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A cosmic string network created during an inflationary stage in the early Universe—defined here as
an i-string network—is expected to enter a transient stretching regime during inflation, in which its
characteristic length is stretched to scales much larger than the Hubble radius, before attaining a standard
evolution once the network reenters the Hubble volume after inflation. During the stretching regime, the
production of cosmic string loops and the consequent emission of gravitational radiation are significantly
suppressed. Here, we compute the power spectrum of the stochastic gravitational wave background
generated by i-string networks using the velocity-dependent one-scale model to describe the network
dynamics, and we demonstrate that this regime introduces a high-frequency signature on an otherwise
standard spectrum of the stochastic gravitational wave background generated by cosmic strings. We argue
that, if observed by current or forthcoming experiments, this signature would provide strong evidence for
i-strings and, therefore, for (primordial) inflation. We also develop a simple single-parameter algorithm for
the computation of the stochastic gravitational wave background generated by i-strings from that of a
standard cosmic string network, which may be useful in the determination of the observational constraints
to be obtained by current and forthcoming gravitational wave experiments.
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I. INTRODUCTION

The recently inaugurated era of gravitational wave
astronomy [1,2] opens the possibility of observing the
primordial Universe directly through the study of a variety
of early Universe gravitational wave sources [3]. Networks
of cosmic strings—linelike topological defects whose pro-
duction as remnants of symmetry-breaking phase transitions
is predicted in several grand unified scenarios [4]—are one
such source. Although the production of cosmic strings is
expected to occur in the early Universe, they are generally
expected to survive throughout cosmological history and the
study of their observational imprintsmay give us insight into
the phase transition that originated them.
As cosmic strings interact, they are expected to form

closed loops that detach from the long string network.
These loops then oscillate under the effect of their tension,
and they lose their energy in the form of gravitational
waves. Since the production of these loops is predicted to
occur copiously throughout the evolution of the Universe,
they are expected to give rise to a characteristic stochastic

gravitational wave background (SGWB) [5–7] that may be
probed with a variety of gravitational wave experiments.
There are then prospects of either detecting such a SGWB
produced by cosmic strings, or of a significant tightening of
current constraints on the string tension (and other model
parameters), in the near future.
The cosmic-string-forming phase transition is often

assumed to happen after primordial inflation is brought
to an end. However, several models predict the formation of
cosmic string networks during or towards the end of the
inflationary stage [8–17]. In the braneworld realization of
superstring theory, inflation also often results in the
production of cosmic superstrings [18–21]—fundamental
strings and one-dimensional D-branes that may grow to
macroscopic sizes and play the cosmological role of cosmic
strings. In this paper, we shall study the SGWB generated
by cosmic string networks produced during an inflationary
stage in the early Universe—which for simplicity we shall
refer to as i-strings. The accelerated expansion of the
background is expected to rapidly stretch the i-strings,
so that they become frozen in comoving coordinates, with a
characteristic length significantly larger than the Hubble
radius, at the end of inflation. Such a stretching regime
cannot be maintained indefinitely after the inflationary
stage ends. As a matter of fact, i-strings will eventually
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reenter our Hubble sphere, and the network will approach
the evolution of a standard cosmic string network (pro-
duced after inflation). The effect of the phase of accelerated
expansion is then to delay the attainment of the standard
evolution: the more the network is stretched, the longer this
delay is.
This feature of i-string networks—the fact that they may

only reenter the horizon late in cosmological history—has
been generating some interest in the literature [22–24], since
these networks may evade the observational constraints on
cosmic string tension that result from the cosmic microwave
background and the pulsar timing array data. Note, however,
that in these studies the authors only consider networks that
become cosmologically relevant in the recent past. In the
present paper, we shall consider the SGWB generated by
i-string networks throughout their complete evolution.
Since the production of cosmic string loops and the emi-
ssion of gravitational waves are significantly suppressed for
frozen networks, we shall show that the delay in the
attainment of the standard evolution observed in i-string
networks gives rise to a signature in the SGWB that may be
observed in forthcoming gravitational wave experiments.
Here we characterize this signature and argue that, if
observed with upcoming experiments, it would provide
unequivocal evidence for i-strings and, therefore, for an
inflationary phase in the early Universe.
This paper is organized as follows. In Sec. II, the

cosmological evolution of i-strings networks is described
using the velocity-dependent one-scale (VOS) model.
In Sec. III, the emission of gravitational waves by cosmic
string loops is characterized, and the method for the
computation of the SGWB power spectrum is presented.
In Sec. IV, the SGWB spectrum generated by i-strings is
computed for awide range of parameters. The signature of i-
string networks is quantified and characterized as specific
of a network that experienced an inflationary stage. In
Sec. V,we develop a simple one-parameter algorithm for the
quick computation of SGWB spectra generated by
i-strings from SGWB spectra generated by standard net-
works created in the early Universe after inflation. We then
conclude in Sec VI.

II. COSMOLOGICAL EVOLUTION OF COSMIC
STRING NETWORKS CREATED

DURING INFLATION

The velocity-dependent one-scale (VOS) [25,26] model
describes the evolution of a statistically homogeneous and
isotropic cosmic string network through the characteriza-
tion of the evolution of the rms velocity of the network, v̄,
and its characteristic length, L≡ ðμ=ρÞ1=2 (where ρ is the
average energy density of the network and μ is the cosmic
string tension). Considering the limit of infinitely thin
strings, the evolution of these two quantities can be
obtained by averaging the Nambu-Goto equations of
motion [25,26]:

dv̄
dt

¼ ð1 − v̄2Þ
�
k
L
−

v̄
ld

�
; ð1Þ

dL
dt

¼ LH þ Lv̄2

2ld
; ð2Þ

where H ¼ _a=a is the Hubble parameter, a is the scale
factor, and a dot represents a derivative with respect to
physical time. The damping length scale ld is defined as
l−1
d ¼ 2H þ l−1

