.

The building block of Lagrange densities is the torsion of
the spin connection given by

T¢ = DO = (9,6%, + 0%y, 0%, )dx* A dx*,  (5)

where the spin covariant derivative D ensures a covariant
transformation behavior under local Lorentz transforma-
tions of the tetrad [43,44]. More precisely, consider a tetrad

6 which is related to the original tetrad by a local Lorentz
transformation /~\“b, 1.e., 0t = /~\“b(9b. Then, the torsion
tensor of the tetrads is related by 7¢ = A9, T?, where the
connections are given in terms of two further Lorentz

transformations A and A,

@, = A d(AT")e,,
wah — ([\—l)ucf\cdd(]\eh([\—l)de) — A"dd(/\_l)db. (6)

In particular when one considers A = A one chooses the
so-called proper tetrad or a tetrad in the Weitzenbock
gauge, for which w%, = 0 [44].

The components of the torsion in local coordinates are
therefore canonically labeled by 7% = %T“ wdd A dx”. In
the following we will use the torsion components with
spacetime indices only obtained via 7%, =T, e,".

B. Lagrange density and field equations

We consider here the new general relativity (NGR) [35]
model given by the action,

Lioi(6.00.A,0M,®') =L(0,00,A,0N) + Ly (0.®1),  (7)

where Ly (0, ®') is the matter Lagrangian, which is
constructed via the usual minimal coupling principle.
The spacetime metrics appearing during that procedure
are understood as functions of the tetrads. The gravitational
Lagrangian is the most general Lagrange density quadratic
in the torsion tensor,

L(6.90, A, OA)
=10|(c:T7 W T + 17, T, + 317, T,)

= |6|Gaﬂ”ypaTa/wTﬂpm (8)
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where three real parameters ¢, ¢, and c; define different
NGR theories. In the last equality we introduced the
supermetric [45] or constitutive tensor [37,46],

Gop""” = C19apd’™91° ~ 025,[5 s — cst g”w’éz], 9)

which will turn out to be convenient for the following
analysis. The appearing spacetime metric g is understood as
a function of the tetrads (3). The teleparallel equivalent of
general relativity (TEGR) is included in the NGR class of
gravity theories for the choice ¢; = %, cy = % and ¢c; = —1.
To analyze the propagation of gravitational waves for
NGR gravity around the Minkowski background we derive
the linearized field equations of the theory. To do so we fix
Cartesian coordinates (x*,u =0,...,3) and make the
following perturbative ansatz for the tetrad and the
Lorentz transformation defining the spin connection,

0%, = o, +eu’, (10a)
e =8 +evyt (10b)
Aah :6Z+8Wuh, (IOC)

where ¢ is a perturbation parameter. The duality between 6
and e, implies to first order in ¢ that v,#8) = —u”,5,, and
A being a local Lorentz transformation implies that
W, = —W,,,. The perturbative gauge transformations are

Na _ xXa pb na  _— xa a
0" = N07 = 07, = w?, +u?,

Ay = (AN Ay = W =W, +we,. (1)

Moreover changing the index type from Lorentz to space-
time, to first order in the perturbation, is done with 5¢, or
o*,, respectively, and raising and lowering any kind of
index is done with the Minkowski metric 7,, or 7,
respectively, or its inverse.

The torsion tensor can be expanded into the first order
fields as

Talw = 28[”9“,/] + Zw“b[ﬂﬁbb] = 28(8[,411“”] - Gmw“b])

+ O(Y). (12)
In this order of the perturbation theory we transform the
torsion components 7, to the purely spacetime index
components 7¢,,, which are used in the Lagrangian,

and find the lowest order nonvanishing term in NGR
Lagrangian (8):

ezg(,/,»””/"’(ﬁﬂu"y -0,w%,) (8/,u/36 - 8,,w/}{,) +0(&%). (13)

The expression G,5#7 is the zeroth order of G,47; i.e., all
metric components g, in (9) are replaced by components of

the Minkowski metric 7,,. Observe that the Lagrangian of
every teleparallel theory of gravity, which is constructed from
the torsion and the tetrad alone without involving higher
derivatives of the tetrad, has a lowest order term of the
kind (13).

