
 

Effects of completeness and purity on cluster dark energy constraints

Michel Aguena* and Marcos Lima
Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo,

CP 66318, CEP 05314-970 São Paulo, SP, Brazil

(Received 21 November 2016; published 27 December 2018)

The statistical properties of galaxy clusters can only be used for cosmological purposes if observational
effects related to cluster detection are accurately characterized. These effects include the selection function
associated with cluster-finder algorithms and survey strategy. The importance of the selection becomes
apparent when different cluster finders are applied to the same galaxy catalog, producing different cluster
samples. We consider parametrized functional forms for the observable-mass relation, its scatter, as well as
the completeness and purity of cluster samples, and study how prior knowledge on these function
parameters affects dark energy constraints derived from cluster statistics. Under the assumption of a fiducial
model for the selection function where the completeness and purity reach 50% at masses around
1013.5 M⊙=h, we find that self-calibration of selection parameters in current and upcoming cluster surveys
is possible, while still allowing for competitive dark energy constraints. We consider a fiducial survey with
specifications similar to those of the Dark Energy Survey with 5000 deg2, maximum redshift of zmax ∼ 1.0
and threshold observed mass Mth ∼ 1013.8 M⊙=h, such that the completeness and purity ∼60%–80% at
masses around Mth. Perfect knowledge of all selection parameters allows for constraining a constant dark
energy equation of state to σðwÞ ¼ 0.033. Employing a joint fit including self-calibration of the effective
selection degrades constraints to σðwÞ ¼ 0.046. External calibrations at the level of 1% in the parameters of
the observable-mass relation and completeness/purity functions are necessary to improve the joint
constraints to σðwÞ ¼ 0.041. Given the lack of knowledge of selection parameters, future experiments
probing larger areas and greater depths may suffer from stronger relative degradations on dark energy
constraints compared to current surveys.
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I. INTRODUCTION

The properties of dark matter halos have been charac-
terized with increasing accuracy through dark matter N-
body simulations of multiple cosmological models [1–7].
However, clusters of galaxies observed in surveys spanning
different wavelengths carry a number of observational
effects [8–15]. For the cosmological use of galaxy clusters,
it is necessary to understand these effects in detail (e.g., by
measuring them in simulations) and use this knowledge to
parametrize the effects as appropriate functions of intrinsic
cluster parameters (e.g., mass and redshift). An ideal self-
consistent analysis must then constrain both cosmological
parameters of interest as well as nuisance parameters
related to astrophysical and observational effects, despite
intrinsic degeneracies [8–10,16–23]. In this context, exter-
nal calibrations of nuisance parameters may help to
improve cosmology constraints.
Given a set of true halos and the matter tracers associated

to them (e.g., optical galaxies), the first step is to character-
ize the performance of algorithms for cluster identification

called cluster finders. Some of these methods—such as
MaxBCG [24], FoF used in Ref. [25] and redMaPPer
[26,27]—are based on the presence of red-sequence gal-
axies within clusters. They have the advantage of including
this extra information, which is certainly valuable at low
redshifts. However, they may suffer from limitations at
higher redshifts. Meanwhile, there are cluster finders—
such as WAZP [28], VT [29], and C4 [30]—that rely
mostly on detecting spatial overdensities. These algorithms
provide better detections at higher redshifts, although they
typically depend more strongly on the quality of galaxy
photometric redshifts.
Cluster finders may fail to identify a fraction of clusters

related to dark matter halos, as well as detect false clusters
with no association to halos. These two problems can be
quantified by the so-called completeness and purity of the
cluster sample [14,15,29], which typically reflect limita-
tions of the cluster-finder algorithm, such as, e.g., artificial
over-merging or fragmentation of clusters relative to their
corresponding halos. Whereas the completeness and purity
may depend on various factors—such as survey specifica-
tions, the quality of photometric redshifts (photo-z’s) and
the observable-mass relation—they are mainly properties*aguena@if.usp.br
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of the cluster finder itself. We will often refer to the
completeness and purity as describing the cluster selection
function.
Next we must consider the observable-mass relation,

typically characterized by a mean relation and a scatter
[8,9,16,17]. For optical clusters the observable is the cluster
richness, representing the number of cluster member
galaxies. Richness may also refer to a subsample of
member galaxies whose properties are more closely related
to halo mass (e.g., richness can be based on red-sequence
galaxies within a cluster [26,27], as opposed to all member
galaxies). In simulations, clusters correctly matched to dark
matter halos can be used to characterize the observable-
mass relation [14,31–35]. However, it is important to point
out that all of these calibrations are not enough to determine
observable-mass and selection parameters at the percent
level, even though they are still useful to help determine at
least appropriate functional forms or loose priors for
parameters, which are then self-calibrated in a full cosmo-
logical analysis. Observationally, optical clusters may be
matched to detections in other wavelengths (e.g., millimeter
or x-ray) from which observable-observable scaling rela-
tions can be estimated [36–38], and under the assumption
of hydrostatic equilibrium, observable-mass relations may
be derived. Alternatively, lensing masses may be available
for a fraction of the optical clusters [39–45]. In conjunction,
simulations and observational cross-matches allow for
independent external calibrations of the observable-mass
relation.
The scatter in the observable-mass relation may also be

assessed from simulations and observations, and it can be
tied to different sources [13]. An intrinsic scatter exists even
for a perfect cluster finder (i.e., one with unit completeness
and purity) and represents instances where a cluster of
given richness has a range of masses due to intrinsic
variability in the physical processes that relate these
quantities, making them stochastic [31,32]. On the other
hand, imperfections in the matching of clusters may
artificially change this otherwise intrinsic scatter or lead
to other observational issues [13]. We will also refer to the
effective selection function, which is characterized by a
combination of the actual selection function (completeness/
purity) and the observable-mass relation.
There may be an interplay between the derived observ-

able-mass relation and the sample selection function, as the
characterizations of both depend on the matching process of
clusters and halos (in simulations) and clusters and clusters
(in multiwavelength observations). For instance, clusters
catastrophically scattered in and out of a given richness bin
may affect the sample completeness and purity, an effect
which may be parametrized by altering the observable-
mass distribution to include an extra Gaussian term [12].
Conversely, using only clusters and/or halos which are
believed to have been correctly matched to define the
observable-mass relation may produce a relation with

unrealistically low scatter. Despite these issues, it is con-
ceptually simpler to keep the definitions of the completeness
and purity decoupled from the observable-mass relation, and
we will follow this approach in this work by parametrizing
these functions independently using functional forms char-
acterized in simulations [46].
Finally, we must characterize errors in the cluster photo-

metric redshifts (photo-z’s) [10]. We will again take the
simpler approach of decoupling photo-z errors from com-
pleteness and purity issues, as photo-z errors are mainly
tied to degeneracies in color-magnitude-redshift space and
the efficiency of photo-z algorithms [47–49]. The selection
function of cluster finders that make direct use of photo-z’s
[29,43] is clearly affected by the photo-z quality, which
may translate to additional sources of over-merging and
fragmentation of clusters in the line of sight. However, for
cluster galaxies we expect the photo-z errors to be con-
siderably smaller than for field galaxies. Therefore in this
work we will neglect such effects, as our goal is to assess
the direct impact of completeness and purity issues on
cluster cosmology. Our analysis is conservative in this
sense, since including the extra dependencies of the
completeness and purity on observable-mass and photo-z
parameters would effectively decrease the number of
nuisance parameters to constrain, potentially increasing
the sensitivity of cluster observables.
In this paper we study how the inclusion of the cluster

sample completeness and purity impacts the cosmological
constraints derived from that sample. For a given para-
metrization of these functions, we also explore how prior
knowledge on the selection can help constrain dark energy
parameters in current and upcoming galaxy surveys. We
start in Sec. II by discussing the characterization of the
selection function via the sample completeness and purity.
In Sec. III we discuss the formalism for predicting cluster
counts and covariance, including selection effects. In
Sec. IV we detail the Fisher matrix formalism to predict
dark energy constraints and biases from cluster statistics,
and in Sec. V we present the fiducial model, including
selection parametrizations. In Sec. VI we present our main
results, and in Sec. VII we discuss these results and
conclude.

