
 

Modified gravity versus shear viscosity:
Imprints on the scalar matter perturbations

C.M. S. Barbosa,1 H. Velten,1 J. C. Fabris,1,2 and Rudnei O. Ramos3
1Universidade Federal do Espírito Santo, Núcleo Cosmo-ufes & Departamento de Física,

Avenida Fernando Ferrari, Goiabeiras, 29075-910, Vitória, ES, Brazil
2National Research Nuclear University MEPhI, Kashirskoe Shosse 31, Moscow 115409, Russia

3Universidade do Estado do Rio de Janeiro, Departamento de Física Teórica,
20550-013 Rio de Janeiro, RJ, Brazil

(Received 16 July 2018; published 19 December 2018)

Cosmological scalar perturbation theory studied in the Newtonian gauge depends on two potentials Φ
and Ψ. In general relativity (GR), they must coincide (Φ ¼ Ψ) in the absence of anisotropic stresses
sourced by the energy-momentum tensor. On the other hand, it is widely accepted in the literature that
potential deviations from GR can be parametrized by Φ ≠ Ψ. The latter feature is therefore present in both
GR cosmologies equipped with shear viscous fluids or modified gravity. We study the evolution of scalar
matter density perturbations using the redshift-space-distortion-based fðzÞσ8ðzÞ data as a tool to
differentiate and characterize the imprints of both scenarios. We show that in the fðzÞσ8ðzÞ evolution
both scenarios yield to completely different imprints in comparison to the standard cosmology. While the
current available data are not sensitive to distinguish modified gravity from viscous shear cosmologies,
future precise data can be used to break this indistinguishability.
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I. INTRODUCTION

The several available cosmological observables power-
fully constrain the background expansion of the Universe
as the one dictated by the flat-ΛCDM model, i.e., a GR-
based description for gravity composed of baryonic plus
dark matter (Ωm0 ∼ 0.3) and a cosmological constant
Λ ðΩΛ ∼ 0.7Þ. However, the background expansion, which
can be characterized by the Hubble term evolution HΛ in
the ΛCDMmodel, can also be achieved in modified gravity
scenarios if suitable choices in their degrees of freedom are
made. Therefore, investigation of the perturbative cosmo-
logical sector is necessary as an additional tool such as to
increase our ability to distinguish GR from its possible
candidate extensions.
The recent detection of gravitational waves from

GW170817 [1] has set the bound on the gravitational wave
speed cgw compared to the light speed c as jc2gw=c2 − 1j <
5 × 10−15. This result severely reduces the available param-
eter space of generic Lorentz-breaking modifications of
gravity, as, e.g., some branches of the Horndeski (and
beyond-Horndeski) theory [2,3]. Hence, the radiative sector
of gravitational theories seems to be tightly close to GR, but
the potential sector could still have space to manifest some
differences from the standard gravity.
Using the Newtonian gauge for cosmological scalar

perturbations in an expanding, homogeneous, and isotropic
flat Universe, the line element reads

ds2 ¼ a2ðτÞ½−ð1þ 2ΦÞdτ2 þ ð1 − 2ΨÞδijdxidxj�; ð1:1Þ

where τ is the conformal time and Φ and Ψ are the metric
perturbations. It is quite usual in the literature to para-
metrize phenomenological departures from GR in terms of
a difference between the scalar potentials,Φ ≠ Ψ (see, e.g.,
Ref. [4] and references therein).
Apart from the perspective given above, the issue we

want to stress in this work is that Φ ≠ Ψ is also naturally
achieved in GR cosmologies if the energy-momentum
tensor Tμν of some of the energy components possesses
anisotropic stresses like, e.g., shear viscosity. Then, we are
left with the question: is the possible inference of Φ ≠ Ψ
from observational data actually indicating a manifestation
of modified gravity or would it be due to some nonconven-
tional aspect of the Universe’s energy content? In order to
investigate this question, we develop scalar perturbations in
two different cosmologies, namely, (i) GR gravity equipped
with a cosmological constant and viscous (shear) matter
and (ii) modified gravity theories via usual parametrizations
of the Poisson equation. Then, we compare the predictions
for the growth of matter perturbations via the redshift-
space-distortion-based fðzÞσ8ðzÞ measurements [5]. In
order to probe only the perturbative sector of these two
approaches, we will assume that both share the same
background expansion as the one given by the standard
flat-ΛCDM model. To some extent, similar strategies have
been employed in Refs. [4,6].
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Shear viscous effects in cosmology are in fact receiving
interest in the recent literature as a possible way of
understanding different physical phenomena that might
be in play both in the late Universe [7–10] and in the early
Universe [11,12]. This recent interest in shear viscous
effects shows that there are clear motivations for a deeper
study of their possible effects and relevance in cosmology,
which might eventually also provide relevant information
about the nature of the dark matter itself. In the present
work, our focus on the shear viscous effects is directly
connected to how they contribute at the perturbation level
and the issue of having Φ ≠ Ψ for the gravitational
perturbed potentials as a consequence of the presence of
a nonvanishing shear viscosity. Our main interest then is to
understand how this compares with the apparent similar
situation in the context of modified gravity models,
quantifying the possible differences in the two cases.
Among all possible viscous effects that could also affect

