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We perform an improved cosmic microwave background (CMB) analysis to search for dark matter–
proton scattering with a momentum-transfer cross section of the form σ0vn for n ¼ −2 and n ¼ −4.
In particular, we present a new and robust prescription for incorporating the relative bulk velocity between
the dark matter and baryon fluids into the standard linear Boltzmann calculation. Using an iterative
procedure, we self-consistently include the effects of the bulk velocities in a cosmology in which dark
matter interacts with baryons. With this prescription, we derive CMB bounds on the cross section,
excluding σ0 > 2.3 × 10−33 cm2 for n ¼ −2 and σ0 > 1.7 × 10−41 cm2 for n ¼ −4 at 95% confidence, for
dark matter masses below 10 MeV. Furthermore, we investigate how these constraints change when only a
subcomponent of dark matter is interacting. We show that Planck limits vanish if ≲0.4% of dark matter is
tightly coupled to baryons. We discuss the implications of our results for present and future cosmological
observations.
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I. INTRODUCTION

Cosmological observables provide a unique avenue to
search for evidence of nongravitational interactions between
dark matter (DM) and the Standard Model particles, and
thereby gain insight into the unknown physical nature of
DM. In particular, elastic scattering between DM and
baryons transfers heat and momentum between the two
fluids. The time evolution for the rate of momentum transfer
depends on how the interaction cross section scales with the
relative particle velocities, and the effects of scattering can
be important at different cosmological epochs. If scattering
is efficient before recombination, it affects the temperature,
polarization, and lensing anisotropies of the cosmic micro-
wave background (CMB), as well as the linear matter power
spectrum on small angular scales [1–6]. If scattering is
significant in the postrecombinationUniverse, it can result in
anomalous late-time heating or cooling of the baryon gas,
altering the 21-cm signal from neutral hydrogen at redshifts
prior to the Epoch of Reionization [7–9].
In a ΛCDM universe, there is a relative bulk velocity

between the cold DM and baryon fluids, which results in
supersonic coherent flows of the baryons post recombina-
tion [10]. If DM and baryons interact, but the rate of
momentum transfer is low, the drag force between the two
fluids may not efficiently dissipate their relative bulk
velocity, allowing it to dominate over the thermal particle

motions, once the Universe is sufficiently cooled.
Furthermore, if the relative bulk velocity is significant
prior to recombination, the computation of the Boltzmann
equations for the CMB becomes infeasible using standard
methods: the equations describing the velocity fluctuations
of the fluids become nonlinear, resulting in the coupling of
individual Fourier modes. In an attempt to address this
issue when computing CMB limits on DM-baryon inter-
actions, previous studies [3,6,11] used the root-mean-
square (RMS) of the relative bulk velocity as a correction
to the thermal velocity dispersion, suppressing the rate of
momentum transfer, and thus obtaining conservative upper
limits on DM-baryon interactions. That approach has two
important caveats: the RMS velocity was computed in
ΛCDM, inconsistent with a cosmology that features DM-
baryon interactions; and the same RMS velocity was used
in the Boltzmann equations for all Fourier modes, neglect-
ing differences in how modes contribute at a given scale.
In this work, we develop an improved treatment of the

relative bulk velocity and reassess CMB limits on DM–
proton scattering. Specifically, we supplement the standard
Boltzmann linear calculations with an iterative procedure
that self-consistently includes the effects of the relative bulk
velocity in a cosmology in which dark matter interacts with
baryons. We parametrize the momentum-transfer cross
section as σMT ¼ σ0vn, where v is the relative velocity
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between the scattering particles, and focus on two inter-
action models for which the relative bulk velocity is
expected to have a substantial impact: n ¼ −2 (arising
in the case of, e.g., electric or magnetic dipole interactions
through light mediators) and n ¼ −4 (from, e.g., Coulomb-
like interactions or Yukawa interactions through light
mediators). We analyze the latest public CMB data from
the Planck 2015 data release [12,13] and find σ0 < 2.3 ×
10−33 cm2 for n¼−2 and σ0< 1.7×10−41 cm2 for n ¼ −4
at the 95% confidence level (C.L.) for DM masses below
10 MeV. We forecast the sensitivity of the next-generation
ground-based CMB experiment and find that CMB-Stage
4 [14] could deliver roughly a factor of ∼3 improvement
(not including a CMB lensing analysis), for a DM mass of
1 MeV. Additionally, we report limits on σ0 for scenarios
in which only a fraction of DM interacts with protons.
For very small fractions, large values of σ0 are allowed, and
there exists a regime in which the DM and baryons are
tightly coupled, such that DM behaves as baryons and
experiences acoustic oscillations. We find that the con-
straining power of Planck is drastically diminished when
less than 0.4% of DM is interacting.
The Experiment to Detect the Global Epoch of

Reionization Signature (EDGES) recently reported an
anomalously large sky-averaged absorption signal [15],
which was attributed to dark matter interactions with
baryons [9]. Our results do not rule out a phenomenological
n ¼ −4 interaction invoked to explain the EDGES signal
[9]; however, we do exclude a percent of DM interacting
with ions only, at a level consistent with the EDGES signal
[16]. In a separate study, we investigate the regime of
subpercent fractions of millichargelike DM and discuss the
implications of our newly derived CMB limits for the DM
interpretation of EDGES [17].
This paper is structured as follows. In Sec. II, we derive

the Boltzmann equations that include DM-baryon scatter-
ing and present a new treatment of the relative bulk
velocity. In Sec. III, we describe and quantify the effects
of scattering on the CMB power spectra. In Sec. IV,
we describe our analysis of Planck 2015 data and present
new limits on the interactions with n ¼ −2 and n ¼ −4.
We discuss and conclude in Sec. V.

II. MODIFIED COSMOLOGY

In this section, we incorporate the DM-baryon collision
term into the Boltzmann equations and present an improved
treatment to account for a non-negligible relative bulk
velocity between baryons and DM. Further details of our
calculations are provided in Appendix A. We consider DM
interactions with protons and parametrize the momentum-
transfer cross section as σMT ¼ σ0vn, where v is the relative
velocity between the scattering particles. Scattering with
helium involves nontrivial form factors that depend on the
specific structure of the interaction [5,18], and it is mainly
relevant for DM masses above 1 GeV [4,5]. We neglect it

here for simplicity; incorporating it would improve our
constraints presented in Sec. IV.

A. Evolution of perturbations and temperatures

The scattering between DM and protons introduces a
drag force and heat exchange between the DM and baryon
fluids. Hence, the Boltzmann equations governing the
evolution of their velocity perturbations and of their
temperatures must be adjusted accordingly. We assume
that the DM and baryon fluids are nonrelativistic, with
energy densities ρχ and ρb, temperatures Tχ and Tb, and
sound speeds cχ and cb, respectively. The motion of the two

fluids is given by their peculiar velocities V⃗χ and V⃗b, with a

relative bulk velocity V⃗χb ≡ V⃗χ − V⃗b.
The linear Boltzmann equations incorporate terms only

up to first order in the metric fluctuations and fluid
perturbations. However, in the presence of DM-baryon
interactions, the equations become nonlinear at times when
the relative bulk velocity exceeds the relative thermal
velocity dispersion. Therefore, we begin by describing
the evolution of the temperatures and peculiar velocities in
real space without assuming a small relative bulk velocity.
We show the full derivation in Appendix A, where we
present generic expressions for n > −5 and for scattering
with multiple species of baryons. This calculation was
previously performed in Ref. [8] for the specific case of
n ¼ −4, and our results agree.
From Eq. (A13), the peculiar velocities evolve as
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and from Eq. (A21), the temperatures evolve as
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where 1F1 is the confluent hypergeometric function of the
first kind, v̄2th ¼ Tχ=mχ þ Tb=mp is the relative thermal
velocity dispersion squared, mχ is the DM mass, mp is the
proton mass, me is the electron mass, μb is the mean
molecular weight of the baryons, and δχ and δb are density
perturbations in DM and baryons, respectively. These
equations are written in synchronous gauge, where a is
the scale factor, and the dot notation indicates a derivative
with respect to conformal time τ. The terms proportional to
Rγ andRχ in Eq. (1) represent drag terms, which describe the
transfer of momentum between the interacting fluids. The
momentum-transfer rate coefficient Rγ arises from photon-
baryon interactions through Compton scattering, while Rχ

arises from the new DM-proton interactions and is given by

Rχ ¼ aρb
YHσ0

mχ þmp
N nv̄

ðnþ1Þ
th ; ð3Þ

whereN n ≡ 2ð5þnÞ=2Γð3þ n=2Þ=ð3 ffiffiffi
π

p Þ andYH is themass
fraction of hydrogen. The heat-transfer rate coefficient in
Eq. (2) is R0