II. COMPLETENESS AND PURITY

We define the completeness of a cluster catalog as the
fraction of galaxy clusters correctly identified relative to the
number of true dark matter halos. Likewise, the purity of
the same catalog is defined as the fraction of galaxy clusters
correctly identified relative to the total number of detected
clusters. Clearly both concepts are important to characterize
the cluster finder selection function, since nearly all
algorithms lead to samples that are both incomplete and
impure in certain ranges of masses and redshifts. A low
completeness indicates an inefficiency of the cluster finder
in detecting systems that it should have detected (or which a
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perfect cluster finder detects), whereas a low purity
indicates a high fraction of false positives in the sample,
i.e., detections incorrectly made (and which a perfect
cluster finder would not have made).
The completeness and purity of a cluster finder depend

on the assumptions it makes and also on the observing
conditions of a specific survey. For instance, a cluster finder
which uses information from the galaxy red sequence—
observed in most low-redshift clusters—has the possibility
of outperforming a cluster finder that ignores this infor-
mation. On the other hand, if the assumption of a red
sequence is extrapolated into a domain in which it may not
apply (e.g., at higher redshifts), such a cluster finder may
produce samples that are either incomplete or impure. As a
result, different performances may be observed when com-
paring different cluster finders applied to the same data set as
well as the same cluster finder applied to different surveys.
From the above definitions of the completeness and

purity, these quantities require matching clusters to dark
matter halos. Strictly speaking, this can only be directly
assessed in simulated catalogs, where information about the
true underlying dark matter halos is fully available.
However, cross-checks from real observations may also
provide useful hints about the selection function of a given
cluster finder. Here we will assume that simulations
representative of the observing conditions are available
for purposes of roughly estimating the cluster-finder
selection function as well as the observable-mass relation.
Clearly, simulations of this kind necessarily make certain
assumptions that may not apply to real observed data.
Nonetheless, they are useful to roughly calibrate cluster
finders and estimates of their selection under these assump-
tions. When performing a cosmological analysis on real
data, one would not fully trust simulation results, but they
might inspire functional forms for parametrizing the cluster
selection and observable-mass relation [31,32], whose
parameter values can then be obtained from a self-
consistent cosmological analysis of the cluster sample.
For pedagogical reasons, let us outline the process of

using a simulated galaxy catalog and its associated dark
matter halos for defining the cluster sample completeness,
purity, and observable-mass relation. Given the list of true
dark matter halos of massM and redshift z, and the catalog
of galaxies populating these halos, one may run a cluster
finder producing a list of clusters with certain observed
properties (e.g., richness and photo-z’s for optical clusters).
Since the considerations made here apply to detections not
only of optical clusters but also for multiple wavelengths,
we will often refer to the observed massMobs instead of the
direct observable O. Our fiducial survey will be similar to
the Dark Energy Survey (DES), so we will typically refer to
the richness as the observable, derived from optical cluster
finders. However, all results also apply to cluster finders
defined at other wavelengths with different mass proxies.
Here Mobs is the mass inferred from the observable, being

therefore equivalent to it, but in mass units. We will
formally characterize individual clusters by their values
ofMobs and photo-z, denoted zphot, and this notation applies
even when we consider a specific observable such as
richness. Given the number of halos Nh found and the
number of clusters Nc detected, we may then consider the
following steps towards characterizing the cluster-finder
selection function and the observable-mass distribution:
(1) Rank the Nh halos by massM and the Nc clusters by

richness O.
(2) Perform a matching of halos and clusters, producing

Nmat matches.
(i) In general, the matching of halos and clusters

can be done in two ways: by the fraction of
coincident halo and cluster members, or by the
spatial proximity of halo and cluster centers
(either three-dimensional or angular).

(ii) In cases where multiple matches may potentially
occur (e.g., within a cluster radius one finds
more than one halo center), the most massive
halo or richest cluster may be selected among
the possible candidates. This assures that, e.g.,
the most massive halo that is spatially close
to the richest unmatched cluster will preferen-
tially produce a match.

(iii)A two-way matching can be applied to reassure a
more stringent matching criterion. In this case
the matching is made in both directions (halos
are matched to clusters and vice versa) and only
pairs that coincide in both directions are kept as
true matches.

(3) Plot O versus M for the matches to determine the
observable-mass relation and its scatter. A cluster
mass computed from this relation using the value of
the observable O represents the cluster observed
mass Mobs.

(4) For each bin of halo massM and redshift z, compute
the completeness cðM; zÞ as

cðM; zÞ ¼ NmatðM; zÞ
NhðM; zÞ : ð1Þ

(5) For each bin of cluster observed mass Mobs and
photo-z zphot, compute the purity pðMobs; zphotÞ as

pðMobs; zphotÞ ¼ NmatðMobs; zphotÞ
NcðMobs; zphotÞ : ð2Þ

Clearly these definitions depend on the specific match-
ing criterion imposed in the second step above (see further
discussion on a related issue in Sec. III A). Notice that the
ranking of halos and clusters in the very first step plays only
a secondary role in the matching and is in fact dispensable.
It enters only as an additional criterion to resolve potential
multiple matches according to physical matching criteria
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defined in the second step, either by membership overlap or
spatial proximity.
We may also use these matches to estimate cluster zphot

errors, which depend both on the quality of galaxy photo-
z’s and on the cluster-finder performance in assigning
redshifts to clusters. In this work, we will assume that
the effect of photo-z errors is already encapsulated in the
estimated completeness and purity and does not represent
an extra source of cosmological degeneracies [10]. Obvi-
ously, such an assumption should be checked for each
cluster finder, especially for those that rely heavily on
galaxy photo-z estimates.
In observed data, the estimation of the completeness and

purity becomes intrinsically more complicated, as the mass
of the clusters is not known and because no observed
catalog can be taken as a truth table. Although the mass of
the clusters can be estimated via observable-mass relations,
the lack of a truth table makes the extraction of complete-
ness and purity information from the data alone currently
inviable. If reliable mock catalogs for a given survey are not
available, the calibration of scaling relations is possible
from lensing masses measured for a fraction of the detected
clusters or from matching, e.g., optical clusters to detec-
tions at other wavelengths. Thus, we can obtain limited
information about the observable-mass relation and its
scatter. In the worst-case scenario, we could assume a
generic selection function and fully self-calibrate its
parameters (that is, to constrain the parameters along with
the cosmology) from the observed cluster data alone.
Fortunately, we expect reliable simulations, lensing masses,
multiple external cross-calibrations, and spectroscopic
follow-ups to be available for a self-consistent cosmologi-
cal analysis of most current and future cluster surveys.

