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We investigate the impact of non-Gaussian lensing deflections on measurements of the CMB lensing
power spectrum. We find that the false assumption of their Gaussianity significantly biases these
measurements in current and future experiments at the percent level. The bias is detected by comparing
CMB lensing reconstructions from simulated CMB data lensed with Gaussian deflection fields to
reconstructions from simulations lensed with fully non-Gaussian deflection fields. The non-Gaussian
deflections are produced by ray tracing through snapshots of an N-body simulation and capture both the
non-Gaussianity induced by nonlinear structure formation and by multiple correlated deflections. We find
that the amplitude of the measured bias can be modeled with analytic expressions for a lensing bispectrum-
induced bias derived by Böhm et al. in 2016 when post-Born corrections are included in the lensing
bispectrum model. The bias is largest in temperature-based measurements, where it is detected with a
significance of 2.84σ in the power spectrum of reconstructed convergence fields. Cross-correlating the
reconstruction with the noiseless input convergence fields results in a 5.21σ detection. We do not find
evidence for the bias in measurements from a combination of polarization fields (EB;EB). We argue that
this non-Gaussian bias should be even more important for measurements of cross-correlations of CMB
lensing with low-redshift tracers of large-scale structure.
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I. INTRODUCTION

Photons of the cosmic microwave background (CMB)
get deflected by the cosmic matter distribution between the
surface of last scattering and the observer. This effect is
known as CMB lensing (see e.g., Refs. [1,2] for reviews).
Coherent deflections distort the observed CMB fluctuations
in both temperature and polarization in a characteristic way.
The statistics of the deflections contain a vast amount of
cosmological information. They are sensitive to cosmo-
logical parameters that determine the formation of cosmic
structure, such as a combination of σ8 and Ωm, the sum of
neutrino masses [3] and the presence of dark energy [4].
They are also a probe of the flatness of space because
curvature changes the relative efficiency of lensing events
at different distances. Different to other probes of large-
scale structure, CMB lensing is mostly sensitive to struc-
tures at relatively high redshifts (z ≈ 2) and has the
advantage of directly probing the total matter distribution.
Since the first detection of CMB lensing in cross-

correlations [5,6], CMB lensing measurements have

matured from detections in CMB data alone [7], through
increasingly significant detections in CMB temperature,
polarization and cross-correlations [8–12] to a compatible
and complementary cosmological probe [13–15]. Forecasts
for current and future surveys [16–19] promise sample
variance limited measurements of the CMB lensing power
spectrum up to multipoles of L ≈ 1000 and a sensitivity of
these measurements to the total mass of neutrinos of
σPm ≈ 30 meV if combined with suitable other probes

to break degeneracies with τ and Ωmh2.
Common CMB lensing reconstruction uses a quadratic,

weighted combination of CMB fields to recover the
deflection field [20,21]. Power spectrum measurements
from this quadratic estimator extract lensing information
from the lensed CMB four-point function. The four-point
estimator for the CMB lensing power spectrum is a biased
estimator. It is nonzero even in the absence of lensing
and carries bias terms at all orders in the lensing power
spectrum [22,23]. Other sources of systematics in CMB
lensing measurements are masking, anisotropic beam or
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noise properties [24,25] and foregrounds [26–29]. Biases to
power spectrum measurements can either be estimated and
subtracted or alleviated by suitable modifications to the
lensing estimator [30–33].
Recently, Ref. [34] (hereafter BSS16) has identified a

new bias to CMB lensing measurements, which arises as a
consequence of the non-Gaussian structure of the lensing
deflection field. BSS16 specifically considered the effect of
a nonvanishing bispectrum of the lensing potential. In a
purely analytic study, they found that the bispectrum that
arises as a consequence of nonlinear structure formation
can change the amplitude of the CMB lensing power
spectrum measured from CMB temperature data in current
and future experiments at the percent level. As most of
these experiments rely primarily on temperature, a correc-
tion to CMB lensing measurements of this magnitude
would constitute a significant systematic and, if uncor-
rected, hinder the accurate estimation of cosmological
parameters. However, the theory calculation in BSS16
made a number of nontrivial assumptions (see
Appendix A for details), and the actual size of the bias
depends on their validity. In particular, BSS16 modeled the
lensing bispectrum in Born approximation and did not take
into account multiple deflections as another source of non-
Gaussianity. Recently, Ref. [35] pointed out that the
bispectrum from post-Born terms is on the same order
of magnitude as the bispectrum from nonlinear gravita-
tional evolution. The sign of these two contributions is
partly opposite (depending on the triangle configuration),
which suggests that including post-Born corrections results
in a smaller bias than predicted by BSS16.
Motivated by this, we study the effect of non-Gaussianity

on CMB lensing measurement in this work in a completely
independent way with ray-traced lensing simulations.
Specifically, we look at the difference between lensing
power spectra measured with the standard four-point
estimator in two different sets of simulated noisy, lensed
CMB maps: one set lensed with purely Gaussian deflection
fields and the other with fully non-Gaussian deflections
obtained from ray tracing through snapshots of an N-body
simulation. By using the same unlensed CMB and detector
noise realizations for both sets, any significant difference in
the measured spectra is a consequence of the non-
Gaussianity of the deflection field and can be interpreted
as a non-Gaussian bias. Although the study with simu-
lations provides less intuition about the specific source of a
non-Gaussian bias, it is in some sense more complete than
the theoretical analysis in BSS16 because it captures the
full non-Gaussianity of the field, which can manifest itself
in more ways than a nonzero bispectrum and relies on fewer
simplifying assumptions.
We compare the measured non-Gaussian bias to the

theoretical predictions computed from the analytic expres-
sions derived in BSS16. Different from BSS16 we also take
into account the lensing bispectrum sourced by multiple

correlated deflections (so-called post-Born corrections) in
the theory. We use the analytical expression derived in
Ref. [35] for modeling these corrections. Theoretical results
for the bias computed with this new bispectrum model can
be found in Appendix A. For a CMB-S4-like experiment,
they suggest a cumulative bias over noise of ∼3σ in lensing
reconstruction from temperature only (assuming a bin
width of ΔL ¼ 100). The maximum bias-over-noise per
L-bin for this configuration is 1 and occurs in the lowest bin
(centered on L ¼ 150).
Earlier works that have studied post-Born corrections to

