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In this paper, the formation of specific static wormhole models is discussed, by assuming an fðR; TÞ ¼
Rþ 2λT extended theory of gravity, T ¼ −ρþ Pr þ 2Pl being the trace of the energy momentum tensor.
In the first part, wormhole solutions are constructed imposing that the radial pressure admits an equation of
state corresponding to a varying Chaplygin gas. Two forms for the varying Chaplygin gas are considered,
namely Pr ¼ −BbðrÞu=ρα and Pr ¼ −BRðrÞm=ρα, respectively. In the second part, the wormhole models
are constructed assuming that the radial pressure can be described by a varying barotropic fluid. In
particular, Pr ¼ ωbðrÞvρ and Pr ¼ ω̂rkRðrÞηρ are considered, respectively, leading to two additional,
traversable wormhole models. In all cases, bðrÞ is the shape function, and RðrÞ the Ricci scalar obtained
from the wormhole metric for a redshift function equal to 1. With the help of specific examples, it is
demonstrated that the shape functions of the exact wormhole models previously constructed do obey the
necessary metric conditions. The same energy conditions help reveal the physical properties of these
models. A general feature is the violation of the null energy condition (NEC) (ρþ Pi ≥ 0) in terms of the
radial pressure Pr at the throat of the wormhole. For some of the models, one can satisfy the NEC at the
throat while a violation of the dominant energy condition (DEC) (ρ − Pi ≥ 0) occurs. To summarize, exact
wormhole models can be constructed with a possible violation of the NEC and DEC at the throat of
the wormhole, while being ρ ≥ 0. Thus, the interesting feature appears that one has a violation of the
weak energy condition (ρ ≥ 0 and ρþ Pi ≥ 0) not related to the energy density behavior (the index i, being
r respectively l, indicates radial respectively lateral pressure).

DOI: 10.1103/PhysRevD.98.123525

I. INTRODUCTION

Construction of exact wormhole models was always a
challenging task in general relativity (GR), and it remains
so in modified theories of the same. The study of wormhole
solutions is a most active field in the area. In the recent
literature, one finds various interesting studies, such as
[1–21] (to mention a few, only); in particular, for the case
of modified theories of gravity, which have proved to be
efficient in order to solve some of the problems of modern
cosmology (see, e.g., [22–52]). It is well known that,
according to the observational data, an important part of the
energy content of the Universe is under the form of a dark

energy, which accelerates its expansion; this being true,
provided GR is taken to describe the background dynamics
(see, for instance, [53,54], and references therein). In
general, any specific energy source which can generate
negative pressure should be counted as dark energy. There
are various models of dark energy, addressing the accel-
erated expansion problem, well constrained by observa-
tional data [55–73] (and references therein). On the other
hand, if for some of these dark energy models, some issue,
for instance, the cosmological coincidence problem, cannot
be solved, then one can still turn to consider nongravita-
tional interactions, to finally obtain a consistent picture.
Discussions on this issue can be found in [55–73], and
references therein. Moreover, specific modifications of GR
can be used to solve both the dark energy and the dark
matter problems, and some others.

*elizalde@ieec.uab.es
†khurshudyan@yandex.ru, khurshudyan@tusur.ru,

khurshudyan@ustc.edu.cn

PHYSICAL REVIEW D 98, 123525 (2018)

2470-0010=2018=98(12)=123525(13) 123525-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.123525&domain=pdf&date_stamp=2018-12-20
https://doi.org/10.1103/PhysRevD.98.123525
https://doi.org/10.1103/PhysRevD.98.123525
https://doi.org/10.1103/PhysRevD.98.123525
https://doi.org/10.1103/PhysRevD.98.123525


As a consequence of the above, it is very important to
analyze all possibilities, in particular, the ones involving
cosmological objects, like black holes, gravastars, strange
stars, and others, including of course wormholes, and also
in the case of modified theories of gravity. In this context,
Refs. [74–83], and the citations therein, are quite useful to
get a general understanding on some of these subjects
and on the possibilities of future developments concerning
the above-mentioned topics, specifically, for the case of
fðRÞ gravity.
Since wormholes are able to connect asymptotical regions

of a single Universe, their study in modified gravity theories
can indeed provide valuable additional information on the
above-mentioned issues; in particular, if it could be proven
that such a wormhole can actually work as a physical tunnel
connecting two distinct Universes. We actually believe that
they may play a crucial role for a better understanding of the
quantum nature of the early Universe. However, to this end
wormholes should be first detected, and their matter content
should be also well constrained and understood, in order to
sustain the hope that we can extract useful information from
them. We should consider that even the data allowing to
constrain and understand the nature and content of other
objects, which may sound much more familiar, as black
holes or even dark matter, is scarce and this makes the
situation very complicated, not to speak about wormholes.
What are the hints on the nature and content of a wormhole?
Even in cosmology, when today we are in possession of
relatively good observational data from different missions,
we still have an enormous problem to understand what is the
real nature of dark matter, and many different possible
candidates are being discussed, some of them quite afar from
each other. We have to face an even more difficult situation,
in the case considered of a wormhole.
Different proposals on the Universe energy structure

have been put forward by different theories of modified
gravity. A particular example is fðR; TÞ gravity, with T ¼
ρþ Pr þ 2Pl the trace of the energy momentum tensor.
In general, one could expect that the material corrections
should come either from the existence of imperfect fluids,
or from quantum effects, such as particle production. The
total action of such theories is generally given by [30]