III. OBSERVED CLUSTER PROPERTIES

A. Cluster counts

We parametrize the theoretical dark matter halo mass
function as

dn̄ðz;MÞ
d lnM

¼ ρ̄m
M

d ln σ−1

d lnM
fðσÞ; ð3Þ

where σ2ðM; zÞ is the variance of the linear density field
in a spherical region of radius R enclosing a mass
M ¼ 4πR3ρ̄m=3 at the present background matter density
ρ̄m. We take fðσÞ from a fit to simulations by Tinker et al.
[50], with parameter values appropriate for an overdensity
Δ ¼ 200 with respect to the background matter density.
The predicted comoving number density n̄α of clusters in
the observed-mass bin (indexed by α) is obtained by
integrating the mass function convolved with all observa-
tional effects mentioned previously as [8–10]

n̄αðzÞ ¼
Z

Mobs
αþ1

Mobs
α

d lnMobs

Z
∞

0

d lnM
dn̄obs
d lnM

; ð4Þ

where the observed mass function

dn̄obs
d lnM

¼ dn̄ðz;MÞ
d lnM

PðMobsjMÞ cðM; zÞ
pðMobs; zphotÞ ð5Þ

carries the effects of completeness, purity, and the observ-
able-mass distribution PðMobsjMÞ, which is assumed to be
Gaussian in lnM. The number counts in the ith photo-z bin
are then obtained by integrating the comoving number
density in comoving volume or redshift, including the
photo-z error distribution as [10]

m̄α;i ¼
Z

zphotiþ1

zphoti

dzphot
Z

∞

0

dzPðzphotjzÞ r
2ðzÞ

H2ðzÞ n̄αðzÞ; ð6Þ

whereHðzÞ is the Hubble parameter at redshift z and rðzÞ is
the comoving angular diameter distance, identified here
with the comoving radial distance since we only consider
flat cosmologies. As mentioned previously, we will not
consider the effect of photo-z errors explicitly here. In the
above description, this implies taking PðzphotjzÞ to be a
Dirac delta function, which then allows us to perform one
of the redshift integrals trivially. In this case, we denote the
effective cluster selection fðMobsjMÞ as the combination

fðMobs; zjMÞ ¼ PðMobsjMÞ cðM; zÞ
pðMobs; zÞ : ð7Þ

The separation of f into these three components is
mostly pedagogical, as the effective selection itself can
be measured directly from simulations (with no reference to
separate components). In fact, it is possible to consider
completeness and purity effects (partially) as a propagation
of projection effects into the otherwise intrinsic observable-
mass relation PðMobsjMÞ, turning it into fðMobsjMÞ [12].
Whereas simulations indicate that PðMobsjMÞ can be para-
metrized as a log-Gaussian distribution [31–33,38,45,51]
with observable-mass relations displaying low scatter [32],
fðMobsjMÞ would then have an extra log-Gaussian compo-
nent, making the final distribution non-log-Gaussian [12].
Projection effects occur mainly as a result of photometric

redshift errors, which cause cluster finders to fail in
multiple ways. The simplest failure mode is when the
cluster finder still detects individual clusters appropriately,
but either includes field galaxies as cluster members or
excludes true cluster members. In this case, projection
effects conserve the total number of clusters and act merely
as an extra source of scatter for richness estimates and
could indeed be modeled as an extra log-Gaussian com-
ponent for the observable-mass distribution. However, in
more extreme cases of failure the cluster finder may
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inappropriately fragment one cluster into two, merge two
separate clusters along the line of sight into a single cluster,
or simply fail to find a cluster due to a poor signal-to-noise
ratio. These failure modes do not conserve the number of
clusters and more strongly affect the measured cluster
counts and variance. Our parametrization of selection in
terms of the completeness and purity attempts to capture all
of these possible cluster-finder failure modes.
As mentioned before, the observable-mass relation

PðMobsjMÞ has an intrinsic scatter due to the physical
processes that correlate these quantities. This scatter can be
studied and quantified in simulations and is well under-
stood. However, there is an additional source of scatter
related to the use of the observed mass and richness in
PðMobsjMÞ. When calibrating PðMobsjMÞ, the uncertain-
ties on the measurement of both the richness and the mass
also have to be included [38]. For simplicity, we will not
consider this extra observational effect.
However, contamination by projection effects is not the

only issue that may affect the total selection. One simple
effect (which, however, is likely always present) is a
mismatch between the effective overdensity Δc used to
define observed clusters and the overdensity Δh of the dark
matter halos associated to them (either halos directly
matched to clusters in simulations or halos whose mass
function is used to predict the cluster abundance). For
instance, if we use a halo mass function appropriate for Δh
to predict the cluster abundance as described above, but our
cluster finder detects clusters at an effective overdensity
Δc ≠ Δh, a mismatch of halo and cluster properties will
follow if not accounted for explicitly. Notice that these
effects may happen even for a perfect cluster finder, and
because they are associated to the cluster detection itself,
they cannot be corrected after detection by simply redefin-
ing cluster masses with a more appropriate overdensity or
even a new observable. For clusters detected using signal-
to-noise ratios or fixed apertures, which do not correspond
to a fixed halo overdensity, it may be even trickier to
interpret comparisons of cluster and halo properties.
From the considerations above, it is clear that the

completeness and purity depend on specific assumptions
underlying cluster-finder algorithms. In this work we will
parametrize the selection via separate functions for the
sample completeness and purity as described in Sec. V.

B. Cluster covariance

The local number countsmα;iðxÞ of clusters at position x
fluctuate spatially around the mean predicted values m̄α;i,
following the matter density contrast δðxÞ as

mα;iðxÞ ¼ m̄α;i½1þ bαðzÞδðxÞ�; ð8Þ

where bαðzÞ is the average cluster bias defined as

bαðzÞ ¼
1

n̄αðzÞ
Z

∞

0

d lnM
dn̄α

d lnM
bðM; zÞ: ð9Þ

Notice that bαðzÞ is consistently predicted from the
number density in Eq. (4), and therefore carries the
observable-mass and selection effects. Here bðM; zÞ is
the halo bias for which we will take a fit to simulations
by Tinker et al. [52] as

bðM; zÞ ¼ 1 − A
νa

νa þ δac
þ Bνb þ Cνc; ð10Þ

where νðM; zÞ ¼ δc=σðM; zÞ, δc ¼ 1.686, and we fix
values for the parameters A, B, C, a, b, c that are
appropriate for the same overdensity Δ ¼ 200 used in
the abundance predictions.
The cluster counts have a sample covariance Sαβij due to

the large-scale structure of the Universe given by [9,53]

Sαβij ¼ hðmα;i − m̄α;iÞðmβ;j − m̄β;jÞi

¼ m̄α;ibα;im̄β;jbβ;j

Z
d3k
ð2πÞ3 PðkÞW

�
i ðkÞWjðkÞ; ð11Þ

where WiðkÞ is the Fourier transform of the volume
window function in bin i and we set bα;i ≈ bαðziÞ at the
bin centroid zi, which is valid for sufficiently small red-
shift bins.
Here we will take a window to be a cylinder with a small

angular radius (θs ≲ 10 deg) and height δri, in which case
WiðkÞ is given by [10,54]

WiðkÞ ¼ 2 exp ðikkriÞj0
�
kkδri
2

�
J1ðk⊥θsriÞ
k⊥θsri

; ð12Þ

where k ¼ ðkk;k⊥Þ. The counts are also subject to Poisson
variance or shot noise given by