f , where the first term accounts for the
damping caused by the expansion of the Universe and the
frictional length, lf, encodes the frictional forces caused by
interactions with other fields. Except when stated other-
wise, for the remainder of this paper we shall assume
that lf ¼ ∞, so that the only source of damping comes
from the Hubble expansion. Furthermore, k is a velocity-
dependent adimensional curvature parameter given approx-
imately by [26]:

kðv̄Þ ¼ 2
ffiffiffi
2

p

π
ð1 − v̄2Þð1þ 2

ffiffiffi
2

p
v̄3Þ 1 − 8v̄6

1þ 8v̄6
: ð3Þ

Interactions between cosmic strings may result in the
formation of closed loops that detach from the network and
oscillate, decaying radiatively. The energy density, which is
lost by the long string network as a result of the production
of loops, can be written as [27]:

dρ
dt

����
loops

¼ c̃ v̄
ρ

L
; ð4Þ

where c̃ is a phenomenological parameter that quantifies
the efficiency of the loop-chopping mechanism. The value
of c̃ ¼ 0.23� 0.04 has been shown to provide a good fit to
cosmic string network simulations, both in the radiation
and matter eras [26]. Throughout this work we shall use this
value for the parameter c̃.
The production and subsequent decay of cosmic string

loops results in an additional energy loss term that needs to
be taken into account in the VOS equations. This is done by
adding the following term to the right-hand side of the
equation describing the evolution of the characteristic
length [Eq. (2)]:

dL
dt

����
loops

¼ 1

2
c̃ v̄ : ð5Þ

Eqs. (1), (2), and (5) constitute the VOS model and they
allow for an accurate description of the cosmological
evolution of cosmic string networks. The linear scaling
regime [28–32]—during which v̄ remains constant and
L ¼ ξt grows linearly with time—is an attractor solution of
the VOS model in the case of a decelerating power-law
expansion of the Universe, where a ∝ tβ, with 0 < β < 1:
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ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ c̃Þ
4βð1 − βÞ

s
and v̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

kþ c̃
1 − β

β

s
: ð6Þ

This regime is only attainable for a constant β and,
therefore, may only naturally arise in a realistic cosmo-
logical background deep into the matter or radiation epochs
[33]. Nevertheless, the existence of such a regime guaran-
tees that the late-time cosmological evolution of cosmic
string networks is the same for a large variety of initial
conditions.
In this paper, we shall investigate the gravitational

wave signatures generated by cosmic string networks
produced during a primordial inflationary phase. These
cosmic strings—which, for simplicity, we shall refer to
as i-strings—are stretched and diluted as a result of the
accelerated expansion of the cosmological background
and, consequently, the characteristic length of the network
grows very quickly. As a matter of fact, during an infla-
tionary phase, one has [34]

L ∝ a; ð7Þ

v̄ ∝ a−1−
1
β → 0: ð8Þ

As a result, at the end of inflation, Lmay be significantly
larger than the Hubble radius, with LH ≫ 1. A network of
i-strings will then become frozen (in comoving coordi-
nates) as a result of the rapid expansion and their sub-
sequent evolution will be given initially by Eqs. (7) and (8).
Note however that such a stretching regime is later brought
to an end. For 0 < β < 1 (as is the case in the radiation and
matter eras), LH ∝ tβ−1 decreases with physical time.
Therefore, the characteristic length eventually becomes
smaller than the Hubble radius—the i-string network
eventually thaws—and the evolution of the network is
no longer described by Eqs. (7) and (8). The stretching
regime is then a transient one, and the network approaches
the standard evolution afterwards.
This behavior is illustrated in Fig. 1, where the cosmo-

logical evolution of string networks, which initially have
LH ≫ 1 and v̄ ¼ 0, is plotted. For the calculations result-
ing in the evolutions depicted in Fig. 1, and all others in this
work, the cosmological parameters used were h ¼ 0.679,
Ω0

Λ ¼ 0.694, and Ω0
rh2 ¼ 2.47 × 10−5, in accordance with

the Planck data [35]. The value of the scale factor at present
time, a0, is taken to be equal to unity.
Let us denote the time for which LH ¼ 1—correspond-

ing to the instant of time, after inflation, when the network
reenters the Hubble volume—as the entry time. Figure 1(a)
shows the cosmological evolution of LH for networks with
different entry times. Before ae, the scale factor corre-
sponding to the entry time, LH follows a line with constant

(c)

(b)

(a)

FIG. 1. Evolution of LH (a), L=a (b) and v̄ (c) with the scale
factor a for networks of cosmic strings with different entry times.
The case labeled as standard represents a network for which LH
and v̄ are set to their radiation-era scaling values as the initial
conditions. The cosmological parameters used were h ¼ 0.679,
Ω0

Λ ¼ 0.694 and Ω0
rh2 ¼ 2.47 × 10−5, in accordance with the

Planck data [35]. The value of the scale factor at the present time
is taken to be 1, a0 ¼ 1.
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negative slope [as predicted in Eq. (7)], and afterwards, it
evolves towards its scaling value, ξβ. The slope of the line
before the entry time is the same for all cases since it is only
influenced by β; therefore, a network created earlier in the
inflationary era—which experiences an accelerated expan-
sion during a longer period of time and ends up with a
larger characteristic length as a result—reenters the Hubble
volume at a later time.
In Fig. 1(b), the condition in Eq. (7) becomes even more

evident, with L=a behaving as a constant before the entry
time. For a network starting with a larger L, the transient
stretching regime lasts longer and the i-string network
thaws later in the cosmological history.
The same behavior may be seen in Fig. 1(c), which

depicts the cosmological evolution of v̄: as the scale factor
approaches ae, v̄ (which was initially vanishing) quickly
increases towards its scaling value as the network thaws.
Following Eq. (4), this implies that the network only starts
producing a significant amount of loops near the entry time.
As these figures show, an i-string network will eventually

reach the evolution of standard cosmic string networks after
a transient stretching regime, independently of the initial
conditions. The effect of an early phase of accelerated
expansion is then, in general, to delay the attainment of
the standard evolution. Note however that, as these figures
illustrate, the linear scaling regime shown in Eq. (6) cannot
be established during the radiation-matter transition and that
the matter era is not long enough for the network to re-
establish scale-invariant evolution [33]. In any case, even
when the i-string network only reenters the Hubble volume
after the radiation-matter transition is triggered, it will still
resume the evolution of standard cosmic string networks.