lensing observables in simulations include Refs. [36,37].
Reference [36] focused on the effect of post-Born correc-
tions on parameter constraints from weak galaxy lensing
measurements and found significant biases to parameters
inferred from the skewness and kurtosis of the convergence
field. Reference [37] quantified the impact of post-Born
corrections on the CMB lensing and CMB power spectra
and estimated the significance with which lensing curl
modes induced by multiple deflections can be measured in
future experiments. Different from these works, we study
the bias induced by the non-Gaussianity of the CMB
lensing deflection field on measurements of its power
spectrum with the standard four-point estimator. Due to
the special form of this estimator, it is sensitive to higher-
order lensing correlation functions and thus sensitive to the
non-Gaussianity sourced by post-Born corrections. The
effect of nonlinear structure formation on lensing recon-
structions, in particular, its impact on the second-order
lensing bias Nð2Þ, was measured in ray-traced simulations
for the interpretation of data from the South Pole Telescope
[8] but found to be irrelevant for this specific data set.
Parallel to the work presented here, Ref. [38], have carried
out a measurement of a non-Gaussian bias on an indepen-
dent set of ray-traced lensing simulations.
This paper is organized as follows: we start with briefly

reviewing CMB lensing and CMB lensing reconstruction in
Sec. II. In Sec. III we give a full overview of the production
of mock CMB data maps: in subsections we describe the
production of ray-traced lensing maps and their Gaussian
counterparts (Sec. III A), the generation of noisy, lensed
CMB simulations (Sec. III B) and the reconstruction from
these mock data sets (Sec. III C). Results and their
comparison to theory are presented in Sec. IV. We conclude
with a discussion of the results and a comment on the
importance of the non-Gaussian bias for cross-correlations
with low-redshift tracers in Sec. V. For details on the
theoretical bias model derived in BSS16, we refer the
reader to Appendix A and Ref. [34].

II. CMB LENSING AND CMB LENSING
RECONSTRUCTION

Lensing distortions are a measure of the integrated
mass distribution along the photons’ trajectories. In a flat
standard cosmology and under the Born approximation, the
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lensing convergence κðLÞ is related to the density contrast
δðL; χÞ through the line-of-sight integration,

κðLÞ ¼ 3

2

ΩmH2
0

c2

Z
χCMB

0

dχWðχ; χCMBÞδðL; χÞ; ð1Þ

with lensing kernel,

Wðχ; χCMBÞ ¼ ½1þ zðχÞ� χðχCMB − χÞ
χCMB

: ð2Þ

Throughout this paper, we use the flat sky approximation,
where L denotes the wave vector of a 2D Fourier mode on
the sky. Relating convergence and density according to
Eq. (1) assumes that the lensing kernel weighted integral
along the photon geodesic over the second derivative of the
gravitational potential in the radial direction is negligible
compared to the same integral over second derivatives in
transverse directions. This approximation is valid for small
angular scales and if the typical scale of the integration
kernel is much larger than the typical fluctuation scale of
the integrated quantity [39,40]. For CMB lensing the
characteristic scale of the kernel is roughly the Hubble
distance, and the angular scales considered in this work are
small (L > 100).
The mapping between unlensed CMB fields ðT;Q;UÞ

and their lensed counterparts ðT̃; Q̃; ŨÞ is determined by
the lensing deflection angle α,

T̃ðxÞ ¼ T½xþ αðxÞ�; ð3Þ

which is to good approximation curl-free and can be
expressed in terms of a scalar lensing potential ϕðxÞ,

αðxÞ ¼ ∇ϕðxÞ: ð4Þ

Similar to overdensity and gravitational potential in three
dimensions, the lensing convergence [Eq. (1)] and the
lensing potential are related by the Poisson equation,

κðxÞ ¼ −
1

2
∇2ϕðxÞ: ð5Þ

We use the extended Limber approximation [41] when
computing expectation values in our theory expressions.
Although the lensing simulation does not make use of
the Limber approximation, the mismatch on scales with
L > 100, which we consider, is expected to be negligible
[42–44].
CMB lensing reconstruction is the recovery of the

lensing deflection field from lensed, noisy CMB data. It
is commonly performed with an estimator that is quadratic
in the lensed CMB [20,21,45],

κ̂ðLÞ ¼ 1

2
L2AXY

L

Z
l
gXYl;LX̃exptðlÞỸexptðL − lÞ: ð6Þ

In Eq. (6) X and Y represent either temperature (T) or
polarization fields (E=B), and the subscript “expt” labels
noisy, beam-deconvolved data. The weight g and the
normalization AL depend on the fiducial lensed CMB
power spectra as well as the beam and noise properties
of the experiment (see Ref. [21] for the exact expressions1).
Weight and normalization are chosen such that the esti-
mator in Eq. (6) has minimum variance and is unbiased in
the absence of any source of mode coupling other than
lensing.
A few alternatives to the quadratic estimator have been

proposed. Some are based on maximizing the CMB lensing
posterior2 or sampling the joint distribution of lensing
deflections and CMB [47–49]. Other estimators are derived
from a configuration-space perspective and use the mag-
nification and shear of the lensed CMB fluctuations to
estimate the lensing field [50–52]. To date the quadratic
estimator remains the most widely used and best under-
stood estimator for the CMB lensing deflection field.
Measurements of the CMB lensing power spectrum from

the quadratic estimator are sensitive to the lensed CMB
four-point function,

Ĉκκ
WX;YZðLÞ

¼ 1

4
L4AWX

L AYZ
L

Z
l1;l2

gWX
l1;L

gYZl2;L

× hW̃exptðl1ÞX̃exptðL− l1ÞỸexptð−l2ÞZ̃exptðl2 −LÞi; ð7Þ

where the expectation value is computed by averaging over
orientations of the wavevector L. As the response of the
CMB to lensing is nonlinear in the deflection, this four-
point estimator gets contributions from terms at all orders in
the lensing convergence. Only one of the contributing
second-order terms gives rise to the convergence power
spectrum. The remaining terms are bias terms that need to
be subtracted in order to obtain an unbiased estimate for
Cκκ
L . They are commonly summarized and labeled by their

power in the lensing power spectrum: Nð0Þ
L for the bias that

is sourced by Gaussian CMB fluctuations (this term is

present even in the absence of lensing) and Nð1Þ
L for all

biases proportional to Cκκ
L and Nð2Þ

L for biases proportional

to ðCκκ
L Þ2 [22,23]. The Nð2Þ

L bias can be greatly reduced
by a slight modification to the lensing weights, see e.g.,

1Reference [21] uses unlensed power spectra in the lensing
weights. Replacing them by their lensed counterparts partly
removes higher-order biases from the power spectrum estimate
[23,30,46].

