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We study the static equilibrium of a charged massive particle around a charged black hole, balanced by
the Lorentz force. For a given black hole, the equilibrium surface is determined by the charge/mass ratio of
the particle. By investigating a large class of charged black holes, we find that the equilibria can be stable,
marginal or unstable. We focus on the unstable equilibria which signal chaotic motions and we obtain the
corresponding Lyapunov exponents λ. We find that although λ approaches universally the horizon surface
gravity κ when the equilibria are close to the horizon, the proposed chaotic motion bound λ < κ is satisfied
only by some specific black holes including the Reissner-Nordström (RN) and RN-anti–de Sitter (AdS)
black holes. The bound can be violated by a large number of black holes including the RN-dS black holes
or black holes in Einstein-Maxwell-dilaton, Einstein-Born-Infeld and Einstein-Gauss-Bonnet-Maxwell
gravities. We find that unstable equilibria can even exist in extremal black holes, implying that the ratio λ=κ
can be arbitrarily large for sufficiently small κ. Our investigation does suggest a universal bound for
sufficiently large κ, namely λ=κ < C for some order-one constant C.
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I. INTRODUCTION

The Newtonian gravitational force between two charged
particles can precisely balance the electrostatic Coulomb
force for some critical charge/mass ratio. The equilibrium
is independent of the separation distance of the particles.
In Einstein-Maxwell theory, these charged particles with
the critical charge/mass ratio become asymptotically flat
extremal Reissner-Nordström (RN) black holes. Despite
the high nonlinearity of the theory, the no-force condition
between the extremal RN black holes persists and the
spacetime geometry can be described by a harmonic func-
tion in three-dimensional Euclidean space. The no-force
condition is related to the preserved supersymmetry of the
spacetime configuration in the context of supergravities.
The situation becomes much more complicated for

nonextremal black holes where the charge/mass ratio is
smaller than the critical value. In order to avoid the dif-
ficulties associated with the full nonlinearity of Einstein’s
equation of motion, one typically simplifies the problem
by considering a test particle around the black hole.
Intriguingly, a test particle can exhibit chaotic motion
and the occurrence in axisymmetric spacetimes was studied
in Ref. [1]. It turns out that the unstable orbit signals
the existence of the chaotic motion. For a test particle
moving around the Schwarzschild black hole, an unstable

extremum can exist provided that the particle spins suffi-
ciently fast [2]. It was shown that null particles can also
exhibit chaos around the black holes [3,4]. Considering the
fact that black holes are the most fundamental objects in
Einstein gravity, it is of great interest to study the universal
properties of such chaotic motions of the surrounding test
particles.
Recently particle motion around the most general static

black holes were studied in Ref. [5], where external forces
such as the static electric force were considered. By
focusing on the near-horizon geometry, one can deduce
that there is a static unstable equilibrium and the perturba-
tive motion restricted to the radial direction takes a
universal form

ϵ ∼ e�κt; ð1:1Þ

where κ is the surface gravity on the horizon. It can be
argued that this unstable equilibrium implies chaotic
motions for general perturbations and furthermore it was
conjectured in Ref. [5] that there is a universal bound for
the Lyapunov exponent of chaotic motions caused by the
black holes, namely

λ ≤ κ: ð1:2Þ

Even though this is a single-particle system, the result
appears to agree with the chaos bound proposed in Ref. [6]
for thermal quantum systems with a large number of
degrees of freedom.
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We would like to be cautious with the arguments for
two reasons. The first is that a single particle typically does
not have to obey constraints derived from a many-body
system. The second is that there is no decoupling limit such
that the near-horizon geometry of a nonextremal black hole
can be a solution on its own. The subleading terms in the
near-horizon expansion may have nontrivial contributions.
By including these subleading terms, we find that the
Lyapunov exponent of the unstable equilibrium at r0 close
to the horizon rþ is given by

λ2 ¼ κ2 þ γðr0 − rþÞ þOððr0 − rþÞ2Þ: ð1:3Þ

It can be easily demonstrated that no massive particle
can have an equilibrium on the horizon of a static
nonextremal black hole; therefore, the equality in
Eq. (1.2) cannot be reached. However, r0 can be arbitrarily
close to rþ given a sufficiently large charge/mass ratio. The
necessary condition that the chaotic motion bound (1.2) is
true is that the parameter γ is negative. With explicit
examples, we can demonstrate that γ can be both negative
and positive.
Even for black holes with negative γ [in which case there

is a local chaotic motion bound (1.2) in the vicinity of the
black hole horizon], it is still of interest to investigate
whether this bound is globally satisfied by all unstable
particle equilibria around the black hole, including regions
far away from the horizon. We thus study the static
equilibria of charged particles around static charged black
holes in the whole region rather than only in the vicinity of
the black hole horizon. We find that the equilibria can be
stable, unstable and/or marginal, depending on the detailed
properties of a specific black hole.
The paper is organized as follows. In Sec. II, we give the

general formalism for computing the static equilibrium of
charged test particles around charged black holes, assuming
that the external force involved is only the Lorentz force in
curved spacetime. We then study the properties of such an
equilibrium near the horizon and find that the “universal
property” can be violated by the subleading terms of the
metric functions of the near-horizon geometry. In Sec. III,
we study all the static equilibria of RN black holes that are
asymptotic to Minkowski, anti–de Sitter (AdS) and de
Sitter (dS) spacetimes. We find that the chaos bound (1.2) is
satisfied globally for the first two cases, but can be violated
in RN-dS black holes by the equilibria some appropriate
distance away from the horizon. In Sec. IV, we study
asymptotically flat charged black holes in supergravity-
inspired Einstein-Maxwell-dilaton theories and we find that
the bound (1.2) can be violated even locally in the vicinity
of the horizon, when the spacetime dimensions are not four.
In Sec. V, we study these properties with further charged
black hole examples in Einstein-Born-Infeld and Einstein-
Gauss-Bonnet-Maxwell gravities. We conclude the paper
in Sec. VI.

II. THE GENERAL SETUP

In this paper, we consider Einstein gravity or its
covariant higher-order curvature generalizations, in general
D dimensions, coupled to the Maxwell field A ¼ Aμdxμ

and other matter fields, including the cosmological con-
stant, minimally or nonminimally. We assume that the
theories admit the static solutions with the ansatz

ds2D ¼ −hðrÞdt2 þ dr2

fðrÞ þ ρðrÞ2dΩ2
D−2;k;

A ¼ ψðrÞdt;…; ð2:1Þ

where the ellipsis denotes any other matter fields that are
involved in the solutions, but not relevant for our dis-
cussion. The metric dΩ2

D−2;k is the Einstein metric with
R̃ij ¼ ðD − 3Þkg̃ij. Without loss of generality, we can
take k ¼ −1, 0, 1, corresponding to hyperbolic,
Euclidean or spherical spaces respectively when the metric
dΩ2

k is maximally symmetric. For asymptotically flat
Minkowski spacetimes, we must have k ¼ 1; for asymp-
totically AdS or dS spacetimes, we can have k ¼ −1, 0, 1.
Without loss of generality, one can make a coordinate
gauge choice ρ ¼ r; however, in many explicit black hole
examples, it is more convenient or even necessary to make
a specific coordinate choice ρðrÞ such that the solutions
may become analytical.
We further assume that the metric (2.1) describes a black

hole. In other words, there exists an event horizon (or outer
horizon) at r ¼ rþ such that hðrþÞ ¼ 0 ¼ fðrþÞ. (In this
paper, when we refer to a horizon without an adjective, it
always means the event horizon.) The surface gravity on
the horizon is then given by

κ ¼ 1

2

ffiffiffiffiffiffiffiffi
h0f0

p
jr¼rþ ; ð2:2Þ

where a prime denotes a derivative with respect to r. The
surface gravity vanishes for the extremal black holes where
h and f have double zeros at r ¼ rþ. We now introduce a
test particle charged under the Maxwell field A, with mass
and charge ðm; eÞ. The motion of this particle caused by the
charged black hole is governed by the action

