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In this paper, we discuss the constraints on the reheating temperature supposing an early postreheating
cosmological phase dominated by one or more simple scalar fields produced from inflaton decay and
decoupled from matter and radiation. In addition, we explore the combined effects of the reheating and
nonstandard scalar field phases on the inflationary number of e-foldings.
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I. INTRODUCTION

Before the hot big bang (HBB) epoch, our Universe
likely experienced an early quantum gravity phase (at the
so-called Planck scale) in which gravitational, strong, weak
and electromagnetic interactions were unified in a single
fundamental force [1]. Due to expansion and cooling, at
lower (GUT) scales the gravitational interaction decoupled
and the Universe entered an hypothetical phase where
matter and radiation can be described in terms of a Grand-
Unified gauge theory [2]. According to the inflationary
paradigm, at a scale Minf (<1016 GeV), after the sponta-
neous symmetry breaking to SUð3Þ × SUð2Þ ×Uð1Þ (the
gauge group of the Standard Model of particle physics),
cosmological inflation is supposed to have taken place, in
order to make the Universe almost flat, isotropic and
homogeneous on large astronomical scales [3]. In the
simplest version, the inflationary mechanism was driven
by a scalar field, called inflaton, minimally coupled to
gravity and probing an almost flat region (a false vacuum)
of the corresponding effective scalar potential. At the end of
inflation, where the potential steepens, the inflaton field
falls in the global minimum of the potential, oscillates,
decays, and “reheats” the Universe (see [4] for detailed
studies on the mechanism and [5] for general constraints),
giving rise to the standard HBB evolution characterized by
an initial radiation dominated phase. However, this last step
is not necessarily the unique possible scenario. Indeed,
there is of course room for a peculiar evolution in the
history of the Universe immediately after the reheating. In
particular, the expansion of the Universe could have been
submitted to additional phases where, for instance, it was
driven by one (or more) new simple scalar species, before
the radiation-dominated era and, especially, well before the
big bang nucleosynthesis (BBN). Additional scalar fields,
not necessarily directly interacting with the standard model

degrees of freedom (d.o.f.), are quite common in super-
string theory with branes. They typically parametrize the
brane positions along directions internal to the extra
dimensions transverse to the branes. Since their energy
density exhibits a modified dilution law, they can give rise
to a nonstandard postreheating phase. Scenarios of this
type have been recently introduced to study modification
on relic abundances and decay rates of dark matter [6,7],
as well as enhancements in the inflationary number of
e-foldings [8,9]. In this paper, we consider nonstandard
cosmologies inspired by string theory orientifold models
[10] with, generically, multiple sterile scalar fields entering
a nonstandard postreheating phase and we analyze in
details the constraints put on the reheating temperature
by the additional fields. As a consequence, we can derive
more stringent model independent predictions about the
number of e-folds during inflation. The paper is organized
as follows. In Sec. II, we derive general expressions for the
energy density in the case of nonstandard postreheating
cosmological evolution, given by one or more scalar fields.
In Sec. III, we discuss how the features of the new species
affect the reheating scale. In particular, we derive an upper
limit to the reheating temperature. In Sec. IV, we study the
relation between reheating and postinflationary scalar fields
and we calculate the inflationary number of e-foldings,
also constrained by the maximum reheating temperature.
In Sec. V, we add our conclusions and some discussions.
In the Appendices, we show numerical examples of the
consequences of the variation in the number of e-foldings
on the inflationary predictions of ns and r, for various
selected inflaton potentials. In this manuscript, we use the
particle natural units c ¼ ℏ ¼ 1, unless otherwise stated.