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
fðR; TÞ þ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lm; ð1Þ

where fðR; TÞ is an arbitrary function of the Ricci scalar R
and of the trace of the energy-momentum tensor T, while g
is the metric determinant, and Lm is the matter Lagrangian
density, which is related to the energy-momentum tensor in
the following way

Tij ¼ −
2ffiffiffiffiffiffi−gp

�∂ð ffiffiffiffiffiffi−gp
LmÞ

∂gij −
∂
∂xk

∂ð ffiffiffiffiffiffi−gp
LmÞ

∂ð∂gij=∂xkÞ
�
: ð2Þ

If we assume that Lm depends on the metric components
only, then

Tij ¼ gijLm − 2
∂Lm

∂gij : ð3Þ

Moreover, varying the action, Eq. (1), with respect to the
metric gij yields the field equations

fRðR; TÞ
�
Rij −

1

3
Rgij

�
þ 1

6
fðR; TÞgij

¼ 8πG

�
Tij −

1

3
Tgij

�
− fTðR; TÞ

�
Tij −

1

3
Tgij

�

− fTðR; TÞ
�
θij −

1

3
θgij

�
þ∇i∇jfRðR; TÞ; ð4Þ

with fRðR; TÞ ¼ ∂fðR;TÞ
∂R , fTðR; TÞ ¼ ∂fðR;TÞ

∂T and

θij ¼ gij
∂Tij

∂gij : ð5Þ

Going now back to the discussion of the dark energy and
dark matter components of our Universe, we find in the
literature quite different possibilities for the same. One of
the first, for dark energy, is under the form of a scalar
field, quite successfully applied to the accelerated expand-
ing Universe problem. There is also a way to present dark
energy as a fluid. In this case, the barotropic fluid model,
with a negative equation of state parameter, is maybe the
simplest one, among others. There are also other attempts
to present dark energy as a fluid including various para-
metrizations of the energy density and pressure. On the
other hand, the consideration of a fluid (the energy source)
with an equation of state which unifies dark energy and
dark matter is also a very compelling approach and could
significantly simplify the whole picture and the related
analysis. One of such examples is the Chaplygin gas, which
has a nonlinear equation of state. There is a good number of
papers addressing important issues of modern cosmology
by using this equation of state. On the other hand, various
modifications of the original form of the Chaplygin gas
have been considered, aiming in particular to a better
understanding of the physics behind the most recent
astronomical observations. The references at the end of
this paper can be used as a guide to the possibilities
mentioned above.
Previous studies on wormhole models in modified

theories of gravity, assuming different matter content,
reveal the viability of several different hypotheses con-
cerning their matter content. However, since wormholes
have never been observed, we cannot be certain about such
hypotheses, neither in GR nor in modified theories of
gravity, as has been mentioned already at the beginning.
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Being aware of this situation, in this paper we address
the wormhole formation problem in fðR; TÞ ¼ Rþ 2λT
gravity assuming two families of equations of state to
describe the matter content of the wormhole. More spe-
cifically, in the first part of the paper we will consider
wormhole models assuming that the radial pressure has the
following form:

Pr ¼ −
BðrÞ
ρα

; ð6Þ

where A and α are constant, while BðrÞ is a function of r.
The last assumption associates the matter content of the
wormhole to a varying Chaplygin gas with the radial
pressure being given by Eq. (6). We also study wormhole
formation for the case of fðR; TÞ ¼ Rþ 2λT, with
Pr ¼ −B=ρα, and find that, here, the traversable wormhole
solution should be described by a function of constant
shape, bðrÞ. In particular, we will find that a traversable
wormhole with bðrÞ ¼ r0 is formed in such a scenario.
Another interesting aspect observed during the study is that
ρ ≈ 0, for these cases, which implies that Pr and Pl are
infinite. However, when we consider Pr ¼ −BðrÞ=ρα with
BðrÞ to be either a function of the Ricci scalar, or a function
of the shape function bðrÞ, we will have wormhole
solutions with finite Pr and Pl. In other words, the
consideration of a varying Chaplygin gas proposed here
will allow to overcome the problems that have been
reported for constant B. This means that there could be
a deep reason for this substantial change of behavior, and
that we need to consider more complicated forms of
fðR; TÞ in order to better understand the situation. This
could indicate also that the reasons allowing to consider
matter corrections simply prevent the wormhole formation
in a B ¼ const Chaplygin gas. Of course, this possibility
may introduce some constrains and the need for a
deeper study of the modified gravity theory of the kind
fðR; TÞ ¼ Rþ 2λT, which will be discussed in a forth-
coming paper, together with other relevant questions.
However, we should remember that when we assume the
metric of the universe to be given by the flat Robertson-
Walker metric, then the fðR; TÞ ¼ Rþ 2λT model is
equivalent to a cosmological model with an effective
cosmological constant proportional to H2. Moreover, in
this particular model the gravitational coupling becomes an
effective and time dependent coupling. This is of course a
very important result for cosmology, which motivates us to
study the impact of the considered form of fðR; TÞ gravity
on wormhole solutions and energy conditions (see more
details in [30]).
In the second part of this work, we construct two more

