PHYSICAL REVIEW D 98, 123508 (2018)

Deflection of light and time delay in closed Einstein-Straus solution
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We investigate strong lensing by a spherically symmetric mass distribution in the framework of the
Einstein-Straus solution with a positive cosmological constant and concentrate on the case of a spatially
closed Universe (k = +1). We develop a method based on integration of differential equations in order to
make possible the computation of light deflection and time delay. By applying our results to the lensed
quasar sloan digital sky survey (SDSS) J1004 + 4112, we find that the bending of light and the time delay
depend on wether the present value of the scale factor a is or is not much smaller than a value close to

9.1 x 10* m. Beyond this value, the results are almost the same as for the spatially flat Universe.
Moreover, it turns out that a positive cosmological constant attenuates the light bending in agreement with

Rindler and Ishak’s finding.
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I. INTRODUCTION

On the strength of Rindler and Ishak’s finding [1], and
several subsequent works [2-0], it is already well estab-
lished that a positive cosmological constant reduces the
bending of light near an isolated spherical mass in Kottler
space-time.

Many authors have considered the simplest case of a
spatially flat universe (null curvature k = 0) to investigate
the same problem in a more realistic model, namely, the
Einstein-Straus solution [7,8] in the presence of a cosmo-
logical constant [9]. In such a model, it is assumed that the
bending of light by a lens happens only inside a Kottler
vacuole (Schiicking sphere) embedded in an expanding
Friedmann universe. Within the same framework, Ishak
et al. [10], Schiicker [11], Kantowski et al [12], and
Schiicker [13] have proven that the effect of the cosmologi-
cal constant on light bending is only diminished without
however being dropped, contrary to what has been argued in
Refs. [14-16]. In Refs. [17-19], the authors have gone a step
further and investigated the cosmological constant’s effect on
time delay, in which case the computation of the photon’s
travel time outside the vacuole is particularly simple using
some properties of Euclidean geometry.

Even though the current observations predict that the
Universe is very close to flat, it would nevertheless be
interesting to treat the bending of light and the time delay in
the Einstein-Straus solution considering the case of a
spatially closed Universe (positive curvature k = +1)
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and discuss the possible impact of positive curvature on
light bending and time delay. In such a case, the photon
outside the vacuole no longer travels in a straight line. For
this reason, the argumentation will be based only on the
integration of differential equations.

We will use the same units as in Ref. [11]: astroseconds
(as), astrometers (am) and astrograms (ag),

1 as =4.34 x 10! s = 13.8 Gyr,
1 am = 1.30 x 10%® m = 4221 Mpc,
lag=699-10° kg =3.52x 102 My, (1)

where M is the solar mass. In these units,

1

¢=1amas™!, Hy=1as",

(2)

87G =1 am’as2ag™!,

where H, is the Hubble constant.

II. MATCHING OF KOTTLER’S AND CLOSED
FRIEDMANN’S SOLUTIONS WITH A
COSMOLOGICAL CONSTANT

To construct the closed Einstein-Straus metric, we
shall start by matching between the Kottler and closed
Friedmann metrics on the Schiicking sphere (Kottler
vacuole) by calculating the Jacobian of the transformation
between the Schwarzschild and the Friedmann coordinates.
Let us denote by (T, r, 6, ¢) the Schwarzschild coordinates
and by (¢, y,0, @) the Friedmann coordinates. The Kottler
metric

© 2018 American Physical Society
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ds* = B(r)dT? — B(r)~'dr? — r*(d6* + sin’0dg?),

B(r)i=1——-2/2 3)

reigns inside a vacuole of radius rg.,;(7) centered around
a spherical mass distribution (the lens) with r < rqgp;.
The Friedmann metric in the case of a spatial positive
curvature, k = +1,

ds* = di* — a(t)*[dy? + sin’y(d6* + sin®0de?)],  (4)

describes the space-time geometry outside the vacuole,
X = Xscni» Where the scale factor a(r) is determined by
integration of the Friedmann equation

Y_f@  fla=\orie-k ()

where the constant A results from the energy conservation
law

A= pa3/3 = pdustoa?)/S’ (6)

for a nonrelativistic matter-dominated universe with the
present dust density pgusio
Pausio = 3 — A+ 38, Qg = kay?, (7)
computed using the fact that the Hubble constant H, =
a,(0)/ay in the system of units (1) is 1 as™' (the lower
index ¢ denotes differentiation with respect to time). The
parameters £, and a, represent, respectively, the curvature
density of space at the present time and the scale factor at

the present time. The two solutions are connected at the
boundary of the Schiicking sphere by requiring

rseni(T) = a(t) sin yscng- (8)

The mass M is expressed in terms of the Schiicking radius
as

Az .
M= 3 Faenil = 4mASI® ygopng, 9)

which can be inverted to give

) M \1/3
oo (2] o

So, we have on the Schiicking sphere

A

A .
Bgeni = B(rsena) = 1 — <;+§az> SIS (1)

To connect the two solutions, proceeding in a way
analogous to what has been done by Balbinot et al. [9]
and Schiicker [11], we will pass from Schwarzschild
coordinates (7, r) and Friedmann coordinates (7,y) to
the new coordinate system (b, r). In this new coordinate
system, the Kottler metric can be rewritten as

