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We find the leading-order effect of gravitational backreaction on cosmic strings for points near kinks and
cusps. Near a kink, the effect diverges as the inverse cube root of the distance to the kink and acts in a
direction transverse to the world sheet. Over time, the kink is rounded off, but only regions fairly close to
the kink are significantly affected. Near cusps, the effect diverges inverse linearly with the distance to the
cusp and acts against the direction of the cusp motion. This results in a fractional loss of string energy that
diverges logarithmically with the distance of closest approach to the cusp.
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I. INTRODUCTION

Cosmic strings are one-dimensional topological defects
which may form dynamically at a symmetry breaking
phase transition in the early Universe [1,2]. Models of
string theory also suggest the possibility that fundamental
strings (and D1-branes) can be stretched by the cosmic
expansion in the early Universe and form a cosmic super-
string network [3,4]. As massive objects generically in
motion, the strings radiate gravitational waves, and a
network of cosmic string loops would produce a stochastic
background (e.g., see Ref. [5] and references therein). They
are therefore of great interest to gravitational wave observa-
tories, many of which are actively searching for cosmic
strings [6–8].
The emission of gravitational waves is accompanied by

backreaction: cosmic strings self-interact gravitationally,
which generically changes their shape and has the potential
to affect the stochastic gravitational wave background.
However, owing to the complexity of a typical cosmic
string loop’s shape [9], it is generally infeasible to solve
analytically for the evolution of a cosmic string undergoing
gravitational backreaction. Analytic solutions are known
only for a few simple loop shapes [10,11].
Instead, we focus here on the self-interaction process

very near features of the cosmic string loop of particular

interest to its overall evolution: kinks and cusps. Kinks are
persistent points on a loop where there is a discontinuity in
the tangent vector to the loop [12]; cusps are transient
points that recur once per oscillation period where the
string moves (formally) at the speed of light [13].
The pioneering work in cosmic string backreaction was

done by Quashnock and Spergel [14]. They found that there
were no divergences in the gravitational backreaction due
to nearby points on a smooth string. However, in the case of
kinks and cusps, the string is not smooth, so their argument
does not apply, and there is the possibility of effects that
become unboundedly large at points arbitrarily close to
these features.
Indeed, we find that points on cosmic strings very near

to kinks and cusps experience a divergent self-force.
This corrects the claim made by two of us (J. M.W. and
K. D. O.) in Ref. [15] that the backreaction near kinks was
not divergent and thus that kinks would not be rounded off.
The error in the analysis of Ref. [15] is discussed in the
erratum.
In Sec. II, we frame the problem and establish our

methodologies. In Sec. III, we find the self-interaction for a
generic point far from kinks or cusps, reproducing a result
of Ref. [14]. In Sec. IV, we solve for the self-interaction
very near to a kink, and in Sec. V for that very near to a
cusp. We conclude in Sec. VI.
We work in linearized gravity, which is accurate because

the string’s coupling to gravity is very small. Our metric
signature is ð−þþþÞ, and we work in units where the
speed of light is 1.
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II. SETUP

A. String world sheet

We first consider a string following the Nambu-Goto
equations of motion in flat space. As usual, wewill describe
the string in the conformal gauge and choose the timelike
parameter on the string equal to the spacetime coordinate t.
Then, the string motion is given by [2]

Xγ ¼ AγðvÞ þ BγðuÞ
2

; ð1Þ

where u and v are null coordinates and A0 ¼ dA=dv and
B0 ¼ dB=dv are null vectors tangent to the string world
sheet and with unit time component. In terms of the usual
spacelike string coordinate σ that parametrizes energy,
u ¼ tþ σ, and v ¼ t − σ.
The gravitational effect of the string will give rise to a

small perturbation to the metric, which will in turn give a
small correction to the string motion. We will compute that
correction and apply it after a complete oscillation by
changing the functions A and B. We will see below that this
approximation is very accurate in realistic situations.
The tangent vectors A0 and B0 have unit spatial length,

and so we commonly represent their spatial parts, A0ðvÞ
and B0ðuÞ, as curves on the unit sphere [16]. In this
representation, we may easily identify kinks and cusps:
kinks are discontinuous jumps of a tangent vector from one
point on the unit sphere to another, while cusps are points
on the unit sphere where the tangent vector curves cross.
Kinks are a phenomenon due to one of the two tangent
vectors and are present at any time slice of the loop, while
cusps involve both tangent vectors and only appear at a
specific moment in each oscillation. This representation of
kinks and cusps demonstrates that kinks inhibit cusps; a
discontinuous jump in a tangent vector’s curve allows it to
avoid an intersection with the other tangent vector. For a
closed loop in the rest frame, the “center-of-mass” of the
tangent vector curves must lie at the center of the unit
sphere, and so string loops will generically have cusps
unless they contain kinks.
We are interested in the backreaction on some point on a

cosmic string, which we will refer to as the observation
point or simply the observer. We will indicate observer
quantities by an overbar; i.e., the observer is located at X̄.
In most cases, we place the origin of coordinates at the

observer, but for observers near a cusp, we will use the cusp
itself as the origin. Quantities at the origin will be denoted
by subscript 0, and we will expand around that point,

AðvÞ ¼ vA0
0 þ

v2

2
A00
0 þ

v3

6
A000
0 ; ð2aÞ

BðuÞ ¼ uB0
0 þ

u2

2
B00
0 þ

u3

6
B000
0 : ð2bÞ

In order for the vectors to be null (A0 · A0 ¼ B0 · B0 ¼ 0), we
must introduce the constraints

A0
0 · A

0
0 ¼ 0; ð3aÞ

A0
0 · A

00
0 ¼ 0; ð3bÞ

A0
0 · A

000
0 ¼ −A00

0
2; ð3cÞ

and likewise in B.
The acceleration felt by a point due to the gravitational

effect of the string is, at first order [14],

X̄γ
;uv ¼ −

1

8
ηγρðhβρ;α þ hρα;β − hαβ;ρÞĀ0αB̄0β: ð4Þ

Here, ημν is the flat-space metric, and hαβ is the perturbation
to that metric. We can compute the change of the tangent
vectors due to gravitational backreaction by integrating the
acceleration induced by the unperturbed world sheet1 over a
full oscillation,

ΔA0γ ¼ 2

Z
L

0

Xγ
;uvdu; ð5aÞ

ΔB0γ ¼ 2

Z
L

0

Xγ
;uvdv: ð5bÞ

The metric depends on the choice of coordinates (i.e.,
the gauge) for the perturbed spacetime. Thus, X̄γ

;uv may
contain gauge artifacts. However, ΔA0 and ΔB0 do not
have this problem. The metric oscillates with the oscil-
lation of the string, but ΔA0 and ΔB0 grow linearly with
the number of oscillations (as long as we continue to use
the approximation that the source world sheet is
unchanged). This provides a clean separation between
effects that may and those that may not have gauge
dependence.
Since the corrections to A0 leave A0 null, we will

automatically have ΔA0 · A0 ¼ 0. But because of the
Lorentzian metric, adding ΔA0 may change the length
of A0, which represents a loss of energy from the string.
Since we demand that jA0j ¼ 1, we must change the
parametrization by redefining v. The same remarks apply
to B0ðuÞ.