II. POSTINFLATIONARY SCALAR FIELDS
AND COSMOLOGY

The cosmological history of the early Universe immedi-
ately after the reheating should be characterized by a*alessandro.di.marco@roma2.infn.it
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radiation dominated era. In that phase, the corresponding
evolution is well described by

H2ðTÞ ≃ 1

3M2
Pl

ρradðTÞ; ρradðTÞ ¼
π2

30
gEðTÞT4; ð1Þ

whereH denotes the Hubble rate,MPl is the reduced Planck
mass, ρrad is the radiation energy density and T indicates the
temperature scale of the universe at a given (radiation-
dominated) epoch. Finally, gE is the effective number of
relativistic d.o.f. turning out to be

gEðTÞ ¼
X
b

gb

�
Tb

T

�
4

þ 7

8

X
f

gf

�
Tf

T

�
4

; ð2Þ

where b and f label contributions from bosonic and
fermionic d.o.f., respectively, and Tb and Tf indicate the
corresponding temperatures. In this section, we would like
to analyze a modification of the evolution of the early
Universe after the reheating phase, realized through the
presence of a set of scalar fields ϕiði ¼ 1;…; kÞ. They are
assumed to dominate at different time scales until radiation
becomes the most relevant component, well before the
BBN era [6]. The last assumption is crucial in order to not
spoil the theoretical successes related to the prediction of
light element abundances (see [7]). Therefore, the total
energy density after the inflaton decay can be assumed to be

ρðTÞ ¼ ρradðTÞ þ
Xk
i¼1

ρϕi
ðTÞ: ð3Þ

We introduce the scalar fields in such a way that, for i > j,
ρϕi

hierarchically dominates at higher temperatures over
ρϕj

when the temperature decreases. All the scalar fields
that are supposed to be completely decoupled from each
other and from matter and radiation fields can be described
as perfect fluids diluting faster than radiation. In this
respect, the dynamics is encoded in

_ρϕi
þ 3Hρϕi

ð1þ wiÞ ¼ 0; ð4Þ
where wi ¼ wϕi

is the equation of state (EoS) parameter of
the field i. Integrating this equation, one finds

ρϕi
ðTÞ ¼ ρϕi

ðTiÞ
�
aðTiÞ
aðTÞ

�
4þni

; ni ¼ 3wi − 1; ð5Þ

where the index ni, the “dilution” coefficient, is understood
to satisfy the conditions

ni > 0; ni < niþ1: ð6Þ
Ti can be conveniently identified with the transition
temperature at which the contribution of the energy density
of ϕi becomes subdominant with respect to the one of ϕi−1.
In other words, the scalar fields are such that

ρϕi
> ρϕi−1

for T > Ti ð7Þ

ρϕi
¼ ρϕi−1

for T ¼ Ti ð8Þ

ρϕi
< ρϕi−1

for T < Ti: ð9Þ

Using the conservation of the “comoving” entropy density,

gSðTÞa3ðTÞT3 ¼ gSðTiÞa3ðTiÞT3
i ; ð10Þ

with gS defined by

gSðTÞ ¼
X
b

gb

�
Tb

T

�
3

þ 7

8

X
f

gf

�
Tf

T

�
3

; ð11Þ

the effective number of relativistic d.o.f. associated with
entropy, the energy density of the various fields at a
temperature T can be expressed in terms of the transition
temperatures Ti [6,9]

ρϕi
ðTÞ ¼ ρϕi

ðTiÞ
�
gSðTÞ
gSðTiÞ

�4þni
3

�
T
Ti

�
4þni

: ð12Þ

For the first scalar field ϕ1, by definition, the transition
temperature is such that its energy density is identical to the
one of the radiation fluid, so that

ρϕ1
ðT1Þ ¼ ρradðT1Þ ¼

π2

30
gEðT1ÞT4

1: ð13Þ

The second scalar field ϕ2 is subdominant compared to ϕ1

below the temperature T2. Using Eq. (12) and observing
that T2 is the transition temperature at which ρϕ2