1
ds> = BY¥(b)db? — dr* — P dQ2, (12)

where the function W (b) is defined by

dr
Y(b):=—. 13
(b) = (13)
‘We now rewrite first the Friedmann metric in the coordinate
system (a, ),

— a’dy? — a*sin’ydQ?, (14)

and convert the factor a’sin’y in r> under a second

coordinate transformation (a,y) — (b, r),
a:=®(b,r), siny = r/®(b, r), (15)

with the boundary condition that at the Schiicking radius
old and new time coordinates coincide,

a=b=®(b,bsinys)- (16)

The Friedmann metric then becomes

R (®—rd,)? @2
WZ@Qr@ﬂJW—LyqzvﬂW
O—rd,) @
+20, [% + F] dbdr — 2dQ?,  (17)
1

with ®, = 0®/9b, ®, = 0®/Jr and

A A
=/ =+ =®% -1, 1
C Vq>+3 (18)

Since the metric should be diagonal, this implies the
absence of mixed terms, i.e., gfr = 0. Then,

A A
=1 — 2
B, =1 < 3+3)r. (19)

Therefore, the Friedmann metric can be put in the form

rC%

®, = ——L,
@B,

®> B 1
b Ldb? ——drt — 2dQ?. (20)

ds? = ——b_ 21
YT B
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Differentiating the boundary condition (16) with respect
to b, we obtain at y = yscni

cDb'Schij = q)b(b’ b Sin)(smn)

2
COS™ ¥'schii

21
BSchti ( )

=1 — @, [gep; SN yscns =

The matching of the two solutions continuously on the
Schiicking sphere in this coordinate system (b, r,8, )
results in

ngb|sChu = g§b|Schii’ 9lsens = 9 lsena-  (22)

We can demonstrate that

CSchii
B\ |schis = Bschi» Cilsehs = P (23)
with Cg,; defined by
BSchii

Csenig = 1|1 =——F——. 24
Seh oS ¥ schi 24)

The relations (22) yield

SIN Yschii
Yb)=— """ (25)
BSchii(b)CSchﬁ(b>

Repeated use of the chain rule then gives

ot 0t 0® db ot 0t od

OT ~ 8a db OT"  Or da or’

% _Oxob 8_)(:#<1_L5£> (26)
or  0boT’ or cosy \® @ 0r)’

Hence, the Jacobian of the coordinate transformation
(T,r) - (t,y) at the Schiicking radius y = ysupg IS
given by

ﬁ = COS YSchii Q S Cschi ©0S ¥scha

OT | ey o Or|senii Bsoni ’
Ol _ _CseniCOSyseni  Ox|  _ cOSKschi
OT | e a ’ Or |sehi aBscni

27)

and the Jacobian of the inverse coordinate transformation
(t,y) = (T,r) is given by

OT|  _ cO8 fschi OT|  aCsepis COS Yschi
- 5 a — - 5
Ot | geni Bschii O |sehi Bschii
or or
o = Cschii €OS Yschii» 9, = A COS ¥schii-
Tlschii X | Schii

(28)

To compare the Schwarzschild coordinate time 7 with
that of Friedmann ¢ on the Schiicking sphere y = ygcni, We
consider the parametrized curve, T = p, r = bsin ysu
(@ =n/2, p =0). Its 4-velocity is given by

dT
=1,
dp
dr drdb dT
dp dbdT Sehi dp Schii &~ Schi ( )

in Schwarzschild coordinates and

de_on| dT o dr_ Buw

dp  OT|squdp  Orlsequadp  COS ¥schi

d 0, dr 0 d

dr _O¢| 4T Oy dr_ (30)
dp  OT|sepadp ~ Or|sens dp

in Friedmann coordinates. Finally, we deduce the relation

ar

_dTdp  co8 yschi
dt

_ _ , 31
schi  dp dt Bschii G

which allows us to pass from the Schwarzschild coordinate
time to the Friedmann coordinate time and vice versa.

III. EQUATIONS OF NULL GEODESIC MOTION

Since these are the final conditions on Earth that are
known, it seems more convenient to consider two photons
C and D emitted by a source S (quasar) at different times,
tg # t, follow different trajectories and are received on
Earth E simultaneously at 7z = t; = 0 with the angles a
and o'. As shown in Fig. 1, these two photons, during their
propagation in curved Friedmann’s space-time, penetrate
the Schiicking sphere, respectively at fguus and g s
where they get deflected by a lens L (galaxy cluster)
respectively at minimum distances rp and r}, (perilens),
which are much larger than the Schwarzschild radius
(Fsehw = 2GM = M /4r), and then leave the Schiicking
sphere respectively at fg.pgg and 7Gx

In the presence of a cosmological constant and a
nonzero spatial curvature, exact analytical solutions of
the Friedmann equation (5) for the cosmic time #(a) can
be obtained in terms of elliptic integrals of the second and
third kinds, the inverse function for the scale factor a(¢) of
which is not known. Nevertheless, one can alternatively
proceed to a numerical resolution. We will therefore
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FIG. 1.
sphere, these two photons do not travel in straight lines.

determine the scale factor a(7) by numerical integration of
the Friedmann equation with final condition a (7 =0) = ay.
To compare our results with those obtained previously in
the flat case, we use the same experimentally measured
value of cosmological constant A = 0.77 - 3 am™2 4 20%
or in cm™ units A = 1.36 x 107°% cm™ £20% as in
Refs. [5,11,18] and dust density pgu0 = 3 — A + 3ag>.