III. THE STOCHASTIC GRAVITATIONAL
WAVE BACKGROUND GENERATED BY

COSMIC STRING NETWORKS

The production of cosmic string loops as remnants of
string interactions is expected to occur copiously through-
out the cosmological evolution of cosmic string networks.
Once these loops detach from the long string network they
are, in general, expected to decay through the emission of
gravitational radiation. As a matter of fact, these loops are
predicted to emit gravitational waves (GWs) in a discrete
set of frequencies determined by the length of the loops at
the time of emission:

fj ¼
2j
lðtÞ ; ð9Þ

where lðtÞ is the length of the cosmic string loop, j ¼
1; 2;… is the harmonic mode of emission, and fj is the
corresponding frequency.
Cosmic string loops are expected to emit gravitational

radiation at a roughly constant rate

dE
dt

¼ ΓGμ2; ð10Þ

whereE ¼ μl is the energy of the loops and Γ ∼ 65 [5,36] is
a constant parameter that describes the efficiency of the GW
emission mechanism. The length of the loop then decreases
as a result of the emission of gravitational radiation, until
they eventually radiate all their energy and disappear.
Cosmic string loops are thus predicted to generate a

transient gravitational wave signal. However, since several
loops are expected to exist at any given time in cosmic
history, the superimposition of the bursts of GWs they emit
in different directions is expected to give rise to a SGWB
[5–7]. The amplitude of SGWB generated by cosmic string
networks is often quantified using the energy density of
GW, ρGW, per logarithmic frequency interval (in units of
the critical density ρc):

ΩGWðfÞ ¼
1

ρc

dρGW
d log f

; ð11Þ

where ρc ¼ 3H2
0=ð8πGÞ (the subscript “0” shall be used for

the remainder of this paper to denote the value of the
corresponding variable at the present time). This spectral
density may be written as [37,38]

ΩGWðfÞ ¼
Xns
j

j−q

E
Ωj

GWðfÞ; ð12Þ

where

Ωj
GWðfÞ¼

16π

3

�
Gμ
H0

�
2 Γ
fa50

Z
t0

ti

jnðljðt0Þ; t0Þa5ðt0Þdt0 ð13Þ

is the contribution of the jth harmonic mode of emission to
the SGWB. Here, ti is the instant of time associated to the
start of loop production by the cosmic string network (which
is often assumed to be after friction becomes irrelevant to
cosmic string dynamics, around ti ∼ tpl=ðGμÞ2 [4], where tpl
is the Planck time—we shall revisit this assumption in
Sec. IV B), nðljðt0Þ; t0Þdl is the number density of cosmic
string loopswith physical lengths between l and lþ dl at the
time t, and ljðt0Þ ¼ ð2j=fÞðaðt0Þ=a0Þ is the physical length
that loops should have at a time t0 to radiate, in the jth
harmonic, GWs that have a frequency f at the present time.
Equation (12) takes into account the fact that cosmic string
loops emit GWs in different harmonic modes and the fact
that the gravitational backreaction is expected to damp
higher frequency modes more efficiently than it does
low-frequency modes [39,40]. Therein

E ¼
Xns
m

m−q; ð14Þ

G. S. F. GUEDES, P. P. AVELINO, and L. SOUSA PHYS. REV. D 98, 123505 (2018)

123505-4



where q is a parameter that depends on the shape of the
loops, and ns is the number of harmonic modes that have
been taken into consideration. It has been shown that q ¼ 2
for loopswith one kink, while q ¼ 4=3 for loops with a cusp
[7]. Previous work [37] has shown that, in general, it is
sufficient to consider modes up to ns ¼ 103 or ns ¼ 105 for
loops with a kink or a cusp, respectively. In fact, for these
values, the SGWB reaches a “saturation” and remains
essentially unchanged by the inclusion of any higher order
terms. For the remainder of this paper, we shall restrict
ourselves to the fundamental mode of emission unless
explicitly stated otherwise. However, note that, since

Ωj
GWðjfÞ ¼ Ω1

GWðfÞ; ð15Þ

one may easily construct Ωj
GW for any arbitrary mode of

emission j, once the spectrum associated to the fundamental
mode is computed.

A. Loop distribution function

As Eq. (13) highlights, the loop distribution function,
nðljðt0Þ; t0Þ, is the pivotal quantity one has to characterize in
order to compute the SGWB generated by cosmic string
networks. Therefore, one needs to accurately estimate the
size and number of cosmic string loops that exist at any
instant in cosmic history in order to characterize their GW
emission. However, numerical simulations of cosmic string
networks have been inconclusive as to this regard. Although
Nambu-Goto simulations—in which cosmic strings are
treated as infinitely thin and featureless objects—have
consistently shown that about 10% of the energy lost by
the network goes into the formation of large loops (with a
size one to twoorders ofmagnitude smaller than the horizon)
[41–46], field-theory simulations have found no evidence of
a population of large loops [47–51].As amatter of fact, in the
latter, the main energy loss mechanism was observed to be
the emission of scalar and gauge radiation instead of the
production of loops—a mechanism that is not taken into
account in Nambu-Goto simulations and that is generally
assumed to quickly become unimportant once the average
distance between strings becomes significantly larger than
their thickness. It is therefore currently unclear what is the
dominant energy-loss mechanism in realistic cosmic string
networks and what is the distribution of loops that are
produced throughout their evolution.
Given this uncertainty, we shall take an alternative