Mαβ
ij ¼ δαβδijm̄α;i; ð13Þ

such that the total covariance Cαβ
ij is the sum of the sample

covariance and Poisson variance,

Cαβ
ij ¼ Sαβij þMαβ

ij : ð14Þ

IV. FISHER MATRIX

We use the Fisher matrix formalism to study the effects
of parametrizing the cluster selection function, given the
predictions of cluster counts and covariance described in
the previous section. We split the counts into redshift, mass,
and angular cells. For convenience of notation, we let the
index i denote binning in photo-z, observed mass, and
angular pixel, and arrange the counts into a single vector m̄.
Similarly, we arrange the sample covariance, Poisson
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variance, and total covariance of m̄ into matrices S, M,
and C ¼ SþM.
Given a set of parameters θα, the Fisher matrix quantifies

the information in both the cluster counts and cluster
covariance as [9,10]

Fαβ ¼ m̄;αC−1m̄;β
T þ 1

2
Tr½C−1S;αC−1S;β�; ð15Þ

where the first term contains information on the counts and
the second term contains information on the covariance of
these counts. The clustering properties of galaxy clusters—
encoded in their covariance—bring extra information to the
cluster counts, which helps with the self-calibration (con-
straining nuisance parameters along with the cosmology) of
the observable-mass distribution [9,10,17,18,51] and (as
we shall see) the cluster selection function. The inverse
Fisher matrix approximates the covariance matrix of the
parameters Cαβ ≈ ½F−1�αβ. The marginalized error on a

single parameter θα is σðθαÞ ¼ ½F−1�1=2αα . In case we have
prior information on parameter θα at the level of σpðθαÞ, we
add to the Fisher matrix a diagonal contribution of
σ−2p ðθαÞδαβ before inversion.
Finally, variations of the number counts ofΔm̄ and of the

sample covariance of ΔS, relative to their values in the
fiducial model, induce a systematic error or bias bðθαÞ ¼
δθα on a derived parameter θα, given by [12,55]

bðθαÞ ¼ F−1
αβ

�
m̄;βC−1Δm̄þ 1

2
Tr½C−1S;βC−1ΔS�

�
: ð16Þ

This equation can be used to assess the bias on inferred
cosmological parameters when neglecting the inclusion of
selection function parameters, given that the true counts in
the fiducial model require these additional parameters.

V. FIDUCIAL MODEL

We choose a fiducial cosmology from a flatwCDMmodel
with best-fit parameters consistent with the results from
Planck [56] as h2Ωm ¼ 0.14, h2Ωb ¼ 0.022, w ¼ −1, As ¼
2.13 × 10−9 (corresponding to σ8 ¼ 0.83), ns ¼ 0.96, and
τ ¼ 0.089.We also set priors of 1%on all parameters, except
for h2Ωm and w, which will vary freely as we wish to study
the potential for galaxy clusters to constrain dark energy in
the presence of cluster selection parameters.
We assume a survey area of 5000 deg2, similar to that

planned for the final observations of DES [57]. We consider
the counts and covariance within 500 cells of 10 deg2 each.
To reflect expectations and limitations of cluster finders in
current optical surveys, we restrict the analysis to nine
redshift bins of Δz ¼ 0.1 from z ¼ 0.1 to zmax ¼ 1.0.
We also include seven bins of observed mass of
Δ log½Mobs=ðM⊙h−1Þ� ¼ 0.2 from a threshold mass of
Mobs

th ¼ 1013.8 M⊙=h, where the last bin was reshaped to

log½Mobs=ðM⊙h−1Þ� ¼ ½15.0∶17.0� to include all high-mass
clusters. This binning choice leaves us with 63 bins of
count measurements, which we expect to be sufficient to
provide information on the observed mass and redshift
evolution of the selection function and the observable-mass
relation. The completeness and purity mostly shift each bin
individually (although to consider the full effect of the
completeness within an observed mass bin it is necessary to
integrate over all masses; see Fig. 1). The scatter on the
observable-mass relation spreads a portion of the clusters
across different mass bins, and the mass bias systematically
shifts clusters to higher (or lower) observed mass bins. This
approach also allows us to test the cluster-constraining
power when considering different minimum masses, by
simply adding (or removing) mass bins.
The observable-mass PðMobsjMÞ distribution will be

assumed to be Gaussian in lnM with a scatter σlnM and bias
lnMbias,

PðMobsjMÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2lnM

p exp

�
−
χ2ðMobsÞ

2

�
; ð17Þ

where

χðMobsÞ ¼ lnMobs − lnM − lnMbias

σlnM
: ð18Þ

We parametrize the evolution of the mass bias with
redshift as [9]

lnMbiasðzÞ ¼ Ab þ nb lnð1þ zÞ; ð19Þ

where the fiducial values are Ab ¼ nb ¼ 0. Since we expect
the mass scatter in the relation to increase for high redshifts
and low masses, we take

σ2lnMðz;MÞ
0.22

¼ 1þ B0 þ Bzð1þ zÞ þ BM

�
lnMs

lnM

�
; ð20Þ

with the fiducial values of B0 ¼ Bz ¼ BM ¼ 0 and we fix
the pivot mass Ms ¼ 1014.2 M⊙=h.
As clusters of high mass stand out in observations, we

expect less ambiguity in detecting them. Therefore, the
completeness and purity should approach unity at high
enough values ofM andMobs. Similarly, for low masses the
number of clusters increases and we expect the confusion to
be larger, so the completeness and purity decrease. We set a
functional form for both the completeness and purity that
interpolates between these two limits of high and low
masses as

cðM; zÞ ¼ ½M=McðzÞ�nc
½M=McðzÞ�nc þ 1

; ð21Þ
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pðMobs; zphotÞ ¼ ½Mobs=Mobs
p ðzÞ�np

½Mobs=Mobs
p ðzÞ�np þ 1

; ð22Þ

whereMcðzÞ andMpðzÞ are parametrized functions and we
take the exponents nc and np to be constants. This func-
tional form was characterized and shown to describe well
the completeness and purity in simulations [46]. We
consider two different cases, as shown in Table I:
case (1) uses nc ¼ 3 and np ¼ 1, and therefore the ratio
c=p goes to zero in the limit of low M and Mobs; case (2)
uses nc ¼ 1 and np ¼ 3, and therefore the ratio c=p goes to
infinity in the limit of low M and Mobs. These two cases
should bracket a reasonable range of possible parametriza-
tions for the selection and their dependence on mass and
redshift. For the mass scales Mc and Mobs

p , which control
the transitions in the completeness and purity function, we
use linear relations,

logMcðzÞ ¼ log M̃c þ c0 þ c1ð1þ zÞ; ð23Þ

logMobs
p ðzÞ ¼ log M̃obs

p þ p0 þ p1ð1þ zÞ; ð24Þ

with fiducial values of c0 ¼ p0 ¼ c1 ¼ p1 ¼ 0. Here M̃c

and M̃obs
p are arbitrary pivot masses where the completeness

and purity decrease to 50% in the fiducial model. For
illustrative purposes we fix them to M̃c ¼ 1013.6 M⊙=h and
M̃obs

p ¼ 1013.5 M⊙=h, which results in a completeness
≈ð80%; 61%Þ and purity ≈ð67%; 89%Þ around the thresh-
old mass for cases (1,2).