χ ¼ Rχmχ=ðmχ þmpÞ.
The competition between Rχ and the expansion rate aH

determines the efficiency of momentum transfer at a given
redshift: when Rχ=aH ≫ 1, the fluids are tightly coupled
and move together. Given the current CMB limits for
interactions with n ≥ 0, this regime occurs at very early
times (z ≫ 104Þ, and results in dark acoustic oscillations
that imprint oscillatory features in the linear matter power
spectrum at small scales [4,5]. In that case, the drag
between the DM and baryon fluids couples their motion,
resulting in a small relative bulk velocity—compared to the
thermal particle velocities at redshifts relevant for CMB
measurements—and can thus be ignored. However, for
n ≤ −2, the two fluids have a feeble interaction rate at early
times, and the relative bulk velocity is non-negligible. As a
result, Eqs. (1) and (2) are nonlinear. In the following, we
present a new prescription for capturing the effects of the
relative bulk velocity on the momentum-transfer rate
between DM and baryons in both regimes.

B. Treatment of relative bulk velocity

Standard CMB computations rely on linearity of the
Boltzmann equations, for which it is possible to Fourier
transform real-space equations and independently track the

evolution of each Fourier mode with wave number k. In
the limit V2

χb ≪ v̄2th, the 1F1 functions in Eqs. (1) and (2)
asymptote to 1, and the evolution of the peculiar velocities
is indeed linear (and the temperature evolution equations
are independent of the relative bulk velocity). It is then
possible to take the divergence and the Fourier transform of
Eq. (1) to obtain the evolution equations for the velocity
divergences of the DM and baryons, θχðk; zÞ and θbðk; zÞ,
respectively. However, when this approximation breaks
down, the Boltzmann equations are nonlinear, resulting in
coupling of Fourier modes.
In order to bypass this difficulty, we first define
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where Δ2
ζðkÞ is the initial curvature perturbation variance

per ln k. We then propose the following prescription to
reduce Eq. (1) to a linear expression, while modifying the
momentum-transfer rate coefficient to reincorporate the
effects of mode mixing. For a given mode k⋆, the density
perturbations from larger scales cause a relative bulk flow
between the DM and baryon fluids that contributes to their
existing relative bulk motion.1 To account for the bulk flow,
we absorb the 1F1 function into the momentum-transfer rate
coefficient, replacing Vχb with Vflowðk⋆; zÞ. Meanwhile,
the density perturbations from smaller scales collectively
act as a source of velocity dispersion, in addition to the
thermal dispersion. We thus augment all instances of v̄2th
with the square of the one-dimensional RMS velocity
V2
RMSðk⋆; zÞ=3. With this prescription, the Boltzmann equa-

tions in Fourier space become

_δχ ¼−θχ −
_h
2
; _θχ ¼−

_a
a
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2
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R̃χðkÞðθχ −θbÞ;

ð6bÞ

1Reference [10] similarly had to account for the bulk flow
between the DM and baryon fluids within the context of ΛCDM.
In that study, there was a clear separation of scales such that the
postrecombination Universe could be represented as individual
patches across the sky, each with a particular value of the relative
bulk velocity. Averaging over the various patches yielded a local
isotropically averaged power spectrum. Since we do not have a
similar separation of scales, it is not appropriate to follow the
same technique.
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where h is the trace of the scalar metric perturbation, and the
modified momentum-transfer rate coefficient is

R̃χ ¼ Rχ
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In the limit V2
RMS, V

2
flow ≪ v̄2th, we recover the results from

Refs. [3–6].
In the left panel of Fig. 1, we show the evolution of VRMS

(top panel) and Vflow (bottom panel), with k ¼ 0 (dark
blue), k ¼ 0.1 (light blue), k ¼ 0.5 (light green), and k ¼ 1
(dark green), for n ¼ −2 (dashed lines) and n ¼ −4 (solid
lines). We also show the evolution of v̄th (black). Since
Vflowðk ¼ 0Þ vanishes by definition, there is no associated
curve plotted in the bottom panel. In the right panel of Fig. 1,
we show the evolution for the ratio R̃χ=Rχ for the same
values of k in the left panel. At early times, R̃χ approaches
Rχ , since v̄th dominates over VRMS and Vflow. For redshifts
z≲ 105,VRMS andVflow become increasingly important and
suppress the rate of momentum transfer. At recombination
near z ∼ 103, the baryons decouple from the photons,
causing VRMS and Vflow to suddenly begin decreasing
adiabatically, thereby lessening the suppression of the rate.
We note that the evolution of R̃χ is quite similar among

various k, indicating that incorporating the k dependence via
VRMS and Vflow might not play a significant role; indeed, we
can understand this observation from the limiting behavior
of R̃χ . The full variance, integrated over all k, of the relative
bulk velocity is given by hV2

χbi≡ V2
flow þ V2

RMS. For small
values of k, V2

flow → 0 while V2
RMS → hV2

χbi; thus, the 1F1

function in Eq. (7) approaches 1. For large values of k,
V2
RMS → 0 while V2

flow → hV2
χbi; furthermore, if Vflow is

much larger than v̄th, the 1F1 function in Eq. (7) asymptotes
to ∼fV2

flow=½2ðv̄2th þ V2
RMS=3Þ�gðnþ1Þ=2. In either case, the

modified momentum-transfer rate coefficient has the form

R̃χb
χ ¼ Rχ

�
1þ hV2

χbi=3
v̄2th

�ðnþ1Þ=2
; ð8Þ

ignoring an n-dependent prefactor in the large-k limit.
Thus, this form of the modified rate may sufficiently
capture the combined large-scale and small-scale effects
ofmodemixing. In either case, for the temperature evolution
equations in Eq. (2), we substitute V2

χb for its average value
hV2

χbi. In the limit hV2
χbi ≪ v̄2th, we again recover previous

results [3–6].
This work builds upon the mean-field approach intro-

duced in previous studies investigating DM-baryon scatter-
ing [3]. In that study, the modified momentum-transfer rate
was

R̃cb
χ ¼ Rχ ½1þ hV2

cbi=ð3v̄2thÞ�ðnþ1Þ=2; ð9Þ

where2

hV2
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2
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FIG. 1. [Left] Evolution of VRMS (top panel) and Vflow (bottom panel) as a function of redshift for various wave numbers k, indicated
in the legend. The thermal velocity v̄th (black) is shown for reference. [Right]Modification to the coefficient of the momentum-transfer
rate from Eq. (7) for various k. In both panels, we show the n ¼ −2 (dashed) and n ¼ −4 (solid) interactions, for a DM mass of 1 MeV.
We set the coefficients of the momentum-transfer cross section to their respective 95% C.L. upper limit, derived using our “main”
prescription, reported in Sec. IV.