approach and make use of semi-analytical models to
construct the loop distribution function of the cosmic string
network. In this approach—introduced in [52] and later
extended [37,38]—the size of loops is treated as a free
parameter and one has enough plasticity to probe a large
variety of cosmic string scenarios. Here, we shall use the
model introduced in [38]—which is based on the VOS
model to describe the cosmic string dynamics—since it
does not rely on assumptions of scale-invariant evolution

and, therefore, it allows for an accurate computation of the
loop distribution function during the radiation-matter tran-
sition. Note that therein, the authors found that an accurate
modeling of cosmic string dynamics during this transition
has a significant impact on the amplitude and broadness of
the peak of the spectra, and it is, thus, pivotal to make
accurate predictions of the SGWB spectrum generated by
cosmic string networks.
Let us then assume that loops are created with a size that

is a fixed fraction of the characteristic length of the network
at the time of birth (tb)

lb ¼ αLðtbÞ; ð16Þ

where α is a constant parameter. Although one does not
realistically expect all loops to be created at exactly the
same size—instead the distribution of the sizes of loops
formed at the time tb is expected to peak around lb—if the
width of the distribution is not very large, this should be a
good approximation (see Ref. [37] for a discussion of the
effect of this assumption). In this approach, the number
density of loops created as a function of time, nc, may be
estimated using the VOS model

dnc
dt

¼ 1

μαL
dρ
dt

����
loops

¼ c̃
α

v̄
L4

: ð17Þ

Given the number density of loops that are created
throughout cosmic history, the loops distribution function
may easily be constructed for any l and t. After formation,
the size of loops decreases roughly linearly with time:

lðtÞ ¼ αLðtbÞ − ΓGμðt − tbÞ: ð18Þ

Therefore, nðljðt0Þ; t0Þ has contributions from all preexist-
ing loops that have a physical length ljðt0Þ at time t0.
Determining the times of creation (tib) of the loops that
contribute to a given frequency—which one cannot do
analytically if the networks are not in a linear scaling
regime—is therefore the essential step in this computation.
Given these instants, the number density of loops is given
by [38]

nðljðt0Þ; t0Þ ¼
X
i

�
1

α dL
dt jt¼tib

þΓGμ
c̃
α

v̄ðtibÞ
L4ðtibÞ

�
aðtibÞ
aðt0Þ

�
3
	
:

ð19Þ

B. The small-loop regime

Small loops, with a length l ≪ ΓGμt, are expected to live
significantly less than a Hubble time, tH ¼ H−1. Therefore,
as demonstrated in [53], they can be regarded as decaying
effectively immediately on the cosmological time scale.
Note, however, that the energy of small loops is not radiated
in a single frequency, since the frequency of GWs is
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expected to increase as the length decreases. As a matter of
fact, it was shown in [53] that the power radiated by a small
loop follows approximately the distribution

pðfÞ ¼ fmin

f2
θðf − fminÞ; ð20Þ

where θðf − fminÞ ¼ 1 for all f > fmin and vanishes for all
other f, and fmin ¼ ð2j=lbðtÞÞðaðtÞ=a0Þ is the minimum
frequency of emission of a loop (a loop of initial size lbðtÞ
radiates for all frequencies f > fmin). Note that, this expres-
sion is not only valid for loops that are created with small
sizes at time of birth, with α ≪ ΓGμ, but it also describes the
emission of GWs at the end stages of the life of all loops
irrespective of their initial size. As a matter of fact, as a large
loop radiates energy in the form of GWs and its length
decreases, it will eventually enter a regime in which its
physical length is significantly smaller than the gravitational
backreaction scale, l ≪ ΓGμt, and its decay is precipitated.
The authors of Ref. [53] devised an alternative method to

compute the SGWB spectrum generated by small loops—
i.e., loops that are in the small-loop regime throughout their
lifetime. In this case, the amplitude of the SGWB may
simply be computed as follows:

Ωj
GWðfÞ ¼

16πG
3H2

0

j
fa50

Z
t0

tmin

dρ
dt

����
loops

a5ðtÞ
αL

dt; ð21Þ

where tmin is the time of creation of the loops that have
fmin ¼ f. Note that, if tmin ≤ ti, the lower bound is simply ti.
For small loops, this method produces identical results to the
method described earlier in this section, with the advantage
of requiring significantly less computational time.

C. The typical SGWB spectrum

Although the precise shape and amplitude of the SGWB
spectrum generated by cosmic string networks is affected
by a large variety of macroscopic and microscopic param-
eters (see, e.g., [37,38])—cosmic string tension and their
large-scale dynamics and the size and emission spectrum of
loops—this spectrum has a typical shape.
The comoving characteristic length scale, L=a, generally

grows throughout cosmological history and so does the
comoving length of the loops that are produced. As a result,
the cosmic string network forms loops that emit GWs with
a dominant energy density contribution to progressively
lower frequencies. Therefore, the main contribution to the
high frequency portion of the spectrum comes from smaller
loops thatwere created deep in the radiation era and that have
decayed at high redshifts. The GWs emitted by these loops
generate a plateau in the high frequency range, whose
amplitude is determined by cosmic string tension and the
size of loops. Note that, this plateau is sensible to the
background expansion history, and as a result, the alteration
of the number of degrees of freedom caused by the

annihilation of massive particles deep in the radiation-era
is expected to generate steplike signatures in this plateau
[52] (as matter of fact, any deviation from the standard
background evolution is expected to generate a distinct
signature in the spectra). However, these signatures will not
be taken into account in the present study.
Note also that, for very high frequencies [with

f ≫ fminðtiÞ], the only contributions to the spectra will
come from the end stages of the life of loops created
throughout cosmological history. This is merely a conse-
quence of the fact that the production of cosmic string loops
has not been happening since the beginning of the Universe;
instead, it is expected to start being significant at a time ti.
Therefore, there are no loops emitting dominantly at
frequencies f ≫ fminðtiÞ. The loops contributing to this
frequency range do so in the small-loop regime, and there-
fore, it is straightforward to show—using Eq. (21) and taking
into account the fact that, for f ≫ fminðtiÞ, tmin ¼ ti—that in
this portion of the spectrum ΩGWh2 ∝ f−1.
On the other hand, in the low frequency range of the

spectrum, there is a prominent peak generated by larger
loops that emit GWs after the radiation-matter transition is
triggered. The shape of this peak—its location, amplitude,
and broadness—is dependent on the size and emission
spectrum of loops: larger loops, which live longer and
therefore emit gravitational waves for a larger period of
time, give rise to broader peaks with a higher amplitude.