2The quadratic estimator can be interpreted as a first-order
approximation to a maximum likelihood estimator for the lensing
potential.
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Refs. [23,30,46]. Adapting this notation, the expectation
value of Eq. (7), averaged over realizations of CMB and
lensing deflections (and assuming that both are Gaussian
fields), becomes

hĈκκ
L i ¼ Nð0Þ

L þ Cκκ
L þ Nð1Þ

L þO½ðCκκ
L Þ2�: ð8Þ

Nonlinear processes, such as nonlinear structure formation
and multiple correlated deflections, introduce a small but
detectable amount of non-Gaussianity to the lensing con-
vergence [35,53–55]. In the limit of small density pertur-
bations, the non-Gaussianity can be characterized by a
lensing bispectrum. A nonzero lensing bispectrum changes
the lensed temperature four-point function and introduces
an additional bias term to Eq. (8),

hĈκκ
L i ¼ Nð0Þ

L þ Cκκ
L þ Nð1Þ

L þ Nð3=2Þ
L þO½ðCκκ

L Þ2�: ð9Þ

This new bias was first identified in Ref. [34]. We will now
compare this theoretically derived term with measurements
of a non-Gaussian bias in simulations.

III. SIMULATIONS

The general work flow for isolating a non-Gaussian bias
is simple: we use a set of non-Gaussian convergence maps

generated by ray tracing through an N-body simulation and
another set of Gaussian convergence maps that has the
same average power spectrum as the non-Gaussian maps.
The same CMB realizations are lensed with both Gaussian
and non-Gaussian convergence maps, which results in two
sets of lensed CMB maps. We convolve these maps with a
Gaussian beam before we add the same realizations of
white measurement noise to both sets. We beam decon-
volve the noisy maps before we apply the standard
quadratic and four-point estimators. We then compare
the results of the reconstructions between both sets and
look for significant differences. In the following sections,
we provide detailed descriptions and validations for each
of these steps. The entire procedure is also illustrated in
Fig. 1.
For all simulations (N-body and CMB), we use a

standard ΛCDM cosmology with parameters, H0 ¼
72 km=s=Mpc, Ωm ¼ 0.296, σ8 ¼ 0.786, w ¼ −1, ns ¼
0.96 and Ωb ¼ 0.046.

A. Convergence maps

We use a set of 10 240 non-Gaussian convergence maps
that was obtained from ray tracing through snapshots of
an N-body simulation. For a detailed description of their
production we refer the reader to Ref. [55]. The underlying

FIG. 1. Schematic outline of the simulation pipeline: squares and ellipses represent sets of 10 240 maps each. We start by generating
3 times 10 240 unlensed CMB and noise realizations. We then lens each CMB realization with both a Gaussian and a non-Gaussian
convergence map. As we have 10 240 Gaussian and non-Gaussian convergence maps, each of them is used to lens three independent
CMB realizations. This results in 2 times three sets of 10 240 lensed CMBmaps. We convolve each of these maps with a Gaussian beam
and add the same 3 times 10 240 noise realizations to the Gaussian and non-Gaussian maps. After beam deconvolution of the noisy
maps, we run the standard quadratic estimator on every lensed CMB map. We average the reconstruction results over the maps that have
been lensed with the same lensing convergence to beat down the reconstruction noise originating from the CMB sample variance. This
leaves us with one set of 10 240 averaged Gaussian and another set of 10 240 averaged non-Gaussian reconstructed convergence maps.
We compute the average power spectrum in each of these sets as well as the average cross-correlation with the true underlying
convergence realizations. Any significant difference between the average power spectra of the non-Gaussian and Gaussian simulations is
a non-Gaussian bias.
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N-body simulation is based on the public Gadget-2 code
[56], has a box size of 600 Mpc=h and is resolved by
N ¼ 10243 particles (corresponding to a mass resolution of
1.4 × 1010 M⊙=h). The linear matter power spectrum for its
initialization was computed with CAMB3 [57] and initial
conditions at z ¼ 100 generated with N-GenIC. Snapshots
were recorded between z ≈ 45 and z ¼ 0, a range which
covers 99% of the growth corrected lensing kernel
Wðχ; χ�ÞDðzÞ. Convergence maps were computed with
LensTools [58] tracing 40962 light rays and calculating
their deflections on 3 planes per box. This procedure does
not assume that the deflection angle is small or that the light
rays follow unperturbed geodesics. Different realizations
of the convergence maps were produced by randomly
rotating and shifting the potential planes [59]. The resulting
maps are 12.25 deg2 in size and resolved by 20482 pixels
measuring 0.10252 arcmin2. We refer to this simulation set
as non-Gaussian or N-body lensing simulations. Their non-
Gaussianity is a consequence not only of nonlinear structure
formation in the N-body simulation but also of the multiple
deflections along the lens planes. We do not measure or
take into account the curl of the deflection field that is
introduced by multiple deflection because we do not expect
a significant bias from bispectra involving the curl compo-
nent (see Appendix B for details).
We further produce a second set of 10 240 purely

Gaussian convergence maps. These Gaussian simulations
are generated by first measuring the average power spec-
trum of the non-Gaussian simulations and then drawing
convergence realizations from a multivariate Gaussian with
exactly this power spectrum.
In Fig. 2 we compare the average power spectra of the