2Reference [3] used the quantity hV2
cbi, but labeled it as V2

RMS.
We refer to VRMSðk; zÞ as a k-dependent quantity, calculated in
the interacting theory. The full variances hV2

cbi and hV2
χbi are k-

independent quantities; the former is calculated inΛCDM and the
latter in the interacting theory.
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is the variance of the relative bulk velocity inΛCDM [which
is approximately hV2

cbi ¼ 10−8 at z > 103 and redshifts as
ð1þ zÞ2 at later times [6,11]] and θc is the velocity
divergence for cold collisionless DM [10]. We improve
upon the previous work in two important ways. First, we
compute the variance hV2

χbi in a consistent manner, using the
values of θχ and θb obtained in a cosmology that includes
DM-baryon scattering; this improvement corresponds to
using the modified momentum-transfer rate in Eq. (8).
Second, we treat the effects of mode coupling from smaller
scales (k > k⋆) separate from those arising from larger scales
(k < k⋆). These two steps constitute our main prescription
captured in Eq. (7).When the rate of momentum exchange is
sufficiently small at times relevant for Planck, using θc
within ΛCDM is a decent estimation. This condition is
satisfied for the upper limits on σ0 derived assuming all of
DM interacts with baryons, and in that case we find little
difference from our improved treatments of the relative bulk
velocity. However, if the rate is moderate or large, momen-
tum exchange drives the values of θχ and θb closer together,
such that hV2

cbi computed in ΛCDM overestimates the
relative bulk velocity and thus overly suppresses the inter-
action rate. This situation arises if only a subcomponent of
DM is allowed to couple to baryons, and it is thus essential to
employ the techniques presented in this work in order to
derive limits on the DM-baryon interaction for that case.
Throughout the remainder of this work, we refer to

various treatments of the relative bulk velocity that enable
us to explore how various aspects of our new prescription
affect our constraints on the DM-baryon scattering cross
section. The “main” prescription is our primary treatment
given by Eq. (7), and we consider it to be the most accurate
for any regime of DM-baryon coupling. The “k-indepen-
dent” prescription is the treatment given by Eq. (8). These
two prescriptions both have the feature that the variance of
the relative bulk velocity is computed self-consistently
within an interacting cosmology, using the iterative pro-
cedure described in Appendix B. The “cdm” prescription is
that found in previous literature [3,6,11] and uses Eq. (9); in
this case, we employ the same temperature evolution
equations presented in those works and not the full expres-
sions of our Eq. (2). Finally, the “aggressive” prescription
uses Eq. (3) and naively ignores the relative bulk velocity
entirely in both the temperature and velocity evolution
equations. The constraints on σ0 resulting from this pre-
scription are thus themost aggressive; their comparisonwith
the other constraints reported in this work quantifies the
importance of including an accurate treatment of the relative
bulk velocity.

III. THE EFFECT ON COSMOLOGICAL
OBSERVABLES

In this section, we discuss the impact of DM-proton
scattering on cosmological observables. In Sec. III A, we

show the thermal histories of the DM and baryon fluids,
as well as the evolution of the free-electron fraction. In
Sec. III B, we describe the effects on the primary CMB
anisotropies, the matter power spectrum, and the CMB
lensing power spectrum. In Sec. III C, we investigate a
specific regime in which DM is tightly coupled to, and
oscillates together with, the baryons at some point in cosmic
history; this regime is allowed by Planck data for n ¼ −4 if
only a small fraction of DM interacts with baryons.
To compute the power spectra, we have incorporated the

Boltzmann equations from Sec. II into the Boltzmann
solver CLASS

3 [19]. We chose adiabatic initial conditions,
and set the DM temperature and velocity divergences to
match those of the baryons at the start of the integration
(z ¼ 1014). For n ¼ −4, the rate of heat transfer is too low
to maintain thermal equilibrium with the baryons, and the
temperature and velocity divergences of the DM rapidly
drop from their original values. Thus, our initial conditions
are effectively equivalent to starting with vanishing temper-
ature and velocity divergences. In fact, for all interaction
strengths relevant in this work, we have verified that the
choice of initial conditions is irrelevant, as long as they are
set well above z ∼ 105 (roughly the redshift below which
modes Planck is sensitive to start entering the cosmological
horizon). We present further details on our modifications to
CLASS in Appendix B.
Throughout this section, we use ΛCDM parameters at

their best-fit Planck 2015 values [20]. Unless otherwise
noted, we fix the coefficient of the momentum-transfer
cross section, σ0, to its appropriate 95% C.L. upper limit,
derived in Sec. IV using our “main” prescription for the
relative bulk velocity. When plotting residuals, we show the
relative difference between an observable computed for
the cosmology with DM-proton scattering and for the
reference ΛCDM cosmology.

A. Thermal history

An accurate determination of the thermal history is
essential to the calculation of CMB power spectra. The
CMB is very sensitive to the number of free electrons in the
plasma through the visibility function and the optical depth
in the line-of-sight solution of the Boltzmann equa-
tions [21]. Scattering between DM and protons alters the
temperature evolution of the baryons, which in turn
influences the free-electron fraction, xe. If interactions
with DM cool the baryon gas around recombination, the
rate of recombination increases. If cooling occurs at later
times, it reduces the number of free electrons in a manner
opposite to that of an early reionization from energy
injection [22]. In the top panels of Fig. 2, we show the
evolution of the baryon (solid) and DM (dashed) temper-
atures as a function of redshift, comparing them to the
evolution of the baryon temperature in ΛCDM (black

3https://github.com/lesgourg/class.
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solid), for DM masses of 1 MeV (orange) and 100 MeV
(purple), for n ¼ −4 (left panel) and n ¼ −2 (right panel).
In the bottom panels, we show the residuals for the
evolution of the free-electron fraction with respect to
ΛCDM. We set the values of σ0 to their respective
95% C.L. upper limits, obtained using our “main” pre-
scription in Sec. IV. We find that the DM-proton interaction
has no strong impact on the recombination era. The impact
on the free-electron fraction is substantial only at late times.
Since the CMB is only marginally sensitive to changes in
the late-time free-electron fraction (through the low-l EE
power spectrum), baryon cooling is a subdominant effect
compared to the drag acceleration from scattering, and we
have verified that it can be safely ignored for the purposes
of this work.

B. Power spectra

In Fig. 3, we illustrate the effect of DM-proton inter-
actions onCMB temperature and polarization power spectra
by showing their residuals with respect toΛCDM.We show
the power spectra computed using two treatments of the
relative bulk velocity, for comparison: the “main” prescrip-
tion (red) and the “k-independent” prescription (purple).
In both cases, we fix σ0 to the 95% C.L. upper limit,

derived using the “main” prescription. The effects of DM-
proton scattering are as follows:

(i) The dominant effect on the CMB power spectra
is a scale-dependent modulation of the acoustic-
oscillation amplitude, which occurs for the following
reasons. First, small modes enter the cosmological
horizon earlier and are therefore subject to damping
due to friction between the two fluids for a longer time
than larger modes. Second, the interactions reduce the
overall growth of perturbations, as well as the asso-
ciated metric potentials that directly affect the CMB

photons [23]. Prior to recombination, the interactions
modify the Sachs-Wolfe (SW) contribution to the
metric perturbations (both in terms of the overall
amplitude and zero point of oscillations in the quantity
δγ=4þ ψ , where ψ is the gravitational potential in the
Newtonian gauge). Around recombination, the time
evolution of the metric perturbations is affected, in
turn contributing to a change in the early integrated
Sachs-Wolfe (EISW) effect. In the TT spectrum,
modifications of the SW and EISW terms lead to
the relative enhancement of the first acoustic peak,
while other peaks are suppressed overall.

(ii) At early times, photons are tightly coupled to
electrons such that θb ¼ θγ . The DM-baryon inter-
action effectively increases the inertia of baryons,
suppressing the speed of sound in the plasma and
reducing the frequency of the acoustic oscillations;
as a consequence, the Doppler peaks shift to smaller
physical and angular scales (larger l). We find that
this effect is subdominant in the TT spectrum.
However, the EE power spectrum is mostly sourced
by the quadrupolar temperature patterns close to
the last scattering surface [21,24,25] and is thus
predominantly affected by modifications to the
Doppler term.

(iii) The sound speeds of the DM and baryon fluids
depend on the fluid temperatures and are therefore
affected by the heat transfer. Since the sound-speed
terms enter Eq. (6) with a prefactor of k2, the
dynamics of small angular scales (corresponding
roughly to large k) are affected. We find that these
terms also have a negligible contribution to the fluid
evolution equations.

(iv) Finally, as we detail in Sec. III A, post-recombina-
tion cooling of baryons decreases the number of free
electrons, in turn lowering the optical depth to the

FIG. 2. Temperature evolution (top panels) and residuals of xe with respect toΛCDM (bottom panels), for the n ¼ −4 (left panels) and
n ¼ −2 (right panels) interaction, for DM masses of 1 MeV (orange) and 100 MeV (purple). We set the coefficients of the momentum-
transfer cross section to their respective 95% C.L. upper limit, derived using our “main” prescription, reported in Sec. IV. We also show
the baryon temperature in ΛCDM (black) for reference.
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surface of last scattering, as compared to the ΛCDM
case.4 This effect is opposite to that of an early
reionization and leads to an increase of power in
modes that enter the horizon before reionization
(i.e., l≳ 20 for both temperature and polarization)
and to lowering of the reionization bump in the EE
power spectrum. This effect is also subdominant, as
far as the CMB observables are concerned. How-
ever, for higher cross sections, it produces a small
modulation of power at the lowest values of l in the
EE power spectrum.