IV. STOCHASTIC GRAVITATIONAL
WAVE BACKGROUND GENERATED BY

NETWORK OF COSMIC STRINGS
CREATED DURING INFLATION

Several works predict the production of cosmic strings
during or towards the end of an inflationary era [8–16]. In
this section, we characterize in detail the SGWB spectra
produced by i-strings.

A. Signature in the SGWB spectrum produced
by i-strings

As studied in Sec. II, a network of i-strings is stretched
due to the accelerated expansion of the cosmological
background in an inflationary era in the early Universe,
generally resulting in LH ≫ 1 at the end of inflation. The
evolution of such a network was explored, and in Fig. 1, it
has been shown that it attains the standard evolution at a
later time. The fact that v̄ is nearly vanishing while LH ≫ 1
implies that the production of loops is suppressed until the
characteristic length of the network becomes of the order of
the Hubble radius. Instead of producing a significant
amount of closed loops shortly after creation, the network
only starts producing them after the entry time.
Since the general effect of experiencing an inflationary

phase is to delay the onset of (significant) cosmic
string loops production, one may then expect the SGWB
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spectrum generated by i-strings to be similar to the standard
spectrum produced by a network of strings created near the
entry time. This is illustrated in Fig. 2 where the SGWB
spectrum produced by i-strings with ae ¼ 10−16 is plotted
along an artificial spectrum produced by a cosmic string
network created in scaling at the time of entry, ac ¼ 10−16.
As predicted, both spectra are very similar and coincide
with the standard spectrum—produced by a network of
strings created in the early Universe after inflation—in the
low frequency range. Note, however, that there are signifi-
cant differences in the approach to the standard spectrum:
in the case of i-strings, after entry, the network approaches
the scaling regime, while the artificial network created at
the entry time is modeled to already be in the scaling
regime upon formation. After the approach to the linear
scaling regime, both networks produce loops at an equal
rate, giving rise to the same spectra for lower frequencies as
a result. At higher frequencies, both spectra present the
ΩGWh2 ∝ f−1 behavior as a consequence of the lack of
production of the loops which would contribute dominantly
in this frequency range. As explained in Sec. III C, this
signature is produced by loops at the end stages of their
lives, when they have already entered the small-loop
regime. One can then conclude that the main signature
of i-strings is to move this ΩGWh2 ∝ f−1 behavior to lower
frequencies than those for which this signature would be
observed in a standard SGWB spectrum.
Figure 3 shows the SGWB spectrum produced by net-

works of i-strings with different entry times and also a
standard spectrum for comparison. The ΩGWh2 ∝ f−1 sig-
nature is observed in all nonstandard cases. Figure 3 shows
that a later entry time results in a departure from the standard
spectrum at lower frequencies. This is to be expected since a
later entry time results in a longer delay of significant loop
production, which means that the first loops created will
contribute dominantly to lower frequencies.

In Figs. 4 and 5 the SGWB spectra generated by i-strings
networks with ae ¼ 10−10 are plotted for different values of
α and Gμ, respectively. In Fig. 4, the cases for which the

FIG. 2. The SGWB spectra, ΩGWh2ðfÞ, produced by a network
of i-strings with ae ¼ 10−16 (orange dash-dotted line) and by a
network of strings created at ac ¼ 10−16 (blue solid line). The
standard spectrum is depicted in the dashed line. The spectra were
calculated with α ¼ 10−9 and Gμ ¼ 10−7.

FIG. 3. The SGWB spectra, ΩGWh2ðfÞ, produced by networks
with different entry times (the same as in Fig. 1). The spectra were
calculated with α ¼ 0.1 and Gμ ¼ 10−7.

(a)

(b)

FIG. 4. The SGWB spectra, ΩGWh2ðfÞ, produced by networks
with different values of α. In the top panel, (a) cases where loops
are considered large are shown, while in the bottom panel,
(b) cases in the small-loop regime are plotted. The entry time is
ae ¼ 10−10 and the spectra were calculated with Gμ ¼ 10−8.
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formed loops are considered large (α > ΓGμ) are depicted
in Fig. 4(a), while Fig. 4(b) shows the cases in which the
loops are considered small upon formation. The ΩGWh2 ∝
f−1 signature is produced by loops at the end of their lives,
already in the small-loop regime regardless of their initial
size, which explains why the behavior is observed in
every case for both figures. The dependence of α in the
SGWB spectrum has been studied in [37,53], which
conclude that in the regime of large loops, a larger α
corresponds to a larger ΩGW. Together with the fact that for
a larger α the spectrum departs from the standard one at a
lower frequency—since fmin of the first produced loops is
lower for larger loops—this results in the ΩGWh2 ∝ f−1

signature almost coinciding for all cases. In the case of
small loops, this is not the case, since a change in α results
in a shift of the spectrum in the frequency axis which is
observed in Fig. 4(b).
Figure 5 once again shows that the ΩGWh2 ∝ f−1

signature is present in every case. The distinction between
large and small regimes is also present: the two spectra with
lower energy densities are the cases in which the formed
loops are large, and therefore, the signature coincides in
these cases.
This high-frequency ΩGWh2 ∝ f−1 behavior is therefore

quite generic in the SGWB spectrum generated by i-string
networks. Since this signature implies a deficit of energy
density at a specific range of frequencies, this fact has to be
taken into account when analyzing observational data: the
absence of the detection of the predicted SGWB spectrum
for specific parameters within this frequency range may
mean that the network went through a period of accelerated
expansion and not that it does not exist. As a matter of fact,
as the figures presented in this section illustrate, if the
i-string network only thaws late in cosmological history, the
SGWB it generates may be undetectable even for relatively
high tensions (see [22] for a detailed characterization of the
conditions under which i-strings may evade pulsar timing

constraints). Note also that, even if a detection of a SGWB
generated by cosmic string networks by a pulsar timing
experiment (which probe the low-frequency range) occurs
in the near future, this spectra may not be observable
with the more powerful LISA interferometer if the cosmic
string network has experienced a sufficiently long infla-
tionary stage.

