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The possibility that primordial black holes are the dark matter (or a fraction thereof) has attracted much
attention recently. Their spatial clustering is a fundamental property which determines, among others,
whether current observational constraints are evaded within a given mass range, whether merging is
significant and whether primordial black holes could generate cosmological structure. We treat them as
discrete objects and clarify the issue of their spatial clustering, with an emphasis on short-range exclusion
and its impact on their large-scale power spectrum. Even if a Poissonian self-pair term is always present in
the zero-lag correlation, this does not necessarily imply that primordial black holes are initially Poisson
distributed. However, while the initial PBH clustering depends on the detailed shape of the small-scale
power spectrum, we argue that it is not relevant for a narrow spectral feature and primordial black hole
masses still allowed by observations.
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I. INTRODUCTION

The physics case for the existence of primordial black
holes (PBHs) and for the hypothesis that all (or a fraction
of) dark matter is made of them has regained momentum
(see for instance Refs. [1–8] and [9] for a recent review)
after the detection of gravitational waves generated by the
merging of two ∼30 M⊙ black holes [10].
In order to robustly assess whether PBHs compose a

significant fraction of the dark matter, one should first
investigate carefully whether current observational con-
straints on the PBH abundances are respected in a given
mass range [11]. This requires that one takes into account
the possibility of PBH growth through rapid PBH merging
and accretion, leading to different spatial distributions at
later times [12–14]. In particular, a significant clustering of
PBHs could help in avoiding microlensing constraints as
well as limits from the cosmic microwave background [15]
(see, however, Ref. [16] for supernovae magnification
constraints). Furthermore, the merger rates of PBH binaries
[17] along with the role played by PBHs in generating
cosmological structures depend on the clustering of PBHs
[18,19]. Therefore, the spatial clustering of PBHs plays a
crucial role but, surprisingly, little attention has been
devoted to it.
The first detailed study of the spatial clustering of PBHs

at their time of formation can be traced back to Ref. [12]
(see also Ref. [20]), in which it was argued that the PBH

two-point correlation function ξPBHðxÞ at small scales is
much larger than the probability to form a PBH inside a
horizon volume. This led the author to conclude that the
mean occupation number is much larger than unity and,
thus, significantly deviates from a random, Poisson dis-
tribution. There has not been any general consensus about
this conclusion (see, for instance, the footnote of Sec. 2.2 in
Ref. [9]), which has indeed been challenged very recently
in Ref. [21].
It is clear that the amount of initial clustering has an

impact on the subsequent evolution and thus provides an
important input of the problem. The goal of this short paper
is not to investigate the time evolution of PBH clustering
into the nonlinear regime, a task which we believe can be
performed satisfactorily only through suitable N-body
simulations, but to clarify the issue of and offer insights
on their linear clustering. In particular we will show that
exclusion effects have a small impact on the low-k PBH
power spectrum, in contrast to the findings in [12].
Furthermore, we will argue that, for reasonable parameters,
the impact of their initial clustering on the formation of
early PBH binaries can be neglected. This has implications
as a large initial clustering makes the constraints on PBH
dark matter more severe [22].

II. GENERAL CONSIDERATIONS

PBHs may form at a given time if the energy density
perturbation is sizable enough when the corresponding
wavelengths are re-entering the horizon (after inflation).
The large density contrast δ collapses to form PBHs almost
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immediately after horizon reentry [9] and the resulting PBH
mass is of the order of the mass MH contained in the
corresponding horizon volume (in fact it satisfies a scaling
relation with initial perturbations [23]).
We are interested in the way the PBHs are spatially

distributed. To characterize the PBH two-point correlation
function ξPBHðxÞ (or, simply, correlation function) at
any comoving separation x ¼ jxj, we can use the peak
approach to large-scale structure [24,25]. The overdensity
of discrete PBH centers at position xi is

δPBHðxÞ ¼
1

n̄PBH

X
i

δDðx − xiÞ − 1; ð1Þ

where δDðxÞ is the three-dimensional Dirac distribution,
n̄PBH is the average number density of PBH per comoving
volume and i runs over the initial positions of PBHs. The
corresponding two-point correlation function must take the
general form (see, for instance, Ref. [26] in the large-scale
structure context)

hδPBHðxÞδPBHð0Þi ¼
1

n̄PBH
δDðxÞ − 1

þ 1

n̄2PBH

�X
i≠j

δDðx − xiÞδDðxjÞ
�

¼ 1

n̄PBH
δDðxÞ þ ξPBHðxÞ: ð2Þ

Here, ξPBHðxÞ is the reduced PBH correlation function. On
large scales, we have

ξPBHðxÞ ¼ b21ξrðxÞ; ð3Þ

where ξrðxÞ is the radiation two-point correlation function
and b1 is the linear, scale-independent PBH bias (see [27]
for a review on bias in large-scale structure). We will ignore
the complications of higher-order biasing throughout.
As the comoving separation x decreases, the ratio