To determine the Earth-lens geodesic distance y; and the
Earth-source geodesic distance yg, we will also need to
solve numerically the radial null geodesic

dt
which ensures that y () is a decreasing function of time. But
the right-hand side of this equation depends on the solution
a(t) of the Friedmann equation, which is not known. We
can get around this problem by introducing the function
f(a) through the Friedmann equation dt = da/f(a) and
the redshift formula 1 + z = ay/a,

x(z) = /_00 %,

I+z

(33)

where we have taken the origin y(z =0) =0 at the
position of the Earth; thereby, y; and yg will be respectively
calculated for any given value of z; and zg. Since these
are the final conditions at the arrival on Earth which are
given, it is more appropriate to proceed backward in time.
We will first determine 7§, and fs.,gg and then 75, s and
fschiis to calculate the angle g and finally 7§ and 7 for the
computation of the time delay.

A. Null geodesics between the Schiicking sphere
and the Earth

In this region, the photon trajectory is governed by the
closed Friedmann metric (4). The corresponding nonzero
Christoffel symbols in the equatorial plane = z/2 are

I, =aa, I, = aa,sin’y, %, = —siny cosy,
Iy, =a,/a, Iy, =a,/a, Iy, =coty. (34)

o tSehiis

Two photons emitted by a source S, bent inside the Schiicking sphere and finally received at Earth E. Outside the Schiicking

Then, the geodesic equations read

i+ aa,(y* + sin’y¢p*) = 0, (35)

¥ +2a'a,t y—sinycosyp?> = 0, (36)
$+2(ata,t + cotyy)p =0, (37)

where ":= d/dp, with p an affine parameter other than s

because the space-time interval for light is zero ds = 0. It
should be noted that the second equation might not be
needed for our purposes.

The upper photon would arrive at Earth with final
conditions (p = 0)

t=0, y=x. o@=m t=1,

. 1 . coty, tana’

X - bl - bl
ag\/ 1+ cos?y tan’a’ ag\/ 1+ cos?y tan’a’

(38)

where we use the fact that the physical angle o« coincides
with the coordinate angle arctan |tany;¢/y|. These final
conditions make it possible to integrate the geodesic
equations, which yield

. ; . cot
N RPN /.. )
a(t) a*sin’y 147
(39)

where the constants y/, (perilens) and f’ are defined by

cos y; siny; tan o , . Xpcoty;
Ao = , p = arcsin = —2=.
r V/1 + cos?y, tand NI

(40)

In Refs. [11,18], the distance traveled by the photon
between its exit point from the vacuole and its arrival point
on Earth, noted by y ¢nip (OF ¥Eschip), is computed by
means of some properties of Euclidean geometry that are
no longer valid in a curved Friedmann space-time in which
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the geodesic distances are not straight lines. The same
remark must be made regarding the distance traveled by
the photon between the source and its entry point into the
vacuole (ﬂff?,smus and ygschis). For this reason, we have
developed a method based only on Friedmann differential
equations, which remains valid in either flat or curved
space-time.

Differentiating the solution ¢ (39) with respect to y and
substituting into the closed Friedmann metric (4) for a
photon, we can easily get an equation linking the variable y

with time
dt d .

J&5=[55 dw= iz @
where we have taken into account that y between the
vacuole and the Earth increases with time. The right-hand
side of this equation could be easily evaluated between
Xscni and y; to give precisely the geodesic distance )(%,smuE
in terms of the arcsin function, but we do not know the
expression of scale factor in terms of time in the left-hand
side, so we shall first have to integrate with respect to
the scale factor by inserting the function f(a) via
dt = da/f(a). We obtain

a  da . Cos . . cos
/ — arcsin oS pregin oAl (42)
a

/SchﬁEaf(a) \% 1_){}% \% 1_)(%’

from which we easily deduce numerically the value of ag .
where ysq,; and y; are respectively given by Egs. (10) and
(33). The value of 7 &, at which the upper photon emerges
from the Schiicking sphere, is then calculated by numerical
integration of the Friedmann equation, i.e.,

A da
fopir = [ —— 43
SchiiE AO f(a) ( )

We point out that an equation linking the variable ¢ with time
may be established by the same manner as before and serve to
deduce the value of #g . using the polar angle at the exit
point from the vacuole

Xp COt Y schii
V=27

Similar formulas apply in the case of the lower-trajectory
photon, with 7 replaced by —z and o' replaced by —a. The
final conditions upon arrival on Earth are

Psenip = 7 — arcsin +p. (44)

t=0, y=x. o@=-m t=1,

. 1 . —coty, tana

)(7a \/1+ cos? 2q’ V1 2 2a
0 yotan“a a + cos“ytan“a

(45)

The integration of geodesic equations thus yields

L P
a(r)’ a’sin’y’
t
@ = —r + arcsin xpCOX -p, (46)