The field equations to lowest nontrivial order are now
easily obtained from the Euler-Lagrange equations. The
Lagrangian only depends on the derivative of the funda-
mental variables u and w, and thus we find

oL

0= a&m & 0=G,0,(0,0, —9,w,), (14)
OL
0= 8/1 W <0

= (grﬂlkpg - nyrnfkgwlwa)aﬂ(apuﬁa - 6,z)vvﬁo')v (15)

where we use the antisymmetry of w,,, in its indices to derive
the second equation or, in other words, allowed only anti-
symmetric variations of w; note that due to our restriction (6)
to flat spin connections this is essentially the linearized version
of the restricted variation method introduced in [47]. Raising
the index 7 the equations can be written as

0= grﬂixpaalap(uﬁﬂ - Wso), (16)
0= g[T‘ﬂMk]lma/lap(u/}zr - Wﬁa)' (17)

It is clear that these two sets of equations are not independent
of each other, but the latter is the antisymmetric part of the
former, a feature that has been discussed in the context of the
covariant formulation of teleparallel theories of gravity
[37,44]. Moreover it is clear that u and w are not independent
variables of the theory.

To proceed we introduce the new gauge invariant
[compare (11)] variable Xz, =ug, —Wg,, which must
satisfy the field equations,

0 = GP*r°9,0 x4, 18
PP

For further simplification we decompose Xz, into its
symmetric and antisymmetric part X, = 4, + dg,, Which
allows us to analyze the field equations further. Using this
decomposition and the explicit form of G, see (9), they take
the form

0=E™ =0,[(2¢) — ¢)07a™ — (2¢| — ;) a™
+ (26, + )0 + 9, (26, + c)s™

— (2¢1 + )™ + 3 (™ (5P g — Dps’”)

— (05" — 0ps))]. (19)
These equations can further be decomposed into a sym-

metric and into an antisymmetric part, which are indepen-
dent and given by
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0=0,[-(2¢; + ¢y + c3)0F @] + 0p(2¢y + ¢3)0°s™
- (2C1 + Cy + C3)8<TSK)‘0
+ 3™ (0P 5 — 0,57) — P sP )], (20)

0=0,[(2¢) — ¢)0Pa™ + (2¢; — 3¢y — ¢3)F @]
+0,[(2¢1 + ¢ + €3)0s))). (21)

Observe that for (2¢; 4+ ¢, +c¢3) =0 the symmetric
and the antisymmetric field equations decouple. If one
further demands that (21) vanishes identically, in addi-
tion (2¢; —¢,) =0 and (2¢; — 3¢, — ¢3) = 0 have to be
satisfied, which implies ¢; = — 4—1& cyand ¢y = — % ¢3. Hence
for all theories, whose Lagrangian is a multiple of the
TEGR Lagrangian, the antisymmetric part of the field
equations is satisfied trivially and only for those. We like to
point out that linearized field equations in the case of TEGR
have been studied in [39] and the fully general case, albeit
in a different representation, in [48,49].

In the following we will deduce the propagation velocity
and the polarization modes of the perturbations from these
field equations.

III. PRINCIPAL POLYNOMIAL AND SPEED
OF PROPAGATION

The propagation of waves satisfying a partial differential
equation is determined by the principal symbol and
principal polynomial of the field equations [50,51]. The
vanishing of the principal polynomial defines the wave
covectors k of the propagating degrees of freedom of the
theory and thus their propagation velocity.

The principal symbol is the highest derivative term of the
field equations where the partial derivatives are replaced by
wave covectors 0 — ik. Here this corresponds to consider-
ing the field equations in Fourier space. From (18) we find

0— gr/}bcpaklkp)’z/ja — Prﬁka(k)j‘cﬁm (22)

where %4, is the Fourier transform of our original field
variable xg, and

cl
P (k) = =0 (n(k, k)n™ — KK?)
2
_ CZ (kﬂkkrlor _ k/}krnm + kaT’,]/)'K

3
— n(k. k)n<n) — CZ (kK k*n — kPk*pre

+ kK™ — n(k, k)n™nP). (23)

The principal polynomial P(k) is given by the determinant
of the principal symbol, which is interpreted as a metric on
the space of fields y™ = P (k)xy,.