For reference, we consider an additional case of perfect
cluster detection, i.e., completeness and purity equal to
unity for all masses and redshifts. We will denote this as
case (0) and will consider the bias induced on dark energy
parameters when case (0) is assumed whereas the true model
is either case (1) or (2).Wewill also consider the dark energy
constraints derived within cases (1) and (2) and the impact of
prior knowledge on nuisance parameters describing the
observable-mass relation and cluster selection.
The functional forms proposed for the completeness and

purity are shown in the left panel of Fig. 1. While the purity
is a function of the observed mass of clusters, the
completeness depends on the true mass of the dark matter
halos. Therefore for a given value of observed mass, the
effective completeness results from the contribution of
a range of true masses determined by the scatter in the
observable-mass relation. This feature is illustrated in the
left panel of Fig. 1, where the vertical red line indicates
the fiducial observed mass threshold Mobs

th ¼ 1013.8 M⊙h−1,
and the red shaded regions delineate the scatter at the 1, 2,
and 3σlnM levels for the effective selection.
The right panel of Fig. 1 shows the ratio of the

completeness and purity (c=p), which affects the effective
cluster selection in Eq. (7). For each of the cases (1) and (2),
the ratio c=p has limits indicated in Table I. In both cases,
the ratio c=p → 1 in the limit of high masses, since both c
and p approach unity in this limit. For case (1) the ratio
c=p → 0 at lower masses; however, in the mass range
investigated (≥1013.8 M⊙h−1), the ratio c=p > 1, resulting
in more detected clusters than case (0). An opposite effect

FIG. 1. Completeness and purity as a function of mass for cases (1) and (2) at z ¼ 0. The red vertical line denotes the threshold mass
Mobs

th ¼ 1013.8 M⊙=h assumed in the fiducial model. Left: Both functions are shown separately and the red shaded regions display the
mass spread around this threshold at 1, 2, and 3σlnM. Right: Ratio of completeness and purity [see Eq. (7)] as a function of mass. As a
result, case (1) produces an increase in cluster counts for higher masses and a decrease at lower masses, while case (2) induces the
opposite behavior.
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occurs for case (2), resulting in fewer cluster detections.
Although the region of very low masses (Mobs ∼
1013 M⊙h−1) is not the focus of this work, it is interesting
to analyze what happens to the ratio c=p in this limit. For
case (1), the completeness decreases faster than the purity,
meaning that the capability of the cluster finder to detect
objects goes to zero. The other case, where c=p becomes
large at low masses, happens when the purity decreases
faster than the completeness. This may happen, for in-
stance, as the cluster finder attempts to detect clusters
whose BCG has a magnitude close to the survey limiting
magnitude, particularly at low masses and high redshifts.
As the cluster finder struggles with the detection, the
number of false positives may become larger than the
number of missed clusters.

Notice that by using multiple observables we attempt
to self-calibrate various nuisance parameters describing
the observable-mass relation and the selection effects. In
reality, this will only be effective if the parametrizations
used are indeed correct.

VI. RESULTS

Before studying the impact of selection parameters on
dark energy constraints, for illustrative purposes we first
look at the effect on cluster abundance and clustering of
each cosmological and nuisance parameter. Figure 2 shows
the effects of cosmology and selection on the number
counts (top) and the diagonal of the sample covariance
(bottom) as a function of redshift (left) and mass (right),
with selection parameters from case (1). The left panels
(where different redshift bins are displayed) were computed
in the mass bin Mobs

th ¼ ½13.8∶14.0�, and the right panels
were computed in the redshift bin z ¼ ½0.6; 0.7�, as those
are the bins with the largest number of objects, and that thus
have a more significant effect on the constraints. We note
that the actual constraining results make use of all mass and
redshift bins and the nondiagonal terms of the sample
covariance.

TABLE I. Cases considered for completeness and purity
parameter values.

Case Completeness Purity c=p (as M → 0)

0 c ¼ 1 p ¼ 1 1
1 nc ¼ 3 np ¼ 1 0
2 nc ¼ 1 np ¼ 3 ∞

FIG. 2. Variation of the cluster number counts (top) and sample variance (bottom) as a function of redshift (left) and mass (right) for
changes in the dark energy parameters, observable-mass relation, completeness, and purity, considering case (1). The left panels were
computed for the mass bin Mobs

th ¼ ½13.8∶14.0� and the right panels for the redshift bin z ¼ ½0.6; 0.7�. The gray shaded region is the
fiducial case, and the colored lines indicate a variation of þ0.2 in each parameter.
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We compute counts for the fiducial model (gray shaded
region) and for positive variations of 0.2 in each parameter
considered.
To evaluate some of the effects the parameters consid-

ered have on the constraints, let us explore the changes in
the number counts as a function of redshift (top left panel of
Fig. 2). We assume a flat universe, so an increase in ΩDE
results in a decrease in Ωm, and the overall abundance of
clusters is reduced. Increasing w causes the dark energy
behavior to be closer to that of nonrelativistic matter, also
resulting in an increase in cluster counts.
From the definition of the mass bias Mbias in Eq. (18),

increasing its value results in a lower effective mass
threshold, therefore increasing the counts of clusters.
The same is true for the mass scatter [9], though with a
lower sensitivity compared to the mass bias.
Increasing the completeness parameters c0 and c1

increases the mass scale Mc in which the completeness
becomes 50%, lowering the values of the completeness
across all masses and reducing the counts of detected
clusters. An increase of nc makes the drop in the complete-
ness atM < Mc sharper, resulting in a slight increase of the
completeness forM > Mc and a decrease forM < Mc. Since
themass threshold adopted (Mobs

th ¼ 1013.8 M⊙h−1) is higher
than the fiducial value ofMc (1013.5 M⊙h−1), increasing nc
produces a slight increase in the counts.
Finally, given our effective cluster selection from Eq. (7),

purity has an inverse effect compared to the completeness
for the counts. In fact, since the completeness and purity
have the same functional form, changes in each purity
parameter cause opposite effects in counts compared to
changes in the corresponding completeness parameter.
These results indicate how parameters are (anti)correlated,

i.e., how changes in one parameter can compensate for
changes in other parameters. The effects on the cluster counts
described above, however, occur when all other parameters
are fixed at their fiducial value. When marginalizing over
parameters, the resulting correlations may change.

A. Selecting cases

The first issue we consider is whether it is worth
including completeness and purity parameters in the cluster
analysis for purposes of constraining dark energy.
Including extra nuisance parameters (related to the obser-
vational effects) increases the accuracy, but decreases the
precision of cosmological constraints. When completeness
and purity effects are ignored, i.e., when case (0) is
assumed despite imperfect selection, the resulting cosmo-
logical parameters θα constrained have a bias bðθαÞ
[Eq. (16)]. The assumption of perfect detection can still
provide reliable cosmological parameter constraints as long
as the bias is smaller than the parameter constraints,

bðθαÞ≲ γσðθαÞ ¼ γðF−1Þ1=2αα ; ð25Þ

where γ ¼ 1, 2, 3 indicate biased predictions at the 68, 95,
and 99% confidence levels. Here Δm̄ and ΔS in Eq. (16)
are the differences in the counts and sample covariance
between predictions in case (0) and cases (1) and (2).
Figure 3 shows the bias induced on the dark energy

parameters ðΩDE; wÞ as a function of the observed mass
threshold used Mobs

th if we assume case (0), when in reality
counts are described by cases (1) (solid line) and (2)
(dashed line). Also shown are the 1, 2, and 3σ confidence
levels on ðΩDE; wÞ in case (0) (blue shaded regions). This
observed mass threshold we consider does not imply that
only a single bin of mass is being used, but that mass bins
of Δ log½Mobs=ðM⊙h−1Þ� ¼ 0.2 down to this threshold are
being used. Therefore, log½Mobs

th =ðM⊙h−1Þ� ¼ 13.8 results
in seven observable mass bins, while log½Mobs

th =ðM⊙h−1Þ�¼
14.2 considers only five observable mass bins. The bias on
ΩDE has surpassed the 1σ constraints for thresholds
log½Mobs

th =ðM⊙h−1Þ� ≤ 14.2 in both cases (1) and (2).
In fact, the bias is larger than 2σ for case (1) and 3σ
for case (2) around the fiducial threshold mass
log½Mobs

th =ðM⊙h−1Þ� ¼ 13.8. The bias on w is around 1σ
at log½Mobs

th =ðM⊙h−1Þ� ¼ 13.8, indicating that this param-
eter is less sensitive to the selection effects. However, w is
less well constrained than ΩDE so a bias comparable to 1σ