S ¼ −m
Z

dτ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dxμ

dτ
dxν

dτ

r
þ e
m
Aμ

dxμ

dτ

�
; ð2:3Þ

where τ is a certain affine parameter, and the second term in
the parentheses gives rise to the Lorentz force in curved
spacetime. We are interested in static equilibria of the
particle around the black hole; therefore, we focus on the
radial motion with no angular momentum. The relevant
action can be written as
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S ¼ m
Z

dtL; L ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrÞ − _r2

fðrÞ

s
−

e
m
ψðrÞ; ð2:4Þ

where the radial variable r is now a function of the
asymptotic physical time t and a dot denotes a derivative
with respect to t. We assume that for some appropriate
charge/mass ratio e=m, there exists an equilibrium hyper-
surface r ¼ r0. The purpose of this paper is to examine the
stability of this equilibrium. For small perturbations
restricted to the radial direction, with j_rj ≪ 1, the effective
Lagrangian is given by

L ¼ _r2

2
ffiffiffiffiffiffiffiffiffi
hðrÞp

fðrÞ − VeffðrÞ; Veff ¼
ffiffiffiffiffiffiffiffiffi
hðrÞ

p
þ e
m
ψðrÞ:

ð2:5Þ
Thus for the equilibrium position located at r0 ≥ rþ, the
charge/mass ratio must satisfy

e
m

¼ −
ð ffiffiffi

h
p Þ0
ψ 0

����
r¼r0

: ð2:6Þ

It is reasonable to assume that ψ 0 is regular and non-
vanishing on the horizon. For nonextremal black holes
where hðrþÞ is a single zero, we have���� em

���� → ∞; as r0 → rþ: ð2:7Þ

Thus no massive particle can have a static equilibrium on
the horizon. For extremal black holes where hðrþÞ is a
double zero, the situation is different, since ð ffiffiffi

h
p Þ0 is finite

at r ¼ rþ, and a massive charged particle with an appro-
priate charge/mass ratio can have an equilibrium on the
horizon.
The purpose of this paper is to examine the stability of

these equilibrium hypersurfaces at r ¼ r0. For the linear
radial perturbation in the vicinity of r0 with rðtÞ ¼
r0 þ ϵðtÞ, the effective Lagrangian now becomes

L ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p
fðr0Þ

ð_ϵ2 þ λ2ϵ2Þ þOðϵ3Þ; ð2:8Þ

where

λ2 ¼
ffiffiffi
h

p
f

�
ψ 00

ψ 0 ð
ffiffiffi
h

p
Þ0 − ð

ffiffiffi
h

p
Þ00
�����

r¼r0

: ð2:9Þ

The characteristics of the equilibrium are specified by the
sign choice of λ2. Specifically, we have8>><

>>:
λ2 > 0∶ unstable; with ϵ ∼ eλt;

λ2 ¼ 0∶ marginal;

λ2 < 0∶ stable; with ϵ ∼ cosð
ffiffiffiffiffiffiffiffi
−λ2

p
tÞ:

ð2:10Þ

In particular, for the unstable case, although the perturba-
tion restricted to the radial direction can be solved exactly,
the general perturbative motion becomes chaotic and the
parameter λ is the upper bound for the Lyapunov exponent
[1]. In this paper, we shall not be so pedantic and simply
refer to λ as the Lyapunov exponent of the local chaotic
motion in the vicinity of the unstable equilibrium. (Note
that for neutral massive particles, the existence of a static
equilibrium requires h0ðr0Þ ¼ 0 at a certain r0. Such a case
can arise in asymptotically dS solutions where there exists
an additional cosmological horizon. Explicit examples will
be given in Sec. III C.)
This behavior was investigated in the literature where the

equilibrium near the horizon was considered [5]. One may
focus on the near-horizon geometry which is specified by
the metric functions whose Taylor expansions on the
horizon are

fðrÞ ¼ f1ðr − rþÞ þ � � � ; hðrÞ ¼ h1ðr − rþÞ þ � � � ;
ψðrÞ ¼ ψ0 þ ψ1ðr − rþÞ þ � � � ; ð2:11Þ
where ψ0 is pure gauge. If one treats these as the full metric
functions, then the equilibrium is located at

r0 ¼ rþ þ m2h1
4e2ψ2

1

: ð2:12Þ

Perturbing around this r ¼ r0, one finds a universal
expression [5]

λ ¼ κ: ð2:13Þ

However we should be cautious about this “universal”
result. It is important to note that for any black hole with
nonvanishing surface gravity, there can be no decoupling
limit such that the near-horizon geometry can be a solution
on its own. It follows that one cannot always ignore the
higher-order terms in the Taylor expansion (2.11) even if
one is interested only in studying the near-horizon proper-
ties. In particular, the equilibrium (2.12) is valid only for
the large e=m ratio; however, there is no dimensionless
parameter to measure this “largeness.” Nevertheless one
could still be tempted to conjecture that Eq. (2.13) provides
a universal upper bound for the Lyapunov exponent for
chaotic motion outside the black hole horizon, even though
the equality cannot be saturated.
To address this question, it is informative to include the

next order of the near-horizon Taylor expansions, namely

fðrÞ ¼ f1ðr − rþÞ þ f2ðr − rþÞ2 þ � � � ;
hðrÞ ¼ h1ðr − rþÞ þ h2ðr − rþÞ2 þ � � � ;
ψðrÞ ¼ ψ0 þ ψ1ðr − rþÞ þ ψ2ðr − rþÞ2 þ � � � : ð2:14Þ

At this order, the ratio e=m and the equilibrium r0 are
related by
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e
m

¼ −
ffiffiffiffiffi
h1

p
2ψ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ

p þ −3h2ψ1 þ 4h1ψ2

4
ffiffiffiffiffi
h1

p
ψ2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ

p þ � � � :

ð2:15Þ

The Lyapunov exponent is now modified to become

λ2 ¼ κ2 þ γðr0 − rþÞ þOððr − rþÞ2Þ;

γ ¼ 1

4
ðf2h1 − f1h2Þ þ 4κ2

ψ2

ψ1

: ð2:16Þ

Thus we see that the static equilibria sufficiently close to
the horizon are all unstable; however, the earlier near-
horizon result (2.13) could be exactly true only when the
equilibria were located literally on the horizon, which, as
we have demonstrated, is not possible for any massive
particle around such a nonextremal black hole. The true
statement is that λ approaches κ universally as the equi-
librium approaches the horizon, and the horizon surface
gravity κ may provide a bound for the Lyapunov exponent
for the unstable equilibria in the vicinity of the horizon.
Whether it is an upper bound or a lower bound depends on
the sign choice of γ:

�
γ > 0; κ is locally a lower bound; i:e: λ > κ;

γ < 0; κ is locally an upper bound; i:e: λ < κ:
ð2:17Þ

The necessary condition for satisfying the universal chaotic
motion bound (1.2) is γ < 0. Since there is no obvious
universal energy condition that can enforce the negativity
of γ, the bound (1.2) may likely be violated.
For a special class of black holes, referred to as special

static solutions in Ref. [7], some more general statements
can indeed be made. These special static metrics are
characterized by h ¼ f in the ρ ¼ r coordinate gauge
[7]. In this case, the electric potential for the minimally
coupled Maxwell field is given by