B. Specificity of the inflation signature

We have shown that a ΩGWh2 ∝ f−1 signature in the
SGWB spectrum produced by i-strings is imprinted by the
first loops produced by the string network, those with
the smallest comoving length. One may therefore ask
whether or not the observation of a smooth ΩGWh2 ∝ f−1

high-frequency cut-off to an otherwise standard SGWB
cosmic string spectrum should be taken as a signature of
inflation. As we have seen in Sec. III. C, the (very) high-
frequency portion of any cosmic string SGWB spectrum—
to which loops contribute at the end stages of their life—is
generally expected to exhibit a signature of the same kind.
This question then reduces to whether these two signatures
may be distinguished.
To answer this question, let us consider the signature

generated by a (standard) cosmic string network produced
at a temperature Tc in a string-forming phase transition
occurring after inflation in the early Universe. In a weakly-
coupled Higgs model [4]

Gμ ∼
�
Tc

mpl

�
2

; ð22Þ

and the corresponding time of string formation is given by

tc ∼ ðgGμÞ−1m−1
pl ∼ ðgGμÞ−1tpl; ð23Þ

where g ¼ 4πðπN =45Þ1=2. Here, we have used the
Friedmann equation H2 ¼ 8πGρ=3 and taken into account
the fact that in the radiation era H¼ð2tÞ−1 and ρ¼
π2NT4=30, where N is the number of effective relativistic
degrees of freedom. We have also used fundamental units
with ℏ ¼ c ¼ kB ¼ 1, so that the Planck mass is given
by mpl ¼ t−1pl ¼ G−1=2.
The interaction of the strings with relativistic particles in

a radiation fluid results in a frictional damping with a
characteristic length scale [25,54]

lf ¼
μ

σT3
; ð24Þ

where σ is a positive real number, associated to the number
of species interacting nonminimally with the string (see
also [34,55] for a more general discussion of the role of
friction on the dynamics of p-brane networks). Using
Eqs. (22) and (23), one may show that

FIG. 5. The SGWB spectra, ΩGWh2ðfÞ, produced by networks
with different values of Gμ. The entry time is ae ¼ 10−10 and the
spectra were calculated with α ¼ 10−8.
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lf ∼ σ−1g1=2ðttplÞ1=2
�
Tc

T

�
2

: ð25Þ

Since both σ and g are expected to be of order unity,
lfðtcÞHðtcÞ ≪ 1 if tc ≫ tpl. Hence, the initial evolution of
the string network is expected to be friction dominated. As
a matter of fact, the cosmic string network is expected
almost immediately after being generated to attain a regime
where lfH < LH < 1 and v̄ ∼ klf=L. If the average string
density is low (HL ≫ c̃ v̄), the network will experience a
stretching regime—during which it is conformally
stretched, with L ∝ a, v̄ ∝ lf=a—before entering a tran-
sient Kibble phase with HL ∼ c̃ v̄, and v̄ ∼ ðklfH=c̃Þ1=2,
L ∼ ðkc̃lf=HÞ1=2. Both these phases precede the frictionless
cosmic string evolution that we have described in Sec. II.
During the stretching phase, the characteristic comoving

length scale of the network L=a remains roughly constant,
and the rms velocity of the strings is small. Hence, the
generation of closed string loops by the network is limited,
only becoming significant at the start of the Kibble phase.
As a consequence, the first loops produced by the network,
from the start of the stretching phase to the start of the
Kibble phase, generate gravitational waves whose fre-
quency measured at the present time is such that

f ≳ t−1c
ac
a0

∼Gμt−1pl
ac
a0

; ð26Þ

with

ac
a0

∼
T0

Tc
∼ ðGμÞ−1=2 T0

mpl
∼ 2 × 10−32ðGμÞ−1=2; ð27Þ

where T0 ¼ 2.726 K is the observed cosmic microwave
background temperature [56]. Here, for simplicity, we
neglected the fact that the entropy transfer to the photons
from other species may slightly change this result if
Tc > 0.5 MeV, and we assumed thatN ¼ 3.36 (only valid
for Tc < 0.5 MeV). These assumptions do not have any
significant impact in the determination of the frequency
range of the SGWB produced by the first loops created by
the network, even if Tc > 0.5 MeV. Here we have also
assumed that these loops are createdwith the largest possible
size, given by α ∼ 1, since we are interested in computing a
lower limit to the frequency at which the initial ΩGWh2 ∝
f−1 signature occurs. Loops with smaller sizes would
contribute at even higher frequencies.
Hence, the ΩGWh2 ∝ f−1 cutoff associated to a cosmic

string network, produced at a string-forming phase tran-
sition occurring after inflation, only appears at frequencies

f ≳ 4 × 1011ðGμÞ1=2 Hz; ð28Þ
where we have taken into account that tpl¼m−1

pl ¼5×10−44

s¼7×10−33K−1. For pulsar-timing experiments—which cur-
rently provide the most stringent limits on the cosmic string