V1-1p
with

cosy; siny; tana xpcoty;

xpi= , pi=arcsin .
/14 cos?y; tan’a NI

It follows that the polar angle at which the lower-trajectory
photon emerges from the Schiicking sphere is

(47)

t .
XpCO )(Sczhu ) (48)
V1-xp

The value of fgy,;z at which the lower photon emerges
from the Schiicking sphere is obtained by means of a
formula similar to Eq. (43), i.e.,

AschiiE d a
ISchiE = / N (49)
o fla)

in terms of ag.,ig, Which in turn is calculated by means of a
formula similar to Eq. (42), i.e.,

QschiE = —7 + arcsin

a  da . COS YSchii .. cosyr
/ — = arcsmi‘:;J —arcsin——=—.  (50)
AschiE

af(a) 11—y NIy

However, as in the flat case [18], one can proceed
otherwise, without further numerical computation to obtain
the time fg,;g for the lower-trajectory photon. The method
consists of determining fg,3g by difference with 7, e
through an approximate analytical expression. Combining
Eqgs. (42) and (50), one gets, after evaluating the integrals
with respect to time,

fsonie dt COS ¥ Schii . cosyL
—— = arcsin -
ISchiE a(t)

V1-13

To approximate the left-hand side of this equation, one may
use the fact that the scale factor a(r) varies significantly
only on cosmological timescales. Then,

fot — Foun
Ths ~ SchiE__ShAE (52)
ASchiE

A plausible approximation could be done for the right-hand
side in the limit of a small perilens, y» < 1 and y), < 1 (of
order 107° in our case), which is motivated by the observed
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small @ and @ of the order of a few arc seconds (~1077).
One gets up to second order in the physical angles @ and
on account of Egs. (40) and (47),

1

rths ~ 3 (cot yseni — cotyr) (xp — X7) (53)

| sin y
= ESIH()(L ~ Xschit)COS XL = . (@® —a?). (54)

SIN Y Schii

Equating the two sides, we get

1
/ ~ : _ 2
ISchiiE — ISchiE = > Ageniie SIN(YL = XSchi)COSTX L,
Sin/'{L
—2= (@ — a”). (55)
S10 Y Schii

Knowing the value of g . from Eq. (43), one can deduce
the value of 7,z from this approximate expression. This is
clearly positive for @ > «, meaning that the lower photon
leaves the vacuole before the upper one.

The two 4-velocities of the upper and lower photons at
points of exit from the vacuole are respectively

/
7 _ Qo ./ _ aOdSchii . _ aoXp
SchiE = 7 v XSchiE = 12 ) Pschie =~ 1
SchilE ASchiiB T'SchiE
(56)
and
. ) . _aoGschii . _ —aoxp
ISchiE = s XSchiE = 5 , PSchiE = 3 ,
AschiiB SchiiE T'SchiiE
(57)

using Eq. (39), in Friedmann coordinates, where the
value of agyg i calculated by numerical integration of
the Friedmann equation (49), with ggi = ¢ (¥schi)»
schii = 9(schi) (41), and rg ik = genip SINYSchits I'SchiE =
Asehiik SIN Yschii> Using the matching condition (8). These
two 4-velocities can be translated, thanks to the inverse
Jacobian (28), into Schwarzschild coordinates,

. Ao COS ¥ Schii
/ _ %0 Schii 7 /
Tsenie = —— B (1 + CoepipYscha)»
AschiE P schil
. agp COS ¥schii /v ,
FehiE = 7 (Cscnae T Ischi) (58)
SchiiB

for the upper photon and

Qg COS ¥schii

Tschie = — B (1 + CschiieYschii) -
AschiE P schiE
. ag COS ¥schii
Fehi =~ — (CsehiiE + schii)» (59)
SchiiE

for the lower photon, where Bz and Bggsg have been

defined in Eq. (11) with Chyy = /1 = Byeyge/ 05 Zscns

and Csepg = \/ 1 — Bsenie/ €0S” Aseni-
Let y% and yx denote respectively the smaller coordinate

angles between the unoriented direction of the upper-
trajectory photon and the direction toward the lens and
between the unoriented direction of the lower-trajectory
photon and the direction toward the lens. We have

N / ! / -1
;o ; PschiE| _ Xp(Csehie T Ischi)
Yk = arctan |rg e = arctan -
SchiiE COS ¥schii SN ¥ Schii
(60)
and
. -1
PSchiE 2p(Cschik + Gschii)
YK = arctan FSchiiE = arctan - .
I'SchilE COS ¥schii SN X' Schii

(61)

B. Null geodesics inside the Kottler vacuole

In this region where the Kottler metric prevails, we shall
not go deeper into the details leading to the same results
already discussed in the flat case [11,18], and what we will
have to do is to first calculate the scale factors af ;s and
aschis and then their corresponding times 7§, and fgcps,
at which the two photons enter inside the vacuole, by
integrating the Friedman equation with final conditions at
the exit points from the vacuole.