The primary difference between the power spectra
computed using the“main” and the “k-independent” pre-
scriptions is at high multipoles, where the “main” pre-
scription leads to a more prominent damping tail. For
n ¼ −2, the scaling of the momentum-transfer cross

section with relative velocity is rather weak; the feedback
of the interactions on the computation of VRMS and Vflow is
small, and the power spectra of the two prescriptions
look very similar. The power spectra of the prescriptions
for n ¼ −4 exhibit a more noticeable difference. For the
remainder of this paper, we consider only our main “main”
prescription.
Finally, in Fig. 4, we show the effects of DM-proton

scattering on the power spectrum of the CMB lensing
potential (left) and the linear matter power spectrum (right);
we plot residuals of the power spectra with respect to
ΛCDM, using the “main” prescription, for n ¼ −2 (blue)
and n ¼ −4 (red). We set σ0 to its 95% C.L. upper limit,
derived using the same prescription as in Sec. IV. The
interactions suppress the growth of DM (and baryon)
perturbations, resulting in a progressively larger reduction
of power at smaller scales. The suppression of lensing
power manifests as a reduction of peak smearing in the TT
and EE power spectra.
We note that it is possible to use large-scale structure data

to constrain DM-baryon interactions with the matter power

FIG. 3. [Top]: Percent residuals (with respect to ΛCDM) of the lensed TT (left panel) and EE (right panel) power spectra for the case
of n ¼ −4 and a DMmass of 1 MeV. We show residuals for the “main” prescription (red) and the “k-independent” prescription (purple).
In both cases, we set the coefficient of the momentum-transfer cross section to its 95% C.L. upper limit, derived using the “main”
prescription. Gray bands roughly represent the 2σ Planck error bars, with a bin size of Δl ¼ 50. [Bottom]: Same as the top panels, but
for the case of n ¼ −2. The difference between the two prescriptions is less prominent in this case because of the weaker scaling of the
momentum-transfer cross section with relative velocity.

4As previously mentioned, early-time cooling of baryons
accelerates recombination, in turn shifting the peaks toward
higher l. However, this effect is not present, in practice, given
the strength of the CMB constraints.
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spectrum. However, for the n ¼ −2 and n ¼ −4 models,
constraints from the Lyman-α flux power spectrum yield a
minor improvement upon CMB-only constraints at the
Oð1Þ level [3,6]; and the Lyman-α data are subject to
modeling caveats that the CMB is not.

C. Strongly coupled DM fraction

The discussion thus far has focused on DM comprised
entirely of a single species that is only weakly coupled to
baryons at all times. It is worth noting that the CMB
constraints imply weak coupling at all times only for the
specific values of n we are concerned with in this work,
while for n ≥ 0, CMB data constrain the interaction cross
section such that the coupling is strong for z≳ 104–105

[4,5]. In the strong-coupling case, DM is tightly coupled to
baryons and behaves like an extra baryonic component,
with the important caveat that it does not participate in
recombination. It does, however, experience dark acoustic
oscillations, evident in the behavior of the matter power
spectrum at scales k≳ 1 Mpc−1 [5]. It is also possible to
have strong coupling for n ¼ −2 and n ¼ −4, without
violating CMB bounds, if the interacting species represents
only a fraction fχ ≡ ρχ=ρDM of the total DM density,
while the remaining fraction is cold collisionless DM.
A strongly coupled subcomponent of DM has been
previously studied generically [26] and in the context of
millicharged DM [27,28].5

In Fig. 5, we demonstrate the behavior of a strongly
coupled DM subcomponent, for mχ ¼ 1 MeV. In the left
panel, we compare the evolution of the momentum-transfer
rate to the expansion rate of the Universe for n ¼ −2 (blue)
and n ¼ −4 (red), with fχ ¼ 1 (solid), 0.1 (dashed), 0.01

(dotted-dashed), and 0.003 (dotted). In the right panel, we
plot the density perturbations and velocity divergences for
n ¼ −4 (red) and for baryons in ΛCDM. In both panels, we
set σ0 in each case to its appropriate 95% C.L. upper limit,
derived using the “main” prescription. For large values of
fχ , Planck constrains the momentum-transfer rate to be
below the expansion rate, and the density perturbations of
the interacting subcomponent of DM track those of cold
DM in ΛCDM. As fχ decreases, the data allow for large
momentum-transfer rates, and the interacting DM subcom-
ponent begins to track the motion of the baryons more
closely. For fχ ¼ 0.003, the modes that Planck is sensitive
to become tightly coupled upon entering the horizon, and
the interacting DM subcomponent experiences acoustic
oscillations.

IV. PLANCK CONSTRAINTS

In this section, we constrain DM-proton interactions
using Planck 2015 data. We describe the data set and
analysis method in Sec. IVA and present numerical results
in Sec. IV B.

A. Data and method

We analyze the Planck 2015 temperature, polarization,
and lensing power spectra, using the Planck Likelihood
Code v2.0 (CLIK/PLIK) [12,13]; in particular, we use the
nuisance-marginalized joint TT, TE, EE likelihood, CLIK/
PLIK lite, and the lensing likelihood with SMICA-map–
based lensing reconstruction.6 We sample the cosmological
parameter space using the MONTEPYTHON [29] software
package with the PYMULTINEST [30–33] likelihood

FIG. 4. Percent residuals (with respect to ΛCDM) of the lensing-potential power spectrum Cϕϕ
l (left panel) and the linear matter power

spectrum PðkÞ (right panel) for the case of n ¼ −2 (blue) and n ¼ −4 (red), both for a DM mass of 1 MeV. We use the “main”
prescription and set the coefficient of the momentum-transfer cross section to its 95% C.L. upper limit, reported in Sec. IV.

5We emphasize that, unlike Refs. [26–28], we do not assume
tight coupling between DM and baryons when analyzing data in
Sec. IV; the strong-coupling regime occurs as a consequence of
the large value of the cross section allowed for small values of fχ .

6Potential issues with systematic effects in Planck high-
multipole polarization could, in principle, affect parameter
estimation [12,13], but Refs. [4,5] have demonstrated that
exclusion of high-l polarization degrades constraints on DM
interactions by only a few percent.
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sampler. We verify that our sampling runs converge by
evaluating the variance between several runs and by
comparing a subset of results to those we obtain using a
Markov chain Monte Carlo (MCMC) sampler. The MCMC

sampler implemented in MONTEPYTHON uses the
Metropolis-Hastings algorithm, and chain convergence is
evaluated using the Gelman-Rubin convergence criterion
R − 1 < 0.01 [34].
There are nine free parameters in our interacting cos-

mology: the DM particle mass mχ , the fraction fχ of the
interacting subcomponent of DM, the coefficient of the
momentum-transfer cross section σ0, and the six standard
ΛCDM parameters (baryon density Ωbh2, total DM density
ΩDMh2, the Hubble parameter h, the reionization optical
depth τreio, the amplitude of the scalar perturbations As, and
the scalar spectral index ns). In most of our analysis runs,
we fix the fraction fχ and the mass mχ , and sample in the
remaining seven free parameters using broad flat priors. We
also perform analysis runs in which we allow fχ (or mχ) to
be a free parameter, in which case we use broad log-flat
priors on fχ (or mχ) and σ0 to sample the parameter space
effectively. Due to computational difficulties, we do not
investigate masses above a GeV.We analyze the data for the
n ¼ −4 and n ¼ −2 interaction models.