FIG. 3. Comparison between i) the 1, 2, and 3σ constraints
(blue shaded regions) on the dark energy parameters θDE ¼
ðΩDE; wÞ for case (0) of perfect cluster selection and ii) the
percent bias bðθDEÞ (lines) on dark energy caused by ignoring
completeness and purity effects as given by cases (1) and 2)
(solid, dashed). As the bias becomes comparable to 1σ constraints
bðθαÞ ≈

ffiffiffiffiffiffiffiffi
F−1
αα

p
, the assumption of perfect detection results in

significantly incorrect best-fit predictions. For the considered
threshold mass log½Mobs

th =ðM⊙h−1Þ� ¼ 13.8 (vertical red line), the
bias bðΩDEÞ is larger than the corresponding 2σ constraint for
both cases (1) and (2), whereas bðwÞ is comparable with the 1σ
constraint.
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constraints may be even more significant when con-
straining models of dark energy.
Notice that the bias behavior as a function of Mobs

th is not
monotonic. This occurs mainly due to the fact that the ratio
c=p of the completeness and purity is also not monotonic,
as seen in the right panel of Fig. 1. For very large
thresholds, c=p indeed approaches unity [as in case (0)]
and the bias is small. For masses around the fiducial
threshold, the bias is caused mainly by the upper/lower
bump in c=p for case (1)/(2). For lower masses, the bias
becomes much larger and is dominated by the rapid change
in c=p for both cases (1) and (2).
Given that the minimum mass threshold that still allows

for somewhat reliable dark energy constraints under case (0)
is located at 14.2 < log½Mobs

th =ðM⊙h−1Þ� < 14.4, we now
investigate for what mass thresholds the constraints under
cases (1) and (2) become better than those from case (0)
under log½Mobs

th =ðM⊙h−1Þ� ¼ 14.2 as a conservative com-
parison. As we go to lower threshold masses and need to
fully model the selection with a larger number of nuisance
parameters (describing the completeness and purity), we also
considerably increase the number of clusters probed, which
provides more cosmological information.
The left panel of Fig. 4 shows 1σ constraints for

cases (0), (1), and (2) as a function of the observed mass
threshold Mobs

th . The dotted lines mark the mass threshold
log½Mobs

th =ðM⊙h−1Þ� ¼ 14.2 and the corresponding con-
straints for case (0). As we decrease the threshold mass,
the constraints for cases (1) and (2) improve. At the fiducial
threshold log½Mobs

th =ðM⊙h−1Þ� ¼ 13.8, the marginalized

constraints of ΩDE and w for both cases (1) and (2)
are lower than those from case (0) with threshold
log½Mobs

th =ðM⊙h−1Þ� ¼ 14.2.
The right panel of Fig. 4 shows the joint dark energy

constraints for multiple cases at different thresholds. The
solid and dashed lines correspond to cases (1) and (2) with
the fiducial threshold, respectively, whereas the blue
shaded region corresponds to case (0) and the higher
threshold, for which this case is marginally reliable. We
see that a fiducial threshold log½Mobs

th =ðM⊙h−1Þ� ¼ 13.8 is
enough to significantly improve the dark energy constraints
relative to case (0), despite the increase in the number of
nuisance parameters from the selection function.
It is interesting to notice that, as we consider even lower

threshold masses than the fiducial one assumed here, we
continue to improve the dark energy constraints. However,
that requires us to trust that the selection can still be well
described by the parametrized functional forms assumed
here down to those lower masses. That assumption has to
be backed up by multiple methods, including trustworthy
simulations and comparisons to other cluster detections at
multiple wavelengths. Using a slightly incorrect selection at
low masses could greatly bias the derived constraints. More
conservatively, in going to lower masses one needs to
consider more general forms for the selection with an
increasing number of nuisance parameters (modeling the
selection function and mass-richness relation), which
would likely degrade cosmological constraints.
It becomes clear nonetheless that if one can properly

model the survey completeness and purity down to levels of

FIG. 4. Left: Constraints on the dark energy parameters ðΩDE; wÞ as a function of threshold mass for cases (0), (1), and (2). Even
though the constraints are somewhat similar, for case (0) they are only reliable down to log½Mobs

th =ðM⊙h−1Þ� ¼ 14.2 (dotted vertical line).
Right: Constraints for cases (0), (1), and (2) at different threshold masses. The blue shaded region shows constraints for case (0) with its
minimum threshold log½Mobs

th =ðM⊙h−1Þ� ¼ 14.2. Both cases (1) and (2), which include the completeness and purity and go to a lower
threshold log½Mobs

th =ðM⊙h−1Þ� ¼ 13.8, produce better constraints than case (0).
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around ∼60%—for which the assumption of perfect selec-
tion can no longer be made—the information in cluster
counts and clustering is enough to self-calibrate the observ-
able-mass and selectionparameters (constrain the parameters
along with cosmological parameters), providing better dark
energy constraints than fixing conservatively higher thresh-
olds in order to ignore selection effects.

B. Completeness and purity effects

In this section, for illustrative purposes we focus our
discussion on the constraints from case (1), but the results
and conclusions for case (2) are similar (see, e.g., Table II).
We start by considering baseline constraints for the fiducial
model described in Sec. V, assuming perfect knowledge of
the observable-mass relation as well as the completeness
and purity. In this case the dark energy constraints are
σðΩDE; wÞ ¼ ð0.006; 0.033Þ. If we let the observable-
mass parameters vary freely, but keep the completeness/
purity parameters fixed, these constraints degrade to
(0.009, 0.044).
Next, we consider the effect of varying the parameters of

the completeness and purity. First we fix the observable-
mass parameters and let the completeness/purity parame-
ters vary freely. In this case the dark energy constraints
become (0.009, 0.042). If we now let both the observable-
mass and completeness/purity parameters vary freely, the
constraints become (0.010, 0.046). This corresponds to a
degradation of (70%, 36%) relative to the case where these
functions are perfectly known, but of only (4%, 2%)
relative to the case where only the selection is fixed.
Therefore, including completeness and purity effects on
top of observable-mass parameters avoids biased parame-
ters without significantly degrading the constraints.
Finally, in order to quantify the effects of priors σpðθnÞ

assumed on nuisance parameters θn ¼ ðθOM; θCPÞ, namely,
observable-mass parameters θOM and/or completeness/
purity parameters θCP, we define the degradation factor
DθDE on the constraints of dark energy parameters θDE ¼
ðΩDE; wÞ as