B. Metric perturbation

We will now compute the metric perturbation at an
observer position X̄ due to some source point X. Let
ΔX ¼ X − X̄, the vector from the observer to the source,
and let I ¼ ðΔXÞ2, the squared interval between source
and observer.

1This is the approximation that was used in Refs. [11,14,15].
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Starting from the linearized Einstein equations,

□hαβ ¼ 16πGSαβ; ð6Þ

where G is Newton’s constant and S is the trace-reversed
stress-energy tensor, we solve by the method of Green’s
functions,

hαβðX̄Þ ¼ 8G
Z

d4XSαβðXÞδðIÞ; ð7Þ

where we take the integral only over source points X in the
past of X̄. A string has a stress tensor of the form [14]

SαβðXÞ ¼
μ

4

Z
dudvsαβδð4ÞðX − Xðu; vÞÞ; ð8Þ

where μ denotes the energy per unit length of the string and
we have defined2 sαβ ¼ ΣαβðA0; B0Þ, with

ΣαβðP;QÞ ¼ PαQβ þQαPβ − ηαβðP ·QÞ: ð9Þ

We pause here to note two important features of Σ. IfN is
a null vector,

ΣαβðN;QÞNα ¼ 0; ð10aÞ

ΣαβðP;QÞNαNβ ¼ 2ðN · PÞðN ·QÞ: ð10bÞ

These features will lead to a number of useful simplifica-
tions further down the road.
Putting Eq. (8) into Eq. (7), we find

hαβðX̄Þ ¼ 2Gμ
Z

dudvsαβðXÞδðIÞ: ð11Þ

The metric is thus determined by the effect of all places
where the backward light cone from the observation point
intersects the string world sheet, which we will call the
intersection line.
We can eliminate one integral in Eq. (11) by changing

variables in the δ-function. For example, to eliminate v, we
write

δðIÞ ¼ −
δðv − vðuÞÞ

I ;v
; ð12Þ

where vðuÞ denotes the (unique) value of v for the given u
that puts the point ðu; vÞ on the past light cone of the
observer. [The negative sign in Eq. (12) appears because
I ;v < 0]. The result will be an integral giving the metric at
X̄ as a sum of the contributions due to the stress energy at

each source point. We could then differentiate hαβ and use
Eq. (4) to find the acceleration. Indeed, this is the procedure
used in Ref. [11].
In order to differentiate, though, we would need the

metric not just on the world sheet but nearby. It turns out to
be easier to differentiate Eq. (11) first [14],

hαβ;γðX̄Þ ¼ 4Gμ
Z

dudvsαβðXÞδ0ðIÞXγ: ð13Þ

Then, we can write the derivative with respect to I in terms
of a derivative with respect to v (say),

hαβ;γðX̄Þ ¼ 4Gμ
Z

dudv

�
sαβðXÞ
I ;v

� ∂
∂v δðIÞ: ð14Þ

We integrate by parts and then proceed as above to get [14]

hαβ;γðX̄Þ ¼ 4Gμ
Z

du

�
1

I ;v

∂
∂v

�
sαβΔXγ

I ;v

��
v¼vðuÞ

: ð15Þ

Equation (15) gives the metric derivative at X̄ as an integral
over source points and allows us to consider X̄ only on the
world sheet. We could also have chosen to convert δ0 using
u instead of v and (independently) to change variables in
δðIÞ to u instead of v.
To apply Eq. (15), we proceed as follows. There are two

branches to the intersection line near X̄, one going mostly in
the direction of decreasing u and the other mostly in the
direction of decreasing v. We will consider only the former,
meaning source points where Δu ¼ u − ū < 0 and
Δv ¼ v − v̄ ≥ 0. The latter condition is necessary because
if Δu;Δv < 0 the source point would be in the chrono-
logical past of the observer, not on the light cone.
Given the specific form of a string, we can write an

explicit expression for Iðu; vÞ. For a specific u < 0, we can
solve I ¼ 0 for v. We then perform the operations in
Eq. (15) to find hαβ;γ .
We can write

I ¼
�
ΔAðvÞ þ ΔBðuÞ

2

�
2

ð16Þ

so we have the derivative

I ;v ¼
�
ΔAðvÞ þ ΔBðuÞ

2

�
· ΔA0: ð17Þ

C. Coordinate system

We can simplify our calculations by using a coordinate
system adapted to the world sheet. For most purposes, we
will use a pseudo-orthogonal coordinate system ðu; v; c; dÞ
constructed around the observation point, with basis

2The quantity sαβ here is twice the σαβ of Ref. [11] and four
times the Fαβ of Ref. [14].
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vectors eðuÞ ¼ B̄0=2, eðvÞ ¼ Ā0=2, and eðcÞ and eðdÞ any
unit spacelike vectors perpendicular to Ā0 and B̄0 and
to each other. Defining Z ¼ Ā0 · B̄0, the corresponding
covector basis is eðuÞ ¼ 2Ā0=Z, eðvÞ ¼ 2B̄0=Z, eðcÞ ¼ eðcÞ,
eðdÞ ¼ eðdÞ, and the metric tensor in uvcd coordinates is

ηαβ ¼

0
BBB@

0 Z=4 0 0

Z=4 0 0 0

0 0 1 0

0 0 0 1

1
CCCA;

ηαβ ¼

0
BBB@

0 4=Z 0 0

4=Z 0 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð18Þ

This basis allows us a number of simplifications in vector
components. Namely:

(i) Ā0v ¼ 2, B̄0u ¼ 2, and all other components of both
are zero.

(ii) Ā0
u ¼ Z=2, B̄0

v ¼ Z=2, and all other components of
both are zero.

(iii) Because Ā0 · Ā00 ¼ 0, we have Ā00u ¼ Ā00
v ¼ 0, and

similarly, B̄00v ¼ B̄00
u ¼ 0.

There is a cancellation in Σuv, so that

ΣuvðP;QÞ ¼ −
Z
4
ðP⋆QÞ; ð19Þ

where we define P⋆Q ¼ PcQc þ PdQd, which can be
understood as the inner product in the subspace
perpendicular to the world sheet.
Finally, Eq. (4) becomes

X̄γ
;uv ¼ −

1

2
ηγρðhuρ;v þ hρv;u − huv;ρÞ: ð20Þ

Then, making use of Eq. (18), we find the acceleration
components in the uvcd basis,

Xu
;uv ¼ −

2

Z
hvv;u ð21aÞ

Xv
;uv ¼ −

2

Z
huu;v ð21bÞ

Xc
;uv ¼

1

2
ðhuv;c − huc;v − hvc;uÞ ð21cÞ

Xd
;uv ¼

1

2
ðhuv;d − hud;v − hvd;uÞ: ð21dÞ

III. NEAR A GENERIC POINT

Wewill now find the leading-order effect of backreaction
on the smooth string world sheet, reproducing a result of

Quashnock and Spergel [14]. We will choose the origin at
the observation point. Then,

I ¼
�
AðvÞ þ BðuÞ

2

�
2

: ð22Þ

We will consider the branch of the intersection line going
nearly in the −u direction, so juj ≫ jvj. To find vðuÞ, we
use Eqs. (2) and (3) and disregard terms of order v2, u2v, u5

and higher, to find

I ¼ Zuv
2

−
B̄002u4

48
: ð23Þ

Setting I ¼ 0 gives

vðuÞ ¼ B̄002u3

24Z
: ð24Þ

Thus, we have consistently disregarded terms higher than
order u4 in Eq. (23).
We will need to be more accurate in computing I ;v.