ðT2Þ ¼
ρϕ1

ðT2Þ, one gets

ρϕ2
ðTÞ ¼ ρϕ1

ðT1Þ
�
T2g

1=3
S ðT2Þ

T1g
1=3
S ðT1Þ

�4þn1� Tg1=3S ðTÞ
T2g

1=3
S ðT2Þ

�4þn2

ð14Þ
This equation tells us that the energy density of the scalar
field ϕ2 depends on the ratio between the two scales T1 and
T2, where the ϕ1-dominance occurs. In the same way, we
can derive the analogous expression for the other scalar
fields ϕi. The general expression for the energy density
carried by ϕi turns out to be

ρϕi
ðTÞ¼ρϕ1

ðT1Þ
Yi−1
j¼1

�
Tjþ1g

1=3
S ðTjþ1Þ

Tjg
1=3
S ðTjÞ

�4þnj

×

�
Tg1=3S ðTÞ
Tig

1=3
S ðTiÞ

�4þni

; i≥2: ð15Þ

Inserted in Eq. (3), the previous expressions provide
the total energy density dominating the expansion of the
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Universe after the standard reheating phase, up to the
beginning of the radiation-dominated epoch. In particular,
the Hubble rate acquires the compact form

H2ðTÞ ≃ 1

3M2
Pl

ρϕ1
ðT1Þ

Xk
i¼1

fiðni; T; T1;…; TiÞ; ð16Þ

where fi can be extracted by the previous equations.

III. NATURE OF THE SCALAR FIELDS
AND REHEATING TEMPERATURE

In the previous section, we have discussed a modified
postreheating scenario, where several component species in
the form of noninteracting (decoupled) scalar fields, are
added to the relativistic plasma. Even if we do not specify
their nature, it should be underlined that these kind of
components are quite common both in scalar modifications
of general relativity and in theories with extra dimensions.
In particular, in orientifold superstring models compactified
to four dimensions and equipped with D-branes, the
presence of additional scalars is an almost ubiquitous
phenomenon [10]. Indeed, the D-brane action is the sum
of a DBI term and a Wess-Zumino term, generalizations of
the familiar mass and charge terms of a particle action. The
dynamical fluctuations of the D-branes in the transverse
directions correspond to d.o.f. that are described by scalar
fields. Their coupling to the four-dimensional metric is
induced on D-branes by the embedding inside the ten-
dimensional space-time, and gives rise typically to a warp
factor depending on the internal coordinates and to addi-
tional couplings entering the DBI action (disformal terms,
see [9] and references therein). The most important point,
however, is that these scalar fields always interact with the
inflaton, that can thus decay into them and the remaining
components of the standard reheating fluid after inflation.
In this paper, we neglect the interactions of the scalar fields
with matter longitudinal to the D-branes. From Eq. (15), we
can easily argue that ρðTÞ increases with temperature,
reaching the maximum value at T ¼ Treh. For instance, in
the case of a single additional scalar field ϕ1, with a
transition-to-radiation temperature T1, one has

ρϕ1
ðTÞ ¼ ρϕ1

ðT1Þ
�
gSðTÞ
gSðT1Þ

�4þn1
3

�
T
T1

�
4þn1

: ð17Þ

It is clear that there must be an upper bound to this energy
density for T ¼ Treh. At this stage, whatever the nature of
ϕ1, the energy density cannot assume arbitrary values, since
it is at least limited by the presence of the Planck scale,MPl.
In other words, we have to introduce a maximum scale M
(with M ≤ MPl) such that

ρϕ1
ðTrehÞ ≤ M4; ð18Þ

corresponding to an upper limit to the production scale of
ϕ1. As a consequence, it turns out also to be an upper limit
to the reheating temperature, once we set the scaleM. Since
T1 is the transition-to-radiation temperature, i.e.,

ρϕ1
ðT1Þ ¼ ρradðT1Þ; ð19Þ

using

gEðTÞ ∼ gSðTÞ ∼ 100 for T > TQCD; ð20Þ

(where TQCD > 150 MeV is the QCD phase transition
scale), the reheating temperature must satisfy the condition