The partially integrated geodesic equations for the upper
photon in Kottler space-time (3) are

. 2 1/2
- poa(1_TE BONT
”ZB(’JP)

. rp
= P 62
N A (62)

where r, is the perilens. The travel time of the upper photon
inside the vacuole from the entry point to the exit point
can be obtained by using the relation (31) between the
Schwarzschild time T and the Friedmann time ¢,

t,c ] dt
T. T = COS ys h"/ShE (63)
SchilE SchiiS chii b Bseni (1)
Agenie da
= COS YSchii / Be () fla) (64)
o Ay piis BSchl'i(a)f(a)

owing to dt = da/ f(a). Another expression for this travel
time can be obtained by making use of the well-known
equation
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R e 3Tt
dT_iv,(r>, (r) = B(r)4/1 B

(65)

which follows immediately by eliminating the affine
parameter between T and i in Eq. (62). The perilens rp
is given approximately by [11]

rp & Iengg Sin Vg — M /87, (66)
which is obtained by developing the smaller coordinate
angle y% (60), using 7 and ¢ of Eq. (62), to first order in the
ratio of the Schwarzschild radius to the perilens M /4zr),
which in our case is of order 107>, The integral of the right-
hand side of Eq. (65) can be split in two integrals according
to the fact that r decreases with time from r{ ;5 to r» while

Tsene  dF

i ; / .
it increases from rjp t0 rg g, 1-€.,
Tsenss  dF
SchiiS
T =T . :/ —|—/ (67)
SchiiE SchiiS ! ! ’
s v (I” ) ) v (r )

where rg.p and rg s are related respectively to af e
and ag,,s by the matching condition (8). It follows from
Egs. (64) and (67) that

Ao S Xschi ¥ s S0 schi dr
) v'(r) r v'(r)

P P
da

Agepie
— P YIS ’ 68
COS ¥Schii L / Bgepi(a)f(a) o

SchiiS

which enables us to obtain ag, ;s by numerical integration.
Then, we have to integrate numerically the Friedmann
equation to obtain g ., ..,

a ais dd
A f— 69
SchiiS /a ) f(a) (69)

Following the same reasoning as for the upper trajectory,
we get for the lower trajectory similar formulas, i.e.,

asenis  da
Ischis = / TR (70)
o fla)

with agis calculated by numerically solving the equation

/aSchuESinZSchij dr +/¢15chus singscha  dr
rp o(r) )i, v(r)

/aSchﬁE da (7 | )
— COS ¥Schii .
> aschiis BSchij (a)f(a)

where rp is also expressed by a formula similar to Eq. (66),

Fp = FSchilE Sin)/KE—M/gﬂ'. (72)

We can avoid numerically computing the time fg.;s
for the lower-trajectory photon following the same
approximation method described in Ref. [18]. It could
be determined by difference with 75, ;5 via an approximate
analytical expression. First, thanks to the relation (31)
between the Schwarzschild time 7 and the Friedmann time
t, we may express the difference in the travel times of both
photons inside the vacuole as

/ /
TSchﬁE - TSchl'iS - (TSchiiE - TSchiiS)

oS / 1S ehiE dt
= X Schii Y
tse Bschi(?)

fehis dt
— COS ¥Schii / (73)
o tonss Bsehii (7)

[/

SchiE SchiE

= COS ¥schii B
SchiE

fchiis — Ischiss (74)

’

— COS ¥'Schii B!
SchiiS

where we have used the fact that Bgy,; vary appreciably
only on cosmological time intervals with Bg,.r =
Bsenii(fscnie)  and - Bienp = Bschi (Zsnge)-  Second,  we
can make use of Eq. (65) to write this difference in travel
times as

Tsehie = Tsenis = (Tschie = T'schiss)
Tsenie d Toenis A
:ATK+/S“—r +/“S—r . (75)
r T'Schiis v(r)

SchilE U(r)
where we have broken up the integrals to produce the
following expression:

'JSchiiE d r T gchﬁs dr
AT, = = o
« [J v'<r>+/; ()

P

Tsenie A Tsenss AT
— — — . 76
</ v<r>+[,, v<r>) 70

We may interpret this as the difference in the travel times
between the upper photon and an imaginary lower photon
that starts from the same point as the upper photon rg .
deflected by the lens at the perilens rp, and finally arrives at
the same point as the upper photon r,s. This latter
expression, Eq. (76), is almost identical to an expression
already involved in the calculation of time delay in the
Kottler solution [20], just with ry replaced by r§. g, s
replaced by r¢ s, 7 Teplaced by 7/, and r replaced by rp.
The result is

123508-7



MOURAD GUENOUCHE and SAMI RYAD ZOUZOU

PHYS. REV. D 98, 123508 (2018)

2201 1 M
ATKer i ( ; +— ) —i——lnr—P
2 Pas Pl
SchiiE SchiiS

5 ( M )2 ry —r?
4rry 8r3
3 A
X \/; [arctanh (\/;”/smma)
A /
+ arctanh 3 sehis | |- (77)

Furthermore, since we deal with smaller length and time-
scales than cosmological ones,

/’jsmuE dr - r/schﬁE — I'SchiiE
,

/ 9
Schif U ( 7‘) USchiE
/ /
/’smus dr  I'schiis — "'SchiiS (78)
N 7 )
roass V() USchiis

and, using the Friedmann equation,

/ _ / s
T'SchiiE — 7'SchiE = (aSchﬁE — Agcnge) SIN Yschi

= fsenae SN schi (Fsenag — fschie)s  (79)