From Eq. (17), I ;v ¼ A · A0=2þ B · A0=2. But from
Eqs. (2) and (3), the first term will be Oðv3Þ. We will
not be interested in effects at this level, and so we can
write

I ;v ¼
B · A0

2
¼ uA0

u þ
ðB̄00 · A0Þu2

4
: ð25Þ

Higher orders in u will not contribute. Outside the
derivative in Eq. (15), we need only the first term
of Eq. (25), and we can replace A0 with Ā0. Thus, we
define

gðu; vÞ ¼ sαβðu; vÞXγ

A0
uðvÞ þ uðB̄00 · A0Þ=4 ; ð26Þ

and using A0
u ¼ Z=2, we can rewrite Eq. (15) as

hαβ;γ ¼
8Gμ
Z

Z
du
u2

�∂gαβγ
∂v

�
: ð27Þ

Because we would like to find contributions up to OðuÞ
in the integrand, we will expand

∂g
∂v ¼ ḡ;v þ uḡ;uv þ

u2ḡ;uuv
2

þ u3ḡ;uuuv
6

þ vḡ;vv: ð28Þ

We will not need higher orders.
Now, X̄ ¼ 0, so Xγ must be differentiated. Furthermore,

Xu;u ¼ B̄0
u=2 ¼ 0, and Xu;uu ¼ B̄00

u=2 ¼ 0. Thus, in order
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to have a u component in some differentiated X, we need to
differentiate with respect to v, or three times with respect to
u, and vice versa.
On the other hand, s̄uβ ¼ ΣαβðĀ0; B̄0ÞB̄0α ¼ 0, so sαβ

must be differentiated. Differentiating with respect to v
just differentiates A0, so s̄uβ;v…v ¼ 0 regardless of the
number of derivatives. In order to have a u component in
s̄, we much differentiate with respect to u, and the same
for v.
Furthermore, s̄uu;u ¼ 0 because of Eq. (10). Additional

derivatives with respect to v make no difference.
Now, let us find the leading-order term in Eq. (28).

We need two derivatives, one for sαβ and one for Xγ.
But among α, β, γ, there must be u and v. By the
considerations above, we thus need to differentiate sαβ
and Xγ both with respect to v or both with respect to u.
Thus, ḡ;v and ḡ;uv do not contribute, and the integral in
Eq. (15) never diverges.
To go beyond this level, we need to consider the

specific combinations of indices we need in Eq. (21).
First consider hvv;u. This involves svv. To get a term in
Eq. (28) that does not vanish, we need to go up to svv;vv.
Thus, we need the last term in Eq. (28), but both
derivatives have been applied to s, leaving none for X,
so hvv;u ¼ 0 at this order.
Now, consider huu;v. Here, we need to differentiate s

twice and X once with respect to u. Thus, we take the
penultimate term of Eq. (28). There is one derivative with
respect to v left, and it acts on

suu;uu
A0
u

¼ 2A0
uB000

u

A0
u

¼ 2B̄000
u ; ð29Þ

which has no v dependence, so huu;v ¼ 0.
So, we are interested now only in Xc

;uv and Xd
;uv. These

have exactly the same form, so we will compute only the
former.
There are three terms with the indices in different orders.

First, consider hvc;u. To keep svc from vanishing, we
need to differentiate with respect to v. Then, we need to
differentiate X once with respect to v or thrice with respect
to u, using all the rest of the derivatives in either case. In the
former case,

ḡ;vv ¼ ΣvcðĀ00; B̄0Þ ¼ Ā00
cZ
2

: ð30Þ

Differentiating Xu with respect to v gave A0
u=2, canceling

the A0
u in the denominator and a combinatoric factor of 2

from the placement of the derivatives. The other possibility
gives

ḡ;uuuv ¼
ΣvcðĀ00; B̄0ÞB̄000

u

2Ā0
u

¼ −
Ā00
cB̄002

4
: ð31Þ

These terms give a contribution from each u to Xc
;uv of

GμĀ00
cB̄002u

12Z
: ð32Þ

Now, we consider huc;v and huv;c together. We will need
to differentiate s with respect to u, so ḡvv does not
contribute here. The other terms have one v derivative.
If we apply it to Xγ , we get Ā0

c ¼ 0 or Ā0
v ¼ 0, so we can

take Bγ=2 for Xγ.
Thus, we take

suvBc − sucBv

2ðA0
u þ uB̄00 · A0=4Þ ; ð33Þ

differentiate with respect to u two or three times, set u ¼ 0,
and differentiate with respect to v.
In the first term in the numerator, one derivative must act

on s, and two must act on Bc, giving

3suv;uB̄00
c

2A0
u

¼ 3ðA0
uB̄00

v − ðZ=4ÞA0 · B̄00ÞB̄00
c

2A0
u

: ð34Þ

The first term has no v dependence.
In the other term from Eq. (33), we need one derivative

on s, and one on Bv. If we differentiate neither the
denominator nor s (again), the only possible v dependence
is in suc;u=A0

u, but this is just B00
c , because B̄00

u ¼ 0. So, in
these cases, there is nothing to differentiate with respect
to v.
The remaining terms are

3suc;uuZ
4A0

u
−
3suc;uðB̄00 · A0ÞZ

8ðA0
uÞ2

: ð35Þ

The second term is

3B̄00
cðB̄00 · A0ÞZ
8A0

u
; ð36Þ

and it cancels the second term in Eq. (34). We do not know
any good explanation for this cancellation.
The first term in Eq. (35) is

3A0
cB̄000

u Z
4A0

u
¼ −

3A0
cB̄002Z
8u

ð37Þ

plus a term with no v dependence. We must apply the v
derivative to Ā0

c, so the contribution from huc;v and huv;c is

ḡ;uuuv ¼
3A00

cB̄002

4
; ð38Þ

and the contribution to Xc
;uv is
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GμĀ00
cB̄002u
2Z

: ð39Þ

Putting together Eqs. (32) and (39) gives the total
contribution to Xc

;uv from a sufficiently close source point,

7GμĀ00
cB̄002u

12Z
: ð40Þ

The d term is just the same, while from above, Xu
;uv ¼

Xv
;uv ¼ 0. One can write a total contribution from all

sources nearer than some small distance umax,

Xc
;uv¼

7GμĀ00
cB̄002

12Z

Z
0

−umax

udu¼7GμĀ00
cB̄002

12Z

�
u2max

2

�
: ð41Þ

Equation (41) reproduces the result of Appendix A in
Ref. [14]. But since this effect grows as we get farther from
the observer, the total effect is dominated by distant places
where this calculation does not apply.
The main importance of this result is that there is no

divergent contribution from nearby points on a smooth
world sheet. When there are points where the world sheet is
not smooth, such as kinks and cusps, this result does not
apply, and the effect may diverge as one approaches these
special points, as we now discuss.