Treh ≤ α1M

�
T1

M

� n1
4þn1 ; α1 ¼

�
30

π2gE

� 1
4þn1 ; ð21Þ

with a resulting upper limit

Tmax
reh ¼ α1M

�
T1

M

� n1
4þn1 : ð22Þ

In general, the scaleM could be the Planck scaleMPl but
also, for instance, theGUT scaleMGUT or a lower scale of the
order of the string scale, Ms, that is unconstrained in
orientifolds [10,11]. In particular, if the field ϕ1 is supposed
to be produced by the inflaton decay or during the reheating
phase, we can also assume M ¼ Minf , where Minf is the
inflationary scale. It is interesting to analyze how the upper
limit on Treh varies with the scale M. In Fig. 1, we plot the
behavior ofTmax

reh as a function of themodel parametern ¼ n1
for given values of the scale M. The transition-to-radiation
temperature is chosen to be T1 ∼ 104 GeV. As expected, the
maximum reheating temperature is larger for larger values of
M, while it decreaseswith themodel parameter n. The region
below each curve representing Tmax

reh ðnÞ describes the

FIG. 1. The maximum reheating temperature Tmax
reh as a function

of the parameter n for T1 ¼ 104 GeV. The maximum reheating
temperature becomes larger as M increases, while it decreases
with n.
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possible reheating temperatures compatible with the chosen
bound M. For example, for n ¼ 2 and M ¼ MPl, we might
have Treh ≤ 1013 GeV, while for M ¼ Minf we might only
haveTreh ≤ 1011 GeV. Forn ¼ 4, a reheating temperature of
the order of 109 GeV is compatible with M ¼ Minf and
a fortiori with Planckian or GUT bounds. In Fig. 2, we fix
the scale M to the inflationary scale (∼1015 GeV) and
plot the behavior of Tmax

reh ðnÞ for different values of the
transition-to-radiation temperature. It happens that Tmax

reh ðnÞ
becomes smaller and smaller, for a fixed n, as the transition
temperature decreases. For example, with n ¼ 2 and
T1 ∼ 107 GeV, we get Treh ≤ 1012 GeV, while with n ¼ 4

Treh ≤ 1011. We postpone the discussion of the case with
more scalar fields to Sec. V.

IV. INFLATIONARY e-FOLDINGS, REHEATING
AND PRE-BBN SCALAR FIELDS

In the case of standard postreheating radiation dominated
Universe, the inflationary number of e-foldings N� has
been calculated and used in many works [5]. In this section,
we would like to discuss how this number changes in the
presence of a nonstandard postinflationary scenario. As
shown in [9], in the nonstandard case N� acquires an
additional e-folds term ΔNðϕi; TrehÞ, that depends on
the reheating temperature and on the features of the
additional decoupled scalar fields discussed in Sec. II.
Thus, we may write

N� ¼ ξ� −
1

3ð1þ wrehÞ
ln

�
ρend
ρreh

�

þ 1

4
ln

�
V2�

M4
pρreh

�
þ ΔNðϕi; TrehÞ; ð23Þ

where ρend is the energy density at the end of inflation, ρreh
is the energy density when the reheating is completely
realized, wreh is the mean value of the EoS parameter of the
reheating fluid, while V� ¼ M4

inf is the inflationary energy
density. In Eq. (23),

ξ� ¼ − ln

�
k�

a0H0

�
þ ln

�
T0

H0

�
þ c; ð24Þ

with

c ¼ −
1

12
ln greh þ

1

4
ln

�
1

9

�
þ ln

�
43

11

�1
3

�
π2

30

�1
4

; ð25Þ

where k� is the pivot scale for testing the cosmological
parameters, a0 and H0 are the scale factor and the Hubble
rate at the current epoch, respectively, T0 is the CMB
photon temperature while greh denotes the effective number
of relativistic d.o.f. at the end of reheating [we are using
gEðTrehÞ ¼ gSðTrehÞ ¼ greh because of Eq. (20)]. Assuming
k� ¼ 0.002 Mpc−1, H0 ¼ 1.75 × 10−42 GeV, T0 ¼ 2.3 ×
10−13 GeV and greh ∼ 100, we get ξ� ∼ 64 and c ∼ 0.77.
The additional term comes out to be

