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The kinetic Sunyaev Zel’dovich (kSZ) and polarized Sunyaev Zel’dovich (pSZ) effects are temperature
and polarization anisotropies induced by the scattering of cosmic microwave background (CMB) photons
from structure in the post-reionization universe. In the case of the kSZ effect, small angular scale
anisotropies in the optical depth are modulated by the CMB dipole field, i.e., the CMB dipole observed at
each spacetime point, which is sourced by the primordial dipole and especially the local peculiar velocity.
In the case of the pSZ effect, similar small-scale anisotropies are modulated by the CMB quadrupole field,
which receives contributions from both scalar and tensor modes. Statistical anisotropies in the cross-
correlations of CMB temperature and polarization with tracers of the inhomogeneous distribution of
electrons provide a means of isolating and reconstructing the dipole and quadrupole fields. In this paper, we
present a set of unbiased minimum variance quadratic estimators for the reconstruction of the dipole and
quadrupole fields, and forecast the ability of future CMB experiments and large-scale structure surveys to
perform this reconstruction. Consistent with previous work, we find that a high fidelity reconstruction of
the dipole and quadrupole fields over a variety of scales is indeed possible, and demonstrate the sensitivity
of the pSZ effect to primordial tensor modes. Using a principle component analysis, we estimate how many
independent modes could be accessed in such a reconstruction. We also comment on a few first applications
of a detection of the dipole and quadrupole fields, including a reconstruction of the primordial contribution
to our locally observed CMB dipole, a test of statistical homogeneity on large scales from the first modes of
the quadrupole field, and a reconstruction technique for the primordial potential on the largest scales.
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I. INTRODUCTION

The secondary cosmic microwave background (CMB),
temperature anisotropies induced by the scattering of
CMB photons by mass or free charges, is becoming an
important new frontier in observational cosmology.
Unlike the primary CMB temperature anisotropies, which
are mostly sourced by inhomogeneities near the time of
last scattering, CMB secondaries are induced by inho-
mogeneities through much of the volume of the observ-
able universe. Therefore, CMB secondaries can in
principle be a far more powerful direct probe of the
large-scale homogeneity of the Universe than the primary

CMB (see e.g., [1–9]), and possibly shed light on a
number of outstanding low-significance large-scale
anomalies in the primary CMB (see e.g., [10] for a recent
review). The rapid development of detector technology
in CMB experiments and the deployment of redshift
surveys of increasing size and quality has in recent years
driven the first detections of a variety of CMB secondaries
(directly and in cross-correlation) such as CMB lensing
[11–15] (the scattering of CMB photons from mass
[16–18]), the thermal Sunyaev Zel’dovich effect
[19–23] (spectral distortions of the CMB from scattering
CMB photons off hot gas [24]), and the kinetic Sunyaev
Zel’dovich effect [25–30] (the scattering of CMB photons
from the bulk motion of free electrons [31]). Excitingly,
next-generation CMB experiments (e.g., CMB Stage 4
[32]) in cross-correlation with next-generation redshift
surveys (e.g., LSST [33]) will yield a drastic improvement
in the measurement of these and other secondary effects.
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In this paper, we focus on two CMB secondaries: the
kinetic Sunyaev Zel’dovich (kSZ) effect and the polarized
Sunyaev Zel’dovich (pSZ) effect. The kSZ effect is a
temperature anisotropy induced by the bulk motion of free
electrons during and after reionization relative to the CMB
rest frame. The contribution from a given location at a given
redshift is proportional to the locally observed CMB dipole.
The pSZ effect is a polarization anisotropy induced by the
scattering of CMB photons in the presence of a quadrupolar
radiation field. The contribution from a given location at a
given redshift is proportional to the locally observed CMB
quadrupole. In the CMB, both of these effects are given by
line-of-sight integrals. However, the redshift dependence
can be extracted by direct cross-correlation with tracers of
large-scale structure. This technique is known as kSZ
[4,29,34–42] and pSZ tomography [43,44]. In both kSZ
and pSZ tomography, the remote dipole and remote
quadrupole fields, respectively, are encoded in character-
istic statistical anisotropies in the cross-correlation.
In the case of the pSZ effect, previous work has assessed

the ability of polarization measurements in the direction of
clusters to reconstruct the quadrupole field and underlying
primordial potential [1,45–51]. In other previous work
[42,44], the authors introduced a set of estimators to assess
the promise of kSZ and pSZ tomography to measure the
remote dipole and quadrupole fields. These estimators did
not include the full correlation structure of the signal, and
therefore missed some of the available signal to noise.
In this paper, we extend this previous work by defining