/ _ / :
Tenis — T'schiis = (@senus = dchiss) SN Y Schii

= fSenus SIYschit (Pscnas = fschis)- (80)

with  Vap = (rsenap)s  Uschas *= V(Fschas)> S schar =
flasepir)> and fSeus = f(a@5ps)- Using this together with
Egs. (77), (75), and (74), we therefore get

/
Ischiis — Ischiis

ATK + (ffgchmg/ SiN schi _
~

COS ¥ Schii /
. ) (#SenaE — Ischie)

UschiE Benie
~ . -
(f Schiis SINXSchi | €OS ;(Schﬁ)
! /
VSchiis Bienis

(81)

Then, the knowledge of 75, allows one to deduce #g.ps,
where 7. — fschae 18 given by Eq. (55). It should be
noted that the lower photon enters the vacuole after the
upper one, even though it leaves the vacoule before.
Admittedly, this is caused by the fact that the upper photon
more strongly undergoes the gravitational effect since it
passes closest to the lens (rp, < rp) as shown in Fig. 1.

We should also compute the angles ¢ s and @schis as
well as the 4-velocities at points of entry into the vacuole,
needed for the next section. It would be necessary to make
use of the well-known equation

u'(r)’
2 M /
uw(r)=r %—1 1-—— <’AP+ r,>, (82)
rp drrp \r  r+T1p

which follows from Eq. (62), in which the cosmological
constant A incidentally disappeared. Because the angle ¢
increases when the upper photon approaches the lens as
well as when it moves away, the integral of the right-hand
side of Eq. (82) along the trajectory may thus be split up as

Fsaie  dF Tsenss  dF
Pschie — Pschiis = / O] + /,P ——  (83)

" '(r)
and gives, to first order in the ratio M /4zr),

r'p L7
-+ arcsin

/ ~ / _ H
Pschiss = Pschge — 7 T arcsin /7 /7
SchilE SchiiS

M r/2 r/2
el R e
8xr e 2
P SchilE SchiiS
/ / / /
+ T'schie — 'p 4 TSchiis — ''p (84)
J J J ] b4
Tsehie T 7'p Tschas T 7'p

where ¢, is given by Eq. (44). In the same manner, we
obtain for the lower trajectory

Pschiis = Pschip + 7 — arcsin — arcsin

I'SchiiE I'Schiis
M 72 r2
P P
+ 3 1-— +4/1—-—
rp T'SchiE TSchiis
I'SchiE — I'p I'Schiis — I'p
+ \/ + , (85)
'schig T 7'p T'Schis 1 7'p

where @gpnig 18 given by Eq. (48). On account of Eq. (62),
the two 4-velocities of the upper and lower photons at
points of entry into the vacuole are respectively

12 p!
Thopis = 1 y _ TP Bses
chiiS = 7 ’ SchiiS ™ 72 /
B hiis TsenisB(rp)
/
,
" P
Pschiis = (86)
2 7
Téenis v/ B('p)
and
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2
. 1 . rpBschis
T — P _— "
Schiis = p > T'schiis = > B )
SchiiS Fsenis B(7p)
. —rp
Pschiis = (87)

Tsenis vV B(7p)

in Schwarzschild coordinates, where we have taken into
account that r is decreasing with time since both photons
approach the lens while ¢ is increasing with time for the
upper photon and decreasing with time for the lower
photon. These two 4-velocities can be translated, thanks
to the Jacobian (27), into Friedmann coordinates,

. COS ¥schii r2B. .
t/SchiiS = Asch <1 + C/SchiiS £t >’ (88)

/ -n /
Bgehiis TsenisB(7'p)
2 n/
y _ —COS ¥schii / +. 1= rp Bsenis
ASchis — 4Bl | “Schis 2 B(r)
SchiiS P Schiis SchisP\T'p

(89)

for the upper trajectory and

2
. COS Y'schii 7'pBschis
tsehis = ———— [ 1 + Csepist | 1 = ————1, (90
SchiiS SehiS ( SchiS réchﬁsB(rP)> ( )
2
. — COS ¥schii rpBschiis
Xschis =5 | Cschis T/l —5——
M Agenis Bsehis ( o TSenisB(7p)
(91)

for the lower trajectory.

C. Null geodesics between the source
and the Schiicking sphere

In this region where the Friedmann metric prevails, we
shall follow the same procedure as described in Sec. III A.
The integration of the two geodesic equations for the upper
photon, Egs. (35) and (37), with the final conditions at the
point of entry into the vacuole,

t = teniss X = XSchiis @ = Qseniss
1= fsens: X = Xschiss ? = Psengs (92)
gives
. E' ) J
"~ a7 dsiny
! /
@ = (p/SchiiS + aI’CSil‘l(Jl/_E()J/C/O;f()2 —. (93)

where the constants E’, J', and y’ are defined by

/ 2 pr
E = Agchiis COS XSchii 1+C 1— P Bscnis
= B SchiiS 2 B( /) ’
SchiiS TschiisP\'p