the cosmological expansion, bulk viscosity is also very
representative in the literature [13]. Here, we neglect this
effect in a first approximation since it does not lead to the
Φ ≠ Ψ contribution and this could also add an undesirable
degeneration in the proposed comparison between viscous
effects and modified gravity. Also, bulk viscosity modifies
the background expansion. This would place some diffi-
culties in the strategywewant to promote here since it would
be impossible to set the same background evolution for
both scenarios (viscous cosmology and modified gravity).
However, in spite of the degeneracy in introducing bulk
viscosity, kinetic pressure, and baryons effects, we estimate
their impact in our analysis in general lines. We reinforce
such aspects with the discussion presented in Sec. V.
This paper is organized as follows. In Sec. II we develop

the perturbation dynamics of the model with shear viscos-
ity. For this analysis, we take particular advantage of the
results obtained in Ref. [7], where we have placed an upper
bound on the magnitude of dark matter shear viscosity
allowed by the matter clustering observations. In Sec. III,
we develop the perturbed scalar equations for the case of
modified gravity and present the parametrizations that will
be used in this work. In Sec. IV, we give our analysis of the
quantitative comparison between the GR plus shear vis-
cosity case and contrast these results with the modified
gravity one by making use of the evolution of the fσ8
observable. Finally, in Sec. VI we give our conclusions.

II. DYNAMICS OF THE VISCOUS (SHEAR)
DARK MATTER MODEL

We start by focusing on the ΛCDM model and by
assuming that matter behaves as a viscous/dissipative
component possessing shear viscosity. This type of
approach has been used already a number of times in
the recent literature (see, e.g., Refs. [7,10]). The general
structure of this model is given by the field equations
derived from GR,

Rμν −
1

2
gμνR − Λgμν ¼ 8πGTμν; ð2:1Þ

where Tμν stands for the total energy-momentum tensor of
the viscous matter. This tensor possesses the dissipative
effect in the form of shear viscosity such that [14,15]

Tμν ¼ ρvuμuν − pvðgμν − uμuνÞ þ ΔTμν; ð2:2Þ

where the component ΔTμν is the viscous contribution to
the fluid in the form of shear viscosity,

ΔTμν ¼ η

�
uμ;ν þ uν;μ − uρ∇ρðuμuνÞ

−
2

3
ðgμν − uμuνÞ∇ρuρ

�
; ð2:3Þ

and η is the shear viscosity coefficient. Although the above
formulation represents a noncausal (Eckart) theory in
hydrodynamics [14] it seems enough for the phenomeno-
logical applications we have in mind in this work. The
coefficient of shear viscosity, being a transport coefficient,
is typically proportional to the particle-free mean path as in
any microscopic formulation of viscosity effects and it can
also depend on the density and temperature of the fluid.
This, however, implies knowledge of the microscopic
physics of the interactions between the dark matter par-
ticles. As we do not have in mind specific candidates for
dark matter particles, most of the time it is assumed for η
some simple functional form in terms of the fluid density,
like η ∝ ραv [7]. This functional form has the advantage of
allowing for a completely model independent analysis,
where we do not need to specify properties related to the
dark matter fluid inherent to its microscopic physics.
Alternatively, we can also see η ∝ ραv as a consequence
of appropriately choosing the dimensional scale as the fluid
density itself and where all microscopic dimensional
parameters are expressed in terms of this scale up to
appropriate dimensionless constants. In the present work
we will not be interested in these details and it will suffice
for our objectives of the comparison of the shear viscous
effects with those from modified gravity by simply adopt-
ing η to be a constant parameter. For simplicity, we will also
set the dark matter kinetic pressure to pv ¼ 0. This
guarantees a pressureless matter fluid at the background
level as in the standard cosmology. Indeed, shear viscosity
does not act at the background level.
As already mentioned in the introduction, our starting

point is based on setting the line element of a Friedmann-
Lemaître-Robertson-Walker (FLRW) expansion up to first
order in scalar perturbation according to Eq. (1.1). Hence,
from Eq. (2.1), the expansion rate here follows the usual
flat-ΛCDM model with