Gaussian and non-Gaussian simulation set to a theory
power spectrum computed with the anisotropy solver
CLASS4 [60]. The missing power on the small-scale
end, L > 3000, in the simulations is caused by the finite
resolution of the N-body simulation [55]. On the large-
scale end, the power is slightly suppressed because of the
finite size of the simulation box. To allow for an accurate
and unbiased detection of the non-Gaussian bias, we
require an excellent agreement of the average power spectra
in both simulation sets. Any significant difference between
the power spectra could result in a false detection of a non-
Gaussian bias. We find that the power spectrum of the
Gaussian set agrees with the spectrum of the non-Gaussian
simulations, as expected, within the sample variance
(Fig. 3, red curve). We further compare the combined
standard deviation of the average power in both simulation
sets to the size of the bias predicted by BSS16 (Fig. 3
shaded region and blue dots). The comparison shows that
the sample variance in the simulation sets is low enough to

allow for a detection of a bias at the percent level (which
corresponds to the magnitude predicted by BSS16).
To get a sense of the non-Gaussianity of the ray-traced

convergence maps, we measure their skewness, hκðxÞ3i
after smoothing them with a Gaussian kernel on different
scales. The skewness is an integrated measure of the
bispectrum.5 By comparing the measurement with the
theoretical prediction,

hκðxÞ3i ¼
Z
l

Z
L
WRðLÞWRðlÞWRðj −L − ljÞ

× BκκκðL; l; j −L − ljÞ ð10Þ
WRðlÞ ¼ exp ð−l2R2=2Þ; ð11Þ

we can determine the most suitable theoretical bispectrum
model for computing the bias following BSS16.
We expect the bispectrum to have two contributions: one

from nonlinear structure formation, where the convergence
bispectrum is an integrated measure of the bispectrum of
large-scales structure, and a second contribution from post-
Born effects. In the squeezed limit these two contributions
have opposite sign and partly cancel each other. We
compare two different models for the convergence bispec-
trum induced by nonlinear structure formation; one in
which we model the matter bispectrum in tree-level

FIG. 2. Power spectra measured from 10 240 Gaussian (red)
and ray-traced non-Gaussian (yellow) convergence maps closely
follow the theory curve computed with CLASS (blue). Error bars
corresponding to the standard deviation of the mean between the
binned power spectra of the 10 240 maps are plotted but too small
to be visible. For modeling nonlinear effects in the matter power
spectrum CLASS uses a version of HALOFIT [61]. We use
precision parameters tol_perturb_integration=1e-6, perturb_
sampling_stepsize=0.01, k_min_tau0=0.002, k_max_tau0_over_
l_max=10., halofit_k_per_decade=3000 and l_max_scalars=
8000 to produce the theory curve. Missing power on small scales
is owed to the finite resolution of the simulation.

3http://camb.info/
4http://class-code.net/

5Note that the quadratic estimator results in an additional
skewness in the measured maps, i.e., the measured maps have
nonzero skewness even if the underlying field is Gaussian [55].
We measure the skewness in the true noiseless convergence maps
and not in the reconstructions as we are interested in quantifying
the bispectrum introduced by nonlinear physics.
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perturbation theory6 and one in which we use a simulation-
calibrated fit to the matter bispectrum [62].7 The conver-
gence bispectrum from multiple deflections is modeled
following Ref. [35]. The results of the skewness measure-
ment together with the different theoretical models are
shown in Fig. 4. We find that the theory curve computed
from a combination of structure formation-induced and
post-Born bispectra agrees well with the measurement on
smoothing scales FWHM > 2 arcmin. On smaller scales
we find a slight discrepancy, with the measurement lying
above the theory prediction. We also find that simulation-
calibrated fit to the matter bispectrum leads to better
agreement with the simulation than the tree-level pertur-
bation theory model. We use this best fitting model (red line
in Fig. 4) in the following sections to compute the
theoretical prediction for the nonlinear bias.

B. CMB simulations

We produce 3 times 10 240 unlensed CMB realization in
temperature (T) and polarization (Q, U) based on power
spectra computed with CAMB. This leaves us with three

times more CMB realizations in each T, Q and U than
convergence realizations. Consequently, we use each
Gaussian and non-Gaussian convergence map to lens three
independent CMB realizations. The reason for using the
same lenses for a number of different background CMBs is
that averaging over the lensing measurements from CMB
maps lensed with the same convergence map reduces the
reconstruction noise originating from the sample variance
in the CMB. A lower reconstruction noise results in a more
significant detection of the non-Gaussian bias.
The lensing algorithm used to produce the lensed CMB

maps is described in detail in Ref. [63].8 We apply a filter
that removes modes with L > 6000 from the convergence
maps prior to the lensing. This step is necessary for
numerical stability and to remove unphysical effects that
are caused by the finite resolution of the simulations. The
power spectra of the lensed maps agree well with theory (as
shown in Figs. 5 and 6): the relative difference between
theory and simulations lies within�5% for every bin in the

FIG. 3. For an accurate measurement of the nonlinear bias in
the reconstructions it is crucial that the power spectra of the
original, nonreconstructed, Gaussian and non-Gaussian simula-
tions are consistent within their sample variance. We show that
this is indeed the case by checking that their difference is
consistent with zero (red dots, χ2=ν ¼ 1.02, with ν ¼ 38 degrees
of freedom, corresponding to a p-value of 0.444). We further
require the sample variance of both sets to be small enough to
allow a detection of a bias at the percent level. To see this, we plot
the combined sample variance of both sets as shaded regions
(�σ;�2σ) and compare it to the expected size of the nonlinear
bias (blue dots).

FIG. 4. Skewness measured on different scales provides some
information on the bispectrum of the non-Gaussian convergence
maps. We find that we can accurately model the skewness by
assuming that the bispectrum consists of a nonlinear growth and
post-Born induced contribution. The growth-induced part is best
described by using a simulation-calibrated fit to the matter
bispectrum [62]. The post-Born contribution is modeled follow-
ing Ref. [35], and we find good agreement between theory and
measurement only when this correction is included (solid red
line). The convergence maps were smoothed with a Gaussian
kernel with FWHMs indicated on the x-axis and filtered to
exclude modes with L > 4000. For the theory curves we impose
cutoffs at kmin ¼ 0.0105½h=Mpc� corresponding to the box size of
the simulation and kmax ¼ 50½h=Mpc�. Outside of these bounds
we set the matter bispectrum (and matter power spectrum in the
computation of the post-Born terms) to zero. From the compari-
son with a theory curve computed with kmax ¼ 100½h=Mpc�, we
find that the results are not sensitive to the kmax cutoff. The error
bars correspond to the standard deviation of the mean and are
smaller than the marker size.