IV. CLOSE TO A KINK

We begin by introducing a kink in A at v ¼ 0. We will
take the Taylor expansion of B as before, but A is no longer
analytic, so let us instead consider a form which is straight
on each side of the kink,

AðvÞ ¼
�
A0
−v v < 0

A0þv v > 0:
ð42Þ

Curved segments of A would not affect the divergent
behavior.
We will consider our observer to be at ū ¼ 0 and

v̄ ¼ −ϵ < 0. We will consider observers at v > 0 in
Sec. IV C. The past light cone in the mostly negative v
direction does not intersect the kink, so the effect from such
sources is the smooth result of the previous section. In the
mostly negative u direction, it intersects the kink at some
point we will call u ¼ −δ. The integral of Eq. (15) therefore
covers three regimes: when v < 0 and u > −δ, which we
call below the kink and denote related quantities with a
subscript or superscript −; when v > 0 and u < −δ, which
we call above the kink and which has subscript or super-
script þ; and finally when v ¼ 0 and u ¼ −δ, which we
call at the kink and indicate by a subscript or superscript¼.
Figure 1 shows an observer point and these three regions of
its intersection line.
In the region below the kink, the existence of the kink

has no effect, and the result is as in Sec. III, with no

divergence. When the sources are above the kink, source
quantities may no longer be similar to quantities at the
observer, as assumed in Sec. III, so the calculation there no
longer applies and divergences are possible. In addition, at
u ¼ −δ, there is a discontinuous change in both sαβ and I ;v.
Thus, the integrand in Eq. (15) is a δ-function in u, leading
also to a divergent effect.
Before considering the regions individually, we wish to

determine the relationship between δ and ϵ. Let us start at
the observer and move backward along the light cone,
primarily in the −u direction. We move first through the
region below the kink, where A ¼ vA0

−, and so to lowest
order in v, we find

ðΔAÞ2 ¼ Oðϵ4Þ; ð43aÞ

ðΔBÞ2 ¼ −
u4B̄002

12
; ð43bÞ

ΔA · ΔB ¼ uðϵþ vÞZ−; ð43cÞ

where Z� ¼ B̄ · A0
�, and thus Z− is the Z of Eq. (18). Thus,

I− ¼ ðϵþ vÞuZ−

2
−
u4B̄002

48
: ð44Þ

−ε

−δ

+
=

−

v u

FIG. 1. A drawing of an observer point (red circle) at ðu; vÞ ¼
ð0;−ϵÞ near a kink in A at v ¼ 0. The intersection of the light
cone with the world sheet is in blue, with the relevant branch solid
and the other branch dotted. The region “below” the kink is
labeled by −, above the kink is labeled by þ, and at the kink is
labeled by ¼. As the observer approaches the kink (ϵ → 0), the
distance at which the intersection crosses the kink, δ, will also go
to zero.
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With the light cone constraint I ¼ 0, this means that when
we are at the kink and ðu; vÞ ¼ ð−δ; 0Þ we find

δ ¼
�
−
24Z−ϵ

B̄002

�
1=3

: ð45Þ

We next continue to the region above the kink. Now,
Ā − A ¼ vA0þ þ ϵA0

−, and so, ignoring terms like v2 and u4

or higher, we find

Iþ ¼ ϵuZ− þ vuZþ
2

−
u4B̄002

48
: ð46Þ

This allows us to write the general relationship

vðuÞ� ¼ ðu3 þ δ3ÞB̄002

24Z�
: ð47Þ

Since we are concerned with u of order δ, vðuÞ is of order
δ3, and so we will be concerned only with terms at most
linear in v.
Before moving on, we note that we can also write the

general relationship

I�
;v ¼

A0
� · B
2

¼ uA0
u� þ u2A0

� · B̄00

4
; ð48Þ

which is necessary for finding the denominator of the
acceleration integrand.
Now, we can consider how divergences might arise as we

integrate along the intersection line with respect to u,
starting above the kink and crossing it.

A. Divergent behavior above the kink

We begin on the side of the kink with v > 0, u < −δ.
Here, the only thing in Eq. (15) that can be differentiated
with respect to v is ΔXγ , and so we find to lowest order that

hþαβ;γ ¼
8Gμ
Z2þ

Z
−δ

du
s̄þαβA

0þγ

u2
¼ 8Gμs̄þαβA

0þγ

Z2þδ
: ð49Þ

We have included only the upper limit of integration, which
would be the source of terms that diverge for small δ. If we
expand to one more order in u, we expect divergences of
order ln δ, but we will not attempt to compute those.
Consulting Eq. (21), we see that all terms involve at least

one u index. But s̄þuβ ¼ 0 from Eq. (10). Thus, we must
have γ ¼ u, and so the only metric perturbation terms we
need to consider are

hþvv;u ¼
2GμðA0þ · A0

−ÞZ−

Zþδ
; ð50aÞ

hþvc;u ¼
2GμA0þcZ−

Zþδ
: ð50bÞ

The terms with d instead of c are analogous.

B. Divergent behavior at the kink

Now, we consider divergences as we integrate across the
kink, where u ¼ −δ, v ¼ 0. There is no jump in ΔX there,
but sαβ and I ;v change discontinuously. So, we define F

þ
αβ

to be the value of sαβ=I ;v immediately above the kink and
F−
αβ to be the value immediately below,

F�
αβ ¼ −

s�αβ
δZ� þ δ2ðA0

� · B̄0Þ=4 ¼ −
�

2

δZ�
−
A0
� · B̄00

Z2
�

�
s�αβ;

ð51Þ

plus higher orders in δ. For most of our purposes, we will
only need the 1=δ term, but the latter will be important later
on. Now, we write

h¼αβ;γ ¼2Gμ
Z

du
δðvÞðFþ−F−ÞαβðϵA0

−−Bð−δÞÞγ
I ;v

: ð52Þ

We now substitute vðuÞ given by I ¼ 0 and use the relation

δðvÞ
I ;v

¼ δðuþ δÞ
I ;u

: ð53Þ

Now, I ;u ¼ ΔX · B0, and at the kink crossing this becomes

I ;u ¼
ϵZ−

2
þ δ3B̄002

12
¼ δ3B̄002

16
; ð54Þ

so

h¼αβ;γ ¼
32GμðFþ − F−ÞαβðϵA0

− − Bð−δÞÞγ
δ3B̄002 : ð55Þ

We will now consider specific indices of the metric
perturbation derivatives in order to find the divergent
behavior of the accelerations.