ΔNðϕi; TrehÞ ¼
1

4
ln ηðni; Ti; TrehÞ; ð26Þ

where η is the ratio of the total energy density to the energy
density of radiation at the reheating temperature,

η ¼ 1þ
P

iρϕi
ðTrehÞ

ρradðTrehÞ
: ð27Þ

Using Eq. (15) and expressing the radiation energy density
in terms of T1,

ρradðTrehÞ ¼ ρradðT1Þ
gEðTrehÞ
gEðT1Þ

�
Treh

T1

�
4

; ð28Þ

we can write

η ¼ 1þ gEðT1Þ
gEðTrehÞ

�
T1

Treh

�
4
��

Trehg
1=3
S ðTrehÞ

T1g
1=3
S ðT1Þ

�4þn1

þ
Xk
i¼2

Yi−1
j¼1

�
Trehg

1=3
S ðTrehÞ

Tig
1=3
S ðTiÞ

�4þni�Tjþ1g
1=3
S ðTjþ1Þ

Tjg
1=3
S ðTjÞ

�4þnj�
:

ð29Þ
It should be noticed that the more scalar fields we

have, the larger the parameter η is. Moreover, N� is
inflationary-model dependent due to the presence of the
potential function in the second and third contributions of
Eq. (23). However, by assuming ρend ∼M4

inf , converting
ρreh in Treh and neglecting some small numerical factors,N�
can also be written as

FIG. 2. The maximum reheating temperature Tmax
reh as a

function of the parameter n for different values of the
transition-to-radiation temperature and an inflationary scale
Minf ∼ 1015 GeV. The maximum reheating temperature becomes
larger as the scale T1 increases.
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N� ∼ ξ� −
1 − 3wreh

3ð1þ wrehÞ
ln

�
Minf

Treh

�

þ ln

�
Minf

MPl

�
þ 1

3ð1þ wrehÞ
ln η: ð30Þ

We can distinguish three main contributions. The first,

Aðwreh; TrehÞ ¼
1 − 3wreh

3ð1þ wrehÞ
ln
Minf

Treh
; ð31Þ

is entirely related to the reheating phase, the second
involves the ratio between the Planck scale and the infla-
tionary scale while the last one is due to the fraction of
energy carried by the scalar fields, namely to the η factor.
Let us provide a simple example considering a single scalar
field postreheating dominance. By using Eq. (20), the
general expression Eq. (29) turns out to be

η ¼ 1þ
�
T1

Treh

�
4
�
Treh

T1

�
4þn1

≃
�
Treh

T1

�
n1
; ð32Þ

and therefore

ΔNðϕ1; TrehÞ ¼
n1

3ð1þ wrehÞ
ln

�
Treh

T1

�
; ð33Þ

which, for the trivial wreh ¼ 0 case, results in

ΔNðϕ1; TrehÞ ¼
n1
3
ln

�
Treh

T1

�
: ð34Þ

The reheating and the η terms are strongly correlated.
Indeed, in Sec. II, we have shown that the reheating
temperature is constrained by an upper bound dependent
on a scale M, by the transition-to-radiation temperature T1

and by the dilution coefficient n ¼ n1. As a consequence,
we have a lower bound on the reheating contribution in
Eq. (31). Using the bound in Eq. (21), we get

Aðwreh; TrehÞ ≥
1 − 3wreh

3ð1þ wrehÞ
ln
Minf

α1M

�
M
T1

� n1
4þn1 : ð35Þ

In Fig. 3, we report the quantity ΔNðϕ1; TrehÞ as a function
of the transition-to-radiation temperature for some values
of n1, assuming wreh ¼ 0 and a reheating temperature
Treh ∼ 109 GeV. It should be noticed that for n ¼ 4 and
T1 ∼ 104 GeV, we would obtain more than 15 extra
e-folds, while for a larger T1 ∼ 106 GeV, we would have
ΔN ∼ 9. In Fig. 4, we plot the complete result for the
variable N� as a function of the reheating equation of state
parameter wreh for n ¼ 1, 2, 3, 4, assuming T1 ∼ 104 GeV.
In general, the value of N� increases with wreh, as expected
by the expression in Eq. (30). For n ¼ 2 and wreh ¼ 0, we
get N� ∼ 59, while N� ∼ 67 for n ¼ 4 and wreh ¼ 0. In the