From the antisymmetry of the field equations in the
indices Ax and po it is immediately clear that the principal
symbol is degenerate as fields of the form %4, = k,V (k)

solve the field equations trivially. This is a clear sign of the
presence of gauge degrees of freedom in the theory. In order
to derive the principal symbol we must restrict the field
equations to the subspace of fields, on which they are
nondegenerate. This feature is common in field theories
with gauge degrees of freedom and appears also in general
premetric theories of electrodynamics [52] for example.
The field equations can be seen as a map from the space
of 4 x 4 matrices %y, to its duals. To identify the subspace V
of all 4 x4 matrices on which the field equations are
nondegenerate we employ the following decomposition:

'%[36 = kﬁkaU —|— Vﬂka + kﬁWo' + Q[;D., (24)

where the scalar U, the 1-form components V, and W, and
the (0, 2)-tensor Qy, satisfy the constraints

kava = 07 kaWa = 0’ k(lQa/)’ = 0’ k(lQﬂ(l =0. (25)
The 4 degrees of freedom U and V* cannot be dynamical as
they trivially solve the field equations. Remaining are
12 degrees of freedom, 4 — 1 =3 encoded in W, and
16 —7 =9 in Q,4, which span the subspace V. Expanding
Q™ further into its symmetric traceless and antisymmetric
part as well as its trace by writing Q™ = S§™ + A™+

Y - ﬂ’z;’f;))Q"a, and using (9), the Fourier space field

equations become

0=E™ = (2¢| + ¢ + c3)n(k, k) k"W~
+ (2e1 + o)k, k)S™ + (2¢1 = ea)n(k, k)A™

1 kT k"
F3 QR e+ 4 3e) (1= )

(26)

where we use, for the sake of readability, the notation
n(k, k) = n*"k,k,. To analyze them further we observe that
they decompose into their contractions with k, their trace,
their symmetric traceless and antisymmetric part,

0 = E™k,k,., 0= E™k,, (27a)
0= E™k, = (2¢; + c3 + c3)n(k, k)2 W¥, (27b)
0=E", = (2¢; + ¢34 3c3)n(k. k) Q.. (27¢)
. Kz ol
0=FEM_=— 29— (2¢, - k, k)A™, 27d
77(](, k) ( Cl C2)77( ) ( )
. . 1 Kks O\ »
0= E(‘nc) _ k(1E|a\K)k _ - K _ " |\ foO
o 3 n n(k, k) 4
= (2¢1 + ¢)n(k, k)S™. (27e)
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The first two equations are satisfied trivially for any choice of parameters c;, ¢, and c¢3. The remaining four nontrivial
field equations can be represented by a block diagonal matrix acting on a field space vector which is an element of V:

(2¢y + 3 + e3)n(k, k) 0 0 0 wx 0
O (2C1 +C2+3C3) O 0 QTT 0
n(k. k) e | = (28)
0 0 (2C1 - C2) 0 A 0
0 0 0 (2¢; + ¢,) S« 0
Due to their simple nature the principal polynomial is now easily obtained as determinant of the above matrix,
P(k) = (2¢1 + ¢34 ¢3)*(2¢1 + €3 + 3¢3)(2¢1 = €2)* (2¢1 + ¢2) (n(k, k). (29)
|
A necessary nontrivial solution to satisfy the field equations [— 8040 B l (9 — 05)
is that in which their wave covectors k are such that — Yot =519 =),
P(k) = 0. From the above equation (29) it is evident that 1 ) B 1 _
only null covectors of the Minkowski metric n(k, k) = 0 m= 75(81 +i0y), m= 75(81 —i0).  (30)

realize this condition. Hence we find that for NGR theories
of gravity, perturbations propagate with the speed of light
determined by Maxwell electrodynamics on Minkowski
spacetime.

We would like to remark that this feature can also already
be seen from the decomposed Fourier space field equa-
tions (27b) to (27e). For all field equations there can only
exist a nontrivial solution of the field W*, Q% _, S™ or A™ if
and only if 5(k, k) vanishes, so all field modes in the
theory are massless. For the W* mode we find a double pole
in its propagator, which is consistent with [49,53]. For
n(k, k) # 0 the only solution of the field equations is that
the fields themselves vanish identically.