ψ ¼ q
rD−3 ; ð2:18Þ

where q is the charge parameter. In this case, we have

γ ¼ −
2ðD − 2Þκ2

rþ
< 0: ð2:19Þ

We see that for these special static black holes there is
indeed a “local” universal bound (1.2). We call it a local
bound because at this stage we can only be sure that it is
valid in the vicinity of the horizon, in other words, for the
equilibria hypersurfaces located at r0 ∈ ðrþ; rþ þ ϵÞ for
sufficiently small ϵ. This local analysis says nothing about
the Lyapunov exponent associated with the unstable
equilibria some distance away from the horizon.
The unstable equilibria in this paper are obtained by

restricting motion to the radial direction only. The system

remains highly nonlinear when motions in other directions
are open and hence the one-dimensional integrability is
lost. Following the general arguments in the literature and
Ref. [5] in particular, the motions become chaotic. For
simplicity, we consider the case of h ¼ f and the unstable
equilibrium is located at r ¼ r0. Making a coordinate
change r − r0 ¼ −fðr0Þ=f0ðr0Þ þ x, in the vicinity of r0,
the Lagrangian takes the form

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðr0Þx − _x2=ðxf0ðr0ÞÞ − _y2

q
− Vðx; yÞ; ð2:20Þ

where y is the new coordinate direction in which the
particle can move. This system is the same as the one
presented in Ref. [5] where chaotic motion was demon-
strated by explicit numerical analysis.
In the following sections, we study a variety of charged

black holes and study the equilibria of charged particles and
determine the characteristics of these equilibria. We focus
on finding examples that violate the bound (1.2) in different
categories of black holes.

III. REISSNER-NORDSTRÖM BLACK HOLES

In this section, we consider Einstein-Maxwell gravity,
coupled to a bare cosmological constant Λ0:

L ¼ ffiffiffiffiffiffi
−g

p �
R −

1

4
F2 − 2Λ0

�
; ð3:1Þ

where F ¼ dA is the field strength. For simplicity of our
presentation, we shall focus our discussion on D ¼ 4
dimensions and give a brief summary of the results in
general dimensions at the end of this section.

A. Asymptotically flat

In this subsection, we set Λ0 ¼ 0 so that the maximally
symmetric vacuum is the flat Minkowski spacetime. The
asymptotically flat RN black hole in four dimensions is
then given by

h ¼ f ¼ 1 −
2M
r

þ q2

r2
; ψ ¼ 2q

r
; ρ ¼ r; ð3:2Þ

Note that the factor “2” in ψ is due to the “1/4”
normalization of the kinetic term of the Maxwell field
in Eq. (3.1). In this normalization, the electric charge is
given by

Qe ¼
1

16π

Z
�F ¼ 1

2
q: ð3:3Þ

This solution belongs to the special static black holes
discussed in Sec. II and hence the general statements of the
characteristics of the equilibria near the horizon hold true.
Nevertheless, it is instructive to study the case in detail so as
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to uncover the properties of the equilibria away from the
horizon.
For sufficiently large massM, there are two horizons: the

inner horizon at r− and the outer horizon at r ¼ rþ, with
r− ≤ rþ, defined by fðr�Þ ¼ 0. The mass and charge
parameters ðM; qÞ can now be expressed as

M ¼ 1

2
ðrþ þ r−Þ; q ¼ ffiffiffiffiffiffiffiffiffiffi

rþr−
p

: ð3:4Þ

The surface gravity on the outer horizon is

κ ¼ rþ − r−
2r2þ

: ð3:5Þ

The requirement that κ ≥ 0 implies that mass and charge
must satisfy the inequality

M ≥ q ¼ 2Qe; ð3:6Þ

which is saturated in the extremal limit where the r�
coalesce.
It follows from Eq. (2.6) that the equilibrium r0 is

determined by

e
m

¼ ðrþ þ r−Þr0 − 2rþr−
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−ðr0 − rþÞðr0 − r−Þ

p : ð3:7Þ

As was discussed in Sec. II, for rþ > r−, the equilibrium r0
cannot be located on the horizon for any massive particle.
For r0 lying in the region ðrþ;∞Þ, we must have

e
m

≥
rþ þ r−
4

ffiffiffiffiffiffiffiffiffiffi
rþr−

p ¼ M
2q

¼ M
4Qe

≥
1

2
: ð3:8Þ

Thus equilibrium outside of the horizon is only possible for
electron-like charged particles that violate the black hole
condition (3.6). The Lyapunov exponent can be obtained
from Eq. (2.9) straightforwardly:

λ ¼ rþ − r−
2r20

: ð3:9Þ

Since λ is always real, the equilibria are all unstable.
Furthermore, λ satisfies the global upper bound (1.2), since
we have r0 > rþ.
When the black hole is extremal, with r− ¼ rþ, (i.e.,

M ¼ 2Qe,) it follows from the equilibrium condition (3.7)
that we must have m ¼ 2e, and the equilibria can be at any

r0, including on the horizon. The equilibria are all
marginally stable with λ ¼ 0. This is consistent with the
well-known result that there is a no-force condition for
supersymmetric static black holes that are asymptotically flat.
For the nonextremal RN black hole, outside of the

horizon, there exists an equilibrium hypersurface r ¼ r0
for a charged particle, determined by the charge/mass ratio,
for the ratio e=m > 1=2. The equilibrium is unstable. The
bigger the ratio, the closer the equilibrium is to the horizon
and the larger the Lyapunov exponent, but the upper bound
(1.2) cannot be saturated by any massive particle.
Following the discussions in Sec. II, we expect that there

is a local bound of Eq. (1.2) in the vicinity of the horizon. It
is nontrivial that the bound becomes global for all the
equilibria outside the horizon. Is this feature universal? We
continue this study by introducing the cosmological
constant.

B. Asymptotically AdS

We now turn on the cosmological constant Λ0. We take it
to be negative Λ0 ¼ −3=l2. The maximally symmetric
vacuum is the AdS spacetime of radius l. The static and
asymptotically AdS solution is given by

f ¼ r2

l2
þ k −

2M
r

þ q2

r2
; ψ ¼ 2q

r
; ρ ¼ r: ð3:10Þ

Now the topological parameter k can take all ð−1; 0; 1Þ
values. The solutions in general have two horizons r�, and
it is convenient to express ðM; qÞ in terms of ðr−; rþÞ:

M ¼ ðrþ þ r−Þðr2þ þ r2− þ kl2Þ
2l2

;

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−ðr2þ þ r2− þ rþr− þ kl2Þ

p
l

: ð3:11Þ

The surface gravity on the horizon is

κ ¼ ðrþ − r−Þðkl2 þ r2− þ 3r2þ þ 2r−rþÞ
2l2r2þ

: ð3:12Þ

The equilibrium r0 is related to the charge/mass ratio by

e
m

¼ r20f
0ðr0Þ

4q
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p : ð3:13Þ

The corresponding Lyapunov exponent is

λ2 ¼ −2r60 þ 3ðr2− þ r2þÞr40 − 6r2−r2þr20 þ r2−r2þðr2− þ r2þÞ
l4r40

þ 2Mð−3r40 þ 4ðr− þ rþÞr30 − 6r−rþr20 þ r−rþðr2− − rþr− þ r2þÞÞ
l2ðr− þ rþÞr40

þM2ðr− − rþÞ2
ðr− þ rþÞ2r40

: ð3:14Þ
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Note that for the topological parameter k ¼ −1, a horizon
can exist even for negative mass. Here we insist that the
black hole mass M takes only positive values.
We first examine the extremal black holes with r− ¼ rþ.

In this case, we have

e
m

¼
ffiffiffiffiffi
rþ

p ðl2M þ r3þ þ r0r2þ þ r20rþ þ r30Þ
2lq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2M þ rþðrþ þ r0Þ2

p ;

λ2 ¼ −
ðr0 − rþÞ3ðl2Mðrþ þ 3r0Þ þ 2rþðrþ þ r0Þ3Þ

l4rþr40
:

ð3:15Þ

Thus we see that for the ratio

e
m

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3r4þ

l2q2

s
; ð3:16Þ

the equilibrium is located on the horizon, for which λ ¼ 0,
giving rise to the marginally stable equilibrium. The
concept of the no-force condition breaks down for the
asymptotically AdS extremal black holes. For particles with
larger e=m ratios, the equilibrium r0 is located outside of
the horizon and all these equilibria are stable since λ2 < 0.