6In this model we replace the linear matter power spectrum by
its HALOFIT counterpart.

7This bispectrum model has 9 free parameters which are
assumed to be independent from cosmology and have been
measured and fixed in Ref. [62]. It also depends on cosmological
parameters through a direct appearance of σ8 and indirectly by its
dependence on the nonlinear scale and the nonlinear matter
power spectrum. We adapt these quantities to agree with the
cosmology of the simulation. 8We include terms up to fifth order in this algorithm.
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range 500 < L < 4000. Crucial for the validity of this
study, however, is the agreement between lensed Gaussian
and lensed non-Gaussian CMB spectra. Comparing these
two we find relative deviations of less than 0.3% per l-bin,
which is consistent with the theoretical expectation [64].
After lensing, we convolve the lensed CMB maps with a

Gaussian beam of width FWHM ¼ 1 arcmin and add the
same 3 × 10240 white noise realizations with a noise level
of σT ¼ 1 μK − arcmin in temperature and σpol ¼

ffiffiffi
2

p
σT in

polarization to the Gaussian and non-Gaussian lensed CMB
simulations. The noise configurations are chosen to roughly
match prospective CMB surveys.
The entire procedure leaves us with 3 × 10240 mock

CMB measurements for Gaussian and non-Gaussian con-
vergence simulations each. Reconstructed convergence

maps from Gaussian and non-Gaussian simulations differ
only in their underlying convergence maps but have the
same CMB and noise realizations.

C. Lensing reconstruction

We apply a quadratic estimator to all noisy, beam-
deconvolved, lensed CMB maps in ðTTÞ and ðEBÞ to
obtain noisy estimates of the underlying convergence
fields. The reconstruction pipeline is described in detail
in [14].
We filter scales with l < 500 from the CMBmaps prior to

reconstruction as Fig. 5 indicates some inconsistency
between the power spectra of the lensed simulations and
the theory power spectra on these scales. We also filter out
any lensed CMB multipoles with l > 4000 which is a
standard practice inCMBdata analysis to exclude significant
contamination from foregrounds and avoid foreground-
related lensing biases. With l ¼ 4000 we use a very opti-
mistic scale; realistic CMB temperature data could already
be contaminated by extragalactic foregrounds at lower
multipoles [27]. Using l < 3000 reduces the theoretically
predicted size of the bias by approx. a factor of 0.5
(see Fig. 14).
As three realizations in each branch have the same

underlying convergence field, we average over their recon-
structed power maps to recover a set of 10 240 power
measurements corresponding to the 10 240 input maps in
each simulation branch. These averaged measurements
have reduced noise compared to measurements with only
one CMB realization.
We proceed by computing the average power spectrum

of the reconstructed lensing maps in the Gaussian and non-
Gaussian branches for ðTTÞ and ðEBÞ reconstructions. By
construction, we expect all lensing biases that are sensitive
to the convergence power spectrum and the lensed or
unlensed CMB power spectra [c.p. Eq. (8)] to be identical
in the Gaussian and non-Gaussian simulations.9 Because
we are only interested in the difference of the reconstructed
convergence power spectra, in which these biases cancel
out, we do not compute and remove them. Apart from the
auto power spectra, we also compute the average power in
the cross-correlation between input maps and reconstructed
maps. This cross-correlation is not an actual observable but
can serve as a proxy for the non-Gaussian bias in cross-
correlations with other tracers of large-scale structure. Also,
measurements of the cross power are not affected by the
Nð0Þ and Nð1Þ bias and have lower noise. The theory
prediction for the bias in cross-correlations is Ncross

NG ≈
1=2Nauto

NG [34].

FIG. 5. Average power spectra of the lensed temperature maps
in Gaussian and non-Gaussian simulation branches agree well
with each other (lower panel). The agreement of lensed and
unlensed realizations with the theory prediction is good except
for large scales, where we find a significant deviation at l < 500.
We exclude these scales from the reconstruction. The error bars
corresponding to the standard deviation of the mean are too small
to be resolved.

FIG. 6. Average power spectra of the unlensed and lensed
polarization E-modes agree with the theory prediction except for
large scales, where we find a significant deviation at l < 500. We
exclude these scales from the reconstruction. Note that the error
bars on the measured power spectra are smaller than the markers.

9The bispectrum of the convergence also changes the lensed
CMB power spectra, but this is a subpercent effect and not
detectable in our simulations [64].
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IV. RESULTS

As discussed above we measure the non-Gaussian bias
from the difference between

Nauto
NG ðLÞ ¼ Ĉκ̂ κ̂

NGðLÞ − Ĉκ̂ κ̂
G ðLÞ

Ncross
NG ðLÞ ¼ Ĉκ̂κ

NGðLÞ − Ĉκ̂κ
G ðLÞ: ð12Þ

We start by examining this difference in the temperature
based reconstructions.
In Fig. 7 we show the measured bias from cross-

correlating reconstructions from ðTTÞ with the input maps
and plot the reconstructed power spectra for comparison.
We plot the reconstruction results up to L ¼ 2000.
Including smaller scales than this is unlikely to increase
the detection significance of the bias, given that the bias-to-
signal and bias-to-noise ratios both decrease with increas-
ing L. Figure 8 shows the measured bias in units of the
signal. The theory prediction from BSS16 is plotted in
light blue for comparison. A nonzero bias is detected with
a significance of 5.21σ. The p-value of the data points
assuming no bias is 0.0003. The p-value using the
theoretical bias curve as null hypothesis amounts to
0.3932. A non-Gaussian bias is therefore detected with
high statistical significance and is in agreement with the
theoretical prediction. Measuring the covariance between
the data points (Fig. 9, right panel) shows that the

measurements in different bins can to good approximation
be treated as uncorrelated.
The bias in the auto power measured from ðTT; TTÞ is

detected with a lower significance of 2.84σ (Figs. 10 and
11). The p-value of the measurement for a null hypothesis
of no bias is p ¼ 0.2660. The null hypothesis can therefore
not be rejected with high statistical significance. Using the
theory prediction as null hypothesis, however, results in a
even higher p-value of 0.7676. The errors in the auto
spectrum are slightly correlated as the left panel of Fig. 9
shows. The correlation is below 20% for most of the bins
and below 47% for all bins. This correlation is expected as
the covariance of the four-point estimator is nondiagonal
[23,65,66].
We do not find any indication for a non-Gaussian bias in

the polarization-based reconstruction (Fig. 12). This agrees
with the intuition gained from its functional form: addi-
tional angular dependencies (as compared to the bias in
temperature-based reconstruction) reduce the support of the
contributing integrals (see Appendix A and Ref. [34]).