next section, we briefly discuss the multifield cases. The
obtained results have nontrivial consequences on the
theoretical predictions of the underlying inflationary mod-
els. The reason is that one usually infers the values of
the two main inflationary parameters, the scalar spectral
index ns and the tensor-to-scalar ratio r, assuming an N� in
the range between 50 and 60. Therefore, if we considered
a different N� we could have new predictions to com-
pare with the current experimental bounds [12]. In the
Appendices, we will briefly examine how the nontrivial
values of N� affect some paradigmatic inflationary models.

V. SUMMARY AND DISCUSSION

Inflation should have taken place at very high-energy
scales. The accelerated expansion was followed by a

FIG. 3. Number of extra e-folds with wreh ¼ 0 and
Treh ∼ 109 GeV. We have chosen this temperature because it is
compatible with all values of n from 1 to 4 and with all the
transition temperatures T1 > 104 GeV, as seen in Sec. II.

FIG. 4. The inflationary number of e-folds N� in a nonstandard
postreheating cosmology as a function of wreh. N� increases with
the value of the EoS parameter. The growth of N� is also
decreasing with n.
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“reheat” stage that produced the standard model radiation
fluid and the observable large comoving entropy of the
Universe. However, available data do not guarantee that the
mentioned scenario is the correct one. For instance, a viable
alternative is to have one (or more) additional field(s) that
dominates the energy budget of the Universe at different
phases after the reheating epoch. In particular, many
authors have recently considered the inclusion of new
scalar fields (quintessence, scalar field decoupled from
matter and radiation or even scalar fields or moduli coupled
to gravity) to approach some problems related to dark
matter relics abundances or to the number of inflationary
e-folds (see [6–9] and references therein). The relation
between scalar decaying particle and black hole formation
in GUT cosmology was also studied in the past [13]. In
general, nonstandard cosmological histories before the
BBN are interesting possibilities whose signatures could
be tested in the near future, for instance by gravity-waves
experiments (see [14] for details).
In this paper, extending the approach of [9], we have

described a postreheating era dominated by a collection of
simple scalar fields ϕi; ði ¼ 1;…; kÞ completely decoupled
from standard model matter and radiation. Their presence is
described in terms of perfect fluids with energy densities that
scale as ρi ∼ a−ð4þniÞ, ni > 0. Each ϕi dominates at different
times. In particular,ϕ1 is the field connecting thenonstandard
part of the postreheating phase to the radiation-dominated
era. In this scenario, it is mandatory to assume that the
transition to radiation occurs well before the BBN, in order
not to ruin the theoretical predictions about light element
abundances [6]. In Eqs. (3) and (15), the general expressions
related to the total energy density and to the energy density of
a single field ϕi have been derived, with the proviso of
absence of entropy variation. The changes in the Hubble rate
during the multifield driven evolution are regulated by
Eqs. (15) and (16). In Sec. III, we observed that the energy
density after reheating must be at most Planckian. As a
consequence, there exists an upper limit to the reheating
temperature, as shown in Eq. (22) and illustrated in Fig. 1 for
different choices of the limiting scale and a transition
temperature to HBB ∼ 104 GeV. The upper bound depends
on T1 and also on the indices ni, as shown in Fig. 2.
Let us take a closer look to the multifield case, already

mentioned in Sec. III. Of course, the upper bound on Treh is
always present, but it depends on the intermediate temper-
atures Ti. For instance, in the presence of two scalar fields,
with ϕ2 dominating at higher temperature T > T2 on ϕ1,
the condition becomes ρϕ2