It is intriguing that charged massive particles can be trapped
on these hypersurfaces. This may provide a mechanism of
matter condensation.
For the nonextremal black holes with rþ > r−, we have

r0 → rþ∶ λ2 ¼ κ2 −
4κ2

rþ
ðr0 − rþÞ þOððr0 − rþÞ2Þ;

r0 → ∞∶ λ2 ¼ −
2r20
l4

þOð1Þ: ð3:17Þ

Thus we see, not surprisingly, that λ2 > 0 near the horizon,
but it is always negative at asymptotic infinity. In fact for
the nonextremal RN-AdS black holes, there exists r�0 > rþ
where λ ¼ 0. In the region ðrþ; r�0Þ, the equilibria are
unstable with λ2 > 0. For r0 > r�0, we have λ

2 < 0 and all
of the equilibria become stable.
It is of interest to investigate whether the bound (1.2)

holds for all the unstable equilibria. To do so, we define two
positive dimensionless parameters ðx; yÞ, by

r0 ¼ ð1þ xÞrþ; rþ ¼ ð1þ yÞr−: ð3:18Þ

We find that

κ2 − λ2 ¼ x
r4−ðxþ 1Þ4ðyþ 1Þ4ðyþ 2Þ2

�
M2ðx3 þ 4x2 þ 6xþ 4Þy2

þ 2M
l2

r3−ðy2 þ 3yþ 2Þðx3ð4y3 þ 11y2 þ 9yþ 3Þ þ 4x2ð3y3 þ 7y2 þ 4yþ 1Þ

þ 6xyð2y2 þ 4yþ 1Þ þ 4y2ðyþ 2ÞÞ þ r6−ðxþ 2Þðyþ 1Þ2ðyþ 2Þ2
l4

ð2x4ðyþ 1Þ4 þ 8x3ðyþ 1Þ4 þ 2y2ðyþ 2Þ2

þ x2ð12y4 þ 48y3 þ 67y2 þ 38yþ 8Þ þ 2xyð4y3 þ 16y2 þ 19yþ 6ÞÞ
�
: ð3:19Þ

This quantity is positive definite and it approaches zero as
x → 0. Thus the chaotic motion bound (1.2) is globally
satisfied for the RN-AdS black holes.

C. Asymptotically dS

We now consider a positive cosmological constant Λ0.
The black hole solution is given by

f ¼ −
1

3
Λ0r2 þ 1 −

2M
r

þ q2

r2
; ψ ¼ 2q

r
; ρ ¼ r:

ð3:20Þ

Here, we have chosen k ¼ 1. In addition to the inner and
outer horizons, there exists also the cosmic horizon rc.
The normal spacetime is sandwiched between rþ and rc,
where the metric functions h ¼ f are positive. It is helpful

to express the constants M, q and Λ0 in terms of
rc > rþ ≥ r− > 0:

M ¼ ðr− þ rþÞðrc þ r−Þðrc þ rþÞ
2ðr2c þ ðr− þ rþÞrc þ r2− þ rþr− þ r2þÞ

;

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r−rþrcðrc þ r− þ rþÞ
r−ðrc þ rþÞ þ r2c þ rþrc þ r2− þ r2þ

s
;

Λ0 ¼
3

r2c þ ðr− þ rþÞrc þ r2− þ rþr− þ r2þ
: ð3:21Þ

The surface gravity on the horizon rþ is given by

κ ¼ ðrþ − r−Þðrc − rþÞðrc þ r− þ 2rþÞ
2r2þðr2c þ r2þ þ r2− þ r−rc þ rþrc þ rþr−Þ

: ð3:22Þ
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We now consider the extremal black hole with r− ¼ rþ
and hence κ ¼ 0. The equilibrium r0 is determined by

e
m

¼ −
r2þðr0 − 2rcÞ þ rþðr20 − r2cÞ þ r30

2rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcðrc þ 2rþÞðrc − r0Þðrc þ 2rþ þ r0Þ

p :

ð3:23Þ

Since r0 runs from rþ to rc, we find that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrc − rþÞðrc þ 3rþÞ

4rcðrc þ 2rþÞ

s
≥

e
m

> −∞: ð3:24Þ

Note that the equilibrium cannot be located on the cosmic
horizon for any massive particle. The Lyapunov exponent is
given by

λ2 ¼ ðr0 − rþÞ3
r40ðr2c þ 2rcrþ þ 3r2þÞ2

½ðr0 − rþÞðr0 þ rþÞ2

þ 2ð3r20 þ 4r0rþ þ r2þÞðrc − r0Þ
þ ð3r0 þ rþÞðrc − r0Þ2� ≥ 0: ð3:25Þ

Thus the equilibrium on the horizon is marginally stable
with λ ¼ 0, while any equilibrium outside the horizon is
unstable. Furthermore, the chaotic motion bound (1.2) is
(maximally) violated by all the unstable equilibria since we
now have κ ¼ 0 for the extremal black holes. This also
implies that λ=κ can be arbitrarily large for sufficiently
small κ.
The situation becomes more complicated for nonextre-

mal black holes. The equilibrium r0 is determined by the
charge/mass ratio as

e
m

¼ ðr− þ rþÞr0ðrc þ r−Þðrc þ rþÞ − 2r−rþrcðrc þ r− þ rþÞ − 2r40
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−rþrcðr0 − r−Þðr0 − rþÞðrc − r0Þðrc þ r− þ rþÞðrc þ r− þ rþ þ r0Þ

p : ð3:26Þ

Thus there exists an equilibrium for any massive particle. The bigger the positive e=m ratio, the closer the equilibrium is to
the event horizon; the more negative the ratio, the closer the equilibrium is to the cosmological horizon. The Lyapunov
exponent is given by λ2 ¼ X=Y, with

X ¼ x2ð2x2ðyþ 1Þ2 þ xð5y2 þ 9yþ 4Þ þ yð3yþ 4ÞÞ2
þ ðxþ 1Þ2z2ð12x4ðyþ 1Þ4 þ 16x3ð2yþ 1Þðyþ 1Þ3 þ 6x2yð5yþ 4Þðyþ 1Þ2
þ 6xy2ð3y2 þ 7yþ 4Þ þ y2ð3yþ 4Þ2Þ
þ 2xðxþ 1Þzð12x4ðyþ 1Þ4 þ 10x3ð5yþ 4Þðyþ 1Þ3 þ y2ð3yþ 4Þ2
þ 2x2ð37y2 þ 56yþ 16Þðyþ 1Þ2 þ 3xyð15y3 þ 47y2 þ 48yþ 16ÞÞ
þ ðxþ 1Þ4y2ðyþ 1Þ2z4 þ 2ðxþ 1Þ3y2ðyþ 1Þz3ð2xðyþ 1Þ þ 3yþ 4Þ;

Y ¼ 4r2−ð1þ xÞ4ð1þ yÞ2ð6þ 4zþ z2 þ x2ð1þ yÞ2ð1þ zÞ2 þ yð8þ 7zþ 2z2Þ
þ xð1þ yÞð1þ zÞð4þ 3yþ 2zþ 2yzÞ þ y2ð3þ 3zþ z2ÞÞ2: ð3:27Þ

Here ðx; yÞ are defined by Eq. (3.18) and z is given by

rc ¼ r0ð1þ zÞ: ð3:28Þ

Since ðx; y; zÞ are all positive values, the quantity λ2 must
be positive since it is a rational polynomial of ðx; y; zÞ with
all positive coefficients. It follows that all the equilibria are
unstable. This is of course consistent with the known fact
that a positive cosmological constant cannot balance the
matter to give a steady-state universe. The chaotic bound
(1.2) can be violated for sufficiently small surface gravity or
sufficiently large cosmological constant. As a concrete
example, we consider ðr−; rþ; rcÞ ¼ ð1; 2; 3Þ, correspond-
ing to