SGWB—the ΩGWh2 ∝ f−1 signature generated by cosmic
string networks created after inflation would be within their
frequency range (roughly 10−9–10−6 Hz) for Gμ ≲ 10−41.
This is far beyond the current reach of these experiments, and
therefore, such a signature cannot be detected. The same is
also true for the LIGO interferometer, which would only be
able to detect this signature for Gμ ≲ 10−16. Moreover, one
should not even expect the upcoming LISA interferometer to
detect such a signature in spite of the significant increase in
sensitivity it is expected to bring: this signaturewould only fall
into its sensitivity window (∼10−5 − 1 Hz) for Gμ≲ 10−23,
which is also beyond its expected reach. This implies that
either the value of Gμ is small and there is insufficient power
for this part of the spectrum to be observed with current and
upcoming gravitational wave experiments, or this ΩGWh2 ∝
f−1 signature will be outside of the frequency range covered
by these experiments.
Furthermore, during the Kibble phase, the average energy

density of the cosmic string network is always higher than in
the linear scaling regime, and the loop production is there-
fore extremely efficient [cf. Eq. (4)]. This would generate a
transitional region of frequencies in the SGWB power
spectrum, between the standard radiation era plateau and
the high frequencyΩGWh2 ∝ f−1 part, in which the power is
significantly higher than that produced by a standard cosmic
string network in a linear scaling regime (and, therefore, to
some sort of a secondary peak). This feature is, in general,
not predicted in computations of the SGWB since networks
are, for simplicity, generally assumed to start creating a
significant amount of loops after the friction-dominated
regimes have ended and scale-invariant evolution is
established.
Hence, we conclude that the observation with current or

forthcoming experiments of a smooth transition between a
standard SGWB cosmic string spectrum and a ΩGWh2 ∝
f−1 spectrum is indeed a signature of a cosmic string
network generated during inflation, assuming a standard
transition from inflation to the radiation dominated era
(see [[57],[58]] for a discussion of the signatures of non-
standard cosmologies on the SGWB generated by cosmic
strings).
Although this signature is associated with inflation, we

should note that it does not distinguish between different
inflationary scenarios, nor does it differentiate inflation from
its proposed alternatives (e.g., ekpyrotic models, bouncing
and string gas cosmologies, etc...). Strictly speaking, the
ΩGWh2 ∝ f−1 signature should more precisely be seen as
evidence that the characteristic length scale of the network
was larger than the Hubble radius in the past.

V. RECIPE FOR THE CONSTRUCTION
OF SPECTRUM

In this section, we will provide a recipe to approximately
construct the SGWB spectrum produced by a network of
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i-strings. We start with a standard spectrum and determine a
specific frequency, fcut, dividing it in two regions: for
f < fcut, the standard spectrum holds, while for f > fcut, it
becomes a line of constant slope −1 (with ΩGWh2 ∝ f−1),
which intersects the standard spectrum at fcut. This
procedure is illustrated in Fig. 6. The spectrum, produced
by a network of i-strings, is represented by the dash-dotted
line and our approximation—which has a single parameter,
fcut—by the solid line.
From Fig. 6, it should be noted that, while the approxi-

mation is accurate for the most part of the spectrum, the
sudden transition from the standard spectrum to a straight
line results in a slight overestimation of the amplitude of
the spectrum for frequencies near fcut. However, for the
purpose of deriving observational constraints, this is not
problematic: the resulting constraints will be safe, although
a bit conservative.
The value of fcut is estimated through a numerical fit to

take into account the two effects responsible for the way the
ΩGWh2 ∝ f−1 signature is added to an otherwise standard
SGWB spectrum: the approximation to the linear scaling
regime and the initial size of the loops—since this signature
is associated with the small loop behavior.

A. Case of small loops

Studying loops that are already created in the small-loop
regime, it is possible to isolate the first effect, which is the
approach to the scaling regime. As seen in the evolution of
v̄, shown in Fig. 1(c), one expects the network to start
producing a significant amount of loops—and therefore to
start emitting a significant amount of gravitational waves—
near the entry time. However, by the entry time, the

network is not yet in a linear scaling regime (the value
of v̄ is approaching the scaling constant from below).
This progression to the linear scaling regime results in a
smooth transition from a standard spectrum to a region
where ΩGWh2 ∝ f−1, as was seen in the previous section,
in Fig. 3.
The value of fcut, which takes into account this effect and

produces the best approximation following our recipe, was
numerically estimated to be the fmin of loops created at
ae� ¼ 24 × ae, which corresponds to LH ¼ 0.211—as
expected, LH is of order unity and close to the scaling
value. From Eq. (9), fcut can then be calculated as:

fcut ¼ fminðae� Þ ¼
9.48
α

Hðae� Þ
ae�

a0
: ð29Þ

In Fig. 7, our approximation is plotted along a SGWB
spectrum generated by i-strings for an entry time of
ae ¼ 10−15, in the regime of small loops. The approximation
accurately depicts the spectrum for a wide range of frequen-
cies, except in a region near fcut, where the overestimation
that was mentioned in the beginning of this section can be
seen in the sudden transition from the standard SGWB
spectrum to a ΩGWh2 ∝ f−1 signature.

B. Case of large loops

For large loops, the fact that the loops created at ae� only
behave as small loops at a later time needs to be taken into
account, since it is the small-loop behavior that is respon-
sible for the ΩGWh2 ∝ f−1 signature. To calculate this new
fcut, one has to define when does a loop behave as a small
one. From Sec. III, a loop can be considered to start
behaving as a small one at the time ts given by:

FIG. 6. Approximation (solid line) of the SGWB spectrum,
ΩGWh2ðfÞ, following the recipe developed in this section.
The dash-dotted line represents the SGWB spectrum produced
by a network of i-strings, with ae ¼ 10−5 and the dashed line
represents the standard SGWB spectrum. For low frequencies,
these 3 spectra coincide. The vertical dashed line indicates
the position of fcut. The loop size parameter was set to
α ¼ 0.1 and Gμ ¼ 10−7.