H2 ¼ H2
0½Ωv0ð1þ zÞ3 þ 1 − Ωv0�1=2; ð2:4Þ
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where today’s viscous matter density adopted is Ωv0 ¼
8πGρ=3H2

0 ¼ 0.3. In the above equation, the expansion
rate is written in the more familiar form asH ¼ _a=a, where
the symbol dot (_) represents the derivative with respect to
the cosmic time (t).
Our next step is to review the perturbed equations for

shear viscous cosmologies. We have developed it in great
detail in Ref. [7], so below we only give the relevant
expressions needed for the present study. Applying
Eq. (1.1) to the Einstein equations we obtain, e.g., the
(0,0)-component, in momentum space. It reads

−k2Ψ − 3HðΨ0 þHΦÞ ¼ 3

2
ΩvH2

0a
2Δv; ð2:5Þ

while the ð0; iÞ-component is given by

−k2ðΨ0 þHΦÞ ¼ 3

2
H2

0Ωvaθv; ð2:6Þ

where H ¼ a0
a , with the symbol “ 0 ” corresponding to a

derivative with respect to the conformal time (τ); k is the
(comoving) momentum; and Ωv ¼ Ωv0=a3. When writing
Eq. (2.5), we have also used the definition of the density
contrast, Δv ¼ δρv=ρv. From the (0, i)-component of the
Einstein’s equation (2.6), we obtain the definition for the
velocity potential θ ¼ ∂iδui. Finally, the evolution of
the perturbation potentials Ψ and Φ are encoded in the
i − j component of the Einstein equation and given ex-
plicitly by the expression

�
Ψ00 þHð2ΨþΦÞ0 þ ð2H0 þH2ÞΦþ 1

2
∇ðΦ −ΨÞ

�
δij

−
1

2
∂i∂jðΦ −ΨÞ ¼ 4πGa2δTi

j; ð2:7Þ

where the perturbed energy-momentum tensor is obtained
from Eq. (2.2), which gives

δTi
j ¼ −ηgikδlj

�
δuk;l þ δul;k −

2

3
a2δum;mδkl

�
; ð2:8Þ

and from the i ≠ j case of the above equation, we find that
Eq. (2.7) corresponds to

−
k2

2
ðΦ −ΨÞ ¼ 3H2

ρ
ηθ: ð2:9Þ

Equation (2.9) makes it clear that when η ≠ 0 we have that
Φ ≠ Ψ. This demonstrates a notable feature of the presence
of the shear viscosity (anisotropic stress); i.e., the
Newtonian potentials do not coincide. It is worth noting
that Φ ≠ Ψ is also seen in general in the literature as a
manifestation of modified gravity theories [16–19].

By combining the above relations (the interested reader
can also consult Ref. [7] for further details), we obtain

a2
d2Δv

da2
þ
�
3 −

3

2
Ωv

H2
0

H2
þ Aþ k2B

�
a
dΔv

da

−
3

2
Ωv

H2
0

H2
Δv ¼ 0; ð2:10Þ

where the factors A and B appearing in the above equation
are defined, respectively, as

A ¼ 2η̃

3Ω2
v

H
H0

; ð2:11Þ

B ¼ 4η̃

27a2ΩvHH0

; ð2:12Þ

where η̃ ¼ 24πGη=H0 is the dimensionless shear viscous
parameter. One can see explicitly that shear viscosity leads
to contributions to the Hubble friction term in the differ-
ential equation for the matter density contrast.
It is worth noting that the quantity Δv introduced above

corresponds to the density contrast of the total viscous
matter. The correspondent quantity in the ΛCDM model
(let us say Δm) is obtained with η̃ ¼ 0. In the latter model,
at linear order, the baryonic perturbations Δb follow the
evolution of the CDM ones ΔCDM. Consequently, large
scale structure observables like the growth rate used below
in this work are sensitive to Δm rather than either the
density contrast in the cold dark matter or the density
contrast of the baryonic matter or a combination of both.
Even if we promote a split of the total viscous matter
perturbation Δv into the “viscous” dark component (let us
say ΔvCDM) and the baryonic one, there is only a slight
difference between Δv and ΔvCDM as shown in [7].
Nevertheless, the above arguments hold only for the linear
regime. At the nonlinear regime baryons present much
more friction (and, consequently, viscosity) than CDM as
revealed by the Bullet cluster [20,21].