ðM; q;Λ0Þ ¼
�
6

5
;
6

5
;
3

25

�
; κ ¼ 1

25
;

f ¼ ðr − 1Þðr − 2Þð3 − rÞð6þ rÞ
25r2

: ð3:29Þ

The normal spacetime region lies in r ∈ ð2; 3Þ. We find

κ2 − λ2 ¼ 2ðr0 − 2Þð3 − r0Þð18 − 5r0 − r20Þ
625r20

: ð3:30Þ

Since the last parentheses in the numerator has one negative
root, and one positive root r�0,
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2 < r�0 ¼
1

2
ð

ffiffiffiffiffi
97

p
− 5Þ < 3: ð3:31Þ

It follows that the chaotic bound is violated not near the
horizon rþ, but in the region r0 ∈ ðr�0; 3Þ. In particular, the
maximal violation occurs at r0 ¼ 2.74, which is not close
to any horizon. In fact, we have κ ¼ λ on both the event and
cosmological horizons.
Before ending this subsection, we would like to point out

that there is in general an equilibrium hypersurface for
neutral massive particles around asymptotically dS black
holes. It is located at r0 such that h0ðr0Þ ¼ 0. As a concrete
example, we consider a Schwarzschild-dS black hole with

h ¼ f ¼ −
1

3
Λ0r2 þ 1 −

2M
r

; ρ ¼ r: ð3:32Þ

The black hole has an event horizon rþ, as well as a
cosmological horizon rc > rþ. The mass and cosmological
constant are related to the two horizons by

M ¼ rcrþðrc þ rþÞ
2ðr2c þ r2þ þ rcrþÞ

; Λ0 ¼
3

r2c þ r2þ þ rcrþ
:

ð3:33Þ
It is easy to verify that the equilibria are located at

r0 ¼
�
3M
Λ0

�1
3 ¼

�
1

2
rcrþðrc þ rþÞ

�1
3

; with

λ2 ¼ Λ0 − ð9M2Λ4
0Þ

1
3: ð3:34Þ

Requiring that rc > rþ > 0 implies that λ2 > 0 in general
and hence the equilibrium is unstable, causing chaotic
motion for general perturbations. The Lyapunov index
however satisfies the bound (1.2).

D. General dimensions

We have so far analyzed the RN black holes in four
dimensions. In general D dimensions, the solution is given
by (ρ ¼ r)

f ¼ −
2Λ0

ðD − 1ÞðD − 2Þ r
2 þ k −

2M
rD−3 þ

q2

r2ðD−3Þ ;

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD − 2Þ
D − 3

r
q

rD−3 : ð3:35Þ

The qualitative results in general dimensions are the same
as those we discussed in D ¼ 4. For the asymptotically flat
solution with Λ0 ¼ 0 and k ¼ 1, there are in general two
horizons rþ ≥ r−, and we find that

κ ¼ ðD − 3ÞðrD−3þ − rD−3
− Þ

2rD−2þ
; λ ¼ ðD − 3ÞðrD−3þ − rD−3

− Þ
2rD−2

0

:

ð3:36Þ

In the extremal limit, with r− ¼ rþ, for the particles with
the same extremal charge/mass ratio, there is a no-force
condition, and the particles are in marginally stable
equilibrium in any space. For nonextremal black holes,
we have a real Lyapunov exponent λ, indicating that the
equilibria are all unstable, but the resulting motion satisfies
the chaotic bound λ < κ.
For asymptotically AdS black holes, stable equilibria can

arise in extremal or near-extremal black holes. For non-
extremal black holes, the equilibria sufficiently far away
from the horizon are stable, while those close to the horizon
are unstable, but satisfy the chaotic motion bound (1.2). For
the asymptotically dS RN black holes, all the equilibria are
unstable and the chaotic bound can be violated, especially
for extremal or near-extremal black holes.

IV. EINSTEIN-MAXWELL-DILATON THEORY

In the previous section, we examined the properties of the
equilibrium hypersurfaces of charged particles around the
RN black holes. For asymptotically flat or AdS black holes,
we found that for the unstable equilibria, there is a global
upper bound (1.2) for the Lyapunov exponent. However, as
this bound is violated for asymptotically dS RN black holes,
it is of interest to look for examples of asymptotically flat or
AdS black holes that may also violate this bound. In this
section, we consider Einstein-Maxwell-dilaton (EMD) the-
ories in general dimensions, with the Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p �
R −

1

4
eaϕF2 −

1

2
ð∂ϕÞ2

�
: ð4:1Þ

It is convenient to parametrize the dilaton coupling constant
a by

a2 ¼ 4

N
−
2ðD − 3Þ
D − 2

: ð4:2Þ

Thus a2 ≥ 0 implies that 0 < N ≤ 2ðD − 2Þ=ðD − 3Þ. The
EMD theories are supergravity inspired in that the theories
of integerN can be embedded in appropriate supergravities.
The theories admit electrically charged black holes (see e.g.,
Ref. [8]),

ds2 ¼ −H−D−3
D−2Nf̃dt2 þH

N
D−2

�
dr2

f̃
þ r2dΩ2

�
;

A ¼ ψdt; ϕ ¼ 1

2
Na logH;

f̃ ¼ 1 −
μ

rD−3 ; ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nqðμþ qÞp
rD−3H

; H ¼ 1þ q
rD−3 :

ð4:3Þ

In other words, we have

h ¼ H−D−3
D−2Nf̃; f ¼ H− N

D−2f̃; ρ ¼ r2H
N

D−2: ð4:4Þ
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The solutions reduce to the RN black holes when a ¼ 0,
corresponding to N ¼ 2ðD − 2Þ=ðD − 3Þ. The black hole
horizon is located at r ¼ rþ, given by μ ¼ rD−3þ . The surface
gravity on the horizon is

κ ¼ D − 3

2rþ

�
1þ q

rD−3þ

�
−1
2
N
: ð4:5Þ

The black hole thermodynamical quantities can be easily
obtained by the standard procedure, and they are

M ¼ ðD − 2ÞΩ
16π

�
μþD − 3

D − 2
Nq

�
; T ¼ κ

2π
;

S ¼ 1

4
ΩrD−2þ HðrþÞ12N;

Φ ¼ ψðrþÞ; Q ¼ ðD − 3ÞΩ
16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nqðμþ qÞ

p
: ð4:6Þ

It is easy to verify that the first law dM ¼ TdSþΦdQ of
black hole thermodynamics is satisfied.