models, assuming that the radial pressure can be described
by a varying barotropic fluid. In particular, we consider
the cases Pr ¼ ωbðrÞvρ and Pr ¼ ω̂rkRðrÞηρ, respectively.
Moreover, for all these particular examples, we will

demonstrate that the shape functions of the corresponding
exact traversable wormholes actually obey the necessary
metric conditions. We also use the energy conditions in
order to reveal the physical content of the constructed
wormhole models. A general feature of all these models
will be the violation of the null energy condition (NEC)
(ρþ Pi ≥ 0) in terms of the radial pressure, Pr, at the throat
of the wormhole. On the other hand, for some of the
models, the violation of the dominant energy condition
(DEC) (ρ − Pi ≥ 0), while keeping valid the NEC at the
throat, turns to be possible. In other words, we will
construct exact traversable wormhole models with a pos-
sible violation of the NEC and DEC at the throat of the
wormhole, while ρ ≥ 0. That is, we have also a violation of
the weak energy condition (WEC) (ρ ≥ 0 and ρþ Pi ≥ 0)
(i ¼ r, l ndicates radial and lateral pressure, respectively).
In summary, we will prove in the following that, by using

a varying Chaplygin gas and a varying barotropic fluid of
some specific form we can reconstruct viable traversable
wormhole solutions. The solutions here obtained are, to
the best of our knowledge, absolutely new, and no other
solutions with similar properties have ever appeared in the
literature.
The paper is organized as follows. In Sec. II we consider

the detailed form of the field equations to be solved
indicating the conditions to be satisfied by the shape
function. In Sec. III two exact wormhole models are
obtained, to be followed by a discussion on the validity
of the energy conditions. For the models considered here,
we assume that the radial pressure can be described by a
varying Chaplygin gas with Pr ¼ −BðrÞ=ρα, where BðrÞ
can be either a function of the Ricci scalar, or a function of
the shape function bðrÞ. To be able to construct exact
solutions, we will concentrate our attention on the follow-
ing two cases: Pr ¼ −BbðrÞu=ρα and Pr ¼ −BRðrÞm=ρα.
In Sec. IV we present two other wormhole models,
corresponding to the barotropic equations of state: Pr ¼
ωbðrÞvρ and Pr ¼ ω̂rkRðrÞηρ, respectively. Finally, Sec. V
is devoted to a general discussion and conclusions.

II. THE WORMHOLE METRIC AND
THE FIELD EQUATIONS

The concept of wormhole is one of the most popular
and widely studied ones in GR and in modified theories
of gravity, too (see, e.g., [1–21]). Pioneering work on the
static spherically symmetric wormhole, with the following
metric [in Schwarzschild coordinates (t, r, θ, ϕ)],

ds2 ¼ −UðrÞdt2 þ dr2

VðrÞ þ r2dΩ2; ð7Þ

where dΩ2 ¼ dθ2 þ sin2θdϕ2 and VðrÞ ¼ 1 − bðrÞ=r, is
due to Morris and Thorne [84]. These authors proved that
the matter inside the wormhole has negative energy, thus
violating the null energy condition (NEC). Later on, also
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dynamical wormhole models were proposed, introducing
the scale factor in the metric Eq. (7). In the literature, we
meet different studies on static and dynamical wormholes,
constructed using quite different hypotheses concerning the
matter content. Among others, there is a line of study
dedicated to speculate on possible wormholes with the
corresponding matter satisfying, e.g., the weak energy
condition (WEC) and the dominant energy condition (DEC).
Let us recall the parameters describing the wormhole.

There is the throat, indicating the minimal surface area of
the attachment. Also, in Eq. (7), we identify the function
bðrÞ, as the shape function representing the spatial shape
of the wormhole. As is known, the redshift function UðrÞ
and the shape function bðrÞ must obey the following
conditions [84]:
(1) The radial coordinate r lies between r0 ≤ r < ∞,

where r0 is the throat radius.
(2) At the throat, r ¼ r0, bðr0Þ ¼ r0 and in the region

outside the throat 1 − bðrÞ=r > 0.
(3) b0ðr0Þ < 1, with 0 ¼ d=dr, i.e., the flaring out

condition at the throat should be satisfied.
(4) For asymptotic flatness of the space-time geometry,

the limit bðrÞ=r → 0, as jrj → ∞ is required.
(5) UðrÞ must be finite and nonvanishing at the

throat r0.
Following Refs. [85,86], we will consider UðrÞ ¼ 1, which
means that we can achieve the de Sitter and anti–de Sitter
asymptotic behaviors.
To obtain a wormhole solution we assume also that

Lm ¼ −ρ, in order not to imply the vanishing of the extra
force, and fðR; TÞ ¼ Rþ 2fðTÞ with fðTÞ ¼ λT (λ is a
constant). With these assumptions, the field equations
presented in Sec. I reduce to the following:

Gij ¼ ð8π þ 2λÞTij þ λð2ρþ TÞgij: ð8Þ

In Eq. (8), Gij is the usual Einstein tensor. Now, if we take
into account the form of the metric, Eq. (7), then after some
algebra, for the three components of the field equations,
Eq. (8), we will obtain (see for instance [7])

b0

r2
¼ ð8π þ λÞρ − λðPr þ 2PlÞ; ð9Þ

−
b
r3

¼ λρþ ð8π þ 3λÞPr þ 2λPl; ð10Þ

b − b0r
2r3

¼ λρþ λPr þ ð8π þ 4λÞPl: ð11Þ

To derive the above equations we have considered an
anisotropic fluid satisfying the matter content of the form
Ti
j ¼ diagð−ρ; Pr; Pl; PlÞ, where ρ ¼ ρðrÞ is the energy

density, while Pr and Pl are the radial and lateral pressures,

respectively. The trace T of the energy-momentum tensor
turns out to be T ¼ −ρþ Pr þ 2Pl. Moreover, it is easy to
see that Eqs. (9)–(11) admit the following solution:

ρ ¼ b0

r2ð8π þ 2λÞ ; ð12Þ

Pr ¼ −
b

r3ð8π þ 2λÞ ; ð13Þ

and

Pl ¼
b − b0r

2r3ð8π þ 2λÞ ; ð14Þ

for the wormhole matter content.
In the next sections, starting from two different forms

for the radial pressure, we will obtain exact traversable
wormhole models. We will begin our study assuming
that the radial pressure can be described by a varying
Chaplygin gas.

III. WORMHOLE MODELS WITH VARYING
CHAPLYGIN GAS

In this section, we will present wormhole models
considering its matter content to be described by a varying
Chaplygin gas, Eq. (6). Two hypothesis concerning the
functional form of BðrÞ are being put forward in this
section. We will consider the shape function and the
Ricci scalar parametrizations of BðrÞ. In particular BðrÞ ¼
BbðrÞu and BðrÞ ¼ BRðrÞm functional forms will be
adopted during the analysis.

A. Model with Pr = −BbðrÞu=ρα
Let us start the search for an exact wormhole model,

when the radial pressure has the following form:

Pr ¼ −
BbðrÞu
ρα

; ð15Þ

where u is a constant and we keep the bðrÞ notation to
indicate that for BðrÞ we consider a shape function para-
metrization. Now, if we take into account Eq. (13) then,
after integration, we can recover the functional form of the
shape function by solving a first order differential equation.
Therefore, the shape function of the wormhole whose
matter has a radial pressured given by Eq. (15) will have
the following form:

bðrÞ ¼

0
B@−

ðα − uþ 1Þ
�
− 2

1
αþ1ðλþ4πÞ1αþ1B1=αr

3
αþ3

3
αþ3

− c1
�

α

1
CA α

α−uþ1;

ð16Þ
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where c1 is an integration constant. On the other hand, if we
take into account that

b0ðrÞ ¼ 2
1
αþ1ðλþ 4πÞ1αþ1B1=αr

3
αþ2Â

u−1
α−uþ1; ð17Þ

then, after some algebra, we get

ρ ¼ 21=αðλþ 4πÞ1=αB1=αr3=αÂ
u−1

α−uþ1; ð18Þ

and

Pl ¼
Â

α
α−uþ1 − 2

1
αþ1ðλþ 4πÞ1αþ1B1=αr

3
αþ3Â

u−1
α−uþ1

4ðλþ 4πÞr3 ; ð19Þ

where Â ¼ − ðα−uþ1Þ
α ð− 2

1
αþ1αðλþ4πÞ1αþ1B1=αr

3
αþ3

3αþ3
− c1Þ. To obtain

the last two equations we have taken into account that the
energy density and pressure Pl are given by Eqs. (12) and
(14), respectively. Now, let us write also the final form
of the Pr-pressure by using the form of the energy density
for the matter given by Eq. (18). It is easy to see that for Pr
we obtain

Pr ¼ −B
�
21=αðλþ 4πÞ1=αB1=αr3=αÂ

u−1
α−uþ1

�
−α
Â

αu
α−uþ1: ð20Þ

A particular wormhole model with the throat at r0 ¼ 1.5
and b0ð1.5Þ ≈ 0.624 is discussed below. This particular
solution has been obtained for α ¼ 0.05, λ ¼ −3.44,
u ¼ −4, B ¼ 0.1, and c1 ¼ 0.09. The graphical behavior
of the shape function bðrÞ and 1 − bðrÞ=r is presented on
the left plot of Fig. 1. We can see directly that we have a
solution describing a wormhole satisfying all constraints
discussed in Sec. II. Moreover, the rhs plot of Fig. 1 depicts
the behavior of the energy conditions, clearly indicating
that the NEC (defined as ρþ Pr) in terms of Pr is violated
at the throat of the wormhole. We can also see that it will be
valid far from the throat. On the other hand, the NEC in
terms of Pl and the DEC in terms of Pr (defined as ρ − Pr),
and the DEC in terms of Pl (defined as ρ − Pl), are always

valid. It should be mentioned that ρ ≥ 0, which proves that
only the violation of the WEC in terms of the Pr pressure
will be observed at the throat of the wormhole. The study
of ωr ¼ Pr=ρ shows that we should expect a wormhole
formation if we have a phantom varying Chaplygin gas as
given by Eq. (15).
In Fig. 2, we present the graphical behavior of the NEC

and the DEC in terms of the Pr and Pl pressures, for
different values of the parameter u, when α ¼ 0.5, λ ¼ 5,
b ¼ 1.0, and c1 ¼ 1.0. The top panel in Fig. 2 corresponds
to the behavior of NEC in terms of the Pr and Pl pressures.
We clearly see that there are regions where the NEC in
terms of Pr is not valid, while the NEC in terms of Pl is
valid. Moreover, we see that, for u > −2, we can have
regions where the NEC in terms of Pr is also valid. On the
other hand, the bottom panel shows the graphical behavior
of the DEC in terms of the two pressures. We observe that
even for the regions where the NEC in terms of Pr is
violated, the DEC in terms of both pressures continues to be
valid. Moreover, for the regions and range of the parameters
considered, we observe that ρ ≥ 0 is satisfied.