III. MODIFIED GRAVITY AT LINEAR
PERTURBATIVE LEVEL

In the previous section we have obtained the equations
for the case in which shear viscosity sets the magnitude of
the inequality Φ ≠ Ψ via Eq. (2.9). Let us now see in this
section how the effects of modified gravity can also be
parametrized by differences between Φ and Ψ. In particu-
lar, we want to explore the consequences of choosing the
usual parametrizations of modified gravity in which the slip
parameter, defined by the ratio Ψ=Φ, is used to quantify
deviations from GR. Then, we assume that the phenom-
enology for dealing with modifications of gravity at
cosmological scales merely sets the inequality
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Φ ≠ Ψ ðmodified gravityÞ: ð3:1Þ

Even when adopting modifications of gravity, we as-
sume that the theory is conservative and that the usual
conservation laws apply, i.e., ∇μTμν ¼ 0. Our approach
for dealing with scalar perturbations in a parametrized
modified gravity theory consists in combining the per-
turbed continuity equation for the density contrast Δ for
a pressureless fluid and in the modified gravity context,
given by

Δ0 þ aθ ¼ 0; ð3:2Þ

with the Euler equation

ðaθÞ0 þHaθ − k2Φ ¼ 0; ð3:3Þ

to obtain the result

Δ00 þHΔ0 þ k2Φ ¼ 0: ð3:4Þ

Therefore, Eq. (3.4) tell us that the matter clustering growth
(the observable we are interested in) depends only on the
potential Φ. However, on subhorizon scales we can also
write down the Poisson equation as

−k2Ψ ¼ 3

2
ΩmH2

0a
2Δ: ð3:5Þ

At this point, it is worth noting that the standard equation
for the evolution of Δ is obtained by assuming Φ ¼ Ψ and
combining the above two equations. It is exactly this step
that we want to avoid. Instead, we will adopt typical
parametrizations of Eq. (3.5) found in the literature to
explore the phenomenology of modified gravity. Some
possible choices for the functional parametrization that we
will use in our study are explained next.
Equations (3.4) and (3.5) involve three different func-

tions. Indeed, if anisotropic stresses are neglected in the
energy-momentum tensor, one obtains Φ ¼ Ψ and a
homogeneous second order differential equation for Δ is
obtained. Departures from the standard model, i.e., the
ΛCDM model, are usually parametrized in the literature by
Φ ≠ Ψ. Since we want to investigate small deviations from
GR, which are relevant for the structure formation process,
we will then follow an analogous strategy as used, e.g., in
Refs. [4,6] and set the background evolution to be the same
as in ΛCDM. As in Ref. [4], we adopt a Poisson type
equation for the potential Φ, such that

−k2Φ≡ 4πGa2μða; kÞρΔ; ð3:6Þ

where μða; kÞ, sometimes also denoted by the function
Yða; kÞ, incorporates to the relativistic Poisson equation
possible contributions from clustering dark energy.

Combining Eq. (3.4) with the parametrization Eq. (3.6)
and using the scale factor as the dynamical variabl,e we
obtain the following equation for the evolution of the matter
density contrast:

a2
d2Δ
da2

þ
�
3þ a

H
dH
da

�
dΔ
da

−
3

2
Ωm

H2
0

H2
μða; kÞΔ ¼ 0: ð3:7Þ

The function μða; kÞ can in principle depend on time (here
given in terms of the scale factor a dependence) and the
scale (via the wave number mode k).
By comparing Eq. (2.10) with Eq. (3.7), one realizes one

important difference between the shear viscous scenario
and modified gravity. Shear viscosity acts by damping the
Hubble friction term in Eq. (2.10). This conclusion is in
agreement with the recent study performed in Ref. [22],
which also shows how shear viscosity damps the growth of
structures. It is worth noting that such damping is not
present in modified gravity scenarios. In fact, e.g., in fðRÞ-
type models for modified gravity, the resulting effect is
rather usually associated with the boosting of the agglom-
eration rate [23] and of the matter power spectrum [24].
According to Ref. [4], one possible way to employ the

parametrization in the form as given in Eq. (3.6) occurs by
choosing the function μða; kÞ as

μða; kÞ ¼ 1þ fðaÞ 1þ cðλH=kÞ2
1þ ðλH=kÞ2 ; ð3:8Þ

where c and λ are constant parameters. For the sake of
simplicity and without loss of generality we will fix λ ¼ 1.
At small scales (large k), μ → 1þ fðaÞ, while for large
scales (small k), μ → 1þ fðaÞc. Then, in practice the scale
dependence plays no decisive role for the astrophysical
applications that we have in mind. Thus, we proceed now
by adopting the following simpler structure,