The Lorentz force term in the particle action (2.3) can now
be modified by a factor ebϕ, and in particular when b ¼ 1

2
a

the constant shift symmetry of the dilaton of the EMD theory
is maintained by the modified Lorentz force law. However,
this symmetry is not sacred since it can be easily violated by
a scalar potential. Thus for simplicity, we shall take b ¼ 0.
The equilibrium r0 of a charged particle of mass and charge
ðm; eÞ around the black hole is determined by

e
m

¼ Ω
32π

h0ðr0ÞHðr0Þ2
Q

ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p rD−2
0 : ð4:7Þ

For the equilibria lying within ðrþ;∞Þ, the charge/mass
ratio must satisfy

e
m

>
D − 3

2ðD − 2Þ
M
Q

: ð4:8Þ

It turns out that the equilibria are all unstable, and the
Lyapunov exponent is given by

λ2 ¼ N2ðD − 3Þ2r2ð5−2DÞ
0

64ðD − 2Þ2Hðr0ÞNþ2
½4ðD − 3Þ2Hðr0Þ2ðr0rþÞ2ðD−3Þ þ 4ðD − 2ÞðD − 3Þa2ð1þ ðr0rþÞ2ðD−3Þ þ 2qr2ðD−3Þ

0 r2ðD−3Þ
þ

þ q2ð2rD−3
0 ðrD−3

0 − rD−3þ Þ þ r2ðD−3Þ
þ ÞÞ þ ðD − 2Þ2Hðr0Þðr0rþÞD−3ððr0rþÞD−3 þ qð4rD−3

0 − 3rD−3þ ÞÞ�; ð4:9Þ
which is positive definite for r0 > rþ. For two cases, the expression λ=κ becomes particularly simple:

a ¼ 0∶
λ

κ
¼

�
qþ rDþ3

þ
qþ rD−3

0

�D−2
D−3

; a ¼ 1; D ¼ 4∶
λ

κ
¼

�
qþ rþ
qþ r0

�
2

: ð4:10Þ

We now examine the chaotic motion bound (1.2). For the above two cases in Eq. (4.10) the bound is satisfied. In general,
we find that this bound can hold or be violated depending on the value of the dilaton coupling constant a. We shall not
classify all the possibilities here, but instead give some explicit examples. First we consider D ¼ 4, and analytical results
can be explicitly given for the N ¼ 1, 2, 3, 4 integer values. The N ¼ 4 example is precisely the RN black hole written in
different coordinates. Introducing a dimensionless parameter x as in Eq. (3.18), we find that in D ¼ 4

N¼ 1∶

κ2−λ2 ¼ x
16rþðxþ1Þ3ðqþ rþÞðqþ rþðxþ1ÞÞ3 ½q

3xð4xþ9Þþq2rþð12x3þ48x2þ57xþ16Þ

þ4qr2þðxþ1Þð3x3þ12x2þ18xþ8Þþ4r3þðxþ1Þ2ðxþ2Þðx2þ2xþ2Þ�;
N¼ 2∶

κ2−λ2 ¼ rþxð2qþ rþðxþ2ÞÞð2q2þ2qrþðxþ2Þþ r2þðx2þ2xþ2ÞÞ
4ðqþ rþÞ2ðqþ rþðxþ1ÞÞ4 ;

N¼ 3∶

κ2−λ2 ¼ rþx
16ðxþ1Þðqþ rþÞ3ðqþ rþðxþ1ÞÞ5 ½q

4rþð7xþ16Þ−3q5xþq3r2þð40x2þ95xþ64Þ

þq2r3þð40x3þ160x2þ213xþ96Þþ4qr4þð5x4þ25x3þ50x2þ46xþ16Þþ4r5þðxþ1Þ2ðx3þ4x2þ6xþ4Þ�;
N¼ 4∶

κ2−λ2 ¼ r3þxð2qþ rþðxþ2ÞÞð2q2þ2qrþðxþ2Þþ r2þðx2þ2xþ2ÞÞ
4ðqþ rþÞ4ðqþ rþxþ rþÞ4

: ð4:11Þ
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It is thus clear that for N ¼ 1, 2 and 4, we have always κ2 − λ2 > 0 and hence the chaotic motion bound (1.2) is satisfied
globally. On the other hand, when N ¼ 3, there is a negative −3q5x term, which can cause κ2 − λ2 to be negative at certain
x, for sufficiently large q or small rþ. Near the horizon with small x, we find the Taylor expansion

κ2 − λ2 ¼ r2þN
þ

rNþ6
0 Hðr0ÞNþ2

�
rþðrþ þ qÞxþ

�
3

16
ð4 − NÞð2 − NÞq2 þ 4qrþ þ 1

2
ð2N þ 7Þr2þ

�
x2 þOðx3Þ

�
: ð4:12Þ

Since the leading-order term is positive, it follows that the bound (1.2) holds locally in the near-horizon region. For
2 < N < 4, and sufficiently large q, the bound (1.2) can be violated at some x away from the horizon. The bigger the
parameter q, the smaller the local region where Eq. (1.2) is satisfied.
The situation is more complicated in general dimensions and we find that the bound (1.2) can be violated even locally

near the horizon. As a concrete example, we consider D ¼ 5 and N ¼ 1, and we find

κ2 − λ2 ¼ xðxþ 2Þ
9ðxþ 1Þ4ðqþ r2þÞðqþ r2þðxþ 1Þ2Þ3 ½q

3ðx2 þ 2x − 6Þ þ q2r2þð27x4 þ 108x3 þ 157x2 þ 98xþ 15Þ

þ 3qr4þðxþ 1Þ2ð9x4 þ 36x3 þ 63x2 þ 54xþ 16Þ þ 9r6þðxþ 1Þ4ðx4 þ 4x3 þ 7x2 þ 6xþ 3Þ�: ð4:13Þ

This quantity is not positive definite. In particular, as
x → 0, we have the leading term

κ2 − λ2jx→0 ¼ −
2xð2q − 9r2þÞ
3ðqþ r2þÞ2

þOðx2Þ: ð4:14Þ

Thus we see that the bound (1.2) is violated even in the
near-horizon region since the above leading-order term near
the horizon becomes negative when q > 9

2
r2þ.

For general D and N, the leading-order near-horizon
expansion is

κ2−λ2jx→0¼
ðD−2ÞðD−3Þ2
2rD−1þ HðrþÞ1þN

×

�
rD−3þ −

ðD−4Þa2q
ðD−2Þa2þ2ðD−3Þ

�
xþOðx2Þ:

ð4:15Þ

Thus we see that unless a ¼ 0 orD ¼ 4, the quantity can be
negative for sufficiently large q. Thus the violation of the
chaotic motion bound (1.2) is a rather common occurrence
for charged black holes in EMD theories. Note that charged
black holes in EMD theories belong to the general rather
than the special static black holes described in Ref. [7].
Thus the general discussion for the special static black
holes in Sec. II does not apply and indeed we found above
the explicit examples where the chaotic motion bound (1.2)
is even violated locally by equilibria that are in the vicinity
of the horizon.
Owing to the fact that we have found examples of

asymptotically flat black holes in EMD theories for which
the bound (1.2) is violated, we shall not investigate further
asymptotically (A)dS black holes in this category.

V. FURTHER CHARGED BLACK HOLES

We have seen that for asymptotically flat or AdS black
holes, the chaotic motion bound (1.2) is satisfied by the
charged particles around the RN black holes, but can be
violated around the charged black holes of EMD theories.
The RN black holes belong to the special static solutions
while the charged black holes in EMD theories belong to the
general static solutions. It is thus of interest to investigate
further examples of special static black holes and examine
whether the bound can be violated. Since we have already
found asymptotically dS examples in Sec. III C that violate
the bound, we shall consider here only those that are
asymptotic to Minkowski or AdS spacetimes.

A. Einstein-Born-Infeld theory

In this subsection, we consider Einstein-Born-Infeld
(EBI) theory and the Lagrangian is

L ¼ ffiffiffiffiffiffi
−g

p ðR − 2Λ0Þ − b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
gμν þ

Fμν

b

�s
; ð5:1Þ

where the bare cosmological constant is related to the
effective cosmological constant by Λ0 ¼ Λ − b2=2. The
theory reduces to Einstein-Maxwell gravity when the Born-
Infeld parameter b → ∞.
We focus our discussion onD ¼ 4 and the static solution

is of the special kind, given by [9–12]

h ¼ f ¼ −
1

3
Λ0r2 þ k −

2M
r

−
b2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ q2

b2

r

þ Q2

3r2 2F1

�
1

4
;
1

2
;
5

4
;−

q2

b2r4

�
;

ψ 0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ q2

b2

q ; ρ ¼ r: ð5:2Þ

The large-r expansion of f is
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f ¼ −
1

3
Λr2 þ k −

2M
r

þ q2

r2
þ � � � : ð5:3Þ

Furthermore, the b → ∞ limit yields the RN black holes.
Since the black hole belongs to the special static solutions,
it follows from the discussion in Sec. II that the chaotic
motion bound (1.2) is satisfied in the vicinity of the
horizon, since we have

ψ 00

ψ 0 < 0: ð5:4Þ

In this subsection, we examine whether the bound (1.2)
holds globally for finite b.