a set of quadratic estimators for the remote dipole and
quadrupole fields. Similar quadratic estimators have been
defined for the lensing potential [52–54], where they
played a key role in the first detections of CMB lensing.
Other applications have included patchy screening and
patchy reionization [55–57]. A set of quadratic estimators
for the pSZ effect first appeared in Ref. [43], where the
primary goal was to assess how useful pSZ tomography is
for the detection of primordial gravitational waves. A set of
optimal estimators for kSZ tomography was developed for
several specific scenarios including the detection of large
bulk flows [40] and cosmic bubble collisions [41]. The
main contribution of this work is to present a completely
general set of quadratic estimators for the remote dipole and
quadrupole fields within a unified framework including
scalar and tensor perturbations, to discuss the information
content of the reconstructed fields using a principal
component analysis, and to discuss a few first applications
of measurements of the remote dipole and quadrupole
fields to fundamental questions in cosmology. This paper
also lays the foundation for a complete forecast of
parameter constraints from measurements of the remote
dipole and quadrupole fields, which we present elsewhere.
The plan of the paper is as follows. In Sec. II we first

review the cross-correlation between CMB and large-scale
structure induced by the kSZ effect. Then we derive the

quadratic estimator for the dipole field. Finally we
forecast the signal to noise for a representative set of
experimental configurations. In Sec. III we apply the same
methodology to the pSZ effect, deriving optimal estima-
tors for the remote quadrupole field based on CMB E
modes and B modes and forecasting the signal to noise.
In Sec. V we give an initial discussion of cosmological
applications of these estimators, including the
reconstruction of the primordial potential on large scales.
We conclude in Sec. VI. A set of appendices summarizes
the properties of the dipole and quadrupole fields.

II. QUADRATIC ESTIMATOR FOR THE
REMOTE DIPOLE FIELD

The kSZ effect is determined by the locally observed
CMB dipole, and can therefore be used to measure the
remote CMB dipole field, e.g., the locally observed CMB
dipole as a function of space and time. While the total kSZ
signal is dominated by the Doppler effect from local
velocity perturbations, on large scales it can reveal bulk
flows, statistical anisotropies, and information about the
local primordial CMB dipole. The kSZ is therefore an
interesting probe to get more information about the largest
scales in the Universe. We have studied the different small-
scale and large-scale contributions to the kSZ in detail in
[42]. Here we adapt the well-known quadratic estimator
methodology to the reconstruction of the remote CMB
dipole field via the kSZ effect. The quadratic estimator is
optimal (in the sense that it is unbiased and gives the
minimum variance reconstruction) and better suited for
data analysis than the estimator presented in [42].

A. Cross-correlation induced by the kSZ effect

The temperature perturbation due to the kSZ effect along
the line of sight n̂ is given by

Tðn̂ÞjkSZ ¼ −σT
Z

dχaneðn̂; χÞveffðn̂; χÞ; ð1Þ

where veffðn̂; χÞ is the CMB dipole projected along the line
of sight, χ is comoving distance, and neðn̂; χÞ is the electron
number density. We bin this equation in redshift shells
(bins) α as

Tðn̂ÞjkSZ ¼ −σT
X
α

Z
χαmax

χαmin

dχαaneðn̂; χαÞveffðn̂; χαÞ: ð2Þ

We split up the dipole field into its mean over each bin
v̄αeffðn̂Þ and the small-scale dipole field δveffðn̂; χαÞ, which
varies over the bin

veffðn̂; χαÞ ¼ v̄αeffðn̂Þð1þ δveffðn̂; χαÞÞ ð3Þ

where
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v̄αeffðn̂Þ ¼
1

Δχα

Z
χαmax

χαmin

dχαveffðn̂; χαÞ: ð4Þ

We discuss the bin-averaged dipole field and its power
spectrum in detail in Appendix B. We also write the
electron density neðn̂; χÞ as its angular average plus a
fluctuation term:

neðn̂; χÞ ¼ n̄eðχÞð1þ δeðn̂; χÞÞ: ð5Þ

From Eq. (2) it follows that there is a contribution to the
kSZ temperature anisotropies due to the mean field v̄eff
given by

Tðn̂ÞjkSZ;v̄eff ¼
X
α

ταðn̂Þv̄αeffðn̂Þ; ð6Þ

where we defined anisotropies in the optical depth of the
redshift bin by

ταðn̂Þ ¼ −σT
Z

χαmax

χαmin

dχan̄eðχÞð1þ δneðn̂; χÞÞ: ð7Þ

There is an additional contribution from the isotropic
optical depth which does not contribute significantly to
the cross-correlation we study below, and hence forward
neglect.
Our estimator is based on the cross-correlation of the