1. Divergences for γ =u

First, consider γ ¼ u and expand B̄ð−δÞ. The first
nonvanishing term is δ3B̄002=12, which combines with
ϵA0

−u to give δ3B̄002=16, and so

h¼αβ;u ¼ 2GμðFþ − F−Þαβ: ð56Þ

We are interested only in αβ ¼ vv and αβ ¼ vc. When we
choose vv, F− ¼ 0 and

Fþ
vv ¼ −

ðA0þ · A0
−ÞZ−

Zþδ
ð57Þ

to leading order, and thus
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h¼vv;u ¼ −
2GμðA0þ · A0

−ÞZ−

Zþδ
: ð58Þ

This cancels the term in Eq. (50a). We have calculated all
possibly divergent components of the u direction accel-
eration, and as a consequence of this cancellation, we find
that Xu

;uv has no 1=δ divergence.
When we choose vc, we again have F− ¼ 0, but now to

leading order, we find

Fþ
vc ¼ −

A0þcZ−

Zþδ
; ð59Þ

and therefore

h¼vc;u ¼ −
2GμA0þcZ−

Zþδ
: ð60Þ

Once again, this cancels the above-kink region contribu-
tion, and so terms like hvc;u are not divergent. The reason
for these cancellations can be seen by rewriting Eq. (15)
using ∂=∂u instead of ∂=∂v.

2. Divergences for γ = v

Now, we consider terms with γ ¼ v. Because A0
−v ¼ 0,

we need Bv ¼ δZ−=2, and therefore

h¼αβ;v ¼ −
16GμZ−ðFþ − F−Þαβ

B̄002δ2
: ð61Þ

The only two choices of αβ we need to consider are uu and
uc. For the former,

F�
uu ¼ B̄002δ ð62Þ

to first order, so Fþ
uu ¼ F−

uu. Thus, h¼uu;v ¼ 0, so Xv
;uv has no

1=δ divergence.
Now, consider uc. Here, we must take into account both

terms of Eq. (51). Moreover, we will consider the two terms
in

s�uc ¼ A0
�uB

0
c þ A0

�cB
0
u ð63Þ

individually.
Starting with the A0

�uB
0
c term, and with B0

c ¼ −δB̄00
c when

u ¼ −δ, we find that for this term

F�
uc ¼

�
1þ ðA0

� · B̄00Þδ
2Z�

�
B̄00
c ð64Þ

and therefore a contribution to the metric perturbation of

8GμZ−B̄00
c

δB̄002

�
A0þ · B̄00

Zþ
−
A0
− · B̄00

Z−

�
¼8GμZ−B̄00

c

δB̄002 ðA0þ⋆B̄00Þ: ð65Þ

Then, taking the A0
�cB

0
u term, we must go to

B0
u ¼ δ2B̄000

u =2 ¼ −δ2B̄002=2. Thus, for this term,

Fþ
uc ¼

δA0þcB̄
002

Zþ
: ð66Þ

Of course, A0
−c ¼ 0, and so F−

uc ¼ 0 for this term. So, in
summary,

h¼uc;v ¼
8GμZ−ðA0þ⋆B̄00ÞB̄00

c

δB̄002 −
8GμZ−A0þc

δZþ
: ð67Þ

3. Divergences for γ = c

The remaining choice for γ is c. Now, the leading term
comes from Bc ¼ −δ2B̄00

c=2, giving

h¼αβ;c ¼
16GμðFþ − F−ÞαβB̄00

c

δB̄002 : ð68Þ

But now, the only choice for αβ that we can make is uv. At
leading order,

sþuv ¼ −
ðA0þ⋆B0ÞZ−

4
¼ δðA0þ⋆B̄00ÞZ−

4
; ð69Þ

and s−uv ¼ 0, and thus F−
uv ¼ 0 as well. Thus,

h¼uv;c ¼
8GμZ−ðA0þ⋆B̄00ÞB̄00

c

δB̄002Zþ
: ð70Þ

This is identical to the first term of Eq. (67) and contributes
oppositely in Eq. (21). This cancellation is analogous to the
one involving Eq. (36). The only remaining 1=δ divergent
term for the c direction acceleration is the second half of
Eq. (67), giving

Xc
;uv ¼

4GμZ−A0þc

δZþ
¼ −

2GμA0þc

Zþ

�
B̄002Z2

−

3ϵ

�
1=3

: ð71Þ

Thus, the transverse accelerations diverge as an observer
approaches a kink, but only as the inverse cube root of the
distance. Equation (71) agrees with the acceleration
reported in Ref. [10] for the loop discussed there.

C. Observers above the kink

In the previous subsections, we considered observers
below the kink, i.e., points that the kink is approaching.
Here, we will show that there are no divergences for
observation points above the kink, i.e., where the kink
has already passed by. We keep the forms of A and B above,
but now we consider an observation point with ū ¼ 0,
v̄ ¼ ϵ > 0. The backward light cone that intersects the
kink is the one mostly in the negative v direction. The
intersection occurs at a point v ¼ 0, u ¼ δ > 0, with
δ ¼ Oðv3Þ. This is the critical difference: because the light
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cone now starts in the −v direction, perpendicular to the
kink motion, it quickly reaches the kink with little trans-
verse motion.
We will use the u − v exchanged version of Eq. (15),

hαβ;γðX̄Þ ¼ 4Gμ
Z

dv

�
1

I ;u

∂
∂u

�
sαβΔXγ

I ;u

��
u¼uðvÞ

: ð72Þ

Applying ∂=∂u does not lead to any δ-functions, because
the u direction does not cross the kink.
Now,

I ;u ¼ ΔX · B0 ¼ ðA�v − A−ϵÞ=2 · B0 ¼ ðZ�v − Z−ϵÞ=2;
ð73Þ

where we ignore OðδÞ. We will be concerned with v of
order ϵ, in which case I ;u ¼ OðϵÞ, and I ;u does not vanish
as v → 0. (It does vanish as v → ϵ, but this is just the near-
observer regime of Sec. III.) Furthermore, I ;u has no u
dependence. Thus, in Eq. (72), we must differentiate either
sαβ or ΔXγ. In the former case, we are left with
ΔXγ ¼ OðϵÞ. Thus, the integrand is Oðϵ−1Þ, and since
the range of integration is OðϵÞ, the result is at most a
constant in ϵ.
The other possibility is that we apply ∂=∂u to ΔXγ ,

giving B0
γ=2, and leave sαβ undifferentiated. Since we are

ignoringOðδÞ, we can take B0 as B̄0 both in ΔXγ and in sαβ.
But B̄0 has only one nonzero component, which is v. Thus,
γ must be v and also one of α, and βmust be v (or both must
be c or d), but no such term appears in Eq. (21). Thus there
is no divergence for observers approaching the kink
from above.