DθDE ½σpðθnÞ� ¼
σ½θDEjσpðθOMÞ; σpðθCPÞ�

σðθDEÞjref
− 1: ð26Þ

This factor represents the relative difference between
constraints on θDE given priors σpðθOMÞ and σpðθCPÞ and
the reference ideal case σðθDEÞjref ¼ σ½θDEj0; 0� where
nuisance parameters are perfectly known.
Applying priors of 1% (or 10−2 when the fiducial value is

zero) on the observable-mass relation parameters but letting
the completeness/purity parameters vary freely, the con-
straints become (0.009, 0.042). Conversely, if we let the
observable-mass relation vary freely and apply a 1% prior
on the completeness/purity parameters, the constraints
become (0.009, 0.044). Finally, by applying a 1% prior
to all nuisance parameters (related to the observational
effects) the constraints become (0.006, 0.041). This corre-
sponds to a degradation of (8%, 21%) relative to the case in
which these nuisance parameters are perfectly known.
External priors may come from multiple sources, includ-

ing detailed simulations, lensing masses for a subsample of
clusters, or cross-matches to clusters detected at other
wavelengths, e.g., x-ray and/or millimeter. In all cases,
these priors are likely to provide clues to the correct
functional forms for these functions and conservative
ranges for both the observable-mass relation and the
completeness/purity parameters.
Figure 5 shows Fisher constraints—relative to the

fiducial value—for each nuisance parameter θn. Given that
none of these parameters are constrained to better than
10%, having 1% priors on any of these nuisance parameters
would have an important effect on constraining the param-
eters themselves. However, as we have seen the effect on
improving dark energy constraints is very small.
Figure 6 shows contours of constant degradationDθDE on

the dark energy parameters θDE ¼ ðΩDE; wÞ—relative to
perfect nuisance parameters—as a function of priors on the
observable-mass relation σpðθOMÞ and on the complete-
ness/purity parameters σpðθCPÞ. Notice that both panels of
Fig. 6 display similar qualitative behavior, though con-
straints on w do not degrade as much as constraints onΩDE.
We see that it is important to improve priors on both the
observable-mass as well as completeness/purity parame-
ters. For degradations on the dark energy constraints to
remain lower than 20%, it is necessary to have quite strong
external priors at the subpercent level, which are clearly
very hard to achieve even in optimistic scenarios.

C. Future surveys

Future surveys [58–60] will allow for improvements in
both the total survey area and depth, and the effects of the
completeness and purity across these improvements will
become more important. The impact of survey depth or
maximum redshift zmax on dark energy constraints is shown
in Fig. 7 and Table III.

TABLE II. Constraints on dark energy parameters ðΩDE; wÞ for
different priors on the observable-mass parameters θOM and the
completeness/purity parameters θCP.

Case (1) Case (2)

θOM θCP σðΩDEÞ σðwÞ σðΩDEÞ σðwÞ
Fix Fix 0.006 0.033 0.006 0.036
Free Fix 0.009 0.044 0.010 0.047
Fix Free 0.009 0.042 0.010 0.045
Free Free 0.010 0.046 0.012 0.049
1% Free 0.009 0.042 0.010 0.045
Free 1% 0.009 0.044 0.010 0.048
1% 1% 0.006 0.041 0.007 0.042
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Optical cluster finders applied to the Sloan Digital Sky
Survey (SDSS) in the last decade were limited to relatively
shallow magnitudes. For instance, the MaxBCG cluster
catalog [24] had zmax ¼ 0.3, which in our Fisher analysis
produces constraints σðΩDE; wÞ ¼ ð0.033; 0.201Þ, corre-
sponding to a degradation of (235%, 341%) relative to
our fiducial case (zmax ¼ 1.0). More recently, the
redMaPPer cluster finder [26,27] was applied to both the

SDSS and the DES Science Verification data, producing
catalogs that go up to zmax ∼ 0.7, corresponding to con-
straints of (0.014, 0.068) and a degradation of (43%, 48%)
relative to our fiducial model. Since redMaPPer makes use
of the red sequence to detect optical clusters, it may be
challenging to extend its results to redshifts much larger
than these.
For upcoming surveys planning to extend observations

to higher redshifts, we find constraints of (0.008, 0.033) for
zmax ¼ 2, an improvement of (22%, 28%). Case (2)
presents a higher degradation when lowering zmax than
case (1); however, the improvement is lower when we
extend zmax.
We now quantify the impact of the completeness and

purity for different values of zmax by considering the
degradation DθDE on dark energy constraints from Eq. (26),
for the case with free completeness and purity parameters
σ½ΩDEjσpðθCPÞ ¼ ∞� relative to the case of perfect knowl-
edge σ½ΩDEjσpðθCPÞ ¼ 0�. In Fig. 8 we see that DθDE has a
significant overall improvement (i.e., decrease) with the
increase of zmax for cases (1) and (2), up to zmax ∼ 1.0–1.2.
Beyond those redshifts, the degradation increases again,
especially for w in case (1). Notice however that these
higher degradations are on top of the much improved dark
energy constraints (see Table III). Therefore, to fully
exploit improvements to cluster dark energy constraints
coming from larger survey depths it will be important to
properly account for selection effects, despite the fact that it
may be significantly harder to quantify these effects at these
higher redshifts.
Finally, we quantify the effect of changes in survey area.

We keep our approach of considering sample covariance

FIG. 5. Fisher constraints derived for nuisance parameters in
case (1) (blue solid line) and case (2) (green dashed line). The
parameters are related to the observable-mass relation (top panel)
and completeness/purity (bottom panel). No priors were assumed
for these nuisance parameters.

FIG. 6. Contours of constant degradation DθDE on the constraints of dark energy parameters θDE ¼ ðΩDE; wÞ as a function of priors
σpðθOMÞ on all observable-mass relation parameters and priors σpðθCPÞ on all completeness/purity parameters. The degradation is
considered for case (1) and relative to the case of perfect nuisance parameters [for which σpðθOMÞ ¼ σpðθCPÞ ¼ 0]. For DθDE < 20%,
subpercent-level priors on all nuisance parameters are required.

MICHEL AGUENA and MARCOS LIMA PHYS. REV. D 98, 123529 (2018)

123529-12



from cells of 10 deg2 and notice that the Fisher matrix has a
linear dependence on total area. This means that all
constrained parameters have the same degradation/
improvements due to changes in the survey area. Our
fiducial area of 5000 deg2 is similar to what will be
observed by DES. An area twice as large (1=4 of the
sky) results in an improvement of ∼29% in both dark
energy constraints. For half-sky observations constraints
improve by ∼50%, and for full-sky observations they
improve by ∼65%.

VII. DISCUSSION

We have explored the effects of completeness and purity
on dark energy constraints from the abundance and
clustering of galaxy clusters. We parametrized the selection

of cluster samples to reflect a decrease in the completeness
and purity at lower masses such that they both reach ∼50%
at a mass scale M ∼ 1013.5 M⊙=h. The ratio (c=p) deter-
mines the effective selection. Within our parametrization,
(c=p) either goes to zero (case 1) or infinity (case 2) as
M → 0.
We first considered the bias induced on dark energy

constraints when neglecting completeness and purity
effects from cases (1) and (2). We found that the bias
becomes comparable to dark energy constraints at a thresh-
old mass of Mobs

th ∼ 1014.2 M⊙=h. As this represents the
minimum threshold for which it is safe to ignore selection
effects, we then proceeded to study the inclusion of com-
pleteness andpurity parameters in dark energy constraints for
a lower fiducial mass threshold of Mobs

th ∼ 1013.8 M⊙=h.
Since the effective selection includes not only the

completeness and purity but also the observable-mass
distribution, the impact of including the completeness
and purity depends on the assumptions made for the
observable-mass parameters. Within case (1), baseline
constraints for fixed observable-mass parameters and fixed
completeness and purity are σðΩDE; wÞ ¼ ð0.006; 0.033Þ,
and when only completeness and purity parameters vary
freely these degrade to (0.009, 0.042). On the other hand,
if the observable-mass parameters vary freely while

FIG. 7. Effect on dark energy constraints when changing the
survey maximum redshift zmax from 0.3 (pink), 0.7 (blue), 1.0
(green), and 2.0 (red). Solid lines refer to case (1) and shaded
regions refer to case (2).