B. Model with Pr = −BRðrÞm=ρα
Here we turn our attention to the model with

Pr ¼ −
BRðrÞm

ρα
; ð21Þ

where RðrÞ ¼ 2b0=r2 is the Ricci scalar. It is easy to
see that, similarly to the model given by Eq. (15), we can
also obtain exact wormhole solutions. A particular one
can be found if we consider m ¼ α. For instance, if we
take m ¼ α ¼ 1, then the shape function will admit the
following form:

bðrÞ ¼ 8Bðλþ 4πÞ2r3: ð22Þ

On the other hand, if we consider m ¼ α ¼ 4, then for the
shape function we get

FIG. 1. The graphical behavior of the shape function bðrÞ for the model given by Eq. (15) is depicted on the lhs plot. The same plot
shows that the solution Eq. (16), for bðrÞ, satisfies 1 − bðrÞ=r > 0, for r > r0. The throat of the wormhole occurs at r0 ¼ 1.5, while
α ¼ 0.05, λ ¼ −3.44, u ¼ −4, B ¼ 0.1, and c1 ¼ 0.09. The rhs plot displays the fulfillment energy conditions for the same case.
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bðrÞ ¼ 512Bðλþ 4πÞ5r3: ð23Þ

Now, if we consider −m ¼ α ¼ 1, then direct integration of
Eq. (13) will yield two solutions, for the shape function
bðrÞ, as

b1;2ðrÞ ¼
ð∓ 2

ffiffiffi
2

p ffiffiffiffi
B

p
λr9=2 − 8

ffiffiffi
2

p
π

ffiffiffiffi
B

p
r9=2 þ 9c2Þ2=3

62=3
;

ð24Þ

where c2 is an integration constant. Eventually, another
exact wormhole solution is found, given by

bðrÞ ¼ c3r
1

16Bðλþ4πÞ2 ; ð25Þ

with c3 an integration constant, when we consider the
parameters m and α to be m ¼ 2 and α ¼ 1, respectively.
Then, each form of the shape function considered above
can be used to obtain the explicit form of ρ, Pr, and Pl.
A more general case can be studied numerically, which is
done below for the wormhole solution with B ¼ 0.001,
α ¼ 0.95, λ ¼ 9.5 and m ¼ 1.95.
The throat of this wormhole is obtained to occur for

r0 ¼ 0.95, while b0ð0.95Þ ≈ 0.161. From the graphical
behavior of the NEC in terms of Pr, presented in Fig. 3,
we see that it will be violated at the throat of such
wormhole, while it will be valid far from the throat.
Moreover, we should expect the violation of the DEC in
terms of Pl at the throat, while, similar to the NEC in terms
of Pr, it will be valid far from the throat. On the other hand,
we should expect to have a valid NEC in terms of Pl and a

FIG. 2. The graphical behavior of the NEC in terms of the Pr and Pl pressures is depicted on the two Plots_EPS of the top panel. We
see the existence of regions where the NEC is fulfilled, in terms of both pressures. The bottom panel shows the graphical behavior of the
DEC in terms of both pressures. We see that the DEC in terms of both pressures can be valid even for the region where the NEC in terms
of Pr is not valid. The shape function bðrÞ for the model is given by Eq. (16). The plot has been obtained for α ¼ 0.5, λ ¼ 5, B ¼ 1, and
c1 ¼ 1, and for different values of u.
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valid DEC in terms of the Pr pressure at the throat of the
wormhole. They are also valid far from the throat. We also
have ρ > 0 at the throat and ρ ¼ 0 far from the throat,
which means that violation of the WEC in terms of Pr
should be expected as well. On the other hand, the WEC in
terms of Pl will be valid at the throat and also far from it.
The lhs plot of Fig. 3 clearly shows that we have a
wormhole solution. Furthermore, the study of the model
with Pr ¼ Aρ − BRðrÞm=ρα shows that A should be of the
same order as B in order to yield a traversable wormhole
solution. The numerical study shows that in this case we
will obtain the energy conditions having qualitatively the
same behavior as in the case of A ¼ 0 presented above.
In Fig. 4 we depict the graphical behavior of NEC in

terms of both pressures, for different values of the param-
eter B. In particular, we observe that for fixed values of the
parameters m and α, the parameters B and λ cannot affect
the behavior of the energy conditions. From Fig. 4 we see
that, for a small value of r, the NEC in terms of the Pr
pressure is always violated, while the same energy

condition in terms of the Pl pressure is valid. On the other
hand, the study shows also that DEC in terms of Pl is also
not valid for the regions with small r.