/ J/ E/ t .
lm P y' := arcsin U'/E) cotyrsens . (94)
VB(rp) 1-(J//E)?
We then deduce the expression of the angle ¢,
J'/E") cot
@y = Psepis + arcsin( /E) oty s -y (95)

where the geodesic distance y; g between the lens and the
source is approximated by

XLS=Xs —XLs (96)
owing to the fact that the deflection angle —¢g is of the
order of a few arc seconds (~107>). For the lower photon,
we just have to replace J' by —J and then obtain the
solution of the geodesic equations. We only give here the
expression of the angle ¢g,

(J/E)coty s

1—(J/E? o o7

@Ps = Pschiis — arcsm

where @g.his 1S given by Eq. (85) and

E o= @Schiis COSXsehii 4 4 Coust |1 = rpBschas
Bscniis . rSenuisB(re) )

(J/E) cot yschi

V1-=(/E?

The angles ¢’ and @5 must be equal due to the fact that
both photons are emitted by the same source. Among all the
parameters involved in the calculation of these angles, their
equality could only be ensured by a fixed value of the mass;
i.e., we have to vary M in order to get g5 = ¢. Once the
correct mass is determined, one should be able to compute
the time delay between both photons rg — ¢ (difference
between their total travel times). To achieve this, we first
need to compute the distance traveled by the upper photon
between the source and its entry point into the vacuole
(s senus)- Differentiating the solution ¢ (93) with respect to
 and substituting into the closed Friedmann metric (4), one
easily get an equation similar to Eq. (41), by using J'/E’
instead of y/p,

, y := arcsin

W(z) =1 = (' sin,
(99)
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where the negative sign indicates that y between the source
and the vacuole is decreasing with time. Obviously, the
evaluation of the right-hand side of the last equation
between y; s and ysqn gives the geodesic distance )(/sﬁs chiiS?

/“gchus da . COS Yschii
= arcsin —————=
o af(a) 1-(J'/E")
_ arcsin ——oXLS (100)

where we have inserted the function f(a) in the left-hand
side via dt = da/f(a). Numerically solving this equation,
one can deduce ag;s. Then, if one is interested in 7, it
suffices to use the Friedmann equation, i.e.,

a5 da

= @

£, (101)

Likewise, the emission time g of the lower photon is
obtained by numerical integration of the Friedmann equa-
tion, i.e.,

as da

5= @ (102)

where ag is calculated by numerically solving the equation

/ asais  da arcsin COS ¥Schii aresin COSyL.s
o  af(a) 1-(J/E)? V1-(/JE?
(103)

However, one can proceed, as in the flat case [18], in a
different manner directly computing the time delay through
an approximate analytical expression. Combining
Egs. (100) and (103), one gets, after evaluating the integrals
with respect to time,

/fsChus dt /fs dt
1 a(t) A a(1)

SchiiS

— arcsin —m 2SN _ gpegin ——oXLS
1—(J/E)2 \/1—(J/E)2
. COS ¥schii . COSYL.s
— arcsin ————"——— csSin —————=——,
1_(]//El)2 /1_(JI/E/)2

(104)

Using the fact that the scale factor a(f) varies noticeably
only over cosmological timescales, the left-hand side of this
equation can be approximated by

/ /
Ihs o Schiis = Ischas _ s = L
- !/ !/ :
Aschiis dg

(105)

Expanding the right-hand side to second order in J'/E" and
J/E (~107° in our case), on account of Egs. (95) and (97),
one gets

1 J\? J\2
ths ~ 3 (cot ¥schi — COty . s) {(E) - <E> } (106)

1 (@schis = #5)* = (@senas = ¢s)” (107)
—_ 2 ’

COtYschii — COLYL s

where @ us — @s and |@scs — @s| are of order 1072,
Equating the two sides, one arrives finally at

/
Ati=tg—1. = d ISchiiS ~ ’schiis
= s =dg

ASehis
_ l (@schis = ¢s)” — (Pschiss — ¥s)’
2 COtYschii — COLY L s

(108)

To sum up, the upper photon, after being the first emitted by
the source, also penetrates the first the vacuole, but it leaves
it the last in such a way that it reaches the Earth at the same
time with the lower photon.

IV. APPLICATION TO THE LENSED QUASAR
SDSS J1004 + 4112
In this last step, we apply our results to the lensed quasar
SDSS J1004 + 4112 [21-25] with
a =5"+10%,
77, = 0.68,

a=10"+10%,

zg = 1.734. (109)
The Earth-lens and Earth-source distances are calculated
by Eq. (33); y1 = x(z;) and yg := y(zg), with A = 0.77-
3 am™2 £ 20%. As we said before, the mass of the cluster
of galaxies M is varied until the equality ¢y = ¢ is
satisfied. It is worth noting that neither a value of a, nor
that of the cosmological constant A could make ¢gs
coincide. The special case a; = 5 am is addressed in detail
for maximum +, central £0, and minimum — values of «/,
a, and A. In addition, we have treated the case without
cosmological constant A = 0. The results are recorded in
Tables I, II, III, and IV.

We can see from Tables I, I, and III that an increasing
cosmological constant A within its error bar by 20% leads
to a decrease of the deflection angle —¢¢ by about 8%, but
this variation only increases the cluster mass M by about
1%. Thus, the bending of light clearly depends on the
cosmological constant. Note also the monotonous depend-
ence of the time delay At on the cosmological constant.