CMB temperature multipoles aTlm with the redshift binned
galaxy distribution

δαgðn̂Þ ¼
Z

dχWαðχÞδgðn̂; χÞ ð8Þ

where the normalized window function WαðχÞ selects the
bin range ðχαmin; χ

α
maxÞ and can take into account observa-

tional effects like a varying number density within the bin.
Within a redshift bin, the average dipole field induces the
cross-correlation, since the small-scale variations in the
dipole field will cancel along the line of sight. The kSZ
induced cross-correlation of the CMB temperature and the
binned galaxy distribution is

haTl1m1
δαg;l2m2

i ¼
��Z

dn̂1Y�
l1m1

ðn̂1Þ
X
β

X
L1M1

v̄βeff;L1M1
YL1M1

ðn̂1Þ
X
L2M2

τβL2M2
YL2M2

ðn̂1Þ
�
δαg;l2m2

�

¼
X

β;L1;M1;L2;M2

ð−1Þm1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2L1 þ 1Þð2L2 þ 1Þ

4π

r �
l1 L1 L2

0 0 0

��
l1 L1 L2

−m1 M1 M2

�

× hτβL2M2
δαg;l2m2

iv̄βeff;L1M1
: ð9Þ

We are interested in broad redshift bins, so that to good

approximation hτβl1m1
δαg;l2m2

i ¼ ð−1Þm2C
τδg
αl1

δαβδl1l2δm1−m2
.

With this simplification we obtain

haTl1m1
δαg;l2m2

i

¼
X
l;m

ð−1Þm1þm2ΓkSZ
l1l2lα

�
l1 l2 l

−m1 −m2 m

�
v̄αeff;lm;

ð10Þ

where we defined the coupling

ΓkSZ
l1l2lα

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2lþ 1Þ

4π

r

×

�
l1 l2 l

0 0 0

�
C
τδg
α;l2

: ð11Þ

Therefore, from Eq. (9), the statistics of the small-scale
field are modulated by the bin-averaged dipole field.

B. Estimator and variance of the dipole field

The induced cross-correlation of CMB temperature and
matter allows a quadratic estimator of the mean dipole field
v̄αeff;lm of form

v̂αeff;lm ¼
X

l1m1l2m2

Wlml1m1l2m2αa
T
l1m1

δαg;l2m2
: ð12Þ

To find the optimal weights, we need to minimize the
variance with respect to the weights, subject to the con-
straint hv̂αeff;lmi ¼ v̄αeff;lm. The variance is

Varðv̂αeff;lmÞ¼
X

l1m1l2m2

Wlml1m1l2m2αW
�
lml1m1l2m2α

C̃TT
l1
C̃
δgδg
α;l2

;

ð13Þ

where we considered the leading Gaussian contribution to
the variance, where C̃TT

l includes the relevant contributions
to CMB temperature, foregrounds, and instrumental noise,

and where C̃
δgδg
α;l includes the galaxy power spectrum and
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shot noise. This optimization can be implemented using a
Lagrange multiplier and gives the optimal estimator

v̂αeff;lm ¼ Nv̄ v̄
αl

X
l1m1l2m2

ð−1ÞmΓkSZ
l1l2lα

�
l1 l2 l

m1 m2 −m

�

×
aTl1m1

δαg;l2m2

C̃TT
l1
C̃
δgδg
αl2

; ð14Þ

where

1

Nv̄ v̄
αl

¼ 1

ð2lþ 1Þ
X
l1l2

ΓkSZ
l1l2lα

ΓkSZ
l1l2lα

C̃TT
l1
C̃
δgδg
αl2

: ð15Þ

The signal and noise in our analysis are defined as
follows (see [55] for a similar discussion in the case of the
patchy-τ estimator). The two-point function of v̂eff;lm is the
sum of two terms:

hv̂�αeff;lmv̂βeff;l0m0 i ¼ hv̂�αeff;lmv̂βeff;l0m0 inoise
þ hv̂�αeff;lmv̂βeff;l0m0 isignal

hv̂�αeff;lmv̂βeff;l0m0 inoise ¼ Nv̄ v̄
αlδαβδll0δmm0

hv̂�αeff;lmv̂βeff;l0m0 isignal ¼ Cv̄ v̄
αβlδll0δmm0 : ð16Þ

The first term hv̂�αeff;lmv̂βeff;l0m0 inoise is obtained by summing
the Gaussian terms in the estimator variance. It is the power
spectrum of the estimator in the absence of any large-scale
dipole field and is diagonal in redshift space. The second
term hv̂�αeff;lmv̂βeff;l0m0 isignal is due to the expectation value

hv̂αeff;lmi ¼ v̄αeff;lm and is our signal. It is an excess power in
the reconstruction due to the presence of v̂eff fluctuations.
This part is not diagonal in redshift because large-scale
modes of the dipole field are correlated. Assuming a large-
scale dipole field power spectrum Cv̄ v̄

αβl, the expected signal
to noise per mode is

ðS=NÞlm ¼
�
fsky
2

�
Cv̄ v̄
ααl

Nv̄ v̄
αl

�
2
�
1=2

: ð17Þ

This is the expected “number of sigmas” for a detection of a
dipole field modulation of this mode. To make a map (as
opposed to an overall detection), one roughly needs a
mode-by-mode signal to noise bigger than unity. To get the
signal to noise in all modes combined, one has to take into
account the signal correlation in redshift space (see
Appendix B).