IV. WORMHOLE MODELS WITH VARYING
BAROTROPIC FLUID

In this section we will consider other exact wormhole
models obtained from the assumption that the radial
pressure of the matter content of the wormhole can be
described by a varying barotropic fluid

Pr ¼ ωðrÞρ; ð26Þ

where ωðrÞ is the varying equation of state parameter. In
particular, similarly to the varying Chaplygin gas models
considered above, we will assume the shape function and
the Ricci scalar parametrizations of the equation of state
parameter.

FIG. 3. The graphical behavior of the shape function bðrÞ for the model given by Eq. (21) is presented on the lhs plot. We observe that
the solution for bðrÞ satisfies 1 − bðrÞ=r > 0, for r > r0. The throat of the wormhole occurs at r0 ¼ 0.95, while α ¼ 0.95, λ ¼ 9.5,
m ¼ 1.95, and B ¼ 0.001. The rhs plot proves the fulfillment of the energy conditions for the same case.

FIG. 4. The graphical behavior of NEC in terms of Pr is presented on the lhs plot. The rhs plot corresponds to the graphical behavior of
the NEC in terms of the Pl pressure. In both cases, we have considered the validity of the NEC for different values of the parameter B.
The shape function bðrÞ for this case is given by Eq. (25).

WORMHOLE FORMATION IN fðR; TÞ … PHYS. REV. D 98, 123525 (2018)

123525-7



A. Model with Pr =ωbðrÞvρ
The first wormhole model of this section has been

obtained assuming that

Pr ¼ ωbðrÞvρ: ð27Þ

This means that we consider a varying equation of state
parametrization according to the shape function bðrÞ. On
the other hand, it is easy to see that the following form of
the shape function describing the wormhole

bðrÞ ¼
�
v

�
c4 −

logðrÞ
ω

��
1=v; ð28Þ

where c4 is an integration constant, will be obtained from
the integration of Eq. (13). If the form of the shape function
is known then, from Eqs. (12)–(14), we get

ρ ¼ −
ðvðc4 − logðrÞ

ω ÞÞ 1
v−1

2ðλþ 4πÞr3ω ; ð29Þ

Pr ¼ −
ωððvðc4 − logðrÞ

ω ÞÞ 1=vÞ vþ1

2ðλþ 4πÞr3vðc4ω − logðrÞÞ ; ð30Þ

and

Pl ¼
ðc4vω − v logðrÞ þ 1Þðvðc4 − logðrÞ

ω ÞÞ 1=v
4ðλþ 4πÞr3vðc4ω − logðrÞÞ : ð31Þ

A particular wormhole model described by Eqs. (28)–(31)
is obtained for v ¼ 1, ω ¼ −0.95, c4 ¼ 1.01, and λ ¼ 4.1.
The behavior of the shape function bðrÞ and of 1 − bðrÞ=r
is depicted on the lhs of Fig. 5.
Moreover, the same Plots_EPS depict the behaviors of

the radial and lateral equation of state parameters, indicat-
ing that wormhole formation is possible provided the radial
equation of state parameter has a phantom nature. On the
other hand, and at the same time, the lateral equation of

state parameter should have a behavior leading to ωl > 0.
The throat of this particular wormhole occurs at r0 ¼ 1.2
and b0ðr0Þ ≈ 0.877. Furthermore, from the right plot in
Fig. 5, we see that only the NEC in terms of the radial
pressure Pr will be violated at the throat of the wormhole.
This implies also that the WEC in terms of Pr will be
violated at the throat, since there ρ > 0. We can confirm
also that the NEC and the WEC in terms of Pr will
eventually become valid for large values of r. We see also
that the DEC in terms of both pressures is valid at the throat
of the wormhole, too. Together with the plot of the shape
function bðrÞ we depict the behavior of the radial ωr ¼
Pr=ρ and lateral ωl ¼ Pl=ρ equation of state parameters, as
well. The behavior of ωr indicates that it has a phantom
nature and, thus, wormhole formation is possible provided
the lateral equation of state parameter satisfies ωl > 0.
To conclude this subsection, we would like to discuss

the impact of the parameter v on the energy conditions. In
particular, the graphical distribution of the validity regions
of the NEC and DEC, in terms of both pressures for
v ∈ ½0; 3.5�, is presented in Fig. 6. The top panel corre-
sponds to the behavior of the NEC in terms of the pressures
Pr and Pl. From the behavior of the NEC in terms of Pr
depicted on the lhs plot, we see that a local violation of the
same, for higher values of v parameter, is possible, while
the NEC in terms of Pl will still be valid. On the other hand,
from the bottom panel of the same figure we conclude that
the validity of the DEC in terms of both pressures will be
maintained. In other words, the parameter v can have a
nontrivial impact on the fulfillment of the NEC. We would
like to mention that the condition ρ ≥ 0 is valid even when
NEC is violated. The regions and appropriate values for the
NEC and DEC in terms of both pressures to be valid can be
estimated from the plots of Fig. 6.
In the next subsection we will consider a different

wormhole model, by assuming the following varying
barotropic equation of state Pr ¼ ω̂rkRðrÞηρ for the radial
pressure. Actually, the consideration of this specific form
for the radial pressure is the final result of the study started