μ1ðaÞ ¼ 1þ E1

H2
0

H2
; ð3:9Þ

where E1 is a constant parameter, with the parameter c
absorbed in the definition of E1. Equation (3.9) will be the
first parametrization form that we will use. For complete-
ness, we will also use two more and that will be de-
fined below.
The range of values of the parameters presented in

Eq. (3.8) depends on the modified gravity theory. For
instance, in the case of the fðRÞ theories, with a chameleon
mechanism, the coefficients are positive, implying that the
gravitational coupling is enhanced compared with the GR
case [23,24]. An enhanced gravitational coupling leads to a
stronger matter agglomeration. Even if this property of
modified gravity theories must be verified case by case, it
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remains a quite general feature, at least to our knowledge.
For this reason, we will also consider E1 as a positive
quantity. Hence, it is already possible, at this level, to
predict that modified gravity acts on matter agglomeration
in the opposite sense compared to shear viscosity: while the
shear viscosity suppresses the matter agglomeration, modi-
fied gravity acts mainly in the sense of enhancing the
formation of structures.
Besides the parametrization given by Eq. (3.9), we will

also make use of two more that are conventionally
considered in the literature. More specifically, we also
consider the parametrization according to the proposal of
Ref. [25] and define

μ2ðaÞ ¼ 1þ
�
E2e

− k
kc − 1

�
; ð3:10Þ

where the scale k ¼ 0.1h Mpc−1 has been fixed. Indeed, it
is a subhorizon mode and still linear at a0. The free constant
parameters are E2 and kc. The GR limit occurs for E2 ¼ 1
and kc → ∞.
Finally, we also consider the parametrization proposed in

Ref. [16] and studied recently by the authors of Ref. [26],
given by

μ3ðaÞ ¼ 1þ E3

2½1þ 2ΩmðaÞ2�
3½1þΩmðaÞ2�

; ð3:11Þ

which is inspired within the Dvali-Gabadadze-Porrati
model gravity scenario [27].

IV. RESULTS

For the three forms of parameterizations, given by
Eqs. (3.9)–(3.11), respectively, we apply them to
Eq. (3.7). The resulting equation for each case can then
be solved numerically for the density contrast Δ. Having
also the result for the density contrast from the shear
viscous case and obtained from Eq. (2.10), we can calculate
the growth function fðzÞ for all these different cases. The
growth function fðzÞ is defined as

fðzÞ≡ d ln ΔðaÞ
Δða0Þ

d ln a
¼ −ð1þ zÞ

d ln ΔðzÞ
Δðz0Þ
dz

; ð4:1Þ

with z ¼ 1=a − 1, and

σ8ðzÞ ¼ σ8ðz0Þ
ΔðzÞ
Δðz0Þ

ð4:2Þ

is the redshift-dependent root-mean-squaremass fluctuation
in spheres with radius 8h−1 Mpc. Today’s scale factor is set
to unity, a0 ¼ 1, and thus, z0 ¼ 0. Today’s value adopted
here for the variance of the density field at z0 is σ8ðz0Þ ¼ 0.8,
which is consistent with current observations.
Let us consider the results obtained by using the first

parametrization given by Eq. (3.9). In Fig. 1(a) we show the
fσ8 observable as a function of the redshift. The light-red

area corresponds to the shear viscous model. This region is
set by using our previous results from Ref. [7] and
corresponds to the range of the viscosity parameter 0 ≤ η̃ ≤
2.593 × 10−6 at 2σ of the statistical confidence level
obtained in that reference. Here, for convenience, we recall
that we have defined the dimensionless viscous parameter
η̃ ¼ 24πGη=H0 and η is assumed to be a constant value, as
we have already explained in Sec. II. The viscous shear
model equals the ΛCDM (black line) curve for the case
of vanishing viscosity, η̃ ¼ 0. Theviscosity parameter, being
physically a transport coefficient, should assume only
positive values. Thus, its effect acts to smooth the matter

FIG. 1. The fσ8 observable as a function of the redshift. (a) For
the shear viscous model, the light-red area corresponds to the
range of the viscous parameter 0 ≤ η̃0 ≤ 2.593 × 10−6. The green
region shows the behavior of the modified gravity model with the
μ1 parametrization with the range 0 ≤ E1 ≤ 0.225. (b) Plot of the
difference between the top green line and bottom red line from
(a). At z ¼ 0.54 we have the largest difference between shear and
the modified gravity model (detail shown in the inset).
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clustering in comparison to the standard cosmology, which
corresponds to the region below the black line. The value
η̃ ¼ 2.593 × 10−6 is the maximum viscosity allowed by the
available 21 data points shown in this figure at a 2σ statistical
confidence level (see Ref. [7] for details). The shear model
with η̃ ¼ 2.593 × 10−6 is the lowest light-red line plotted in
Fig. 1(a). The green area corresponds to modified gravity
models based on μ1 and defined in Eq. (3.9). Sincewe expect
the values for μ1 to be such that they increase the intensity of
gravity [4], then μ1 only assumes positive values. The
consequence of this imposition can be seen in Fig. 1(a).