FIG. 7. Average power in the cross-correlation between con-
vergence maps reconstructed from the lensed temperature maps
and the input convergence field. The measured power follows the
theory curve (red line) for both Gaussian and non-Gaussian
simulations (yellow and orange points). We plot Cκκ

L computed
with CLASS as theory prediction as neither Nð0Þ nor Nð1Þ lensing
biases are expected to be present in the cross-correlation, and the
Nð2Þ bias should be greatly reduced by our usage of lensed CMB
power spectra in the four-point estimator. The difference between
the Gaussian and non-Gaussian reconstructions is shown as blue
points (circles if they have negative sign). It is consistent with the
theory prediction computed following BSS16 (light blue line).

FIG. 8. We detect a non-Gaussian bias in the cross-correlation
of temperature-based reconstructions and input maps with a
significance of 5.21σ. For a null hypothesis of no bias we find a
p-value of 0.0003. Using the theoretical bias curve computed
with analytic expressions from BSS16 (plotted in light blue) as
null hypothesis results in a p-value of 0.3932.

FIG. 9. Covariance matrices of the power spectrum measure-
ments in units of the variance. The error bars in the measurement
of the power in the cross-correlation are to good approximation
uncorrelated. The measurements of the auto power show some
expected degree of correlation between the bins.
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Again, we find correlations between the data points in
the auto power measurement (Fig. 13).

V. DISCUSSION

By comparing lensing measurements from CMB simu-
lations lensed with Gaussian and non-Gaussian conver-
gence fields, we find strong indication for the existence of a
non-Gaussian bias to CMB lensing measurements from
temperature data. The bias is at the 1% level, which agrees
with the theoretical prediction for a bispectrum-induced
bias of Ref. [34] if we take into account two sources for the

lensing bispectrum, nonlinear structure formation and
multiple correlated deflections.
By measuring the bias in the cross-correlations of recon-

structed lensingmapswith the true underlying lensing fields,
we detect the theoretically predicted bias in the simulations
at the 5σ significance level.We detect the non-Gaussian bias
in the autocorrelation with a significance of ∼3σ. The
measured bias in power spectrum measurements from a
combination of E- and B-mode polarization, ðEB;EBÞ, is
consistent with zero. We note that lensing B-modes at
intermediate scales are more sensitive to smaller scales in
the deflection field than lensed E-modes or temperature. A
nonzero bias in EB;EB could therefore be present in real
data if it was generated by scales that are not accurately
modeled in the simulation due to its finite resolution.
We point out that our results have been independently

confirmed by Ref. [38], who use a completely different
simulation set on the full sky.

FIG. 10. Measured non-Gaussian bias in the CMB lensing
power spectrum measurement from the temperature four-point
function. The reconstruction agrees well with the theory pre-
diction (red curve) which we model as a sum of convergence
power Cκκ

L and Nð0Þ lensing bias. The measured non-Gaussian
bias is consistent with the theory prediction of BSS16, but the
null hypothesis of no bias cannot be excluded with high statistical
significance.

FIG. 11. Non-Gaussian bias in temperature-based CMB lensing
power spectrum measurements in units of the signal. The points
are consistent with the theory predictions, and the bias is detected
with a significance of 2.84σ. We find a p-value of 0.2660 for a
no-bias null hypothesis and a p-value of 0.7676 when using the
theory prediction as null hypothesis.

FIG. 12. Non-Gaussian bias to CMB lensing measurements
from ðEB;EBÞ is consistent with zero in both auto and cross-
correlations. This seems in agreement with BSS16, who have not
numerically evaluated the bias expressions for polarization, but
argue that they are expected to be smaller than in temperature due
to their additional angular dependencies.

FIG. 13. Covariance matrices of the power spectrum measure-
ments from ðEB;EBÞ in units of the variance. The error bars in
the measurement of the power in the cross-correlation are to
good approximation uncorrelated. The measurements of the
auto power show some expected degree of correlation between
the bins.
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The good agreement between the simulations and theory
suggests that the assumptions that entered into the theory
calculation are valid and that we can rely on it to make
predictions for different experiments. Theoretical bias
predictions for different experimental configuration are
shown in Fig. 14.
The non-Gaussian bias is likely to affect lensing mea-

surements from CMB experiments that are dominated
by temperature reconstruction. This includes current and
upcoming experiments such as AdvACT [16] and Simons
Observatory [67]. An uncorrected non-Gaussian bias at
the percent level degrades the accuracy with which these
experiments can measure cosmological parameters. The
non-Gaussian bias is unlikely to affect experiments that are
polarization dominated, such as the ground-based SPT-3G
[18] and CMB-S4 experiments [19] and space-based
missions like LiteBird [68] or Pico [69].
It is further important to note that the smallness of the

bias is a consequence of a somewhat coincidental cancel-
lation: The bias is mostly sensitive to elongated bispectrum
configurations. For these shapes, the bispectra from non-
linear structure formation and multiple correlated deflec-
tions have opposite sign. The fact that they are in addition
of similar magnitude is only true for sources at high
redshifts. If we consider sources at low redshifts or restrict
contributions to the bispectra to low redshifts, we expect
this cancellation to be much less efficient. The bias could
therefore be more important in cross-correlations of CMB
lensing with low-redshift tracers (Böhm et al. in prep.,
Ref. [70]). We illustrate this by plotting preliminary results
for the non-Gaussian bias (corrected by a factor of 1=2 as it
is expected for cross-correlations) in units of the CMB

lensing signal when only allowing lenses at low redshift to
contribute to both (zmax ≤ zCMB; zsource ¼ zCMB) in Fig. 15.
These results suggest that the bias could be on the order
of several percent for cross-correlation measurements from
temperature data. With these measurements getting most of
their signal from high multipoles where the TT estimator
performs best, this could make this bias relevant for most
future wide-field surveys. We caution at this point that
Fig. 15 should only be seen as a motivation to investigate
the nonlinear bias for cross-correlations. By setting all
contribution to the post-Born bispectrum above a certain
redshift to zero, it becomes negligible. For realistic cross-
correlations the expression for the post-Born bispectrum is
more complicated, and its contribution to the bias could be
more important.
The results shown in this work only apply to power

spectrum estimates with a quadratic estimator, but similar
biases could arise for alternative estimators if they are
derived under the assumption of a Gaussian deflection
field.
Recently, Ref. [52] pointed out that a shear estimator