D. Changes to the string near a kink

What does Eq. (71) tell us about how the world sheet is
modified around a kink? Because the kink we studied is at a
fixed position in v, the effects on A0 and B0 are different. To
find the correction to B0 at a certain fixed u, we integrate
around the world sheet in the v direction, following Eq. (5).
This line of integration will always pass across the kink,
and since the divergent part of the acceleration near the kink
is only like v−1=3, there is no divergence after integration
with respect to v. In fact, as discussed in Sec. II A, since no
divergence appears inΔB0, we cannot say for sure that there
is a divergent effect on B0 at all.
Conversely, we find the correction to A0 by fixing v and

integrating around the world sheet in the u direction. The
kink always remains the same distance away, and the
divergent v−1=3 behavior remains in the correction to A0.
This correction is always transverse to the world sheet, but
the world sheet direction changes as we integrate the
corrections to A0 at different observation points. Thus,
the divergent correction to A0 for a whole oscillation is quite

general, except that it must be perpendicular to A0, so that
A0 remains null. This divergence cannot be a gauge artifact.
The loss of length of the string is given by the change to

the time component of A0, which generally diverges as
v̄−1=3. The total loss of length gives the total energy emitted
from the string. To compute this, we integrate over v̄, which
gives a finite result, as it should [12].
Now, we will estimate the length scale at which a kink is

rounded off. Define

Kγ ¼ A0γþ − A0γ
− ð74Þ

for the tangent vectors at a pair of points of fixed v above
and below the kink. This is the kink’s “turning vector”
across that range in v, so decreases in K constitute
smoothing the kink out to that range. We will assume that
the backreaction is not affected by smoothing closer to the
kink than the points of interest, so we can use Eq. (71),
which we rewrite as

Xc
;uv ¼ −

2Gμ
Zþ

�
B̄002Z2

−

3L

�
1=3

�
L
v

�
1=3

A0þc: ð75Þ

This modifies the vector A0
−, making it closer (because

Zþ < 0) to A0þ and so decreasing the bending angle.
However, the change in A0

− is given by the projection of
K into directions transverse to the world sheet,

K⊥ ¼ A0þ −
YB0 þ ZþA0

−

Z−
; ð76Þ

with Y ¼ A0þ · A0
−. The length of K will be modified

according to how much the transverse acceleration points
in the direction of K, i.e., the magnitude of K⊥ · K=jKj,
introducing an overall factor

K⊥ · K
K2

¼ −YZþ=Z− − YZþ=Z− − Y þ Y
−2Y

¼ Zþ
Z−

; ð77Þ

which may be more or less than 1 because of the Lorentzian
metric. The instantaneous change to the length of K at a
particular point is thus

jKj0 ¼ −4Gμ
�

B̄002

3LZ−

�
1=3

�
L
v

�
1=3

jKj; ð78Þ

where there is a factor of 2 from Eq. (5).
Now, we integrate this projection with respect to ū over

one oscillation. This tells us about the rate of change of the
length of K per oscillation. Dividing by the loop oscillation
time of L=2 converts this to an average rate of change,

djKj
dt

¼ −
GμH
L

�
L
v

�
1=3

jKj; ð79Þ

where the dimensionless coefficient is given by
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H ¼ 8

Z
L

0

dū

�
B̄002

3LZ−

�
1=3

: ð80Þ

Thus, jKj decreases exponentially with time, with a time
constant of ðGμH=LÞðL=vÞ1=3, so the kink has been
significantly rounded off to distance v after a time

tkink ≈
L

GμH

�
v
L

�
1=3

: ð81Þ

The loop’s lifetime is t ≈ L=ðΓGμÞ, with Γ the measure
of the loop’s power loss rate. At the end of the loop’s
lifetime, we can estimate that significant rounding extends
to a distance

vrounded ≈
�
H
Γ

�
3

L: ð82Þ

We show a drawing of this rounding process in Fig. 2.
Because Γ is of order 50 for realistic loops, the rounding

distance may be much less than L. Let us consider a
“generic” loop, which has world sheet functions which are
mostly smooth circles except for a few large kinks. We take
as typical values jB00j ¼ 2π=L, Z� ¼ −1, so H ¼
8ð4π2=3Þ1=3 ≈ 20 and ðH=ΓÞ3 ≈ 0.06. This means that
the rounding process never has much effect on regions
farther from the kink than about 0.06L; at such distances,
the kink mostly retains its original appearance.
If the kink is preventing the occurrence of a cusp, by

jumping over what would otherwise be an intersection
between A0 and B0, the smoothing process will reintroduce
the cusp. However, the cusp will be weak, in the sense that
little of the total string length will ever be involved in it. Of
course, this is a very simplified model. Strings taken from
simulations have many kinks of various angles, with fairly
straight segments between them, so this analysis does
not apply.

Our estimate of how the kink is rounded is only good if
the change in one oscillation is small. This means that we
require v=L > ð4GμHÞ3, but this is an incredibly tiny
number, and so the preceding is valid until we are extremely
close to the kink. For example, using roughly the current
observational upper bound of Gμ ¼ 10−11 and our estimate
of H above, we find v=L≳ 10−30 as our requirement.

V. CLOSE TO A CUSP

Now, we consider an observation point on a string
with smooth A and B but place the observer very near
to a cusp. As mentioned in Sec. II, a cusp is formed when
A0 ¼ B0 or equivalently A0 ¼ B0, so points near a cusp have
Z ¼ A0 · B0 ≪ 1. Otherwise-well-behaved quantities such
as Eq. (40) may thus diverge as the observation point
approaches a cusp. We now analyze this situation.

A. Coordinate system

While the uvcd coordinates greatly simplified our inves-
tigations of the kink (and the generic point), they are not well
adapted to studying the cusp. If we define the uvcd basis at a
point near the cusp, the vanishing of Z leads to divergences
in the metric and the lengths of the basis vectors, which make
it difficult to distinguish actual divergences from coordinate
divergences. Instead, we will use a fixed basis for all points
near the cusp, which we now define.
Let eðwÞ ¼ A0=2 (equivalently, B0=2) at the cusp, and let

eðmÞ be w with its spatial component reversed. Then, let eðpÞ
and eðqÞ be any unit spacelikevectors orthogonal to eðwÞ, eðmÞ,
and to each other. In the wmpq basis, the metric tensor is

ηαβ ¼

0
BBB@

0 −1=2 0 0

−1=2 0 0 0

0 0 1 0

0 0 0 1

1
CCCA;

ηαβ ¼

0
BBB@

0 −2 0 0

−2 0 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð83Þ

Like its uvcd cousin, this basis allows some simplifi-
cations in vector components. We expand about the cusp as
in Eq. (2), getting

Aw ¼ −
A002
0

12
v3; ð84aÞ

Am ¼ −vþ A002
0

12
v3; ð84bÞ

Ap ¼ A00
0p

2
v2; ð84cÞ

FIG. 2. How a kink is modified due to backreaction. We show a
segment of a world sheet function, where the region above the
kink (solid blue, on the left) does not change, but the region
below the kink goes from being straight (dashed light blue) to
having some curvature (solid blue, on the right). Note that the
curvature dies out as one goes to the right, so there is some
distance after which the A0 below the kink before and after
backreaction are effectively identical.
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with Aq just Ap with p → q and the B dependencies the
same under A → B, v → u. Then, we find v or u dependence
for any derivative of A or B by applying the appropriate
number of derivatives and taking the lowest-order term.
We now take the cusp to be at the origin and the observer to

be at somepoint on theworld sheet ðū; v̄Þ near the cusp.When
we consider how different sources will affect the observer, we
see that there are two regimes: one for when the sources are
much closer to the observer than to the cusp and one for when
they are very far from either the observer or the cusp.
In the former case, the sources do not know about the

cusp, and so the problem reduces to that of Sec. III, but
the resulting effect may be quite large because Z ≪ 1, i.e.,
the string is rapidly moving. But when the sources are far
from the observer, they cannot distinguish the observer
from the cusp, and as a result, their contributions to the
acceleration integrand grow divergently.
Because the scale at which this growth is cut off is when

the source is about as far from the observer as the observer
is from the cusp, we may see divergent accelerations as the
observer moves toward the cusp. Let us find such an effect
now by finding the general form of the acceleration
integrand and thereby the leading-order divergent term
in the acceleration.