B. Numerical results

We first assume that all of the DM matter is interacting
(fχ ¼ 1) and perform the likelihood analysis for n ¼ −4
and n ¼ −2, sampling the likelihoods in σ0 and the six
ΛCDM parameters, for seven fixed benchmark DM masses
between 10 keV and 1 GeV (see Table I). Representative

examples of the reconstructed marginalized posterior
probability distributions7 are shown in Fig. 6 for the case
of n ¼ −4 and mχ ¼ 1 MeV. The general shape of the
posteriors does not significantly vary as a function of DM
mass and is qualitatively similar for the n ¼ −2 case. There
is a prominent (positive) degeneracy between σ0 and the
scalar spectral index ns: DM interactions suppress power
on small scales in the CMB TT power spectrum, and an
increase in ns can counteract this suppression. The mild
correlations with As and τreio are also due to the suppression
of power at high values of l, but arise from a combination
of the TT and lensing likelihood. The value of As controls
the overall amplitude of all power spectra, but it is
modulated by a factor expð−2τreioÞ above l ≃ 20 in the
TT power spectrum. Increasing As compensates for the
power suppression in the lensing power spectrum, but it
also requires a larger value of τreio in order to keep the
combination As expð−2τreioÞ fixed, so as not to affect the
high-l normalization of the TT power spectrum. The mild
anticorrelation with Ωχh2 is due to the fact that a smaller
value of Ωχh2 leads to a change in the expansion history
that compensates for the shift of the peak positions
produced by DM-baryon scattering. However, reducing
Ωχh2 also delays matter-radiation equality, which boosts
the amplitude of the EISW; thus, the degeneracy is very
weak. Similarly, the shift in the peak positions can be
compensated by altering the value of the Hubble rate,
resulting in a mild, positive correlation between σ0 and h.

FIG. 5. [Left]: The evolution of the ratio of the momentum-transfer rate to the expansion rate of the Universe for n ¼ −2 (blue) and
n ¼ −4 (red), for interacting DM fractions fχ ¼ 1 (solid), 0.1 (dashed), 0.01 (dotted-dashed), and 0.003 (dotted). We show a reference
line (solid gray) where the momentum-transfer rate matches the expansion rate. [Right]: The density perturbations δρ=ρ (top panel) and
velocity divergences (bottom panel) for the mode k ¼ 0.1 Mpc−1. We show the case of n ¼ −4 (red) for the same interacting DM
fractions considered in the left panel. For reference, we show the ΛCDM case for baryons (black); note that the line for the density
perturbations of cold DM lies underneath those for the n ¼ −4 interaction with fractions fχ ¼ 1 and fχ ¼ 0.1. In both panels, we set the
coefficient of the momentum-transfer cross section to its respective 95% C.L. upper limit, derived using the “main” prescription in
Sec. IV, and set the DM mass to 1 MeV.

7Posterior probability distributions in this study were visual-
ized using CORNER.PY [35].
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We find no evidence for DM-proton scattering in the
Planck 2015 data—all marginalized probabilities for σ0 are
consistent with zero, and we use them to infer an upper
limit on σ0 as a function of mχ . We present our 95% C.L.
exclusion curves in Fig. 7 and in the corresponding Table I.
In Sec. III, we have demonstrated the importance of
accounting for the relative bulk velocity when computing
the effects of scattering on CMB observables. Using the

results of our sampling runs, we show the limit (solid red)
we obtain with our “main” prescription. Our limits virtually
have no mass dependence for mχ ≲ 10 MeV (see also
Ref. [11]): for mχ ≪ mp, mχ appears in the Boltzmann
equations via the thermal term v̄th in the momentum-
transfer rate. As demonstrated in Fig. 2, the DM temper-
ature is negligible for CMB calculations, such that the
thermal velocity of the baryons dominates v̄th. Thus, the

FIG. 6. The posterior probability distribution for the ΛCDM parameters and the coefficient of the DM-proton momentum-transfer
cross section for n ¼ −4 interaction and a DM mass of 1 MeV. We show the 68% and 95% C.L. contours obtained from a joint analysis
of Planck 2015 temperature, polarization, and lensing anisotropies for a cosmology with DM-proton interactions (green) and for the
standard ΛCDM cosmology (black). The one-dimensional, marginalized posteriors are shown at the top of each column.

TABLE I. A list of the 95% C.L. exclusion limits on coefficient of the DM-proton momentum-transfer cross section, σ0, given in units
of cm2 and obtained from Planck 2015 temperature, polarization, and lensing anisotropy measurements, for the n ¼ −4 and n ¼ −2
interactions. DM masses are listed along the top row. The limits correspond to those in Fig. 7 and are computed using our “main”
prescription to account for the relative bulk velocity of the DM and baryon fluids.

10 keV 1 MeV 10 MeV 100 MeV 200 MeV 500 MeV 1 GeV

n ¼ −4 1.7e-41 1.7e-41 1.7e-41 1.9e-41 2.1e-41 2.6e-41 3.5e-41
n ¼ −2 2.3e-33 2.3e-33 2.4e-33 2.6e-33 2.8e-33 3.6e-33 4.9e-33
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DM mass dependence drops out of the momentum-transfer
rate entirely. On the other hand, increasing the DM mass to
become comparable to or exceed the proton mass, the
momentum-transfer rate scales as Rχ ∼ σ0ðmχ þmpÞ−1,
while v̄th continues to be dominated by the thermal velocity
of the baryons and thus does not contribute to the mass
scaling. Hence, our limits on σ0 should scale as mχ for
mχ ≫ mp; a transition towards this behavior is visible at the
high-mass end of Fig. 7.
For comparison, we also reproduce the limit obtained

using the prescription from previous literature [3,6,11]
(dotted line, denoted as “cdm”).8 Since the CMB constrains
the cross section to be quite small, the amount of interaction
does not significantly alter the evolution of hV2

χbi from its
ΛCDM counterpart hV2

cbi. As we discuss at the end of
Sec. II B, this leads to our “main” treatment of the relative
bulk velocity to yield similar limits to the “cdm” prescrip-
tion of previous work. Below, we consider the case of
strongly coupled DM, where the “cdm” prescription of
previous work is not valid.
For illustration only, in the same figure, we show

“aggressive” constraints that are inferred when a vanishing
relative bulk velocity is assumed in Eqs. (1) and (2),
and thus the momentum-transfer rate is completely

unsuppressed by the bulk motions. This assumption does
not hold for the case of fχ ¼ 1: at the level of the upper
limit on σ0, there is not enough friction between the DM
and baryon fluids to entirely dissipate the relative bulk
velocity. The “aggressive” constraint demonstrates the
importance of properly incorporating the relative bulk
velocity, especially for n ¼ −4, where the difference in
the limit is more than an order of magnitude. Additionally,
while we expect our “main” prescription to well represent
the exact solution, the “aggressive” constraint gives an
absolute floor on the possible improvement that an exact
treatment of the relative bulk velocity could potentially
achieve.
We further perform a forecast of the sensitivity to n ¼

−4 and n ¼ −2 scattering for a future ground-based CMB-
Stage 4 experiment [14]. We consider (in combination with
Planck data) an experiment with noise levels of 1μK-
arcmin and a beam size of 1 arcmin, with a survey covering
40% of the sky, assuming lmin ¼ 30 and lmax ¼ 3000. We
do not consider CMB lensing in this analysis, which may
substantially improve sensitivity [36]; thus, our result is a
conservative projection. For n ¼ −4, we find an improve-
ment over the current constraints from Planck 2015 by a
factor of ∼2.9 for a DM mass of 1 MeV, giving σ0 <
5.8 × 10−42 at 95% C.L. For n ¼ −2, we find σ0 < 1.0 ×
10−33 for the same mass, which is a factor of ∼2.3
improvement over Planck. In both cases, we use the “main”
prescription for the relative bulk velocity. We show the
corresponding projected exclusion curves in Fig. 7.
To investigate how the limits presented above may

change when only a fraction of DM interacts with baryons,
we reanalyze Planck 2015 data for the case of n ¼ −4.

FIG. 7. The 95% C.L. upper limits for the coefficient of the DM-proton momentum-transfer cross section as a function of DM particle
mass, obtained from likelihood analysis of Planck 2015 temperature, polarization, and lensing anisotropies, for the n ¼ −4 (left panel)
and n ¼ −2 (right panel) interactions. Results are shown for our “main” treatment of the relative bulk velocity between the DM and
baryon fluids, described in Sec. II. Additionally, we show the inferred limit from an “aggressive” assumption, which ignores the impact
of the relative bulk velocity. For comparison, we plot the limit we obtain using the prescription proposed in previous literature (denoted
as “cdm”) [3]. We also show the projected sensitivity for a future ground-based CMB-Stage 4 experiment (obtained using the “main”
prescription).