IV. NEWMAN-PENROSE FORMALISM
AND POLARIZATIONS

We now focus on the polarization of gravitational waves.
As we have seen in the previous section, gravitational waves
in new general relativity are described by Minkowski null
waves, independently of the choice of the parameters c;, ¢,,
and c3. This allows us to make use of the well-known
Newman-Penrose formalism [40] in order to decompose the
linearized field equations into components, which directly
correspond to particular polarizations. We then employ the
classification scheme detailed in [41,42], which character-
izes the allowed polarizations of gravitational waves in a
given gravity theory by a representation of the little group,
which is the two-dimensional Euclidean group E(2) in case
of null waves. In this section we determine the E(2) class of
new general relativity for all possible values of the param-
eters ¢y, ¢y, and c3.

The main ingredient of the Newman-Penrose formalism
is the choice of a particular complex double null basis of the
tangent space. In the following, we will use the notation of
[54] and denote the basis vectors by ¥, n*, m*, and m*. In
terms of the canonical basis vectors of the Cartesian
coordinate system they are defined as

We now consider a plane wave propagating in the positive
x* direction, which corresponds to a single Fourier mode.
The wave covector then takes the form k, = —wl,,, and the
symmetric and antisymmetric parts of the tetrad perturba-
tions can be written in the form

S

_ iou _ iou
Sy = S,,e ", a,, =A,e"", (31)

where we introduced the retarded time u = x° — x3, and the
wave amplitudes are denoted S, and A,,.

Recall that we consider minimal coupling between
gravity and matter, i.e., coupling only through the metric
seen as function of the tetrad but not through the flat spin
connection. This is the usual coupling prescription for non-
spinning matter, which we will henceforth assume. It
follows from this choice of the matter coupling that test
particles follow the geodesics of the metric and hence the
autoparallel curves of its Levi-Civita connection. The effect
of a gravitational wave on an ensemble of test particles, or
any other type of gravitational wave detector, such as the
mirrors of an interferometer, is therefore described by the
corresponding geodesic deviation equation. The observed
gravitational wave signal hence depends only on the
Riemann tensor derived from the Levi-Civita connection.
As shown in [42], the Riemann tensor of a plane wave is
determined completely by the six so-called electric com-
ponents. For the wave (31), these can be written as

1 1 .
W, = —— Ry = —h
2 6 ninl 12 1>
1 1 1. 1—
Wy = ——Ryn = —=R =~ h
3 2 ninm 2 ninm 4 Im 4 Im»
1.. 1+—
- S - S ——— S —
4 nimnm nmnm mim D) mm
1.
(I)22 = _annrh :ihmﬁw (32)
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where dots denote derivatives with respect to u and the
metric perturbation components /4, are derived from the
perturbation ansatz (10) as

9w = Muw + h,ut/ =M + 8(77/4pupb + ’hp“py) = N + 285‘””.

(33)

Note that they depend only on the symmetric perturbation
of the tetrad, so that these are the only components whose
presence or absence we must determine. We now examine
which of the components (32) may occur for gravitational
waves satisfying the linearized field equations (19).

Inserting the wave ansatz (31) and writing the gravita-
tional Euler-Lagrange tensor E,, in the Newman-Penrose
basis, we find that the eight component equations,

Ell = Elm = Eml = Enl = Emm = Erhm = Elrh = Erhl = 07

are satisfied identically, while the remaining eight compo-
nent equations take the form

0=E,, = (2¢c| 4y +¢3)8+2¢38m 1 (2¢1 + o+ ¢3)dy,

(35a)
0=E,, = 2c|+ )8+ (2c; = ¢2)dp, (35b)
0=Ep, = (2c1 +c2)8m + (2¢1 — 2)ddp, (35¢)
0=E,, =—c35u+ (2¢; + ¢3)dy, (35d)
0=E,; = —c385u + (2¢co + ¢3)dn. (35e)
0=Eun = Ean = —c35, (35f)
0=E;,, = (2¢c; + )5y (35g)

We now distinguish the following cases, which are also
visualized in the diagram in Fig. 1, which we explain later
in this section:

(1) 2¢y + ¢3 = ¢3 = 0: In this case Eqgs. (35f) and (35g)

are satisfied identically for arbitrary amplitudes S;;.
For waves of this type the corresponding component
R, = —6%, of the Riemann tensor, which de-
scribes a longitudinally polarized wave mode, is
allowed to be nonzero. Following the classification
detailed in [42], they belong to the E(2) class Il with
six polarizations. This case corresponds to the two
blue points in Fig. 1, which is actually a line in the
three-dimensional parameter space and hence a
single point in the projected parameter space shown
in the diagram, which happens to lie on the cut
c¢3 =0 and hence appears twice on the circular
perimeter.