ξPBHðxÞ=ξrðxÞ increases in a scale-dependent way until x
becomes of order the comoving size xexc of the small-scale
exclusion volume. For most PBH scenarios, xexc is approx-
imately the comoving Hubble radius xH at formation time.
This spatial exclusion arises because distinct PBHs
cannot form arbitrarily close to each other. As a result,
the conditional probability pðxj0Þ to find a PBH at a
comoving distance x from another PBH, which is propor-
tional to 1þ ξPBHðxÞ, must vanish for x≲ xexc. Therefore,
the reduced correlation becomes

ξPBHðxÞ ≈ −1 for x≲ xexc; ð4Þ

that is, PBHs are anticorrelated at short distances as one
should expect from the fact that there is at most one PBH
per horizon volume. This also emphasizes that, while

0 ≤ pðxj0Þ ≤ 1 surely holds, the limit pðx → 0j0Þ is not
always unity, unlike what is assumed in Ref. [21] (see
Ref. [28] for counterexamples).
Finally, at zero lag, the “self-pairs” contribute the well-

known Poisson noise δDðxÞ=n̄PBH. This term represents the
shot noise arising from the discrete nature of the PBH and,
thus, is present for any distribution of pointlike objects
regardless of their clustering.
Therefore, while Ref. [21] properly argued that the zero-

lag correlation is always of the form δDðxÞ=n̄PBH (which is
equivalent to saying that PBHs are discrete objects), this
does not automatically imply that PBHs are Poisson
distributed at small scales. This will be the case only if
shot noise fluctuations dominate over clustering effects.
Because power spectra and correlation functions behave
differently, we shall examine this issue in both statistics.

III. CLUSTERING IN THE
“SPIKY” PBH MODEL

Let us illustrate these general considerations with an
infinitely narrow spike centered at comoving wave number
kH ∼ x−1H on top of a smooth radiation power spectrum
PrðkÞ. We shall refer to this model as “spiky” PBHs. Here,
xH ∝ M1=2

PBH is the comoving Hubble radius when the
collapsing perturbation re-enters the horizon. This scaling
holds in radiation domination, during which the mass
enclosed by the horizon scales like MH ∝ ρ̄rH−3 ∝ H−1

while the comoving Hubble radius is given by xH ¼
ðaHÞ−1 ∝ H−1=2. In particular, kH ∼ 4 × 106 Mpc−1 for
PBHs of mass MPBH ∼M⊙. Therefore,

PrðkÞ ¼ PlðkÞ þ
2π2σ2s
k2

δDðk − kHÞ; ð5Þ

where PlðkÞ is the power spectrum of the long-wavelength
(adiabatic) fluctuations δl in the radiation density field,
while σs is the rms variance of the short-wavelength
fluctuations δs that collapse to form PBHs. The latter re-
enter the horizon very early. The former imprint long-
wavelength fluctuations in the number density of PBH and,
therefore, generates a bias analogous to the peak-back-
ground split bias of dark matter halos [12].

A. Linear scales

On scales k ≪ kH, the PBH bias is surely linear and scale
independent for the Gaussian initial conditions assumed
here. In the high peak limit (see, e.g., [24]), it is given by

b1 ∼
δc

σ20ðxHÞ
∼
δc
σ2s

≡ νs
σs

; ð6Þ

where νs is the peak significance and δc is the critical
overdensity that leads to black hole formation. Furthermore,
σ2nðxHÞ ¼ σ2nlðxHÞ þ σ2sk2nH are the spectralmoments hk2niof
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the radiation power spectrum smoothed on comoving
scale xH:

σ2nðRÞ ¼
1

2π2

Z
∞

0

dkk2PrðkÞW2ðkRÞ; ð7Þ

where WðkRÞ is the Fourier transform of the spherically
symmetric window function (assumed to be a top hat
throughout). The second approximation in Eq. (6) follows
from the fact that σ2sk2nH is typically much larger than the
spectral moment σ2nlðxHÞ produced by the long-wavelength
piece of the radiation field solely. Therefore, the linear PBH
bias (relative to the radiation distribution) will be signifi-
cantly larger than unity as soon as the variance σ2s is less
than a few ×0.1.
We do not consider the case in which a PBH can be

contained into a bigger PBH. In large-scale structure, this is
known as the cloud-in-cloud problem. While this is not an
issue for the monochromatic spike discussed here, and the
narrow feature considered later, it must be taken into
account when considering a broad feature.
At small scales, PBHs exclude each other because of the

finite size xH of the horizons that collapse to form PBHs, as
discussed above. Upon a Fourier transform, this localized
effect in configuration space affects the PBH power
spectrum PPBHðkÞ at small k. Since the behavior of
PPBHðkÞ in the limit k → 0 is central to the argument of
[12] about the clustering of PBHs, we shall revisit it now.

B. PBH shot noise at low wave number

The clustering of PBHs implies that the low-k white
noise contribution to PPBHðkÞ deviates from the naive
Poisson expectation 1=n̄PBH. This effect has recently
been studied in the context of halo clustering [26,28–31].
More precisely, at small wave numbers the PBH power
spectrum is

PPBHðkÞ ¼k→0 1

n̄PBH
þ
Z

d3xξPBHðxÞ; ð8Þ

which follows from the Fourier transform of Eq. (2). Note
that this result is fully general and, thus, applies to any
PBH model.
The volume integral over ξPBHðxÞ is constrained to be

larger than −1=n̄PBH, so that PPBHðkÞ is always positive
definite. Furthermore, it depends sensitively on the details
of the PBH clustering. In fact, it can be positive or negative
and, thus, leads to super- or sub-Poissonian noise in the
low-k power spectrum, respectively. Reference [12] com-
puted the integral over ξPBHðxÞ for “spiky” PBHs using the
“highly biased regions” approximation of Ref. [32] and,
moreover, truncated the integral at the lower cutoff
x ¼ xH (rather than x¼0), finding PPBHðk→0Þ>1=n̄PBH.
However, extending the integral down to x ¼ 0 might
have reversed the sign of this integrated contribution if

small-scale exclusion is significant. This effect will not be
present unless a peak constraint [25] is enforced, i.e., if one
requires the radiation overdensity δr to reach a local
maximum at the PBH position. Moreover, the author of
Ref. [12] extrapolated the condition ξPBHðrÞ=ξPBHð0Þ ≫
1=νs in regimes where it is not valid [21].

C. “Halo model” estimate of the PBH shot noise

Although peak theory has built-in spatial exclusion,
calculations are not easily tractable in this framework
because the effect is highly nonperturbative (see, e.g.,
[26,28]). To estimate the deviation from Poisson noise in
the low-k PBH power spectrum, we shall therefore proceed
along the lines advocated in Refs. [29,31] and attempt to
establish a correspondence with the halo model approach to
large-scale structure. In this framework, all dark matter is
bound to halos of a wide range of massM. Consider now a
narrow mass range centered atMi. At small wave numbers,
the Fourier modes δiðkÞ of the resulting halo fluctuation
field take the general form

δiðkÞ ¼ biδmðkÞ þ ϵiðkÞ; ð9Þ

where ϵiðkÞ is the shot noise contribution. Mass-momen-
tum conservation implies that the mass-weighted sum of
the shot noise power spectra, ∼

P
iM

2
i PϵiðkÞ, converges

towards zero in the limit k → 0. As shown in Refs. [29,31],
this condition can be used to obtain a consistent prediction
for PϵiðkÞ from the halo model. In plain words, one finds
the following scaling:

Pϵiðk → 0Þ ∼ 1

n̄i
ð1 − b1n̄iVexcÞ2; ð10Þ

where the (comoving) exclusion volume Vexc ≡Mi=ρ̄m is
exactly given by the Lagrangian volume of the halos. This
relation includes also the effect of the large-scale clustering
through the factor b1.
In order to apply these considerations to PBHs, we draw

the correspondence

halos ⇔ PBHs

matter ⇔ radiation; ð11Þ

and take the radiation perturbation δr to be in a synchro-
nous gauge (comoving with the nonrelativistic matter).
This is the equivalent of the Lagrangian space used for dark
matter halos [33,34]. Although a fraction only of the
radiation component indeed collapses to form PBHs,
the similarity with the halo model calculation is still
valid. Therefore, on large scales, the PBH overabundance
is described by