8We have verified that the residual spectra (calculated with
respect to ΛCDM) we obtain by implementing the methods of
Refs. [6,11] align with those from Ref. [11]. However, we note
that we obtain constraints that are a factor of ∼1.8 weaker for
n ¼ −4 than those in Refs. [6,11] (using the same likelihoods and
sampling methods as Ref. [11]) and a factor of ∼1.4 stronger for
n ¼ −2 than Ref. [6].
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In the left panel of Fig. 8, we show the upper limits on σ0 as
a function of the DM mass mχ , fixing the interacting
fraction to fχ ¼ 1, 0.1, and 0.01. The mass dependence of
the constraint for fχ ¼ 1 differs from that for 0.1 and 0.01
at high masses. The temperature of the interacting DM
subcomponent is negligible compared to the baryon tem-
perature for DM masses mχ ≲ 10 MeV; the momentum-
transfer rate is essentially independent of the DMmass, and
thus so is the limit on σ0. At higher DM masses, however,
the heat-exchange rate becomes larger for a fixed σ0: still
neglecting the DM mass dependence of v̄th in the expres-
sion for Rχ, the heat-exchange rate coefficient scales as
R0
χ ∼mχ=ðmχ þmpÞ2. Hence, at the higher end of the mass

region in the right panel of Fig. 8, Tχ is no longer negligible
compared to Tb, and the momentum-transfer rate scales as
Rχ ∼ σ0ðmχ þmpÞ−1ðTb=mp þ Tχ=mχÞ−3=2. It is thus rea-
sonable to expect the limit on σ0 to strengthen over a range
of intermediate DM masses (i.e., near the proton mass).
To capture the fχ dependence of the limits in further

detail, we again reanalyze Planck 2015 data for the case of
n ¼ −4, this time fixing the DM mass to mχ ¼ 1 MeV and
sampling the fraction fχ as a free parameter. In the right
panel of Fig. 8, we show the resulting marginalized 2d
posterior probability distribution for σ0 versus fχ ; the
shaded region represents the outside of the 95% C.L.
contour and is thus excluded. For fχ ≳ 2%, the limit
roughly scales with fχ , independent of the DM mass.
This scaling no longer holds for smaller values of fχ : as a
smaller fraction of DM particles scatters with baryons,
CMB bounds permit a larger value of σ0. At sufficiently
large σ0, the small interacting DM subcomponent allowed

by data is tightly coupled to the baryons and undergoes
(and amplifies) acoustic oscillations, and the effect
of DM-baryon scattering on the power spectra saturates.
Specifically, when the energy density of the interacting DM
subcomponent approaches the uncertainty on the baryon
energy density, the interacting DM subcomponent becomes
cosmologically indistinguishable from baryons, and the
limits on σ0 entirely relax.9 We find that the relaxation
occurs for fractions fχ ≲ 0.4%, which is consistent with
the value fχ ≲ 0.6%, derived in the tight-coupling approxi-
mation [26].
We illustrate this effect in Fig. 9, where we show the

nonmonotonic behavior of the residual in the TT spectra
(with respect to ΛCDM) as a function of increasing σ0, for
mχ ¼ 1 MeV and fχ ¼ 0.3% in the n ¼ −4 case. The
residuals are shown at its 95% C.L. upper limit, derived
using the “main” prescription (black dotted) and for σ0
above (purple) and below (green) the upper limit.
Decreasing σ0 well below its upper limit effectively turns
off interactions between DM and baryons, and the residuals
disappear. On the other hand, a sufficient increase in σ0
brings the spectrum closer to the reference ΛCDM spec-
trum, and the residuals saturate as the DM and baryon
fluids become as tightly coupled as possible.10 If the

FIG. 8. [Left]: The 95% C.L. excluded region for the coefficient of the DM-proton momentum-transfer cross section as a function of
DM mass, obtained by analyzing Planck 2015 data, when the interacting fraction fχ of the total DM energy density is fixed to (from the
lightest to the darkest pink): 1, 0.1, and 0.01. [Right]: The 95% C.L. excluded region for the coefficient of the DM-proton momentum-
transfer cross section as a function of the interacting fraction fχ of the total DM energy density, for a fixed DM mass mχ ¼ 1 MeV; it is
obtained by analyzing Planck 2015 temperature, polarization, and lensing anisotropy measurements, for the n ¼ −4 interaction,
allowing fχ to vary as a free sampling parameter. The exclusion is bimodal for fractions 0.2% ≲ fχ ≲ 0.4% and constraints completely
relax for fχ ≲ 0.2% (where DM becomes cosmologically indistinguishable from a small additional amount of baryons).

9The caveat is that DM does not participate in recombination
and is thus not entirely degenerate with baryons.

10Complications occur if the strength of DM interaction with
baryons approaches that of the Compton interaction between
baryons and photons before CMB decoupling. This regime
significantly impacts acoustic oscillations and leads to strong
numerical instabilities; thus, we do not consider it further.
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turnover in the residuals is detectable, the inferred posterior
is bimodal; we see this behavior for fractions in the range
0.2%≲ fχ ≲ 0.4% in Fig. 8.

V. DISCUSSION AND CONCLUSIONS

We have conducted a comprehensive study of the impact
of scattering between DM and protons on the CMB power
spectra. In particular, we adopted a phenomenological
approach of parametrizing the momentum-transfer cross
section as σMT ¼ σ0vn (where v is the relative velocity
between the scattering particles) and focused on negative
powers of velocity dependence that arise in well-motivated
simplified models of DM interactions: n ¼ −2 and n ¼ −4.
Such interactions are cosmologically important at times
close to recombination, unlike the class of models with
n ≥ 0, for which scattering has the largest impact in the
early Universe.
We assessed the impact of the relative bulk velocity

between the DM and baryon fluids that may arise in the
prerecombination Universe, when the relative bulk velocity
surpasses the relative thermal velocity dispersion. A large
relative bulk velocity results in nonlinear Boltzmann
equations and the mixing of Fourier modes. We presented
a new treatment to sidestep these difficulties, while captur-
ing the physics behind mode coupling: we introduce a
mode-dependent RMS velocity dispersion as a proxy for
the bulk relative velocity, and we incorporated it into the

computation of the linear Boltzmann equations in a self-
consistent manner appropriate for a cosmology that includes
DM-baryon scattering.
We analyzed Planck 2015 temperature, polarization, and

lensing data to search for evidence of DM-proton scatter-
ing. We found that the data are consistent with no
interactions and use our results to produce upper limits
on the coefficient of the momentum-transfer cross section
as function of DM mass, shown in Fig. 7 and provided in
Table I. Additionally, we considered the case in which only
a small fraction of DM interacts with protons; for a DM
mass of 1 MeV, we constrained the DM-proton interaction
as a function of the fraction in Fig. 8.
We discussed two regimes of DM-baryon scattering:

weak-coupling regime, in which the momentum-transfer
rate is inefficient due to Hubble expansion and damps
acoustic oscillations on small scales; and a strong-coupling
regime, in which DM and baryons are tightly coupled,
resulting in DM undergoing acoustic oscillations with the
baryons. If all the DM is allowed to interact with baryons,
Planck data constrain the interaction to be in the weak-
coupling regime. However, if only a fraction of DM
interacts with baryons, constraints on the cross section
progressively weaken as the fraction decreases. For frac-
tions below ∼0.4%, we find that Planck constraints
significantly degrade: the DM and baryons are allowed
to be so tightly coupled that DM essentially becomes
cosmologically indistinguishable from a small additional
amount of baryons.
Interestingly, such strongly coupled dark matter could

alleviate the mild tension between CMB and big bang
nucleosynthesis (BBN) measurement of the energy density
of baryons. Recent BBN measurements of the deuterium
abundance yield the values Ωbh2 ¼ 0.02166� 0.00015�
0.00011 [37] and Ωbh2 ¼ 0.02174� 0.00025 [38],
whereas the latest Planck 2018 data yield Ωbh2 ¼
0.02237� 0.00015 [39]. These BBN values for the baryon
density are lower than the CMB value by the equivalent of
0.5%–0.6% of the DM energy density, and a strongly
coupled DM subcomponent with fχ ∼ 0.4% could largely
account for this discrepancy. This feature is not unique to
n ¼ −4; any interaction that tightly couples this subcom-
ponent of DM to baryons around the time of recombination
could be interpreted as an additional contribution to
baryons.
The n ¼ −4 interaction has received a fair amount

of recent attention in light of DM interpretation of the
EDGES signal [9]. The initial claim of Ref. [9] was that a
phenomenological v−4 interaction could explain the
EDGES signal—and our CMB analysis does not rule
out such a possibility. However, our results do exclude a
percent of millichargelike DM scattering only with ions at
the level needed to explain EDGES [16]. Under this
millicharge scenario, our constraints are also complemen-
tary to bounds from a collider search at SLAC [40], stellar