B. Sources far from the observer

Because we are now working with our origin at the cusp
itself, we will make the replacement B0

0 → A0
0 for the

remainder of this section. We can now also write

A0
0 · B

00
0 ¼ 0; ð85aÞ

A0
0 · B

000
0 ¼ −B002

0 : ð85bÞ

We are considering sources close to the cusp, but much
farther from the cusp than the observer is. Thus, we work in
the regime ū, v̄ ≪ u, v ≪ L. Then, the leading terms in I
are those that have a combined order in u and v of 4, and the
light cone constraint becomes

0¼I ¼A00
0 ·B

00
0

8
u2v2−

B002
0

12
u3v−

A002
0

12
uv3−

A002
0

48
v4−

B00
0
2

48
u4:

ð86Þ

Solving this homogeneous quartic gives vðuÞ ¼ λ0u, with
λ0 some constant depending on the cusp parameters.
Rewriting Eq. (15) as

hαβ;γ ¼ −2Gμ
Z

du

×
I ;v½sαβ;vðAþ BÞγ þ sαβA0

γ� − I ;vv½sαβðAþ BÞγ�
I3
;v

ð87Þ

leads us to our next considerations: what are the lowest-
order terms in u once we have contracted the Ā0 and B̄0
vectors into the Christoffel symbol and made the replace-
ment v ¼ vðuÞ? To lowest order in u and v,

A · A00
0 ¼

v2

2
A002
0 ; ð88aÞ

B · A00
0 ¼

u2

2
ðA00

0 · B
00
0Þ; ð88bÞ

and the contractions with derivatives of A and B follow
from there. From Eq. (9), we can write

sσαA00
0
α ¼ ðuA00

0 · B
00
0ÞA0

0σ þ ðvA00
0
2ÞB0

0σ − ðA0 · B0ÞA00
0σ;

ð89aÞ
sσα;vA00

0
α ¼ ðuA00

0 · B
00
0ÞA00

0σ þ ðA00
0
2ÞB0

0σ − ðA00 · B0ÞA00
0σ:

ð89bÞ

For a final step before considering particular acceler-
ations, we note that, to lowest order,

hβσ;αĀ0αB̄0β ¼ 4hσw;w; ð90aÞ
hσα;βĀ0αB̄0β ¼ 4hσw;w; ð90bÞ

hβσ;αĀ0αB̄0β ¼ 4hww;σ: ð90cÞ

Now we have all the ingredients necessary to begin
calculating the orders of the metric perturbation (thus
acceleration) integrands. While the integrand numerators
depend critically on the acceleration direction, the denom-
inators are always the same. We will always write

I3
;vjv¼vðuÞ ¼ d0u9; ð91Þ

where

d0 ¼
�
λ0ðA00

0 · B
00
0 − λ0ðλ0 þ 3ÞA002

0 Þ − B002
0

12

�
3

: ð92Þ

The simple form of the denominator leads to the simple
form of d0. The numerator coefficients, which we will
introduce in the following subsections, are generally far
more complicated.

C. w-direction acceleration

We know that gwα ¼ 0 unless α ¼ m. Thus, in Eq. (4)
with γ ¼ w, it must be that ρ ¼ m everywhere. We turn to
Eq. (90) to determine the orders of the terms involved.
Consider terms like hww;m and hwm;w. The terms in the

numerator of Eq. (87) are generally of three types. The first
two are (where each vector has its own index) A0B0A0,
A0B0B0, A00B0A, or A00B0B multiplied by I ;v; the third is
A0B0A or A0B0B multiplied by ∂2I=∂v2. Thus, based on
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Eq. (84), we see that the lowest-order terms in the
numerator are like u7.
Thus, for accelerations in the w direction, a source point

u away contributes

Gμ
n0w
d0

�
1

u2

�
; ð93Þ

where n0w is, like d0, a constant which depends on the cusp
parameters. It is more complicated than d0, owing to the
greater complexity of the numerator:

n0w¼
A004
0 ðA00

0 ·B
00
0Þ

144
ðλ60þ6λ50Þ−

A002
0

48
ðA002

0 B002
0 þ4ðA00

0 ·B
00
0Þ2Þλ40

þ11A002
0 B002

0 ðA00
0 ·B

00
0Þ

144
λ30þ

A002
0 B002

0

96
ðA00

0 ·B
00
0−3B002

0 Þλ20

−
A002
0 B004

0

48
λ0þ

B002
0 ðA00

0 ·B
00
0Þ

144
: ð94Þ

Because the integrand has a divergence like 1=u2, the
acceleration has a divergence like the inverse distance from
the observer to the cusp.3

D. m-direction acceleration

Here, we use the same property of gαβ as above, but now
replace in Eq. (4) all γ with w. This leads to a number of
cancellations when combining the terms in Eq. (90), mean-
ing that we need only consider hww;w and terms where the
second derivative vectors are contracted onto the (Aþ B) or
A0 in Eq. (87).
Consulting the same equations as before, we see that

these are perhaps the highest-order indices one could
choose. The hww;w has terms like u9, and thus each source
contributes

Gμ
n0m
d0

: ð95Þ

There are no divergences in this direction.

E. p-direction acceleration

Because the p and q directions are interchangeable, we
only need to calculate the divergent behavior of one
of them.
The only nonzero metric component involving p is gpp.

Thus, for finding Xp
;uv, we set ρ ¼ p everywhere in Eq. (4).

There are no cancellations.
We first consider terms like hwp;w and hww;p. They yield

terms like u8, and so the contribution for each source is

Gμ
n0p
d0

�
1

u

�
: ð96Þ

This integrand has a divergence like 1=u, and so the
accelerations in the p and q directions diverge as the
logarithm of the distance between the observer and the cusp.