≤ M4 at T ¼ Treh. As a conse-
quence, one gets

Treh < α2M

�
Tn1
1 Tn2−n1

2

Mn2

� 1
4þn2 ð36Þ

where α2 ¼ ð30=π2gEÞ1=4þn2 (by assumption n2 > n1).
Using, for instance, n1 ¼ 1, n2 ¼ 2, T1 ∼ 104 GeV and
T2 ∼ 106 GeV one has Treh < 1012 GeV for M < Minf,
while Treh < 1013.7 GeV for M < MPl. Note that in the
first case the value of Tmax

reh is very close to the one found in
the presence of a single scalar field with n1 ¼ 2 at a
transition-to-radiation temperature T1 ∼ 107 GeV (see
Sec. II). The upper bound can obviously be computed
for any number k of scalar fields and it turns out to depend
on 2k parameters, the Ti temperatures and the ni dilution
coefficients.
A nonstandard cosmological epoch after reheating gives

also rise to an extra term in the general expression of the
inflationary number of e-foldings, N� [see Eqs. (23) and
(30)]. The upper bound on the energy density of the k-th
scalar field leads to an additional constraint on the con-
tribution to N� coming from the reheating phase, as shown
in Eq. (35). As a result, we found the possibility of having
an inflationary number of e-foldings well beyond 60, as
shown in Fig. 4. The higher is the number of scalar fields,
the larger is the correction ΔN to N�, since the ratio of the
total energy density to the radiation density at Treh is larger.
For instance, with two scalar fields and using Eq. (20),
Eq. (29) provides

η ≃ 1þ
�
T1

Treh

�
4
�
Treh

T1

�
4þn1

þ
�
T1

Treh

�
4
�
T2

T1

�
4þn1

�
Treh

T2

�
4þn2

: ð37Þ

By choosing the same data as after Eq. (36) andwreh ¼ 0,
Treh ∼ 1013 GeV, one gets η ∼ 1016, ΔNðϕ1;ϕ2Þ ∼ 12 and
N� ∼ 70. As expected, a nonstandard postreheating phase
produces a variety of enhancements in the inflationary
number of e-foldings, depending on the number of addi-
tional scalar fields and on the details of their dilution
properties. Enhancements affect the theoretical predictions
of the inflationary models, mainly in the bottom right
portion of the familiar ðns; rÞ plane. In [9], Maharana and
Zavala have studied the functions nsðN�Þ and rðN�Þ. In
Appendices A and B, we report some results for typical
classes of inflationary models, extending the range of
parameters provided in [9]. We deserve an extended
analysis to a future publication [15].
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APPENDIX A: MONOMIAL POTENTIALS

The first class of inflationary models we are going
to analyze are those characterized by single monomial
potentials of the form

VðφÞ ¼ λpφ
p; λp ¼ M4

infM
−p
Pl : ðA1Þ

In this class of models, the inflaton field, in order to
drive inflation, must exhibit a super-Planckian variation
Δϕ > MPl. Historically, the most known scenarios are
the ones with p ¼ 2 and p ¼ 4, that were introduced by
Linde [3]. Monomial potentials naturally occur also in
superstring compactifications, where they are called “axion
monodromy” [16]. In these models, one uses a cover of the
compactification manifold, with branes wrapping suitable
internal cycles. As a result, even though the manifold is
compact, the wrapping of branes around certain cycles
weakly breaks the original shift symmetry, allowing for
closed-string axions with super-Planckian excursions and
the suppression of dangerous higher-dimensional opera-
tors. The involved inflationary potentials come out pre-
cisely of the form VðφÞ ∼ φp with p ¼ 2=5; 2=3; 1 or 4=3.
The slow-roll parameters give rise to standard theoretical
predictions for the spectral index and the tensor-to-scalar
ratio in terms of the inflationary number of e-foldings:

ns ∼ 1 −
pþ 2

2N�
; r ¼ 4p

N�
: ðA2Þ

It should be noticed that both ns and r depend on the
model parameter p. In Tables I and II, we report the
theoretical predictions for some scenarios related to
monomial potentials, assuming two possible nonstandard
postreheating data.