[50,51] is to good approximation robust against contami-
nation from isotropic foregrounds (at the cost of lower
signal to noise in the reconstruction). The fact that we find
no bias in the reconstruction from EB;EB, for which the
quadratic estimator corresponds to a shear estimator,
suggests that a shear-only estimator could also be less

FIG. 14. Bispectrum-induced Nð3=2Þ bias in temperature-based
measurements for different experimental configurations. Differ-
ent from the results shown in BSS16, these curves are derived
from a lensing bispectrum model that includes post-Born cor-
rection and uses a simulation-calibrated fitting formula to the
matter bispectrum. The lines are labeled by noise in μK − arcmin,
beam FWHM in arcmin, lmin and lmax. The size of the bias is
sensitive to the maximal, signal-dominated CMB scale that is
used in the reconstruction.

FIG. 15. Relative size of the non-Gaussian bias increases if we
only consider lenses at low redshifts zmax < zCMB. This is a
consequence of the different redshift scalings of the competing
terms in the lensing bispectrum from nonlinear structure for-
mation and post-Born effects. To illustrate this we ignore any
contributions to the lensing bispectrum and power spectrum with
z > zmax and plot the ratio of the resulting cross bias to the power
spectrum. These results suggest that the non-Gaussian bias could
be more important for measurements of cross-correlations of
CMB lensing with low-redshift tracers. We note that the curves
shown here are still preliminary and should be seen as a
motivation to investigate the bias on cross-correlations in future
work (Böhm et al. in prep). Note that the curves show the bias
from gradient modes only and do not take into account lensing by
curl modes.
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sensitive to the nonlinear bias [this can also be seen
analytically because the shear estimator has an additional
angular dependence, which should lead to additional
cancellations in the bias integrals in Eq. (A1)]. This
possibility could be easily tested on simulations and could
be explored in future work. Another mitigation strategy that
could be explored is removing small scales (e.g., with
l≳ 2000) in the observed lensed CMB that enters the
gradient leg of the quadratic estimator. This strategy is
motivated by the fact that the bias scales strongly with the
maximum CMB scale used in the reconstruction. It has
been shown to reduce similar biases in cluster lensing [71]
as well as biases originating from foreground contamina-
tion [33], while only losing little signal-to-noise. Even
though all these paths are interesting and should be used as
independent checks, we stress that the results obtained in
this work suggest that the bias can be theoretically modeled
and subtracted. The cosmology dependence of the bias,
specifically on σ8, might require iterative estimation and
raises the question if the bias could be used as a signal on
its own. Given its smallness compared to the lensing
reconstruction noise, this does not seem very promising.
The presence of this bias, however, should be taken as a
motivation for the design of estimators that implicitly take
the non-Gaussian structure of the lensing convergence into
account, thus exploring its full information content.
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APPENDIX A: ANALYTIC PREDICTION FOR A
BISPECTRUM-INDUCED CMB LENSING BIAS

All CMB lensing analyses to date assume that the
lensing convergence is a Gaussian field. However,

nonlinear structure formation and multiple correlated
lenses introduce a small, but detectable amount of non-
Gaussianity [35,53–55]. In the limit of small density
perturbations, the non-Gaussian structure can be charac-
terized by a hierarchy of connected correlation functions.
To lowest order, the lensing convergence acquires a
bispectrum.
The lensing bispectrum introduces an additional term to

the standard four-point estimator [compare Eq. (9)]. This
new bias was first identified in Ref. [34] (BSS16). Its name
follows from the naming convention for CMB lensing
biases, where biases are labeled by their power in the
lensing power spectrum. The N3=2 bias arises because the
lensing bispectrum changes the lensed temperature four-
point function.
BSS16 estimated that the N3=2 bias could change the

measured lensing power spectrum in temperature-based
CMB lensing analyses at the percent level.
The estimation of the size of the bias in BSS16 is based

on the numerical evaluation of analytically derived expres-
sions. This evaluation relies on a number of assumptions:
(1) The lensing bispectrum contributes to the lensed

temperature four-point function with 8 terms. Due to
the complicated structure of these terms (they
involve six-dimensional coupled integrals over
reconstruction weights g, the lensing bispectrum
and CMB power spectra), only two of these
terms were evaluated. These two terms were
chosen because they factor maximally under the
reconstruction weights (one of them can even be
split into a product of 3 two-dimensional integrals).
Their structure suggests that these terms are the
dominant contributions to the bispectrum-induced
bias.
For temperature-only reconstruction, the two

terms read

Nð3=2Þ
1 ðLÞ ¼ −4A2

LSL

Z
l1;l

gl1;L½l · ðl1 − lÞ�

× ½l · ðL − ðl1 − lÞÞ�
× CTT

l Bϕ½l1 − l;L − ðl1 − lÞ;−L�

Nð3=2Þ
2 ðLÞ ¼ 4A2

LSL

Z
l1;l

gl1;Lðl1 · lÞ½l1 · ðL − lÞ�

× CTT
l1
Bϕðl;L − l;−LÞ; ðA1Þ

with

SL ¼
Z
l2

gl2;Lðl2 ·LÞCTT
l2

≈
1

2
A−1
L : ðA2Þ

For polarization-based reconstruction, the struc-
ture of the terms is similar, but with additional
angular dependencies (see Ref. [34] for details).
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In cross-correlations, all other terms vanish and the
bias depends only on the two terms above.