C. Signal-to-noise forecast

We now forecast the signal to noise of the estimator
equation (14) for a cosmic variance limited experiment that

traces Δταlm and aTlm up to lmax for the signal and noise
models specified below.

1. Dipole field signal model

We use the expression for the Λ cold dark matter
(ΛCDM) dipole field from [42], which we recall here
briefly. The primordial potential ΨiðkÞ is related to the
multipole moments of the dipole field as a function of
comoving distance by

veff;lmðχÞ ¼
Z

d3k
ð2πÞ3 Δ

v
lðk; χÞΨiðkÞY�

lmðk̂Þ: ð18Þ

An explicit expression for the transfer function Δv
lðk; χÞ is

given in Appendix A, and an extended discussion can be
found in [42]. The mean dipole field signal power spectrum
Cv̄ v̄
l is then given by

Cv̄ v̄
αβl ¼

Z
dk

ð2πÞ3 k
2PðkÞΔ̄v

αlðkÞΔ̄v
βlðkÞ ð19Þ

where we have defined the bin-averaged transfer functions

Δ̄v
αlðkÞ ¼

1

Δχα

Z
χαmax

χαmin

dχαΔv
lðk; χÞ: ð20Þ

In Appendix B, we study the effect of binning by
comparing the averaged and unaveraged dipole field
power spectra. For the lowest multipoles, where mostly
long-wavelength modes are already extracted from the
spherical harmonic transform, the correlation length of
the unaveraged dipole field is significant (see Fig. 7), and
there is little difference between the power in the averaged
and unaveraged dipole fields even for wide redshift bins
(see the left panel of Fig. 8). For higher multipoles, where
the correlation length of the unaveraged dipole field is not
as long, the signal can be significantly affected by binning,
unless a fine binning is chosen (see the right panel
of Fig. 8).

2. Noise model

The expression for the noise power spectrum Nv̄ v̄
l has

been given in Eq. (15). It depends on the measured CMB

and galaxy power spectra C̃TT
l and C̃

δgδg
l as well as the cross

power C
τδg
αl . The CMB power spectrum includes primary

CMB, lensing and small-scale kSZ. The mass binned δg
power spectrum is given by

C
δgδg
αl ¼

Z
dχ1Wαðχ1Þ

Z
dχ2Wαðχ2ÞCδgδg

l ðχ1; χ2Þ: ð21Þ

Using the Limber approximation we find
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C
δgδg
αl ¼

Z
dk

lþ 1
2

ðWαðχÞÞ2Pggðk; χÞ
				
χ→ðlþ1=2Þ=k

ð22Þ

where the window function selects the redshift bin
ðχαmin; χ

α
maxÞ. Here Pgg is the galaxy power spectrum

including shot noise.
We also need the cross-power spectrum of τ and δg

given by

C
τδg
αl ¼ σT

Z
χαmax

χαmin

dχ1aðχ1Þn̄eðχ1Þ
Z

dχ2Wαðχ2ÞCδeδg
l ðχ1;χ2Þ:

ð23Þ

Using the Limber approximation we find

C
τδg
αl ¼ σT

Z
dk

lþ 1
2

ðaðχÞn̄eðχÞÞWαðχÞPgeðk; χÞ
				
χ→ðlþ1=2Þ=k

:

ð24Þ

We assume that Pgg ¼ b2Pmm and Pge ¼ bPmm where Pmm

is the nonlinear matter power spectrum and b is the galaxy
bias. This approach neglects baryonic feedback effects
(which cause the electron distribution to differ from the
dark matter distribution) and scale dependence of the
galaxy bias. A more precise calculation that incorporates
these features using the halo model is deferred to
future work.

3. Forecast

Armed with expressions for the signal and noise power
spectra, we can calculate the signal-to-noise per mode from
Eq. (17) in each redshift bin. In this work, following [42],
we consider six redshift bins of equal width in χ covering
the range 0 < z < 6 as given in Table I. For the CMB
experiment we choose experimental properties in the range
of the proposed CMB S4 mission. We assume the noise is
Gaussian and given by

Nl ¼ NT exp

�
lðlþ 1Þθ2FWHM

8 ln 2

�
; ð25Þ

with a beam θFWHM ¼ 1.0 arc min and an effective white
noise level of NT ¼ 1.0 μK-arc min. The total measured
CMB signal is then Ctot

l ¼ CCMB;lensed
l þ CkSZ

l þ Nl. We
compute the lensed CMB power spectrum using CAMB
and the kSZ power spectrum using the results of Ref. [42].
The measurement of the galaxy density is limited by shot
noise due to discrete sampling of galaxies Ngg