FIG. 9. Percent residuals (with respect to ΛCDM) of the lensed
TT power spectra for the case of n ¼ −4. The fraction of the total
DM energy density in the interacting subcomponent is fixed to
0.3%, for a DM mass of 1 MeV, and we use the “main”
prescription. We show the residuals with the coefficient of the
momentum-transfer cross section σ0 set to its 95% C.L. the upper
limit (dotted black) and the residuals with σ0 set to be a numerical
factor—given in the legend—above (purple) and below (green)
the upper limit. We see the nonmonotonic behavior of the
residuals as a function of σ0, which leads to the bimodality in
the inferred posterior of Fig. 8 around this value of fχ , since the
regime of the turnover is detectable with Planck.
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cooling [41], and the cooling of supernova 1987A [42].
These bounds limit the production of millicharged par-
ticles and are thus insensitive to the cosmological abun-
dance millicharged DM. We explore the viable parameter
space for millicharged DM in the context of EDGES in a
separate study [17].
Finally, we presented a conservative forecast for the

next-generation ground-based CMB-Stage 4 experiment,
and showed a factor of ∼3 improvement over Planck limits
on σ0 for the n ¼ −4 interaction. Next-generation ground-
based CMB surveys optimized for high-multipole science
(where the signals of DM scattering may be particularly
prominent) thus have a bright future in terms of DM
searches with cosmological data.
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APPENDIX A: DERIVATION OF
NONLINEAR TERMS

In this Appendix, we derive the nonlinear terms that
appear in the evolution of the DM and baryon peculiar
velocities, V⃗χ and V⃗b, in Eq. (1) and in the evolution of
their temperatures, Tχ and Tb, in Eq. (2). We drop all terms
involving collisions between the baryons and photons for
clarity, with the understanding that they must be incorpo-
rated to obtain the complete expressions for the baryons.
The baryon fluid consists of various species (i.e., electrons,
protons, and helium nuclei), which are characterized by the
same peculiar velocity and temperature. We denote a
particular baryonic species with B and denote properties
of baryon fluid as a whole with b. The species B has

an energy density ρB ¼ YBρb, where YB is its mass
fraction and

P
BYB ¼ 1. We assume the phase space

distribution functions of the DM and baryons are
Gaussian, given by

fχðv⃗χÞ ¼
1

ð2πÞ3=2v̄3χ
exp

�
−
ðv⃗χ − V⃗χÞ2

2v̄2χ

�
and

fBðv⃗BÞ ¼
1

ð2πÞ3=2v̄3B
exp

�
−
ðv⃗B − V⃗bÞ2

2v̄2B

�
; ðA1Þ

where v̄2χ ¼ Tχ=mχ and v̄2B ¼ Tb=mB are the thermal
velocity dispersions, and mχ and mB are the particle
masses. Deriving the rates of momentum and heat
transfer involves integrating the distribution functions
over the velocities of the DM and baryon particles, v⃗χ
and v⃗B, in the center-of-mass frame. Anticipating these
calculations, it is convenient to make a change of
variables to

v⃗m ≡ v̄2Bv⃗χ þ v̄2χ v⃗B
v̄2B þ v̄2χ

and v⃗r ≡ v⃗χ − v⃗b ðA2Þ

such that the distribution functions remain factorizable [8],

Z
d3vχfχðv⃗χÞ

Z
d3vBfBðv⃗BÞ

¼
Z

d3vrfrðv⃗rÞ
Z

d3vmfmðv⃗mÞ: ðA3Þ

These new distribution functions have the Gaussian forms

fmðv⃗mÞ ¼
1

ð2πÞ3=2v̄3m
exp

�
−
ðv⃗m − V⃗mÞ2

2v̄2m

�
and

frðv⃗rÞ ¼
1

ð2πÞ3=2v̄3r
exp

�
−
ðv⃗r − V⃗rÞ2

2v̄2r

�
; ðA4Þ

where the means and dispersions are

V⃗m ¼ v̄2BV⃗χ þ v̄2χV⃗b

v̄2B þ v̄2χ
and V⃗r ¼ V⃗χ − V⃗b;

v̄2m ¼ v̄2χ v̄2B
v̄2χ þ v̄2B

and v̄2r ¼ v̄2χ þ v̄2B: ðA5Þ

We consider interactions between DM particles and
baryons B with momentum-transfer cross sections given
by σMT ¼ σ0vnr, and we are particularly interested in n ¼
−2 and n ¼ −4. As we show below, the rate calculations
yield confluent hypergeometric functions of the first kind
with the form
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and an overall numerical constant

N n≡2ð5þnÞ=2

3
ffiffiffi
π

p Γ
�
3þn

2

�
¼

8>>><
>>>:

2

3

ffiffiffi
2

π

r
for n¼−2

1

3

ffiffiffi
2

π

r
for n¼−4;

ðA8Þ

where we define r≡ Vr=v̄r.

1. Momentum transfer

In a single collision between a DM particle χ and baryon
B, the momentum of the DM particle changes by [3]

Δp⃗χ ¼
mχmB

mχ þmB
jv⃗χ − v⃗Bj

�
n̂ −

v⃗χ − v⃗B
jv⃗χ − v⃗Bj

�
; ðA9Þ

where n̂ is the direction of the scattered DM particle in the
center-of-mass frame. The resulting drag force per unit
mass on the DM fluid is

DχðV⃗rÞ¼
nB
mχ

Z
d3vχfχðv⃗χÞ

Z
d3vBfBðv⃗BÞ

Z
dΩ

dσ
dΩ

vrΔp⃗χ

¼−
YBρbσ0
mχþmB

Z
d3vrfrðv⃗rÞvnþ1

r v⃗r

Z
d3vmfmðv⃗mÞ;

ðA10Þ

where we obtain the second line by completing the
integration over angles to obtain the momentum-transfer
cross section and by utilizing Eq. (A3). The integral over
v⃗m simply evaluates to 1, and the remaining integral over v⃗r
yields the result

DχðV⃗rÞ ¼ −
YBρbσ0N n

mχ þmB
v̄nþ1
r V⃗r1F1

�
−
nþ 1

2
;
5

2
;−

r2

2

�
:

ðA11Þ

The evolution of the DM and baryon peculiar velocities
obeys

∂V⃗χ

∂τ −c2χ∇⃗δχþ
_a
a
V⃗χ

¼−a
X
B

YBρbσ0N n

mχþmB
v̄nþ1
r V⃗r1F1

�
−
nþ1

2
;
5

2
;−

r2

2

�
ðA12Þ

∂V⃗b

∂τ − c2b∇⃗δb þ
_a
a
V⃗b

¼ þa
X
B

YBρχσ0N n

mχ þmB
v̄nþ1
r V⃗r1F1

�
−
nþ 1

2
;
5

2
;−

r2

2

�
:

ðA13Þ

If we neglect the terms proportional to the speeds of
sound, cχ and cb, we may combine these equations to
obtain the following expression for the evolution of the
relative bulk velocity:

∂V⃗r

∂τ þ _a
a
V⃗r ¼ −a

X
B

YBðρb þ ρχÞσ0N n

mχ þmB
v̄nþ1
r V⃗r

× 1F1

�
−
nþ 1

2
;
5

2
;−

r2

2

�
: ðA14Þ

By further assuming the baryon fluid is comprised of a
single species with a mass given by the mean molecular
weight μb and plugging in n ¼ −4, we find

∂V⃗r

∂τ þ _a
a
V⃗r ¼−a

ðρbþρχÞσ0
mχ þμb

V̂r

V2
r

�
Erf

�
rffiffiffi
2

p
�
−

ffiffiffi
2

π

r
re−r

2=2

�
;

ðA15Þ

which agrees with Ref. [8].