FIG. 7. Approximation (solid line) of the SGWB spectrum,
ΩGWh2ðfÞ, following the recipe developed in this section. The
dash-dotted line represents the SGWB spectrum produced by a
network of i-strings, with ae ¼ 10−15 and the dashed line
represents the standard SGWB spectrum. The loop size parameter
was set to α ¼ 10−9 and Gμ ¼ 10−7.
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lðtsÞ < CΓGμts; ð30Þ

where C is a constant of order unity. For this particular
recipe, the value of C that originates the best approximation
was found to be C ¼ 0.6. From this condition it follows
that the time when a loop created at time te� (corresponding
to the scale factor ae�) behaves as a small loop, ts, can be
calculated as

ts ¼
1

1.6ΓGμ

�
0.211α
Hðae� Þ

þ ΓGμte�
�
: ð31Þ

Knowing this time, fcut can be calculated following
Eqs. (9) and (18) as

fcut ¼
2

0.211α
Hðae� Þ − ΓGμðts − te� Þ

as
a0

: ð32Þ

The calculation of fcut should be done following Eq. (32)
if α > 2.84ΓGμte�Hðae� Þ. Otherwise, ts ¼ te� and Eq. (32)
reduces to Eq. (29).
Figure 6 shows this approximation applied to a case

in which the loops are large, with α ¼ 0.1 and Gμ ¼ 10−7.
In this case, we are clearly in the large-loop regime,
and the approximation accurately depicts the signature
of ΩGWh2 ∝ f−1. The overestimation is restricted to a
region around fcut.
A case near the transition between what is considered a

small or a large loop for this recipe is shown in Fig. 8. In
this case, α ¼ 10−9 andGμ ¼ 10−7. Despite working better
for cases which are clearly in the small- or large-loop
regimes, this approximation can still be used in the
transition between these regimes—with only minor devia-
tions in the high-frequency range—as evidenced by Fig. 8.

It is important to note that this transition was defined for
this recipe in particular.
This recipe provides a better fit to networks that reenter

the Hubble radius during the radiation era, since the SGWB
of standard networks is constant in this era and the network
evolves in a scale-invariant manner in this epoch. The
matter era may not be long enough for the network to reach
scaling. However, this recipe can also be used when the
reentry occurs during the matter epoch, as shown in
Fig. 9—where the departure from the standard spectrum
happens near the peak. Given that fcut is not located in the
plateau of the spectrum (see Fig. 9), the overestimation may
be greater. However, even in this case, the recipe may still
be used to derive safe observational constraints.
From Eq. (15) it becomes evident that it is straightfor-

ward to extend this approximation to any arbitrary har-
monic mode of emission j. To do so, one only needs to
calculate fcut following the recipe described in this section
and multiply it by j. Furthermore, following Eq. (12), one
can construct the final spectrum including as many modes
as intended. Nevertheless, such inclusion does not affect
our main result, that is the ΩGWh2 ∝ f−1 signature asso-
ciated with i-string networks.

VI. CONCLUSIONS

In this paper, we have computed the power spectrum of
the SGWB generated by i-string networks—networks of
cosmic strings formed during inflation. Using the velocity-
dependent one scale model to describe the dynamics of the
network, i-string networks were shown to enter a transient
stretching regime during inflation, in which the production
of closed loops and the emission of gravitational waves are

FIG. 8. Approximation (solid line) of the SGWB spectrum,
ΩGWh2ðfÞ, following the recipe developed in this section. The
dash-dotted line represents the SGWB spectrum produced by a
network of i-strings, with ae ¼ 10−15 and the dashed line
represents the standard SGWB spectrum. The loop size parameter
was set to α ¼ 2 × 10−5 and Gμ ¼ 10−7.

FIG. 9. Approximation (solid line) of the SGWB spectrum,
ΩGWh2ðfÞ, following the recipe developed in this section. The
dash-dotted line represents the SGWB spectrum produced by a
network of i-strings, with ae ¼ 10−5 and the dashed line
represents the standard SGWB spectrum. The loop size parameter
was set to α ¼ 0.1 and Gμ ¼ 10−7.
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significantly suppressed, and the characteristic size of the
network becomes much larger than the Hubble radius.
Standard evolution is delayed until the characteristic length
becomes, again, smaller or of the order of the Hubble
radius. We have shown that this delay is responsible for
a high-frequency signature of the form ΩGWh2 ∝ f−1

(the larger the delay is—or, equivalently, the earlier the
network is created during inflation—the lower the fre-
quency fcut at which this signature appears). We further
argued that this signature, if observed by current or forth-
coming experiments on an otherwise standard SGWB
spectrum, would provide strong evidence for i-strings
and, therefore, for (early) inflation.
In this work, we also presented a simple single-parameter

algorithm that allows for the construction of the SGWB
spectrum produced by i-strings by using the spectrum of
standard networks as a starting point, without the need for a
full recomputation. This algorithm provides an excellent
approximation of the i-string SGWB spectrum for a wide
range of parameters, including in the case of networks that
only start producing a significant amount of gravitational
waves in the matter-dominated era. This algorithm is
expected to be useful in the determination of the observa-
tional constraints to be obtained by forthcoming gravita-
tional wave experiments, or in the revision of current cosmic
strings constraints (in particular, on the value of Gμ) to
include the extra-parameter fcut. Given that the i-string
SGWB signature exhibits a deficit in power at high frequen-
cies, it is possible that the lack of observation of the SGWB
with current gravitational wave experiments might be
associated with this deficit rather than a low value of Gμ.

Note that, despite the fact that this paper has focused on
ordinary cosmic strings, the main results and conclusions of
this paper also apply to the case of cosmic superstring
networks. As a matter of fact, one shall also expect the
SGWB generated by cosmic superstring networks that have
experienced an inflationary stage to exhibit a signature of
the form ΩGWh2 ∝ f−1 in the high-frequency range of the
SGWB power spectrum (see [59] for a discussion of the
SGWB generated by standard cosmic superstrings). Note
also that, a recipe such as that presented in Sec. V may also,
in principle, be used in this case.
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