αl ¼ 1=Nαg,
where Nαg is the number of galaxies per square radian in
the redshift bin α. We assume a predicted galaxy sample for
Large Synoptic Survey Telescope (LSST) ([33]), where the
number density n per arcmin2 is described by

nðzÞ ¼ ngal
1

2z0

�
z
z0

�
2

expð−z=z0Þ ð26Þ

with z0 ¼ 0.3 and ngal ¼ 40 arcmin−2. The bias for the
LSST data set is predicted to be

bðzÞ ¼ 0.95=DðzÞ ð27Þ

with the growth factor normalized as Dðz ¼ 0Þ ¼ 1. We
assume full sky coverage in this forecast for simplicity.
A more realistic overlap between CMB S4 and LSST
might be fsky ∼ 0.5. Finally, we use a range in l for the
reconstruction noise of 100 ≤ l ≤ 104, which saturates the
signal to noise for the experimental parameters consid-
ered here.
With these parameters, we obtain the cosmic variance

limited signal to noise per mode in Fig. 1. We conclude that
the large-scale dipole field could be reconstructed with
extremely high fidelity using our technique, with next-
generation experimental data, over most of the redshift
range. At high redshifts, the dropping number density of
the LSST sample makes the dipole reconstruction impos-
sible, but a deeper galaxy survey would recover these
modes. By choosing more redshift bins in the same range
0 < z < 6, it is possible to gain access to information about
the remote dipole field on smaller scales. We therefore
also show a 12 bin configuration in Fig. 1 with the same
experimental parameters.

III. QUADRATIC ESTIMATOR FOR THE
QUADRUPOLE FIELD

The same methodology that we used above for kSZ
tomography can be used to reconstruct the CMB quadru-
pole field from the polarized SZ effect. The pSZ effect
induces a correlation of the E-mode and B-mode CMB
signal with the matter distribution. The CMB quadrupole
field receives contributions from both scalar and tensor
modes, which we forecast separately. The estimator
described here has been previously presented in the context
of detecting gravitational waves in [43].

TABLE I. We adopt the redshift binning of [42] with six equally
spaced redshift bins from the observer (z ¼ 0) to reionization
(z ¼ 6). The comoving distance is given in units of H−1

0 .

α ðχαmin; χ
α
maxÞ ðzαmin; z

α
maxÞ

1 (0.00, 0.32) (0.00, 0.35)
2 (0.32, 0.64) (0.35, 0.78)
3 (0.64, 0.96) (0.78, 1.37)
4 (0.96, 1.28) (1.37, 2.22)
5 (1.28, 1.60) (2.22, 3.59)
6 (1.60, 1.92) (3.59, 6.00)
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A. Polarization from the CMB quadrupole field

Polarization is generated by the line-of-sight integral of
the local CMB temperature quadrupole, i.e.,

ðQ� iUÞðn̂Þ ¼ −
ffiffiffi
6

p

10

Z
∞

0

dχ _τe−τðn̂;χÞq̃�effðn̂; χÞ

q̃�effðn̂; χÞ ¼
X
m

½qm;S
eff ðn̂; χÞ þ qm;T

eff ðn̂; χÞ��2Y2mðn̂Þ;

ð28Þ

where qm;S
eff and qm;T

eff are the scalar and tensor contributions
to the components of the temperature quadrupole moment
at each position in space, respectively. If we expand ðQ�
iUÞðn̂Þ [55], in complete analogy with what was done
above for the kSZ effect, we find that the CMB polarization
due to the pSZ effect from the inhomogeneous distribution
of electrons is

ðQ� iUÞðn̂ÞjpSZ ¼ −
ffiffiffi
6

p

10
σT

Z
dχaΔneðn̂; χÞq̃�effðn̂; χÞ:

ð29Þ

Now we redshift bin the equation in the same way as above
to obtain

ðQ� iUÞðn̂ÞjpSZ;L ¼ −
ffiffiffi
6

p

10

X
α

Δταðn̂Þq̃�α
eff ðn̂Þ: ð30Þ

Formally, q�αðn̂Þ should be interpreted as the average
components of the quadrupole in each bin. However, since
the correlation length for the quadrupole field is larger than
any reasonable bin choice (see Appendix B), unlike in the
kSZ case here we do not discriminate between the averaged
and unaveraged field. The binned equation (30) is the
starting point for the quadratic estimator of the quadrupole
field q�ðn̂; χÞ.

B. CMB to matter cross-power spectrum due to pSZ

From Eq. (30), it follows that the pSZ contribution to the
CMB polarization is given by

�2a
pZS
lm ¼ −

ffiffiffi
6

p

10

X
α

X
L1;M1;L2;M2

ð−1Þmaq;�α
L1M1

ΔταL2M2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2L1 þ 1Þð2L2 þ 1Þ

4π

r

×

�
l L1 L2

∓ 2 �2 0

��
l L1 L2

−m M1 M2

�
:

ð31Þ

We decompose the CMB perturbations from pSZ in E and
B modes,

aElm ¼ −
1

2
ð2alm þ −2almÞ ð32Þ

aBlm ¼ −
1

2i
ð2alm − −2almÞ ð33Þ

and equivalently for the remote quadrupole field

aq;Eαlm ¼ −
1

2
ðaq;þα

lm þ aq;−αlm Þ ð34Þ

aq;Bαlm ¼ −
1

2i
ðaq;þα

lm − aq;−αlm Þ: ð35Þ

Note that if the remote quadrupole field is sourced only by
scalar perturbations then aq;þα

lm ¼ aq;−αlm and aq;Bαlm ¼ 0, but
still aBlm ≠ 0. That is, a purely E-mode type quadrupole
field gives rise to both E-mode and B-mode power due to
the spatial variations in optical depth [56]. The PSZ
contribution to the CMB is then [43]

FIG. 1. Left: Signal to noise per dipole field mode v̄eff;lm for a full sky experiment with experimental sensitivity oriented at CMB S4
and LSST (see main text), using the redshift binning given in Table I. Right: Same with 12 bins, dividing each previous bin in two.
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aElm ¼ −
ffiffiffi
6

p

10

X
α

X
L1;M1;L2;M2

ð−1Þm
�

l L1 L2

−m M1 M2

�
Fl;L1;L2

×


aq;EαL1M1

αl;L1;L2
− aq;BαL1M1

γl;L1;L2

�
ΔταL2M2

ð36Þ

aBlm ¼ −
ffiffiffi
6

p

10

X
α

X
L1;M1;L2;M2

ð−1Þm
�

l L1 L2

−m M1 M2

�
Fl;L1;L2

×


aq;EαL1M1

γl;L1;L2
þ aq;BαL1M1

αl;L1;L2

�
ΔταL2M2

ð37Þ

where we defined

Fl;L1;L2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2L1 þ 1Þð2L2 þ 1Þ

4π

r �
l L1 L2

2 −2 0

�

ð38Þ

αl;L1;L2
¼ 1

2
ð1þ ð−1ÞlþL1þL2Þ ð39Þ

γl;L1;L2
¼ 1

2i
ð1 − ð−1ÞlþL1þL2Þ: ð40Þ

We can now calculate the cross ¼ correlation of CMB E
and B modes with the τ field as

haEl1m1
Δταl2m2

i ¼ −
ffiffiffi
6

p

10

X
β;L1;M1;L2;M2

ð−1Þm1

×

�
l1 L1 L2

−m1 M1 M2

�
Fl;L1;L2

×


aq;EβL1M1

αl;L1;L2
− aq;BβL1M1

γl;L1;L2

�
× hΔτβL2M2

Δταl2m2
i ð41Þ

haBl1m1
Δταl2m2

i ¼ −
ffiffiffi
6

p

10

X
β;L1;M1;L2;M2

ð−1Þm1

×

�
l1 L1 L2

−m1 M1 M2

�
Fl;L1;L2

×


aq;EβL1M1

γl;L1;L2
þ aq;BβL1M1

αl;L1;L2

�
× hΔτβL2M2

Δταl2m2
i: ð42Þ

We pulled aq;EL1M1
and aq;BL1M1

out of the correlators because
they are the background fields that we want to estimate, not
statistical quantities. Again, since we are considering large
redshift bins, we can assume that

hΔταl1m1
Δτβl2m2

i ¼ ð−1Þm2CΔτΔτ
α;l1

δαβδl1l2δm1−m2
ð43Þ

and obtain

haEl1m1
Δταl2m2

i ¼
X
L1;M1

ð−1Þm1þm2

�
l1 L1 l2

−m1 M1 −m2

�

× ΓpSZ
l1L1l2α



aq;EαL1M1

αl;L1;l2
− aq;BαL1M1

γl;L1;l2

�
ð44Þ

haBl1m1
Δταl2m2

i ¼
X
L1;M1

ð−1Þm1þm2

�
l1 L1 l2

−m1 M1 −m2

�

× ΓpSZ
l1L1l2α



aq;EαL1M1

γl;L1;l2 þ aq;BαL1M1
αl;L1;l2

�
ð45Þ

where we defined the coupling

ΓpSZ
l1L1l2α

¼ −
ffiffiffi
6

p

10
Fl;L1;l2C

ΔτΔτ
α;l2

: ð46Þ

The sum in L1, M1 is dominated by very low l, since the
quadrupole field has only low multipole contributions.