In contrast to the case of flat Einstein-Straus model
[11,18], where the present scale factor can be set to any
value without loss of generality, the results in Tables V
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TABLE 1.  Upper limit value of A: A = 0.77 -3 am™2 + 20% (a, = 5 am).

o +10% + + + +0 +0 +0 - - -
a+10% + +0 - + +0 - + +0 -
M(103 M) 2.14 1.95 1.75 1.95 1.77 1.59 1.75 1.59 143
—ps(") 9.99 8.17 6.35 10.89 9.08 7.26 11.80 9.99 8.17
At(yr) 11.52 8.95 6.58 12.04 9.52 7.19 12.44 9.99 7.71
TABLE II.  Central value of A: A = 0.77 -3 am™2 (ay = 5 am).

o +£10% + + + +0 +0 +0 - - -
a+10% + +0 - + +0 - =+ +0 -
M(103M,) 2.16 1.97 1.77 1.97 1.79 1.61 1.77 1.61 145
—ps(") 10.95 8.96 6.97 11.95 9.96 7.97 12.95 10.95 8.96
At(yr) 11.47 8.92 6.56 11.98 9.48 7.17 12.36 9.94 7.68
TABLE III.  Lower limit value of A: A = 0.77 -3 am™> — 20% (a, = 5 am).

a +10% + + + +0 +0 +0 - - -
a+10% + +0 — + +0 - + +0 -
M(1083M,) 2.14 1.95 1.75 1.95 1.77 1.59 1.75 1.59 143
—ps(") 11.59 9.48 7.38 12.64 10.54 8.43 13.70 11.59 9.48
At(yr) 11.27 8.77 6.46 11.76 9.32 7.05 12.13 9.75 7.55
TABLE IV. A =0 (aqy =5 am).

o +10% + + + +0 +0 +0 - - -
a+10% + +0 - + +0 - + +0 -
M(10M ) 2.00 1.82 1.64 1.82 1.65 1.49 1.64 1.49 1.34
—ps(") 12.99 10.63 8.27 14.18 11.81 9.45 15.36 12.99 10.63
At(yr) 10.36 8.07 5.95 10.80 8.57 6.49 11.12 8.96 6.94
TABLEV. o« =5", a=10", A=0.77-3 am™2,

ap(am) 0.1 0.3 0.5 0.7 1 2 3 4 5 6
M(1083M,) 0.04 0.29 0.62 091 1.22 1.62 1.73 1.77 1.79 1.80
—ps(") 4.03 6.64 8.05 8.82 9.38 9.85 9.93 9.95 9.96 9.96
At(yr) 0.17 1.30 2.90 4.40 6.08 8.44 9.10 9.36 9.48 9.55

and VI show that the mass, the deflection angle, and the
time delay are somehow related to the present scale factor
parameter. They decrease significantly as the present scale
factor gets smaller and smaller below a limit value close to
7 am (€, ~ 0.02). This dependence on @, comes from the
curvature density term in the Friedmann equation that
vanishes in the case of flat space (k = 0). Nevertheless,
above this limit value (€2, < 0.02), the effect of q is very
small, and the obtained steady values for the mass, the

deflection angle, and the time delay are found to be
indistinguishable from the flat case.' The same is true
for all possible values of o, a, and A within their
error bars.

'For accuracy, we correct the rounding error in our previous
work [18]: the time delay, with central values of «, @, and A,
should be 9.71 yr, not 9.72 yr.
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TABLE VL. o =5", a=10", A=0.77-3 am™2.

a(am) 7 8 9 10 1 12 15 19 30 100
M(1053M,) 1.80 1.81 1.81 1.81 1.81 1.82 1.82 1.82 1.82 1.82
—ps(") 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97
At(yr) 9.59 9.62 9.64 9.65 9.66 9.67 9.69 9.70 9.71 9.71

V. CONCLUSION

In this paper, we have computed the bending of light
and time delay in the positively curved Einstein-Straus
model with a positive cosmological constant. Unlike the
case of the flat Einstein-Straus model in which the
results remain the same regardless of which value is
chosen for the present scale factor [11,18], we show
that the bending of light and time delay decrease
considerably as the present scale factor becomes
smaller than a limit value about 7 am. The same holds
true for the mass of the lens. But for larger values of
the present scale factor, the results are almost compat-
ible with those obtained in flat Einstein-Straus model.
This limit value is an interesting result that could be
regarded as a lower bound on the radius of the Universe
today so that the spatial curvature, which is a property
of the Friedmann universe, does not affect the bending
of light nor the time delay.

Furthermore, the results confirm Rindler and Ishak’s
claim that a positive cosmological constant attenuates the
bending of light [1].

Even in the case of a negatively curved Einstein-Straus
model, we expect that the present value of the scale factor
should also have an effect on the bending of light and time
delay since the spatial curvature only changes its sign
(k = —1), leading to a nonzero curvature density as in the
case of the positively curved Einstein-Straus model. This
case will be investigated in a forthcoming work. The same
problem should also be extended to include the interior
Kottler solution, wherein the photons could pass through
the mass distribution [26].
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