TABLE III. Constraints for dark energy as a function of
maximum redshift zmax. Here all nuisance parameters describing
the effective selection function (observable-mass, completeness,
and purity) vary freely.

Case (1) Case (2)

zmax σðΩDEÞ σðwÞ σðΩDEÞ σðwÞ
0.3 0.033 0.201 0.051 0.254
0.5 0.018 0.089 0.025 0.100
0.7 0.014 0.068 0.017 0.077
1.0 0.010 0.046 0.012 0.049
1.2 0.009 0.040 0.010 0.044
1.5 0.008 0.035 0.010 0.039
1.7 0.008 0.034 0.009 0.037
2.0 0.008 0.033 0.009 0.035

FIG. 8. Percent degradation DθDE on the constraints for dark
energy parameters θDE ¼ ðΩDE; wÞ as a function of maximum
redshift zmax, for the selection function parametrized in case (1)
(solid line) and case (2) (dashed line). Degradations are computed
for the case where the completeness and purity parameters are
free [σpðθCPÞ ¼ ∞] relative to the case where these parameters
are perfectly known [σpðθCPÞ ¼ 0]. DθDE decreases with zmax up
to zmax ∼ 1 and increases for higher redshifts. The dark energy
constraints themselves always improve for higher values of zmax,
but the relative sensitivity to knowledge of the selection param-
eters increases.
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the completeness and purity parameters remain fixed,
constraints are σðΩDE; wÞ ¼ ð0.009; 0.044Þ and they only
degrade to (0.010, 0.046) if the completeness and purity
also vary freely.
Next we considered the impact of external priors on the

observable-mass and completeness/purity parameters.
From the perspective of dark energy constraints these
are nuisance parameters (related to observational effects).
We found that joint priors on all nuisance parameters need to
be known to better than 1% in order to improve dark energy
constraints significantly; with these priors, constraints are
restored to σðΩDE; wÞ ¼ ð0.006; 0.041Þ for case (1).
Although it seems unlikely that external priors on

selection parameters will reach subpercent levels for current
and upcoming cluster surveys, interesting priors should be
possible from a combination of multiple sources, including
detailed simulations, cross-matches from other surveys, and
follow-up spectroscopic observations for a fraction of the
cluster sample. For instance, DES has developed detailed
simulations that mimic all of its observational properties
[61,62]. By running optical cluster finders on these sim-
ulations, it is possible to characterize observable-mass and
completeness/purity functions [46]. Moreover, DES has a
significant overlap with the South Pole Telescope (SPT), so
cross-matches of DES optical clusters and SPT Suniaev-
Zel'dovich clusters allow for calibrations of the observable-
mass relation [38].A similar calibration can be achieved from
x-ray detections [63,64] and lensing masses [65].
Even though our results indicate that only very stringent

(and hard to achieve) priors on nuisance parameters would
be effective in improving dark energy constraints from self-
calibrated constraints (where the nuisance parameters were
constrained along the cosmology), such priors are actually
very important for checking the validity of the assumed
functional forms, thus providing consistency checks for
internal self-calibration of nuisance parameters.
We also investigated the effect of changing the survey

area (from our fiducial ΔΩ ¼ 5000 deg2) and maximum
redshift (from the fiducial zmax ¼ 1.0), reflecting expect-
ations from future surveys. For ΔΩ ¼ 10 000 deg2 (1=4 of
the sky) the constraints would improve by ∼29%, and for
ΔΩ ¼ 40 000 deg2 (full sky) they would improve by
∼65%, relative to the fiducial case. If we expand the
maximum redshift to zmax ¼ 2.0, constraints on ðΩDE; wÞ
improve by (22%, 28%) for case (1), though most of this
improvement is already achieved for zmax ¼ 1.5. Despite
the improvements to the constraints for higher redshifts and
survey areas, these constraints also degrade more signifi-
cantly due to the lack of knowledge of selection parameters.
Therefore, to fully exploit the gain in precision it will be
even more important to better understand and calibrate the
cluster selection function.
Our results were based on the parametrized functions

chosen for the effective selection, and they may depend to
some extent on these choices. We proposed functional

forms for the completeness and purity, which are inspired
by ongoing work involving runs of cluster finders on DES
simulations, which we will present elsewhere [46]. In fact,
our parametrizations bracket a considerable range of
possibilities, so we do not expect significant changes in
our conclusions when considering alternative parametriza-
tions. On the other hand, when extending cluster analyses
to significantly lower mass thresholds, one needs to ensure
that the functional forms are still valid down to those
masses, which may be hard even with simulations and
multiwavelength cross-matches. In particular, as c=p
becomes lower than 50%, we probably need to consider
more general functions (or even an arbitrary behavior) for
the completeness and purity, which may then significantly
degrade dark energy constraints (or even bias them for an
oversimplified selection), despite the increase in the num-
ber of clusters probed. Again, we envision that detailed
simulations and cross-matches should help us in defining
the most appropriate parametrizations.
Given that the halo mass function must be known to high

precision for cosmological applications [66,67], and the
fact that the Tinker mass function is only precise at the 5%
level [50], we investigated the effect of changing the halo
mass function prescription in our analysis. In real-data
analysis one is expected to make use of well-calibrated
fitting formulas or emulators for the mass function (see,
e.g., Ref. [67]). For illustrative purposes we replaced the
Tinker mass function with the fitting formula from Jenkins
[68]. We found that this change in the mass function causes
variations of up to 20% in the number counts, which
leads to changes ≤30% in the cosmological constraints and
≤80% in the constraints of nuisance parameters. However,
the degradation effects on the dark energy constraints
caused by the inclusion of nuisance parameters remain
comparable to those obtained when we use the Tinker mass
function (the largest degradation occurs when one of the
two sets of nuisance parameters θOM or θCP is introduced,
and the inclusion of the second set is negligible), as does
the bias on dark energy parameters introduced by ignoring
selection function effects. Therefore, the main conclusions
regarding the inclusion/exclusion of nuisance parameters
are the same as those presented throughout this work.
Although intrinsic degeneracies always remain to some

extent, further improvements in the theoretical modeling of
cluster properties coming from N-body and gas-dynamics
simulations will improve our knowledge of the halo mass
function and bias in the presence of baryonic effects
[69,70], and help define appropriate functional forms for
the observable-mass relation and its intrinsic scatter
[31–33]. Improvements in semianalytical halo occupation
distribution models will also allow for the creation of
reliable mock galaxy catalogs on which we may run cluster
finders and calibrate cluster selection parameters. These
theoretical developments combined with external calibra-
tions from cluster cross-matches are essential for cluster
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cosmology. The self-consistency between observations and
theory predictions—which account for all relevant obser-
vational effects—will advance our knowledge of the
astrophysical processes that regulate observed cluster
properties and simultaneously lead to trustworthy cluster
cosmological constraints.
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