C. Estimator and variance of the quadrupole field

Based on Eqs. (44) and (45), we can construct an
estimator of form

âq;Xαlm ¼
X

l1m1l2m2



WX;E

lml1m1l2m2
aEl1m1

þWX;B
lml1m1l2m2

aBl1m1

�
Δταl2m2

; ð47Þ

where X ¼ fE;Bg. In analogy with the case above we find

âq;Eαlm ¼ NEα
l

X
l1m1l2m2

ð−1ÞmΓpSZ
ll1l2α

�
l1 l2 l

m1 m2 −m

�

×
ðαl;l1;l2aEl1m1

− γl;l1;l2a
B
l1m1

ÞΔτ�αl2m2

ðjαl;l1;l2 j2C̃EE
l1

þ jγl;l1;l2 j2C̃BB
l1
ÞC̃ΔτΔτ

αl2

ð48Þ

âq;Bαlm ¼ NBα
l

X
l1m1l2m2

ð−1ÞmΓpSZ
ll1l2α

�
l1 l2 l

m1 m2 −m

�

×
ðγl;l1;l2aEl1m1

þ αl;l1;l2a
B
l1m1

ÞΔτ�αl2m2

ðjγl;l1;l2 j2C̃EE
l1

þ jαl;l1;l2 j2C̃BB
l1
ÞC̃ΔτΔτ

αl2

; ð49Þ

where

1

NEα
l

¼ 1

ð2lþ 1Þ
X
l1l2

ΓpSZ
ll1l2α

ΓpSZ
ll1l2α

ðjαl;l1;l2 j2C̃EE
l1

þ jγl;l1;l2 j2C̃BB
l1
ÞC̃ΔτΔτ

αl2

ð50Þ

1

NBα
l

¼ 1

ð2lþ 1Þ
X
l1l2

ΓpSZ
ll1l2α

ΓpSZ
ll1l2α

ðjγl;l1;l2 j2C̃EE
l1

þ jαl;l1;l2 j2C̃BB
l1
ÞC̃ΔτΔτ

αl2

:

ð51Þ
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The definition of signal and noise is the same as in the case
of kSZ tomography discussed above, i.e., NE;B

l is the
contribution we would get from statistical fluctuations if
there were no remote quadrupole field. The expected signal
to noise per quadrupole field mode is

ðS=NÞlm ¼
�
fsky
2

�
CE=B
ααl

NE=B
αl

�2�1=2
; ð52Þ

which corresponds to the expected number of “sigmas” of a
detection.

D. Signal-to-noise forecast

1. Quadrupole field signal and noise

Our signal is the projected quadrupole field aq;Elm ðχÞ
and aq;Blm ðχÞ. In [44], we calculated aq;Elm ðχÞ from

scalar perturbations in terms of the primordial potential
ΨiðkÞ:

aq;Elm ðχÞ ¼
Z

d3k
ð2πÞ3Δ

q
lðk; χÞΨiðkÞY�

lmðk̂Þ: ð53Þ

The transfer function Δq
lðk; χÞ is reviewed in Appendix C

and discussed in detail in [44]; it is dominated by the Sachs-
Wolfe effect. In this case, there is a pure E-mode compo-
nent of the quadrupole field. In the presence of primordial
gravitational waves, there will also be a contribution to both
the E-mode and B-mode components of the quadrupole
field. This was first explored in Ref. [43]. We present a
derivation of these contributions in Appendix D, where the
final result is

aq;Elm ðχÞ ¼
Z

d3k
ð2πÞ3 5i

lBlðk; χÞfGq
T;þðk; χÞ½2Y�

lmðk̂Þ þ −2Y�
lmðk̂Þ� þ iGq

T;×ðk; χÞ½2Y�
lmðk̂Þ − −2Y�

lmðk̂Þ�g; ð54Þ

aq;Blm ðχÞ ¼
Z

d3k
ð2πÞ3 5i

lAlðk; χÞf−Gq
T;þðk; χÞ½2Y�

lmðk̂Þ − −2Y�
lmðk̂Þ� − iGq

T;×ðk; χÞ½2Y�
lmðk̂Þ þ −2Y�

lmðk̂Þ�g: ð55Þ

Here, Alðk; χÞ and Blðk; χÞ encode projection effects,
and have the limiting values of Alðk; χ → 0Þ → 0 and
Blðk; χ → 0Þ → −1=5. The functions Gq

T;ðþ;×Þðk; χÞ fix the

amplitude of the effect from the two gravitational wave
polarization states. Definitions of these functions can be
found in Appendix D.
From the multipoles, assuming equal amplitudes for the

two gravitational wave polarization states we obtain the
signal power spectra:

haEα�lm aEβ�l0m0 isignal ¼ ðCS;E
αβl þ CT;E

αβlÞδll0δmm0 ; ð56Þ

haBα�lm aBβ�l0m0 isignal ¼ ðCT;B
αβlÞδll0δmm0 ; ð57Þ

haEα�lm aBβ�l0m0 isignal ¼ 0; ð58Þ

where

CS;E
αβl ¼

Z
kmax

0

k2dk
ð2πÞ3 PΨðkÞΔq

Lðk; χαÞΔq
Lðk; χβÞ�; ð59Þ

CT;E
αβl ¼ 2

Z
k2dk
ð2πÞ3 50PhðkÞIq

Tðk; χαÞIq
Tðk; χβÞ

× Blðk; χαÞBlðk; χβÞ; ð60Þ

CT;B
αβl ¼ 2

Z
k2dk
ð2πÞ3 50PhðkÞIq

Tðk; χαÞIq
Tðk; χβÞ

× Alðk; χαÞAlðk; χβÞ: ð61Þ

The τ field is given in terms of its power spectrum C̃ΔτΔτ
l as

in the previous section. The polarization field has the CMB
power spectra C̃EE

l and C̃BB
l , which includes primary CMB

and lensing.