The green lines always stay above theΛCDM line, while the
red lines, corresponding to the shear viscosity effect, always
stay below the ΛCDM line.
It is worth noting that both models share the same

asymptotic behavior for high redshifts. In particular, the
value E1 ¼ 0 corresponds to the ΛCDM model. Having the
bound on η̃0 given above in mind, we have plotted the green
region in Fig. 1(a) according to the following criteria: we limit
the maximum fσ8ða ¼ 1Þ given by the modified gravity
model to yield the same departure in magnitude from the
ΛCDMmodel, but in the opposite direction, in comparison to

FIG. 2. The fσ8 observable as a function of the redshift. (a) For
the shear viscous model, the red lines correspond to the range of
the viscous parameter 0 ≤ η̃0 ≤ 2.593 × 10−6. The green lines
show the behavior of modified gravity models with the μ2
parametrization. Different values are given for the E2 parameter:
1.1 ≤ E2 ≤ 1.23 and 1 ≤ kc ≤ 1.1. (b) Plot of the difference
between the top green line and bottom red line, from (a). At
z ¼ 0.58 we have the biggest difference between shear and the
modified gravity model (detail shown in the inset).

FIG. 3. The fσ8 observable as a function of the redshift. (a) For
the shear viscous model, the blue lines correspond to the range of
the viscous parameter 0 ≤ η̃0 ≤ 2.593 × 10−6. Green lines show
the behavior of modified gravity models with the μ3 paramet-
rization. Different values are given for the E3 parameter:
0 ≤ E3 ≤ 0.13. (b) Plot of the difference between the top green
line and bottom red line, from (a). At z ¼ 0.59 we have the
biggest difference between the shear and modified gravity model
(details are shown in the inset).
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the shear model. Then, if both effects are combined, they
approximately compensate for the effect of each other both
today and in the asymptotic past at high redshifts. The
combination of both effects is seen in Fig. 1(b). Although
very tiny, the region around z ¼ 0.54 is where one finds the
largest difference between both effects (inset plot).
In Fig. 2 we present the results obtained by using the

second parametrization for the modified gravity effects and
given by Eq. (3.10). The color scheme follows the same as
the one used in Fig. 1. We notice from Fig. 2(a) that now the
modified gravity results spread at a uniform distance above
the ΛCDM result for a given value of the constant E2. In
particular, at low redshifts we again observe a compensation
of the modified gravity effect by the shear viscous (or vice
versa), as is apparent from Fig. 2(b), where we plot the
difference between the maximum differences for each case
with respect to the ΛCDM result. However, at high redshifts
the difference starts to get more and more appreciable.
Finally, in Fig. 3 we present the results obtained when

considering the parametrization given by Eq. (3.11). Once
again, the color scheme used in Fig. 3(a) follows the same
as the one already used in the previous two figures. The
trend observed is similar to the one obtained from the
parametrization given by Eq. (3.10), where we have a
tendency of shear viscous effects masking the modified
gravity one and vice versa at low redshifts, but the differ-
ence increases more appreciably at high redshifts, as seen in
Fig. 3(b).

V. ON THE EFFECTS OF BARYONS, BULK
VISCOSITY, AND OTHER POSSIBLE

CONTRIBUTIONS

We have analyzed so far the direct relation between shear
viscosity and the slip parameter via the effects on the
growth of matter scalar perturbations. This means we have
ignored other possible hydrodynamical effects like the
presence of a kinetic pressure and bulk viscosity and also
the inclusion of a separated baryonic component. Now, our
aim in this section is to include such effects in our
discussion in order to set a rough estimation on the validity
of our approach and show how they also impact the matter
clustering. This analysis shows therefore other degeneracy
sources.
Since we have used shear viscosity in this work, it is

important to mention other dissipative properties. For
example, bulk viscosity yields to an additional pressure
at the background level. In a FLRW background, with
expansion scalar 3H, the bulk viscous pressure becomes
Π ¼ −3Hξ, where ξ is the coefficient of bulk viscosity.
Then, the total pressure of the fluid becomes P ¼ Pk þ Π,
where Pk is the kinetic pressure. The effective equation of
state parameter can be written as