δPBHðkÞ ¼ b1δrðkÞ þ ϵðkÞ; ð12Þ
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where b1 is now defined relative to δrðkÞ instead of
δmðkÞ. Furthermore, the shot noise contribution PϵðkÞ is
given by Eq. (10), provided that n̄i is replaced by n̄PBH and
the characteristic volume is given by Vexc ¼ MPBH=ρ̄r ¼
ð4π=3Þx3H. Therefore, PBH exclusion effects on the small k
power spectrum will be significant when

b1x3H ≳ x̄3: ð13Þ

Here, x̄ ¼ ð3=4πn̄PBHÞ1=3 is the average comoving sepa-
ration between PBHs. For the monochromatic spectrum
considered here, this condition implies that the PBH linear
bias is

b1 ≳ a−1H

�
Ωr

ΩPBH

�
; ð14Þ

where aH is the scale factor at horizon entry, while Ωr and
ΩPBH are the present-day radiation and PBH energy
densities. If PBHs make all the dark matter, Eq. (14)
reduces to [assuming a number of relativistic d.o.f.
g�ðaeqÞ ¼ 3.36]

b1 ≳
�
aeq
aH

�
≃ 2.9 × 109

�
MPBH

M⊙

�
−1=2

; ð15Þ

where aeq is the scale factor at matter-radiation equality.
We emphasize that Eq. (15) is a criterion for the

importance of a non-Poissonian correction to the low-k
PBH power spectrum. The importance of the PBH corre-
lation function, which is relevant to the formation of early
PBH binaries, will be discussed below.
Clearly, the correction to Poisson shot noise in the power

spectrum is completely negligible unless PBHs are simul-
taneously very massive (but MPBH ≳ 103 M⊙ is severely
constrained by the data [9]) and strongly clustered with
b1 ≫ 1. If all dark matter is PBHs, the white noise power
induced by the PBH clustering and discreteness can thus be
taken as Poissonian, in contrast to the finding of [12].
We stress, however, that this is not incompatible with the

fact that they can significantly cluster on sufficiently small
scales. For the formation of PBH binaries in particular,
what truly matters are the moments of the counts of
neighbors (see [35] for a review). In particular, the mean
count hNi in a cell of volume V centered on a PBH is

hNi ¼ n̄PBHV þ n̄PBH

Z
V
d3xξPBHðxÞ: ð16Þ

hNi significantly deviates from Poisson if the contribution
n̄PBH

R
V d

3xξPBHðxÞ from PBH clustering is larger than the
discreteness noise n̄PBHV. To quantify the importance of the
former, we will compute the characteristic (comoving)
clustering length xξðaÞ defined through the relation
ξPBHðxξðaÞ; aÞ ¼ 1. Since the clustering is hierarchical

for realistic initial power spectra, the second term in the
right-hand side of Eq. (16) becomes larger than the first
when the cell radius is ≲xξðaÞ.

IV. INITIAL CLUSTERING AND FORMATION
OF PBH BINARIES

For the formation of PBH binaries in the early Universe
[36], the initial PBH clustering is the key relevant quantity
[37,38]. The first question is whether one should compute it
at horizon crossing a ¼ a�, or at the formation epoch
a ¼ aH of PBHs. Here, a� defined through k ¼ a�Hða�Þ is
the scale factor at which a perturbation of wave number k
crosses the horizon.

A. The initial PBH power spectrum

We argue that the two alternatives must return the same
answer because no physical process can affect the relative
separation x between two PBHs so long as x is larger than
the horizon. This can be captured through the requirement
that δPBHðk;aÞ≈ b1ðaÞδrðk;aÞ remains constant for a<a�,

a2b1ðaÞ ¼ const for a < a�: ð17Þ

More precisely, consider the evolution of a wave mode
δrðk; aÞ with k < kH until it crosses the horizon at
aH < a� < aeq. Since k ¼ a�Hða�Þ and we are in radiation
domination, a�=aeq ¼ keq=k. The amplitude of this mode at
a ¼ a� is given by

δrðk; a�Þ ¼ δrðk; aHÞ
�
a�
aH

�
2

¼ δrðk; aHÞ
�
aeq
aH

�
2
�
keq
k

�
2

; ð18Þ

where k2eq ≡ 2ΩmH2
0=aeq defines the comoving wave num-

ber corresponding to matter-radiation equality. Since the
radiation power spectrum at horizon crossing is