Nl

FIG. 1. Visualization of the parameter space using polar
coordinates. The radial axis shows the zenith angle 6, whereas
the (circular) polar axis shows the azimuth angle ¢, following the
definition (38). Blue points: 2¢; + ¢, = ¢3 = 0, class Ilg, 6 pola-
rizations. Green line: 2¢; + ¢, + ¢3 # 0,2¢, (¢, + ¢3) + ¢ =0,
class Il5, 5 polarizations. White area: 2c¢;(c; + ¢3) + ¢3 # 0,
2¢y 4+ ¢5 + c3 #0, class N3, 3 polarizations. Red line: 2¢; +
¢y 4¢3 =0,c3 #0, class N,, 2 polarizations.

(i) 2¢i(ca+¢3)+c3=0 and 2¢;+c, +c3 #0: It
follows from the second condition that at least
one of 2¢; + ¢, or ¢z must be nonzero. Hence,
either Eq. (35f) or Eq. (35g) imposes the condition
S;; = 0, so that there is no longitudinal mode W¥,.
The first condition is equivalent to a vanishing deter-
minant of the matrix,

<2cl 4+ 2¢ — cz> (36)
—C3 2C2 + C3 ’

so that Egs. (35b), (35¢), (35d) and (35e) allow for
nonvanishing solutions. This further implies that the
two columns of this matrix are linearly dependent
and hence proportional to each other. However, from
the second condition further follows that neither
column vanishes. Hence, at least one of the pairs
(35b), (35¢) and (35d), (35e) of equations must be
nontrivial, with the coefficients of both the sym-
metric and the antisymmetric tetrad perturbation
nonvanishing. Hence, nonvanishing solutions of
these equations have both symmetric and antisym-
metric contributions and, therefore, in particular
nonvanishing §;,, and S;;; however, recall that the
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antisymmetric part does not contribute to the geo-
desic deviation equation, and so we do not discuss it
here. It then follows that R,,; = —2%¥;, whose
complex components describe two vector polariza-
tions, is allowed to be nonzero. Waves of this type
belong to the E(2) class Ills encompassing five
polarizations. This case is represented by the green
line in Fig. 1.

(iii) 2ci(ca+c3)+c3#0 and 2¢; +c; +c3#0: In
this case the only linearized field equation which
allows for nonvanishing solutions is Eq. (35a). Here
the only relevant component for the geodesic
deviation is S,,;, so that we can neglect the other
terms. This component is allowed to be nonvanish-
ing and hence allows a nonvanishing component
Ry = —Doy of the Riemann tensor. The corre-
sponding scalar wave mode is called the breathing
mode. The remaining equations impose the con-
dition ¥, = ¥; =0, so that the longitudinal and
vector modes are prohibited. This wave has the E(2)
class N3 and thus three polarizations. Almost all
points of the parameter space, shown in white in
Fig. 1, belong to this class.

(iv) 2¢1 4+ ¢5 +¢3 =0 and c3 # 0: It follows immedi-
ately from Eq. (35f) that S; =0, so that the
longitudinal mode ¥, is prohibited. Taking the
sum of the pairs (35b), (35¢) and (35d), (35e) of
equations and replacing ¢, by —2¢; — ¢3 one further
finds that S;,, = S;; = 0, and hence also the vector
modes W5 must vanish. Finally, Eq. (35a) imposes
the condition S,,; = 0, so that also the breathing
mode ®,, is prohibited. It thus follows that the only
unrestricted electric components of the Riemann
tensor are R,,,,,,,» = —%, and its complex conjugate,
corresponding to two tensor modes. The E(2) class
of this wave is N,, with two polarizations. This case
is shown as ared line in Fig. 1. Note in particular that
TEGR, marked as a red point, belongs to this class,
as one would expect. This subclass corresponds to
the so-called one-parameter family of teleparallel
models and has received particular attention in
previous studies [48]. It has been argued that this
condition is necessary to avoid ghosts [49,53].
However, we will not address the question of ghosts
in this article and leave this discussion for a
separate study.