1. Asymptotically flat

Here we set Λ ¼ 0, in which case, we must choose
k¼ 1. For sufficiently large M, there exists a horizon
rþ > 0 satisfying fðrþÞ ¼ 0. The corresponding surface
gravity is

κ ¼ 1

2rþ
þ b2

4rþ

0
B@r2þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4þ þQ2

b2

s 1
CA: ð5:5Þ

The condition κ ≥ 0 implies that Q has an upper limit for
fixed rþ

Q ≤ Qext ≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ 1

b2

r
: ð5:6Þ

The extremal solution corresponds to Q ¼ Qext for which
we have κ ¼ 0. For Q < Qext, there exists an inner horizon
r−, which does not concern us in our discussion here.
The equilibrium r0 and the corresponding Lyapunov

exponent λ are given by Eqs. (2.6) and (2.9) respectively.
We shall not present the explicit results owing to the
complexity of the formulas, but instead give some quali-
tative descriptions of the properties.
We first consider the extremal solution Q ¼ Qext for

which we have κ ¼ 0. In this case, the existence of any
unstable equilibrium implies the violation of the chaotic
motion bound (1.2). In the limit b → ∞, we have λ ¼ 0,
leading to the no-force condition described in Sec. III A for
the asymptotically flat extremal RN black holes. In the
large-b expansion, we find

λ2¼ðr0− rþÞ3ð30r3þ−6r0r2þ−3r20rþ−r30Þ
5r100 b2

þO
�
1

b4

�
:

ð5:7Þ
Thus we see that for large but finite b, the leading-order
term has a positive λ2 in 0 < r0 < r�0 where r

�
0 ¼ 1.977rþ

and hence the equilibria are unstable. Equilibria located at
r0 > r�0 are all stable. This feature turns out to be true for all
b. Near the horizon, we find

λ2 ¼ 4b4ð2þ 3b2r2þÞ
3rþð2þ b2r2þÞ4

ðr0 − rþÞ3 þOððr0 − rþÞ4Þ; ð5:8Þ

which is positive. In the large-r0 expansion, we have

λ2¼ c
r40
þOðr−60 Þ;

c¼ 1

9b4r2þ

�
−b2r2þð8b2r2þþ9Þþ4ðb2r2þþ1Þ22F1

�
1

4
;
1

2
;
5

4
;−

4ðb2r2þþ1Þ
b4r4þ

�
2

þ4ðb4r4þþb2r2þÞ2F1

�
1

4
;
1

2
;
5

4
;−

4ðb2r2þþ1Þ
b4r4þ

��
:

ð5:9Þ

It can be easily demonstrated numerically that the coefficient c is negative for all b and rþ > 0. Thus we see that λ2 ¼ 0þ as
r0 → ðrþÞþ and as r0 increases, λ2 reaches a maximal value and then reduces to zero at a certain r�0 > rþ, after which λ2

becomes negative and the all of the equilibria become stable. This is different from asymptotically flat extremal RN black
holes, where the equilibria are all marginally stable. The fact that unstable equilibria exist in the extremal black hole with
κ ¼ 0 implies that the bound (1.2) is maximally violated.
We now consider nonextremal solutions with κ > 0, achieved by setting Q < Qext. As a concrete example, we set

Q ¼ 2rþ, which becomes extremal when b → ∞. For any finite b, we haveQ < Qext. As the equilibrium r0 approaches the
horizon rþ, λ → κ and hence the equilibrium is unstable. We find that

κ2 − λ2 ¼ 2b2ðr0 − rþÞ
rþðb2r2þ þ 4Þðb4r4þ þ 4b2r2þ þ brþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2r2þ þ 4

p
ðb2r2þ þ 2Þ þ 2Þ þOððr − rþÞ2Þ: ð5:10Þ

For sufficiently small b, the chaotic motion bound (1.2) can be globally satisfied by all equilibria. When b increases, the
situation becomes more complicated, and we present the behavior of ðκ2; λ2Þ and ðκ2 − λ2Þ in Fig. 1. It is worth pointing out
that in this Q ¼ 2rþ case, the ratio λ=κ can be arbitrarily large at certain unstable equilibria for sufficiently large b. The
surface gravity approaches zero in this limit.
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When Q is even smaller than 2rþ, such that the black
hole is nonextremal for all b, we find that the chaotic
motion bound (1.2) is satisfied globally.

2. Asymptotically AdS

We now take the bare cosmological constant to be

Λ0 ¼ −
1

2
b2 −

3

l2
: ð5:11Þ

The vacuum solution is the AdS black hole with radius l.
We shall consider only the k ¼ 1 case as a representative
solution and hence we have

κ ¼ 3rþ
2l2

þ 1

2rþ
þ b2

4rþ

0
B@r2þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4þ þQ2

b2

s 1
CA: ð5:12Þ

The extremal solution, corresponding to κ ¼ 0, can arise if
we take Q ¼ Qext with

Qext ¼
2

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 3r2þ

l2

��
1þ br2þ þ 3r2þ

l2

�s
: ð5:13Þ

In this extremal limit, we find, after setting l ¼ 1, that in
the vicinity of the horizon,

λ2¼ 4ðb2ð6r2þþ1Þþ18r2þþ6Þ
3rþððb2þ6Þr2þþ2Þ4

× ð−3b6r6þþ3b4ð3r3þþ rþÞ2þ12ð3r2þþ1Þ3
þ2ð12r2þþ1Þð3br2þþbÞ2Þðr0− rþÞ3þOððr0− rþÞ4Þ:

ð5:14Þ

Thus we see that for a given rþ, λ2 is negative for large b,
and hence the equilibria are stable in the vicinity of the

horizon. It is intriguing that charged particles can be
trapped in stable equilibria near the horizon. As b
decreases, λ2 becomes positive and the equilibria become
unstable. Since κ ¼ 0, the chaotic motion bound (1.2) is
violated even in the vicinity of the horizon. Far away from
the horizon, λ2 can become negative. In particular, in the
large-r0 expansion, we find that

λ2 ¼ −
2r20
l4

−
3

l2
þOðr−10 Þ: ð5:15Þ

Thus for sufficiently large r0, the equilibria are all stable
regardless of the values of b.
For nonextremal black holes, we find that the character-

istics are similar to those of RN-AdS black holes: λ2 is
positive for equilibria close to the horizon, but becomes
negative away from the horizon, and the bound (1.2) is
always satisfied.

B. Einstein-Gauss-Bonnet-Maxwell gravity

As the final example of this paper, we now consider
Einstein-Gauss-Bonnet-Maxwell theory:

L ¼ ffiffiffiffiffiffi
−g

p �
R − 2Λ0 þ αGBðRμνρσRμνρσ − 4RμνRμν þ R2Þ

−
1

4
F2

�
: ð5:16Þ

The theory admits a special static charged black hole
[13,14], given by

h¼ f¼ kþ r2

2α

0
B@1−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αM

β2rD−1−
4αq2

β2r2ðD−2Þ

s 1
CA;

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD−2Þ
D−3

r
q

rD−3 ; β¼ 1−
2α

l2
;

Λ0¼
1

2
ðD−1ÞðD−2Þ

�
1

l2
−

α

l4

�
; α¼ αGB

ðD−3ÞðD−4Þ :

ð5:17Þ
(The chargeless solutions can be found inRefs. [15,16].) It is
easy to verify that in the α → 0 limit, the solution reduces to
the general RN solution (3.35). For simplicity, we shall
discuss theD ¼ 5 example only.We also assume that α > 0,
in which case, the absence of ghosts implies that β > 0. The
β ¼ 0 case yields gravity without linear gravitons [17].