w ¼ P=ρ ¼ wk − ξ̃=3; ð5:1Þ

where we have defined the dimensionless bulk viscous
parameter ξ̃ ¼ 24πGξ=H0 and the kinetic pressure equa-
tion of state parameter wk ¼ Pk=ρ. As shown in Ref. [7],
the bulk and shear viscosities impact the growth of
structures at the same level. Indeed, this happens only
due to the perturbative dynamics features since values of
order ξ̃≲ 10−5 would not affect the background scaling of
the matter component. In practice, for such values of the
bulk viscous parameter there is no impact at the back-
ground level. Therefore, if the analysis performed in this
work had also taken bulk viscosity into account, the matter
clustering would be even more suppressed. Since the slip
parameter is only related to the shear viscosity, this means
that in case both shear and bulk viscosities operate the
bound on the slip parameter established before would be
affected by a factor ∼2. In order to demonstrate these
results, we present Fig. 4 from Ref. [7]. In the first panel of
Fig. 4, we have only the effect of the shear viscosity, but no
bulk viscosity. This is the same situation as previously
shown in this work. In the second panel we show only the
effect of the bulk viscosity.
Now, concerning the possible impact of an extra bar-

yonic component we also take advantage here of the
discussion previously presented in Ref. [7]. It turns out
that an extra baryonic fluid would contribute with an energy
density ρb. Its corresponding perturbationΔb would act as a

FIG. 4. The linear growth against the fσ8 data as a function of
the redshift in the absence and presence of the viscosities.
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source term for the right-hand side of Eq. (2.5). Also, there
exist in this case separated conservation equations for the
baryonic perturbations similar to Eqs. (3.2) and (3.3).
Let us now present equations in which we can compute

both the evolution (obtained already in [7]) of the pertur-
bations of the viscous dark matter fluid (possessing both
bulk and shear viscosities) and the perturbations of bary-
ons. They are written according to

a2
d2Δb

da2
þ
�
3 −

3

2

H2
0

H2

�
Ωvð1þ ωvÞ þ

Ωb0

a3

��
a

−
dΔb

da
−
3

2

H2
0

H2

Ωb0

a3
Δb

¼
�
3

2

H2
0

H2
Ωv þ

2η̃a
3H0Ωvð1þ 2ωvÞ

×

�
3Hωv

a
þH2

H2
0

ξ̃ν

Ωv

�
Ωv

Ωv0

�
ν
��

Δv

−
2η̃Ha

3H0Ωvð1þ 2ωÞ
dΔv

da
; ð5:2Þ

where ξ ¼ ξ0ðΩv=Ωv0Þν and η ¼ η0ðΩv=Ωv0Þλ.
The viscous fluid density perturbation equation is also

modified when including baryons and it now becomes

a2
d2Δv

da2
þ
�
3 −

3

2
Ωv

H2
0

H2
−
3

2

Ωb0

a3
H2

0

H2
þ Āþ k2B

�
a
dΔv

da

þ ðC̄þ k2DÞΔv ¼
3

2

H2
0

H2

Ωb0

a3
ð1þ 2ωvÞ
ð1þ ωvÞ

Δb; ð5:3Þ

with Δv ≡ δρv=ðρv þ ρbÞ and where the factors Ā, B, C̄,
and D are defined, respectively, as

Ā ¼ Aþ 3ωv

2ð1þ 2ωvÞð1þ ωvÞ
Ωb0

a3
H2

0

H2
; ð5:4Þ

B ¼ −
wvð1þ 4

3
RÞ

3H2a2ð1þ wvÞ
; ð5:5Þ

C̄ ¼ Cþ 9ωvð2þ 6ωv þ 5ω2
vÞ

2ð1þ 2ωvÞð1þ ωvÞ
Ωb0

a3
H2

0

H2
; ð5:6Þ

and

D ¼ w2
vð1þ 4

3
RÞ

H2a2ð1þ wvÞ
ð1 − νÞ þ νωvð1þ 2wvÞ

1þ wv

�
Ωv

Ωv0

�
ν

:

ð5:7Þ

The functions A and B have been defined in [7].
In the above equations we have also introduced

the quantity R≡ η̃=ξ̃, i.e., the ratio between the (dimen-
sionless) shear and bulk viscosities which can also be
explicitly written as