We have visualized the aforementioned cases in Fig. 1,
which we constructed as follows. We first made use of our
assumption that at least one of the parameters ¢, ¢,, and c;
is nonvanishing and introduced normalized parameters,

N N (37)

2 2 2’
verteo+e

for i =1, 2, 3. One easily checks that the E(2) classes
we found only depend on these normalized parameters. We

then introduced polar coordinates (6, ¢) on the unit sphere
to express the parameters as
¢; =sinfcos¢, T, =sinbsing, T3 =cosb. (38)
As the E(2) class is the same for antipodal points on the
parameter sphere, we restrict ourselves to the hemisphere
¢3 2 0, and hence 0 < 6 <7; this is equivalent to identify-
ing antipodal points on the sphere and working with the
projective sphere instead, provided that we also identify
antipodal points on the equator ¢; = 0. We then considered
(0, ¢) as polar coordinates on the plane in order to draw the
diagram shown in Fig. 1. Note that antipodal points on the
perimeter, such as the two blue points, are identified with
each other as they describe the same class of theories.
This concludes our discussion of gravitational wave
polarizations. We have seen that depending on the param-
eters ¢y, ¢,, and ¢;3 we obtain the E, class Ilg, IIl5, N5 or N,,
with Nj filling most of the parameter space. We have also
seen that there exists a family of theories besides TEGR
which is of class N, and thus exhibits the same two tensor
modes as in general relativity. Theories in this class
therefore cannot be distinguished from general relativity
by observing the polarizations of gravitational waves alone.

V. CONCLUSION

We studied the propagation of gravitational waves in the
most general class of teleparallel gravity theories whose
action is quadratic in the torsion tensor, known as new
general relativity. The wave we considered is modeled as a
linear perturbation of a diagonal tetrad corresponding to a
Minkowski background metric. We derived the principal
polynomial of the linearized field equations and found that
gravitational waves propagate at the speed of light; i.e.,
their wave covector must be given by a null vector of the
Minkowski background. Further, we made use of the
Newman-Penrose formalism to derive the possible polar-
izations of gravitational waves. Our results show that the
two tensor polarizations, which are present also in general
relativity, are allowed for the whole class of theories we
considered, whereas additional modes—two vector modes
and up to two scalar modes—may be present for particular
models within this class. We found that the teleparallel
equivalent of general relativity is not the unique theory
exhibiting exactly two polarizations, but there is a one-
parameter family of theories with the same property. It thus
follows that observations of gravitational wave polariza-
tions may only give partial results on the parameter space of
these theories.

We remark that, although we restricted our analysis to
theories whose action is quadratic in the torsion tensor, our
results are valid for a significantly larger class of theories.
This is due to the fact that the torsion is linear in the tetrad
perturbations, so that the action is already quadratic in the
perturbations. Hence, any higher order correction terms
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would have no influence on the linearized field equations.
This observation agrees with previous results that there are
no additional gravitational polarizations in f(7) gravity
compared to general relativity [29] as up to the required
perturbation order the Lagrangian can be approximated as
F(T) = f(0) + f/(0)T + O(T?), which is equivalent to
general relativity with a cosmological constant. An exten-
sion to the class of theories discussed in [36] is shown
in [55].

Although higher order terms in the action do not
influence the linear perturbations around a Minkowski
background, they certainly have an influence on the
cosmological dynamics of the theory and therefore on
the expansion history of the Universe. This modified
expansion history might thus also leave an imprint on
the observed gravitational waves propagating in a cosmo-
logical background. An interesting extension of our work
would be to study gravitational waves as a perturbation to a
tetrad corresponding to a Friedmann-Lemaitre-Robertson-
Walker metric, taking into account modifications of the
background dynamics arising from higher order torsion
terms. Note that such modifications do not show up in the
quadratic action we considered in this article as all terms in
the gravitational action become proportional to the square
of the Hubble parameter in the case of cosmological
symmetry, and so the action reduces to the teleparallel
equivalent of general relativity, up to a constant factor.

Another possible class of extensions is to consider
additional fields nonminimally coupled to torsion and to
study their influence both on the speed and the polarization
of gravitational waves. A canonical example is given by
scalar torsion theories [56—-59] constructed from the TEGR
torsion scalar and an additional scalar field, where one
would expect the presence of an additional scalar mode
compared to general relativity as it is also the case for scalar
curvature gravity. These theories can be extended by
replacing the TEGR torsion scalar with the NGR torsion
scalar which defined the Lagrangian considered in this
article.
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