Prðk; a�Þ ¼
�
4

9

�
2

PζðkÞ; ð19Þ

the radiation power spectrum at black hole formation reads

Prðk; aHÞ ¼
�
4

9

�
2
�
aH
aeq

�
4
�

k
keq

�
4

PζðkÞ: ð20Þ

Using Eq. (17), we immediately see that

b21ðaHÞPrðk; aHÞ ¼ b21ða�ÞPrðk; a�Þ; ð21Þ

i.e., the two alternatives consistently give the same answer.
Note that these power spectra are computed before the
transfer function epoch (the Meszaros effect [2] is thus not
included).
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To estimate the initial PBH correlation ξPBH, it is
convenient to start from PPBHðk; aHÞ ¼ b21ðaHÞPrðk; aHÞ
since PBH formation models naturally furnish an estimate
of b1ðaHÞ. Namely, for a peak significance νs ¼ Oð10Þ
corresponding to a PBH mass fraction of the order of
10−9ðMPBH=M⊙Þ1=2, and a rms variance σs ∼ 0.1 on the
PBH scale, the linear bias at PBH formation is of order
b1ðaHÞ ∼Oð102Þ upon applying the high peak result Eq. (6).
For the “spiky” PBHmodel Eq. (5), with Plðk; aHÞ given

by Eq. (20), the initial PBH power spectrum reads

PPBHðk;aHÞ¼b21ðaHÞ
�
Plðk;aHÞþ

2π2σ2�
k2

δDðk−kHÞ
�

∼104
�
b1ðaHÞ
102

�
2
�
10−39

�
MPBH

M⊙

�
2
�

k
keq

�
4

PζlðkÞ

þ2π2σ2�
k2

δDðk−kHÞ
�
; ð22Þ

where PζlðkÞ is the smooth component of the primordial
curvature power spectrum. The smallness of the numerical
factor in the contribution from Plðk; aHÞ arises from
ðaH=aeqÞ4. Furthermore, we have replaced σsðaHÞ in
Eq. (5) by a free rms variance σ�. The reason for this
choice will made be clear below.
We can now compute ξPBHðx; aHÞ by Fourier trans-

forming PPBHðk; aHÞ.

B. Clustering length

The PBH correlation function can be expressed as

ξPBHðx; aHÞ ¼
1

2π2

Z
∞

0

dkk2PPBHðk; aHÞj0ðkxÞ: ð23Þ

For a scale-invariant primordial curvature power spectrum

k3

2π2
PζlðkÞ ¼ As with As ∼ 10−9; ð24Þ

the contribution from the smooth, long-wavelength piece
Plðk; aHÞ of the radiation power spectrum is (momentarily
omitting the multiplicative factor of b21 to avoid clutter)

10−35

2π2

�
MPBH

M⊙

�
2
Z

∞

0

dkk2
�

k
keq

�
4

PζlðkÞj0ðkxÞ

¼ 10−35As

�
MPBH

M⊙

�
2
Z

∞

0

dk
k3

k4eq
j0ðkxÞ

≃ 10−35As

�
MPBH

M⊙

�
2

ðkeqxÞ−4: ð25Þ

To obtain the last equality, we have taken advantage of the
fact that the spherical Bessel function satisfies j0ðkxÞ ≈ 1
for k≲ 1=x, and quickly drops to zero for k≳ 1=x.

The calculation of the contribution to ξPBHðx; aHÞ arising
from the spike proceeds analogously. We find

104

2π2

Z
∞

0

dkk2
�
2π2σ2�
k2

δDðk − kHÞ
�
j0ðkxÞ

≃ 102
�
σ�
0.1

�
2

j0ðkHxÞ: ð26Þ

The PBH correlation function is the sum of Eqs. (25)
and (26).
To estimate the relative amplitude of these two terms, we

note that, in the limit x → ∞, the contribution arising from
the smooth power spectrum Plðk; aHÞ decays as x−4 while
that arising from the spike asymptotes to a constant.
Therefore, the latter clearly dominates at large scales.
Furthermore, x cannot be taken smaller than ∼1=kH. The
reason is that fluctuations of wave number k≳ kH cannot
increase the initial clustering of PBH centers because their
wavelength is smaller than the size of the patches which
collapse to form PBHs. In fact, those scales will contribute
to decrease the amplitude of clustering through the exclu-
sion effect discussed above. Therefore, the contribution
from Plðk; aHÞ does not exceed the upper limit [we have
now restored the factor of b21ðaHÞ]