(2) The evaluation in BSS16 only considered nonlinear
structure formation as a source of the lensing
bispectrum. Recently, Ref. [35] pointed out that
an additional lensing bispectrum arises from multi-
ple correlated lensing deflections. The effect of
multiple deflections is commonly ignored in the
Born approximation. Both effects, post-Born cor-
rections and nonlinear structure formation, lead to
lensing bispectra of the same order of magnitude but
for certain triangle configurations of opposite sign.

(3) The modeling of the bispectrum from nonlinear
structure formation in BSS16 relied on a tree-level
perturbation theory, which breaks down on small
scales (and the bias was shown to be sensitive to
replacing the linear matter power spectrum by its
nonlinear (HALOFIT [61]) counterpart in the matter
bispectrum model).

(4) The theoretical modeling of the bias relied on a
Taylor series expansion of the lensed CMB in the
deflection angle and thus on the assumption of small
deflection angles.

(5) Whereas BSS16 provide theory expressions for the
bias to lensing measurements from temperature and
polarization, they have only numerically evaluated
the bias for temperature-based reconstruction. The
expressions for polarization have additional angular
dependencies which introduce oscillations that
makes their evaluation numerically very challeng-
ing. These oscillations should also average out in
the integrations and result in smaller bias terms in
polarization than in temperature.

In this work, we use an updated analytical prediction for
the bias. We use the expressions given in BSS16 but use a
different bispectrum model that includes the bispectrum
from post-Born effects and uses an extended, simulation-
calibrated, semianalytic model for the matter bispectrum
[62]. Results with this new bispectrum model are shown in
Fig. 14 for different experimental setups and plotted
together with the measurement of the bias in Sec. IV.
For a CMB-S4-like experiment (red curve in Fig. 14),
we find a cumulative bias over noise of ∼3σ in lensing
reconstruction from temperature only (assuming fsky ¼ 0.5
and a bin width of ΔL ¼ 100). The maximum bias-over-
noise per L-bin in this configuration is 1 in the lowest bin
(centered on L ¼ 150).

APPENDIX B: NONLINEAR BIAS FROM
BISPECTRA INVOLVING THE CURL
OF THE LENSING DEFLECTION

Allowing for multiple deflections introduces an addi-
tional degree of freedom, ω, to the linear mapping between
the lensed and unlensed image of a source, which describes
a rotation of the image [72]. With this additional degrees of

freedom, the lensing deflection angle is no longer a pure
gradient field but acquires an additional curl component,

αðxÞ ¼ ∇ϕðxÞ þ �∇ΩðxÞ; ðB1Þ

sourced by the curl potential Ω [73]. We use an � to denote
a rotation by 90 degrees and, for notational simplicity, also
abbreviate the combination of rotation and scalar product,
·�, in the following by �.
Being second order in the gravitational potential, the

rotation is suppressed compared to the first-order conver-
gence and shear distortions to the image. We thus expect
the largest bias that involves the curl potential to be sourced
by a “cross” bispectrum of the form BΩ;ϕ;ϕðL; l;−L − lÞ
[35]. The curl potential can be treated in complete analogy
to the scalar lensing potential ϕ. For example, when
expressing the effect of lensing on the CMB in terms
of a small perturbation to the unlensed CMB, we can
write [74]

T̃ ¼ T þ δΩT þ δϕT þ δ2ΩT þ δ2ϕT þOðϕ3;Ω3Þ: ðB2Þ

Adapting the flat sky approximation, the first two terms are
given in harmonic space by

δΩTðlÞ ¼
Z
l0
½l0 � ðl0 − lÞ�Tðl0ÞΩðl − l0Þ ðB3Þ

δϕTðlÞ ¼
Z
l0
½l0 · ðl0 − lÞ�Tðl0Þϕðl − l0Þ: ðB4Þ

Using this perturbative framework to model the lensed
temperature four-point function, Ref. [34] shows that the
two dominant terms in the Nð3=2Þ bias are sourced by
contractions of the following expectation values over ϕ
and T [34],10

Nð3=2Þ
1 ½ϕ3� ← hδϕTδϕTδϕT 0T 0i

Nð3=2Þ
2 ½ϕ3� ← hδϕTTδ2ϕT 0T 0i: ðB5Þ

A bias sourced by the cross bispectrum BΩ;κ;κðL; l;−L − lÞ
(we refer to it as Ñð3=2Þ) should therefore be dominated by
contractions of the following expectation values:

10By contractions we mean the terms that arise from taking the
expectation value over unlensed CMB realizations. Assuming
that the unlensed CMB is Gaussian, each expectation value can be
split into a sum of three terms. We only consider the bias arising
from one of these three terms, which BSS16 identified as the
dominant one. Also, for readability, we do not write the symmetry
factors that arise from permutations of T; δT and δ2T that leave
the result invariant.
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Ñð3=2Þ
1 ½ϕ2Ω� ← hδϕTδϕTδΩT 0T 0i1a þ hδΩTδϕTδϕT 0T 0i1b

Ñð3=2Þ
2 ½ϕ2Ω� ← hδΩTTδ2ϕT 0T 0i2: ðB6Þ

The expressions for the dominant contractions arising from
1a and 2 are identical to the auto bias [Eq. (A1)], but with
Bϕ3

replaced by Bϕ2Ω and SL replaced by,

S×L ¼
Z
l2

gl2;Lðl2 �LÞCTT
l2

¼ 0: ðB7Þ

This integral vanishes because the integrand is uneven
under the angular integration. The remaining dominant
contraction from 1b is of the form

Ñð3=2Þ
1b ðLÞ ¼ −4A2

LSL

Z
l1;l

gl1;L½l � l1�

× ½l · ðL − ðl1 − lÞÞ�
× CTT

l Bϕ;ϕ;Ω½l1 − l;L − ðl1 − lÞ;−L�: ðB8Þ

Because of the mixing of sines and cosines in the angular
integrations in Eq. (B8), we expect this contribution to be
strongly suppressed compared to the corresponding term in
the bias from the auto bispectrum.
This short calculation suggests that biases from bispectra

involving the curl component are likely to be negligible for
current and upcoming CMB experiments.
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