R ¼ η̃0
ξ̃0

�
Ωv

Ωv0

�
λ−ν

: ð5:8Þ

We now have a two-fluid system described by the
coupled equations (5.2) and (5.3) and where the baryon
density contrast enters as a source term in the dark matter
viscous equation.
It is worth noting that a cosmological observable like fσ8

takes into account the total matter. This is the case of the
standard model in which concerning the linear perturba-
tions both dark matter and baryons are treated as a single
matter fluid. There is no distinction between them. Back to
the possibility of a separated baryonic fluid, let us define
then an effective density contrast

Δeff ¼
ΩvΔv þΩbΔb

Ωv þ Ωb
; ð5:9Þ

which would be used rather than Δ.
In Fig. 5 we show the evolution of the density contrast

considering that both bulk and shear viscosities are present
in the cosmic matter with dimensionless viscous parameters
ξ̃ ¼ 10−5 and η̃ ¼ 10−5 (i.e., R ¼ 1). The dashed-dotted
line corresponds to the case in which the entire matter is
viscous (i.e., Δb ¼ 0). The solid line corresponds to the
case where baryons are accounted for, following Eq. (5.9).
In both cases we notice that the influence of the background
expansion is equivalent. This occurs (as already mentioned)
because viscosity values of order ξ̃ ∼ 10−5 do not lead to a
relevant deviation from the standard pressureless dark
matter background scaling ρ ∼ a−3. Nevertheless, we note
that in the absence of standard pressureless baryons the
growth suppression in Δeff is not relevant. Therefore, we
can conclude that the inclusion of baryons tends to lead to
slightly different upper bounds on the dark matter viscosity.
If the impact of baryons in the total matter clustering is

FIG. 5. The impact of baryons on the effective density contrast
(5.9) as a function of the scale factor.

BARBOSA, VELTEN, FABRIS, and RAMOS PHYS. REV. D 98, 123522 (2018)

123522-8



subdominant we can also conclude that any property
assigned to the baryonic sector, e.g., viscosities or pressure,
should not change the main conclusion of this work which
has been based mainly on qualitative grounds.
It is also worth mentioning that the matter fluid could

possess a tiny kinetic pressure. Indeed, the structure
formation analysis constrains severely the magnitude of
the parameter wk [28]. The equations of the evolution of the
matter contrast in this case are slightly different from
Eqs. (5.2) and (5.3) and are widely known in the literature
[28]. For example, Fig. 6 shows the impact of values
wk ¼ �10−7. From the results shown in Fig. 6, we notice
that the kinetic pressure leads to a uniform redshift
independent displacement in the fðzÞσ8ðzÞ evolution.
This effect should be contrasted with the one produced,
e.g., by the shear viscosity shown in Fig. 3(a), which acts in
a more pronounced way at low redshifts. Thus, the effect of
the kinetic pressure can, in principle, be distinguished from
that of the shear viscosity as more accurate cosmological
data become available in the future.

VI. CONCLUSIONS

We have studied in the present work the potential
differences in the Newtonian scalar potentials Ψ and Φ
as resulting both from a possible deviation from the GR

description for gravity and also by considering that the
anisotropic stresses in the energy-momentum tensor yield
to Ψ ≠ Φ. The latter effect is due to a shear viscosity that
dark matter might be endowed with in the GR context. For
this study, we have employed three different forms of
parametrizing the modified gravity effects through the
modification of the Poisson equation for the scalar potential
Φ. This is a strategy commonly used in the literature to
account for the possible modifications to GR generated by
different physical scenarios. We have then contrasted these
modifications from modified gravity with those from the
shear viscous effects when added to GR. To gauge these
modifications in the context of the ΛCDM model, we have
made use of the redshift-space-distortion-based fðzÞσ8ðzÞ
data, which give a convenient probe of these different
effects at the level of the perturbations.
Our results show that, in general, modified gravity and

shear viscosity have opposing effects on the fðzÞσ8ðzÞ
predicted by the ΛCDM model. While modified gravity
tends to enhance the gravitational coupling compared to the
GR, thus leading to a stronger matter agglomeration and a
larger fσ8 compared to ΛCDM, the shear viscosity con-
tribution to GR acts oppositely. This, thus, leads to an
interesting possibility of the shear viscosity effects in GR
masking those effects from modified gravity. We have seen
that this tends to happen mostly effectively at low redshifts
in all three cases of parametrizations of modified gravity
that we have considered. This compensation effect is,
however, less effective at high redshifts. This points out
then a possible best way to differentiate these effects in
future astrophysical searches and probes using high redshift
data. In this case, very accurate data on the matter
clustering via the fðzÞσ8ðzÞ measurements might then be
able to distinguish the effects studied here.
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