2. Heat transfer

The amount of energy transferred to the DM fluid is

ΔEχ ¼ Δp⃗χ · v⃗cm; ðA16Þ

where the center-of-mass velocity may be written as
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v⃗cm ¼ v⃗m þ mχ v̄2χ −mBv̄2B
ðmχ þmBÞðv̄2χ þ v̄2BÞ

v⃗r: ðA17Þ

In order to find the amount of heat transfer, we work in
the instantaneous rest frame of the fluid so as not to

incorporate its kinetic energy due to its bulk motion
[8]. In Eqs. (A1) and (A5), for the DM fluid, we set
V⃗χ ¼ 0 and V⃗b ¼ −V⃗r; for the baryon fluid, we set
V⃗b ¼ 0 and V⃗χ ¼ V⃗r. The rate of heat exchange for the
DM fluid is

dQχ

dt
¼
X
B

nB

Z
d3vχfχðv⃗χÞ

Z
d3vBfBðv⃗BÞ

Z
dΩ

dσ
dΩ

vrΔEχ

¼−
X
B

mχYBρbσ0
mχþmB

Z
d3vrfrðv⃗rÞvnþ1

r v⃗r ·
Z

d3vmfmðv⃗mÞv⃗cm; ðA18Þ

where we obtain the second line by completing the integration over angles to obtain the momentum-transfer cross section
and by utilizing Eq. (A3). For the first term in v⃗cm, the integration over v⃗m simply returns the mean V⃗m; while for the second
term, there is no v⃗m dependence and, after factoring out constants, the integration over v⃗m returns 1. The remaining integral
over v⃗r yields the result

dQχ

dt
¼ 3

X
B

mχYBρbσ0N n

ðmχ þmBÞ2
v̄nþ1
r

�
ðTb − TχÞ

�
1F1

�
−
nþ 3

2
;
3

2
;−

r2

2

�
−
r2

3 1F1

�
−
nþ 1

2
;
5

2
;−

r2

2

��

þmB

3
V2
r1F1

�
−
nþ 1

2
;
5

2
;−

r2

2

��
: ðA19Þ

Similarly, the rate of heat exchange for the baryon fluid is

dQb

dt
¼ 3

X
B

μbρχσ0N n

ðmχ þmBÞ2
v̄nþ1
r

�
ðTχ − TbÞ

�
1F1

�
−
nþ 3

2
;
3

2
;−

r2

2

�
−
r2

3 1F1

�
−
nþ 1

2
;
5

2
;−

r2

2

��

þmχ

3
V2
r1F1

�
−
nþ 1

2
;
5

2
;−

r2

2

��
: ðA20Þ

The temperature evolution equations are

_Tχ þ 2
_a
a
Tχ ¼

2

3
a
dQχ

dt
and _Tb þ 2

_a
a
Tb ¼

2

3
a
dQb

dt
: ðA21Þ

Assuming the baryon fluid is comprised of a single species with a mass given by the mean molecular weight μb and
plugging in n ¼ −4, we find

_Tχ þ 2
_a
a
Tχ ¼

2

3
a

mχρbσ0
ðmχ þ μbÞ2

v̄−3r

� ffiffiffi
2

π

r
ðTb − TχÞe−r2=2 þ μbV2

r
1

r3

�
Erf

�
rffiffiffi
2

p
�
−

ffiffiffi
2

π

r
re−r

2=2

��
ðA22Þ

_Tb þ 2
_a
a
Tb ¼

2

3
a

μbρχσ0
ðmχ þ μbÞ2

v̄−3r

� ffiffiffi
2

π

r
ðTχ − TbÞe−r2=2 þmχV2

r
1

r3

�
Erf

�
rffiffiffi
2

p
�
−

ffiffiffi
2

π

r
re−r

2=2

��
; ðA23Þ

which agrees with Ref. [8].

APPENDIX B: IMPLEMENTATION IN CLASS

The implementation of the DM-baryon interaction
requires modifying both the THERMODYNAMICS and the
PERTURBATIONS module of CLASS. In the PERTURBATIONS

module, we have incorporated the full Boltzmann system
of equations (6). In principle, CLASS is able to solve for

each k mode in parallel. However, the “main” prescription
described in Sec. II B introduces mode mixing; thus, we
must determine VRMSðk⋆; zÞ and Vflowðk⋆; zÞ [which
requires us to know the values of θbðk; zÞ and θχðk; zÞ at
all k to perform the integration in Eqs. (4) and (5)] while
concurrently solving the Boltzmann equations at a given
redshift z and Fourier mode k⋆ [which requires us to know
VRMSðk⋆; zÞ and Vflowðk⋆; zÞ for the rate of momentum
transfer in Eq. (7)]. To circumvent this difficulty, we repeat
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the calculations of the PERTURBATIONS module, iteratively
updating the values of VRMSðk⋆; zÞ and Vflowðk⋆; zÞ until
we achieve convergence at the 1% level. In practice, we
initialize VRMSðk⋆; zÞ and Vflowðk⋆; zÞ to the variance of the
relative bulk velocity in ΛCDM given by Eq. (10) for all k;
the choice of the initial condition merely affects the number
of iterations required to achieve convergence. This full
procedure requires starting with sufficiently large kmax such
that the relative bulk velocities are not coherent [10] for the
highest range of redshifts that Planck is sensitive to. We
find that kmax ¼ 5 is sufficient for VRMSðk⋆; zÞ to reach its
plateau at high z, shown in the left panel of Fig. 1.
In the THERMODYNAMICS module, we have included the

modified thermal evolution of the baryon and DM fluids,
given by Eq. (2). These evolution equations depend on the
relative bulk velocity between the DM and baryon fluids,
which we take to be the square root of the variance hV2

χbi to
obtain the average evolution. We thus include the
THERMODYNAMICS module within the iterative procedure,
and recalculate the recombination and thermal history for
each iteration. To compute the recombination of hydrogen
and helium, CLASS can call either RECFAST [43] or HYREC

[44] code. Although RECFAST provides a slight improve-
ment in computational speed, it uses various “fudge
functions” to achieve subpercent accuracy [45] (established
through validation against more accurate codes such as
HYREC and COSMOREC [46] within ΛCDM), and thus may
be unreliable for calculations within a modified cosmology.
We have modified both recombination codes to include
DM-proton scattering and find that our modified version of
RECFAST performs with very good accuracy. Given that
RECFAST is slightly faster, we use it to produce all
numerical results shown in this work.
In RECFAST, the recombination equation (before the

introduction of “fudge functions”) takes the form of an
effective three-level atom approximation: the evolution
equation of the free-electron fraction xe, which directly
depends on the baryon temperature Tb, takes the form

11 [43]

dxeðzÞ
dz

¼ C
ð1þ zÞHðzÞ ½αHx

2
enH−βHð1−xeÞe−

hνα
kbTγ �; ðB1Þ

where Tb is governed by Eq. (2). The coefficients
αHðTb; TγÞ and βHðTγÞ are the effective recombination
and photoionization rates, να is the Lyman-α frequency,
and C is the Peebles factor, representing the probability
for an electron in the n ¼ 2 state to relax to the ground
state before being ionized. An accurate calculation of the
baryon temperature is essential, because it enters in the
recombination rate; a smaller Tb can accelerate recombi-
nation and decrease the number of free electrons in the
remaining plateau. However, both HYREC and RECFAST

do not follow the full evolution of Tb up to the initial
redshift of the calculation. Above the redshift z ∼ 850,
the codes assume that Tb ¼ Tγ − ϵ, and a linearized
system of equation is solved instead [44,48]. In
RECFAST, the switch to solving the full evolution
equation is set by the ratio rCH ≡ tC=tH ∼ 10−3, where
tC is the Compton interaction time and tH the Hubble
time [48]. We find that an incorrect generalization of the
linearized steady-state approximation to include DM-
proton interactions can lead to significant numerical
glitches in the evolution of Tb, which artificially enhance
the impact of DM-proton scattering on the CMB power
spectra. We thus adapt the value of the switch such that
we compute the full evolution equation up to z ∼ 10000,
before recombination starts. The impact of the DM-
proton heat exchange on the baryon temperature is
typically negligible before z ∼ 850, because for any
value of the momentum-transfer cross section not already
excluded by Planck with a negative power-law scaling of
the relative velocity, the cooling time tχ is always
negligible before the Compton time tC until recombina-
tion. Hence, we neglect the modification to the baryon
temperature at early times, when both codes solve the
linearized system of equations. We correctly include
DM-proton scattering at and below z ≃ 850, when the
free-electron fraction and the Compton rate begin to
drop. We have verified that both methods are in excellent
agreement.
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