1. Asymptotically flat

In this case, we set l → ∞ and k ¼ 1. The solution in
general has two horizons, in terms of which, the mass and
charge parameters can be expressed as

M ¼ 1

2
ðr2− þ r2þ þ αÞ; q ¼ r−rþ: ð5:18Þ

FIG. 1. An explicit example of the violation of the bound (1.2)
by a nonextremal black hole in EBI theory. The black hole
parameters are given by rþ ¼ 1, b ¼ 5 and Q ¼ 2. It can be seen
that the bound is satisfied in the vicinity of the black hole horizon
r0 ∈ ð1; 1.2Þ, violated in the region (0.2, 0.4), and satisfied again
in the region (0.4, 2). The r0 > 2 equilibria become stable.
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The surface gravity on the horizon is

κ ¼ r2þ − r2−
rþðr2þ þ 2αÞ : ð5:19Þ

In the extremal limit r− ¼ rþ, we have

r0→ rþ∶ λ2¼−
64α

rþð2αþ r2þÞ3
ðr0− rþÞ3þOððr0− rþÞ4Þ;

r0→∞∶ λ2¼ αð4r2þþαÞ
r60

þOððr−80 Þ: ð5:20Þ

With our assumption α > 0, we see that the equilibria are
stable near the horizon, and become unstable far from the
horizon, causing the violation of the bound (1.2).
For nonextremal black holes, the general discussion in

Sec. II applies and we have

κ2 − λ2 ¼ 6κ2

rþ
ðr0 − rþÞ: ð5:21Þ

For high enough surface gravity, the chaotic bound (1.2)
is globally satisfied by all equilibria; for sufficiently
small κ, the chaotic bound (1.2) can be violated outside
of the horizon. The ratio λ=κ can be arbitrary large for
sufficiently small κ. As a concrete example, for ðα; r−; rþÞ ¼
ð1; 99=100; 1Þ, the chaotic bound is violated at r0 ∈
ð4.3; 6.2Þ.

2. Asymptotically AdS

We now consider the case with a finite AdS radius l. The
black hole solution in general has two horizons and we can
express the mass and charge parameters as

M ¼ 1

2
ðr2− þ r2þ þ αÞ þ

�
1

2
l2 −

α

2l4

�
ðr4− þ r2−r2þ þ r4þÞ;

q ¼ r−rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
1

l2
−

α

l4

�
ðr2− þ r2þÞ

s
: ð5:22Þ

The surface gravity on the horizon is

κ ¼ r2þ − r2−
rþðr2þ þ 2αÞ

�
1þ l2 − α

l4
ðr2− þ 2r2þÞ

�
: ð5:23Þ

In the extremal limit (r− ¼ rþ), we have, near the horizon,
that

λ2 ¼ −
8ðr0 − rþÞ3

l4rþðr2þ þ 2αÞ3 ð2l
2 þ 3r2þ þ 3βr2þÞð2ð1 − βÞl4

þ 4ð1 − β2Þl2r2þ þ ð1þ βÞr4þÞ þOðr0 − rþÞ4:
ð5:24Þ

At asymptotic infinity, on the other hand, we have
λ2 ¼ −3r20=l4 þOð1Þ. For sufficiently small l, we find
that λ2 is negative for all equilibria outside the horizon.
However, for sufficiently large l, the situation is the same as
that in the asymptotically flat case where the λ2 can be
positive in some regions outside of the horizon, and thus the
bound (1.2) is violated.
For nonextremal black holes, the equilibria near the

horizon are unstable, and satisfy the bound (1.2), which
is a consequence of being special static black holes, as
discussed in Sec. II. The equilibria become stable away from
the horizon. For small enough l, the region of stable
equilibria extends all the way to asymptotic infinity. For
large l, new unstable regions can emerge in some local
region outside and away from the horizon and the chaotic
motion bound (1.2) can beviolated in these unstable regions.

VI. CONCLUSIONS

Charged particles around a static charged black hole can
have a static equilibrium sphere (or some hypersurface)
outside the horizon rþ. The radius r0 of the equilibrium
surface is determined by the charge/mass ratio of the charged
particle. The equilibria can be stable, marginal or unstable,
depending on the specific properties of the black hole. It was
well known that for the unstable equilibrium, the general
perturbative motion of a particle in the equilibrium sphere is
chaotic. An intriguing question is whether there is a universal
upper bound for the Lyapunov exponent for such chaotic
motion. The natural candidate (1.2) was proposed in Ref. [5]
by examining the equilibrium properties near the horizon.
In this paper, we investigated a large class of charged

black holes and found that λ approaches κ universally for the
unstable equilibria that are near the horizon. The results are
consistent with those in Ref. [5]. The bound (1.2), however,
is not universally satisfied, but it can hold for some specific
black holes. For RN and RN-AdS black holes, we found that
the bound (1.2) is indeed globally satisfied by all the
unstable equilibrium hypersurfaces. It can be violated,
however, by some unstable equilibria at some appropriate
distance away from the horizons of the RN-dS black holes.
We also showed that for special static black holes (with

h ¼ f, ρ ¼ r), with a minimally coupled Maxwell field, the
bound (1.2) is universally satisfied in the local near-horizon
region. However, for general static black holes, such as
those in EMD theories, even this local bound can be
violated in the vicinity of the horizons. It should be pointed
out that throughout the paper we made the assumption that
the Lyapunov exponent of the chaotic motion is less than the
λ obtained from the one-dimensional exponential growth of
the unstable equilibrium. This is a necessary condition for
the chaotic motion bound conjecture of Ref. [5]; however, it
is not required for our purpose of finding counterexamples.
The fact that for sufficiently small κ we found examples of
black holeswith arbitrarily large λ=κ indicates that the bound
is indeed violated.
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Wefound that unstable equilibria could arisenot only in the
vicinity of the black hole horizon, but also at some distance
away from the black hole. This implies that chaotic motion
can emerge for a particle under the influence of a massive
object (not necessarily a black hole). For the asymptotically
dS black hole, there exists an unstable equilibrium for neutral
massive particles. In particular, we found that for a (spherical)
mass M, the equilibrium is located at

r0 ¼
�
3M
Λ0

�1
3

: ð6:1Þ

For a sufficiently small cosmological constant Λ0, the
equilibrium r0 can be a large distance away from the horizon.
We found that this equilibrium is always unstable, and the
corresponding Lyapunov exponent (3.34) satisfies the chaos
bound. Applying this result to our galaxy, whose effective
Schwarzschild radius is about 0.2 light year, the unstable
equilibria is located 2.7 million light years away, with a
Lyapunov exponent λ ¼ 0.004 s−1.
Since the chaos we studied in this paper was for a single

particle outside the horizon, the violation of the chaos
bound (1.2) is not necessarily a contradiction of this same
chaos bound for quantum thermal systems with a large
number degrees of freedom. Nevertheless, it raises the

intriguing question of how the bound is restored as number
of degrees of freedom increases. We have also seen explicit
examples where unstable equilibria exist for extremal black
holes with κ ¼ 0; the ratio λ=κ can thus be arbitrarily large
for sufficiently small κ. This leads to the tantalizing
question of whether there is a universal upper bound of
chaos beyond Eq. (1.2) for a single particle outside a black
hole horizon. From the black holes we studied in this paper,
we found that for sufficiently large κ, there may indeed be a
universal upper bound

λ

κ
< C; ð6:2Þ

where C is some order-one constant. This is an empirical
inequality based on our numerical plots of ðλ=κÞmax [in the
region of r0 ∈ ðrþ;∞Þ] as a function of κ with fixed black
hole charge Q, for a variety of parameter choices. It is of
great interest either to prove or test this bound with further
black hole examples.
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