FIG. 5. The graphical behavior of the shape function bðrÞ for the model given by Eq. (27) is presented on the lhs plot. We see from
there that the solution, Eq. (28), for bðrÞ satisfies 1 − bðrÞ=r > 0, for r > r0. The behaviors of ωr ¼ Pr=ρ and ωl ¼ Pl=ρ are given in
the same plot. The throat of the wormhole occurs for r0 ¼ 1.2, while v ¼ 1, ω ¼ −0.95, c4 ¼ 1.01, and λ ¼ 4.1. The rhs plot shows the
fulfillment of the energy conditions for the same case.
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with the assumption of a radial pressure of the generic type
Pr ¼ ω̂RðrÞηρ. Our study concludes that although we can
obtain exact solutions for the shape function, however, the
solutions will describe nontraversable wormhole models.
Anyway, it is well known that in such cases, in theory, we
could just glue an exterior flat geometry into the interior
geometry and solve the traversability problem. On the
other hand, the form for the radial pressure to be considered
in the next section will allow us to overcome this problem,
i.e., we will indeed obtain solutions describing traversable
wormholes.

B. Model with Pr = ω̂rkRðrÞηρ
Let us here consider another family of wormhole models,

derived from the assumption that

Pr ¼ ω̂rkRðrÞηρ; ð32Þ

where ω̂, k, and η are constant, while RðrÞ is the Ricci scalar.
To simplify the discussion, wewill consider particular values
for the k and η parameters. It is easy to see that, in case
of η ¼ −2 and k ¼ −5, one obtains an exact wormhole
solution, described by the following shape function:

bðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c5 −

rω̂
2

r
; ð33Þ

where c5 is an integration constant. Then, after some algebra,
we get

ρ ¼ −
ω̂

4ðλþ 4πÞr2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c5 − 2rω̂

p ; ð34Þ

Pr ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c5 − 2rω̂

p
4ðλþ 4πÞr3 ; ð35Þ

FIG. 6. The graphical behavior of the NEC in terms of both pressures for different values of v parameter is presented on the top panel.
The bottom panel depicts the behavior of the DEC in terms of the pressures Pr and Pl, for different values of v parameter. The shape
function bðrÞ for the model is given by Eq. (28). It clearly shows that the NEC in terms of Pr for small r and big values of v can be
violated, while the DEC in terms of both pressures and the NEC in terms of Pr remains valid. The regions where both energy conditions
are valid are also shown.
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and

Pl ¼
8c5 − rω̂

8ðλþ 4πÞr3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c5 − 2rω̂

p : ð36Þ

Now, let us consider

ρþ Pr ¼
rω̂ − 8c5

4ðλþ 4πÞr3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c5 − 2rω̂

p ; ð37Þ

ρþ Pl ¼
8c5 − 3rω̂

8ðλþ 4πÞr3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c5 − 2rω̂

p ; ð38Þ

ρ − Pr ¼
8c5 − 3rω̂

4ðλþ 4πÞr3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c5 − 2rω̂

p ; ð39Þ

and

ρ − Pl ¼
−8c5 − rω̂

8ðλþ 4πÞr3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c5 − 2rω̂

p ; ð40Þ

the explicit forms of the NEC and DEC in terms of the
pressures Pr and Pl, respectively. The graphical behavior of
the shape function bðrÞ, Eq. (33), and of 1 − bðrÞ=r, is
depicted on the lhs plot of Fig. 7, for ω̂ ¼ −1 and λ ¼ 10.
Moreover, the throat of this model occurs for r0 ¼ 1 and
b0ðr0Þ ¼ 0.25. This means that we have indeed obtained a
realistic exact wormhole model. At the end of this sub-
section we will also report the results from the study of the
energy conditions. In particular, from the graphical behav-
ior of the NEC, DEC, and ρ available on the rhs plot of
Fig. 7, we can claim that the NEC and WEC in terms of Pr
are not fulfilled at the throat of this wormhole. On the other
hand, the DEC in terms of Pl is also not fulfilled at the
throat. Similarly to the other three models above, the
validity of all energy conditions in terms of both pressures
will be observed for large values of r, that is, far from the
throat of the wormhole. We should also mention that the

NEC and the WEC in terms of Pl, with the DEC in terms
of Pr, are valid everywhere.

V. DISCUSSION AND CONCLUSIONS

Dark energy was introduced in order to address the issue
of the accelerated expansion of the Universe, a problem that
can be much alleviated if we consider modifications of GR.
Modified theories of gravity can very efficiently work
also for the dark matter problem. Basically, there are two
different ways to modify GR, namely we can either modify
the geometrical or the matter content of the action of this
theory. In the present paper we have considered a very
specific modification of GR known as a fðR; TÞ theory of
gravity, where T ¼ ρþ Pr þ 2Pl is the trace of the energy-
momentum tensor. We have studied the wormhole model
formation problem in the case of a rather specific form of
fðR; TÞ, for four different types of assumptions concerning
the description of the corresponding radial pressure. In
particular, we have considered the following modification:
fðR; TÞ ¼ Rþ 2λT, assuming that the radial pressure can
be described either by the equation of state of a varying
Chaplygin gas, or by the equation of state parameter of a
varying barotropic fluid.
In the first part of the paper, we have considered the