10−35As

�
b1ðaHÞ
102

�
2
�
MPBH

M⊙

�
2
�
kH
keq

�
4

≃ 104As

�
b1ðaHÞ
102

�
2

; ð27Þ

where we have used the fact that aHkH ¼ aeqkeq. Since
As ∼ 10−9, this upper limit is still much smaller than the
contribution Eq. (26) arising from the narrow feature unless
the linear bias is unrealistically large, b1ðaHÞ ≫ 102.
Therefore, the dominant contribution to the initial PBH
clustering arises from the spike itself.
We can now estimate the initial PBH clustering length

xξðaHÞ upon demanding that ξPBHðxξðaHÞ; aHÞ ∼ 1, where
ξPBH is given by Eq. (26). Since we want the clustering
length to be significantly larger than the horizon size xH, the
argument of j0 is kHxξ ≫ 1. Therefore, we can approximate
the spherical Bessel function by its envelope, j0ðkHxξÞ∼
ðkHxξÞ−1, to find

xξðaHÞ ≃ 3 × 10−5
�
σ�
0.1

�
2
�
b1ðaHÞ
102

�
2
�
MPBH

M⊙

�
1=2

Mpc

ð28Þ

where, again, we have restored the multiplicative bias
factor for the sake of the following discussion.
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C. Implications

The results are sensitive to the choice of σ�. Adopting
σ� ≡ σsðaHÞ implies that we include the high density
fluctuations that collapse to form PBHs in the calculation
of the clustering of PBH centers. This does not seem to
make sense. In the halo model approach to large-scale
structure, it would be like computing the clustering of halo
centers including the 1-halo term. Therefore, these large
fluctuations should be excised from the calculation, sug-
gesting that the effective σ� is significantly smaller than
σsðaHÞ ∼ 0.1.
For the interesting case of PBHs with MPBH ∼ 30 M⊙

(now severely constrained by the data if they are all the dark
matter), the range of initial distances relevant for the
calculation of the present merger rate is ≳4 × 10−5 Mpc
[39]. Our estimate Eq. (28) indicates that xξðaHÞ can reach
such values only if σ� is close to σsðaHÞ ¼ 0.1. For
σ� ≪ σsðaHÞ which, as we argued above, likely reflects
the contribution of the spike to the clustering of PBH
centers, xξ would be much smaller than 10−5 Mpc.
Therefore, since for σ� ¼ σsðaHÞ, xξ does not exceed
significantly the bound ≳4 × 10−5 Mpc found in [39],
we conclude that the initial clustering is not relevant for
solar mass PBHs if they collapse out of a narrow feature in
the primordial curvature power spectrum.
It is also instructive to express xξ in units of the mean

comoving PBH separation x̄. Assuming ΩPBH ∼Oð0.1Þ as
adopted throughout our calculation, we find

xξðaHÞ
x̄

≃ 0.1

�
σ�
0.1

�
2
�
b1ðaHÞ
102

�
2
�
MPBH

M⊙

�
1=6

: ð29Þ

This shows that, for a mass MPBH ∼ 30 M⊙, the condition
xξðaHÞ ∼ x̄ can be marginally achieved only if σ� ∼ σsðaHÞ.
Hence, our findings show that, even if the initial distribu-
tion of PBHs at formation time can potentially differ from a
Poissonian, this does not happen for solar mass PBHs and
for the narrow feature considered here. For the small mass
window MPBH ∼ 10−12 M⊙, we find xξ ≪ x̄ which shows
that, here again, the initial clustering is not significant.

We stress that the conclusions presented here do not
apply to broad features. In this case, one should discard
small PBHs that are quickly swallowed by bigger PBHs,
and keep only the later. This cloud-in-cloud problem could
be addressed using, e.g., the excursion set approach
pioneered in [40], but this is beyond the scope of this paper.

V. CONCLUSIONS

In this paper, we have discussed the basic features of
PBH spatial clustering treating them as discrete objects. We
have delineated the relation between the large-distance
PBH power spectrum and short-range PBH exclusion
effects. When all dark matter is in the form of PBHs,
the white noise can be taken as Poissonian, in contrast to
the findings of [12]. We have also emphasized that, while
the zero-lag correlation includes a Poissonian self-pair
contribution, this does not mean that PBHs are necessarily
Poisson distributed at small scales. Therefore, we also
disagree with some of the arguments presented in [21].
Hierarchical clustering implies that clustering-induced
fluctuations dominate on scales less than the characteristic
PBH clustering length, while Poisson fluctuations domi-
nate on large scales. While the exact value of the initial
clustering length is sensitive to the shape of the primordial
curvature power spectrum, our estimates suggest that, for a
narrow feature, the characteristic PBH clustering length is
significantly smaller than the mean comoving PBH sepa-
ration for reasonable set of the parameters, rendering
clustering not relevant.
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