APPENDIX B: EXPONENTIAL POTENTIALS

The second class of models we would like to consider is
that of exponential potentials of the form

VðφÞ ∼M4
infð1 − e−bφÞ; b ¼

ffiffiffiffiffiffi
2

3α

r
; ðB1Þ

where α is a free parameter. These potentials arise in
many contexts. Important examples are the well-known
Starobinsky model (α ¼ 1), the Goncharov-Linde model
(α ¼ 1=9) and the Higgs Inflation model (α ¼ ffiffiffiffiffiffiffiffi

2=3
p

) [17].
More recently, the so-called α-attractor models of inflation
[18] have also been considered, that fall in the same class of
Eq. (B1). Furthermore, other very interesting examples
come out in superstring-inspired scenarios, like Kähler
moduli inflation, poly-instanton inflation, and fiber infla-
tion [19]. At first order, the theoretical predictions of this
class of models result

ns ∼ 1 −
2

N�
; r ∼

12α

N2�
: ðB2Þ

In this case, the scalar spectral index does not depend on the
value of α. Therefore, for N� ¼ 67, one has ns ∼ 0.9701,
while for N� ¼ 70, ns ¼ 0.9714, independently on α. On
the contrary, the tensor-to-scalar ratio depends on α as
shown in Table III, where we report its values for some
choices of the parameters.

TABLE II. Inflationary predictions for monomial potentials in
nonstandard postreheating cosmology. We assume two scalar
fields with T1 ∼ 104 GeV, n1 ¼ 1, T2 ∼ 106 GeV, n2 ¼ 2 and
Treh ∼ 1013 GeV, giving N� ¼ 70.

Model parameter p nsðN�Þ rðN�Þ
Axion model p ¼ 2=5 0.9830 0.0229
Axion model p ¼ 2=3 0.9810 0.0381
Axion model p ¼ 1 0.9785 0.0571
Axion model p ¼ 4=3 0.9762 0.0762
Linde model p ¼ 2 0.9714 0.1143
Linde model p ¼ 4 0.9571 0.2286

TABLE III. The tensor-to-scalar ratio for some exponential
potential models depending on α. In the first column, we assume
N1 ¼ 67 (related to the case with a single scalar field and
T1 ∼ 104 GeV, n1 ¼ 4, Treh ∼ 109 GeV). In the second column,
we assume N2 ¼ 70 (related to a pair of scalar fields charac-
terized by T1 ∼ 104 GeV, n1 ¼ 1, T2 ∼ 106 GeV, n2 ¼ 2 and
Treh ∼ 1013 GeV.)

Model parameter α rðN1Þ rðN2Þ
Starobinsky α ¼ 1 2.7 × 10−3 2.4 × 10−3
Fiber inflation α ¼ 2 5.3 × 10−3 4.9 × 10−3
Goncharov-Linde α ¼ 1=9 2.9 × 10−4 2.7 × 10−4
Poly-instanton α ¼ 3 × 10−3 8.0 × 10−6 7.3 × 10−6
Kähler moduli α ¼ 3 × 10−8 8.0 × 10−11 7.3 × 10−11

TABLE I. Inflationary predictions for monomial potentials in
nonstandard postreheating cosmology. We assume a single scalar
field with T1 ∼ 104 GeV, n1 ¼ 4 and Treh ∼ 109 GeV, giving
N� ¼ 67.

Model parameter p nsðN�Þ rðN�Þ
Axion model p ¼ 2=5 0.9821 0.0238
Axion model p ¼ 2=3 0.9801 0.0398
Axion model p ¼ 1 0.9776 0.0597
Axion model p ¼ 4=3 0.9751 0.0796
Linde model p ¼ 2 0.9701 0.1194
Linde model p ¼ 4 0.9552 0.2388
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