following two forms for the varying Chaplygin gas:
Pr ¼ −BbðrÞu=ρα and Pr ¼ −BRðrÞm=ρα, respectively.
In the second part, we have used the following two forms
for the varying barotropic fluid: Pr ¼ ωbðrÞvρ and
Pr ¼ ω̂rkRðrÞηρ, in order to describe the radial pressure
[in all cases bðrÞ is the shape function, while RðrÞ is the
Ricci scalar]. In all the cases considered, we have been able
to obtain exact wormhole solutions, definitely proving,
with the help of particular examples, that the shape function
fulfills all the corresponding constraints, as it should be.
Moreover, the study of the first wormhole model, given by
Pr ¼ −BbðrÞu=ρα for the radial pressure, has concluded
that the NEC (defined as ρþ Pr) in terms of Pr can be
violated at the throat of the wormhole. We have also seen
that it will be valid far from the throat. On the other hand,

FIG. 7. The graphical behavior of the shape function bðrÞ for the model given by Eq. (32) is presented on the lhs plot. The same
plot shows that the solution Eq. (33) for bðrÞ satisfies 1 − bðrÞ=r > 0, for r > r0. The throat of the wormhole occurs at r0 ¼ 1.0,
while k ¼ −5, η ¼ −2, λ ¼ 10, and ω̂ ¼ −1. The rhs plot corresponds to the energy conditions for the same case obtained from
Eqs. (37)–(40), respectively.
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the NEC in terms of Pl, and the DEC in terms of the two
pressures defined as ρ − Pr and ρ − Pl, respectively, are
always fulfilled. It should be mentioned that ρ ≥ 0 proves
that only the violation of the WEC in terms of the Pr
pressure will be observed at the throat of the wormhole, due
to the violation of the NEC in terms of Pr.
The study of ωr ¼ Pr=ρ has led to the conclusion that

we should expect wormhole formation provided the radial
equation of state parameter has a phantom behavior. From
the study of the second wormhole model with Pr ¼
−BRðrÞm=ρα, one can expect to find wormhole models
for which only the NEC in terms of the Pl and the DEC in
terms of the Pr pressures will be valid, at the throat of the
wormhole. On the other hand, the NEC in terms of Pr and
the DEC in terms of Pl are not valid at the throat. Far from
the throat all mentioned energy conditions are fulfilled.
A similar picture has been obtained from the study

presented in the second part of the paper for the models
described by varying barotropic fluids. Thus, in the case of
the wormhole model obtained for k ¼ −5 and η ¼ −2,
described by Pr ¼ ω̂rkRðrÞηρ, we can claim that the NEC
and the WEC in terms of Pr are not fulfilled at the throat of
the wormhole with r0 ¼ 1. On the other hand, the DEC in
terms of Pl is also not valid at the throat. Similarly to the
other models, the validity of all energy conditions in terms
of both pressures has been observed for large values of r,
i.e., far from the throat of the wormhole.
We would also like to mention that the NEC and the WEC

in terms of Pl, with the DEC in terms of Pr, are satisfied
everywhere. Finally, we should note that the study of a
particular wormhole model, given by Pr ¼ ωbðrÞvρ, pro-
vides the same qualitative behavior for the energy conditions
as in the case of the model obtained for Pr ¼ −BbðrÞu=ρα.
Moreover, for the models with Pr ¼ −BbðrÞu=ρα, and
Pr ¼ ωbðrÞvρ, we have studied the impact of the parameters
u and v on the energy conditions. We observed that, in both
cases, there are some regions, corresponding to small r,
where all the energy conditions are satisfied. On the other
hand, the violation of the NEC in terms of Pr will be
observed for relatively small values of r, while the other
energy conditions can still remain valid.
A general conclusion, drawn from the study carried out in

this paper, is that we can obtain exact wormhole models
when the radial equation of the equation of state parameter

has phantom nature. On the other hand, since the equation
of state of the wormhole is not well understood and
constrained, we can try to extract additional information
on the matter content using the behavior of the energy
conditions at the throat of the wormhole and also far from it.
The general feature of the models discussed here is the
violation of the NEC in terms of Pr at the throat of the
wormhole.
Moreover, the models could actually be distinguishable

in future cosmological observations, due to the violation,
for instance, of the DEC in terms of the Pl pressure at the
throat of the wormhole. The analysis presented in this paper
is just a first, pioneering step towards the construction of
more elaborated models of this type. As is obvious, in order
to obtain exact solutions, we have here restricted our
attention to a very simple form of the fðR; TÞ theory of
gravity. Therefore, one of the possible directions in future
investigations will be the consideration of other forms in
this class fðR; TÞ.
On the other hand, we expect to report, in future papers,

on wormhole models constructed using more exotic forms
of the varying Chaplygin gas. In the recent literature there
is another nonlinear equation of state, for what is termed a
van der Waals fluid, which has been used to describe dark
energy. Various studies point towards the conclusion that
this dark energy representation can work well. Therefore, it
seems reasonable to study wormhole formation with this
matter content, as well. We expect to report some results on
the studies of this direction soon. To finish, in all cases, the
stability analysis of the corresponding models should be
performed, too.
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