F. Total behavior of the cusp acceleration integrand

We now know how the acceleration for an observer near
the cusp depends on the observer position for very distant
sources. From Sec. III, we know that very near the observer
the integrand goes like u only in the c and d directions.
Now, we are interested to know how the cusp acceleration
depends on the observer position when the sources are
much closer to the observer than the observer is to the cusp,
in order to compare the importance of the far and near
regions of the integrand.
To do this, we express the contribution to the accel-

eration of a source point very near the observer as

7Gμ
12

B̄002

Ā0 · B̄0

�
Ā00γ −

Ā00 · B̄0

Ā0 · B̄0 Ā
0γ
�

¼ −
7Gμ
6

B00
0
2

ðv̄A00
0 − ūB00

0Þ2
�
Ā00γ −

2A00
0 · ðv̄A00

0 − ūB00
0Þ

ðv̄A00
0 − ūB00

0Þ2
Ā0γ

�
u;

ð97Þ

which is nothing but the expression for a regular point,
Eq. (40), but now in four-vector form. We see that it might
be possible for the coefficient to the u to grow as ū, v̄ → 0,
depending on the orders of the components of A0 and A00.
But finding the orders of those components via Eq. (84)
shows that this will only be a concern for the w direction.
To show this, consider a line of world sheet points lying in

some specific direction from the cusp, given by v̄ ¼ χū, with
χ some constant.Making this substitution and using Eq. (84)
to findA0 and A00 components,4 we find that the contribution
per source in the m direction goes as u=ū, in the p and q
directions goes as u=ū2, and in the w direction is

7Gμ
3

χA00
0 · ðχA00

0 − B00
0ÞB002

0

ðχA00
0 − B00

0Þ4
u
ū3

: ð98Þ

Upon integration of u up to something proportional to ū, the
m, p, and q directions do not increase as ū → 0. But
something interesting has happened with the w component.
While the integrand itself is linear in u very near the
observer, the coefficient has a 1=ū3 dependence. As a
consequence, the w-direction acceleration diverges as 1=ū
in the near regime, just as it does in the far regime. Thus, any
estimate of the acceleration for a point near a cusp must
account for the effect of both of those regimes.

3And also like the logarithm of the same, if we continue to
further orders.

4Note that we now want the upper index vectors, as opposed to
the lower index vectors as given in Eq. (84), and so we use, e.g.,
Pw ¼ ηwmPm.
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Moreover, the signs of these effects do not need to be the
same. For sources very far away, all observers near the cusp
see contributions from such distant points as having the
same sign, as n0w and d0 are independent of ū and v̄. But
consider Eq. (98). Here, the overall sign depends on the
sign of χ, and the leading 1=ū means that sign will always
be different for two points with the same χ on opposite
sides of the cusp.
Plots of the acceleration integrands for two observers

near a cusp, demonstrating the phenomena discussed in this
section, may be found in Fig. 3. In order to obtain the solid
lines from these plots, we carried out the calculation of the
w-direction acceleration via Eqs. (4) and (87) for A and B
Taylor expanded about an observer near a cusp on the
Kibble-Turok loop [16], keeping all terms up to fourth
order in the light cone constraint.

G. Changes to the string near a cusp

We have concluded that the acceleration as we approach
a cusp diverges like the inverse distance from the cusp to
the observer (for the cusp direction) or like the logarithm of
the same (for the transverse directions) and are only cut off
by the near regime when u is comparable to this distance.
On the other hand, the cusp is a transient event which
occurs at some precise u and v coordinates on the world
sheet. To find the total effect of the backreaction on a point
near a cusp due to the combined contributions of the rest of
the world sheet, one should compute the change on the
tangent vectors following Eq. (5). Upon integrating either
of these expressions, we will find that the w direction is still
divergent, but only logarithmically, while the remaining
directions are nondivergent, and so both ΔA0 and ΔB0 will

be log divergent in the w direction. Since the divergences
are seen in ΔA0 and ΔB0, they are not gauge artifacts. As in
the kink case, integrating once again to determine the total
loss of length will give a finite answer.
The corrections ΔA0 and ΔB0 for a single oscillation will

never be large. For points very near the cusp, both
corrections will be proportional to Gμ times a logarithm.
No logarithm appearing in cosmology is more than about
100, and 100Gμ is still tiny for any realistic Gμ.
The only divergent correction is in the w direction, which

is the direction of the cusp’s motion, i.e., A0
0 ¼ B0

0. Nearby
points will have similar A0 and B0, so the correction acts
mostly to decrease the energy of the string near the cusp
without changing the directions of the tangent vectors.
Reparametrization to return A0 and B0 to unit length will
increase A00 and B00, because A0 and B0 change by the same
amount over less parameter distance. This decreases the
strength of the cusp by decreasing the area of the world
sheet in which A0 and B0 are nearly identical. The unit
sphere looks more or less the same, but A0 and B0 nowmove
more quickly over the cusp point, resulting in weaker bursts
of gravitational radiation in subsequent oscillations.

VI. CONCLUSIONS

We have demonstrated that points on a string world sheet
near a kink or a cusp will feel a divergent acceleration due
to those features. While points not located at the feature
itself always have some small nearby region which looks
smooth, divergent effects arise on a scale related to the
distance from that point to the nearby feature.
That there is a divergent acceleration as an observer

approaches a kink indicates that it is possible for the kink to

FIG. 3. The w component of the cusp acceleration integrands for two observers with ū ¼ 0, one located at v̄=L ¼ −2 × 10−5 in the
past of the cusp (left panel, purple) and the other located at the same distance in the future of the cusp (right panel, green). In both plots,
the short-dashed line indicates the predicted acceleration integrand when u ≪ ū, while the long-dashed line is for when u ≫ ū. Note that
the left plot changes sign between regimes, while the right plot maintains the same sign throughout.
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be rounded off by gravitational backreaction, in contrast to
the claim of Ref. [15] that kinks are “opened,” and may
seem more similar to the “smoothing” of kinks used in
Ref. [9]. However, this rounding happens on small dis-
tances at early times, and it takes a significant fraction of
the loop lifetime until a large length of string has been bent
across the kink. So while kinks are removed rapidly, the
amount of string spread across the gaps on the unit sphere is
small. Thus, cusps which form as a consequence of this will
be very weak.
Our results on backreaction at cusps suggest that they

lose a significant amount of energy in the neighborhood of
the cusp, making them weaker as time passes. The effect of
back-reaction will also change the parameters that charac-
terize the cusps, which could have important consequences
for their observational signatures.
These results were found using the zero-thickness string

approximation. Thus, once the observer approaches a kink
or a cusp to a scale comparable to the string thickness δ, we
expect the expressions for the accelerations to change.5 On
the other hand, strings of cosmological and astrophysical
significance always have length scales many orders of
magnitude above their thicknesses,6 so these results are
applicable to all but an infinitesimal fraction of the string.

More importantly, the type of analysis done here is
applicable only to isolated, simple features on strings, and
we can accurately calculate only the initial effect. After a
significant period of backreaction, a string will have cusps
that are partly depleted and look somewhat like kinks and
kinks that are partly rounded and lead to weak cusps. To
fully understand the evolution of loops under the influ-
ence of gravitational backreaction, we need to numeri-
cally simulate backreaction over the course of the loop
lifetime. We will report on such simulations in future
publications.
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Note added.—Recently, Chernoff, Flanagan, and Wardell
[18] did related work on cosmic string backreaction; that
paper and this were completed at the same time. As far as
we know, the results are in agreement where they overlap.
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