2. Forecast

We forecast the remote quadrupole field from scalar
perturbations, a guaranteed signal, as well as that of tensor
perturbations assuming a tensor ratio of r ¼ 0.1, the upper
limit of current experimental constraints. Scalar perturba-
tions induce only an E-type remote quadrupole field, while
tensor perturbations source both E-type and B-type. Our
experimental configuration is as above in the kSZ case
with the same 6-bin setup up to redshift 6, using the LSST
galaxy sample and CMB S4 oriented noise values, as well
as a hypothetical experiment with 10 times reduced noise.
In Fig. 2, we show the per-mode signal to noise for the

scalar sourced E-mode quadrupole field. In the left panel,
we include information both from the E- and B-mode
polarization anisotropies in the CMB. Here, it can be seen
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that a reconstruction of the quadrupole field can be made
up to about l ¼ 4. The lower signal to noise in the high
redshift bins is due to the falling galaxy density. For
comparison, in the right panel we show the per-mode
signal to noise including only (small-scale) E-mode

polarization anisotropies. The signal to noise is consid-
erably smaller in this case due to the smaller amplitude of
the lensed B modes which enter the noise.
In Fig. 3, we show the per-mode signal to noise for

the tensor sourced E-mode (left) and B-mode (right)

FIG. 3. Top: Signal to noise for tensors with r ¼ 0.1 per quadrupole field mode aq;Elm (left) and aq;Blm (right) for a full sky experiment
with experimental sensitivity oriented at CMB S4 and LSST, using the redshift binning in Table I, using E and Bmodes. Bottom: Using
the same configuration but reducing the CMB noise by a factor of 10.

FIG. 2. Signal to noise from scalar perturbations per quadrupole field mode aq;Elm for a full sky experiment with experimental sensitivity
oriented at CMB S4 and LSST, using the redshift binning in Table I. Left: Using E and B modes. Right: Using only E modes. This
illustrates the power of B modes for this application.
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components of the quadrupole field for NBB;EE ≃
1.0 μK-arc min (top) and NBB;EE ≃ 0.1 μK-arc min (bot-
tom), both using the LSST galaxy density. Here we
assumed a fiducial value r ¼ 0.1. The signal-to-noise ratio
scales linearly with r. For the CMB S4 type noise a
combined detection may be possible, but not a mode-by-
mode reconstruction. On the other hand for the 10 times
lowered noise, tensor modes would be detected easily and a
noisy large-scale map could be constructed. An interesting
effect is that because the B-mode component of the
quadrupole field vanishes at low redshift [see Eq. (55)],
there is little signal in the first bin in the plots on the right.
A measurement of the B-mode component of the quadru-
pole field therefore benefits from relatively high redshift
surveys.

IV. PRINCIPAL COMPONENT ANALYSIS

Our signal, the effective dipole field and the remote
quadrupole field, is correlated between different redshift
bins. This correlation is in particular strong for the remote
quadrupole field, i.e., there is a modest number of inde-
pendent quadrupoles contained in the observable universe.
To quantify how much degenerate information we obtain
from our estimators, we performed a principal component
analysis (PCA). The PCA for the dipole and quadrupole
fields are based on the signal covariance matrices, Eqs. (19)
and (59), respectively, which are N × N matrix where
N ¼ Nbins

P
lð2lþ 1Þ, of which most elements are zero.

Here, we consider only scalar contributions to the quadru-
pole field. Based on the covariance matrix, we plot the
“explained variance” as a function of the number of PCA
components, which is the usual diagnostic for the number
of components in a PCA. For the kSZ case we choose
lmax ¼ 50 and for the pSZ case lmax ¼ 4, motivated by the
signal-to-noise forecasts above. The results are shown in
Fig. 4. As expected, in the case of the quadrupole field most
of the structure is described by a very small number of
modes, due to the large correlation length. This is con-
sistent with previous observations to this effect [1,48].
A much greater number of independent modes is available

from the dipole field, which is sensitive to peculiar
velocities with a small correlation length. We stress,
however, that the modes probed by the remote dipole
and quadrupole are different than those probed by the
primary CMB on large angular scales, as they involve
information from the volume enclosed by the past light
cone, as opposed to a projection onto the past light cone.

V. PROBES OF HOMOGENEITY

Above, we have established that the largest modes of the
dipole and quadrupole fields can be measured with the
highest signal to noise. This suggests that for a set of
experiments with significant sky overlap, the largest scale
modes will be the first to be detected. What might we learn
from the measurement of these modes? Below, we explore
two possible applications that might be addressed with a
first measurement: reconstructing the primordial CMB
dipole and testing statistical homogeneity of the observable
universe using the quadrupole field. Beyond the first
detected modes, with more information it becomes possible
to use observations of the remote dipole and quadrupole
fields to reconstruct the primordial gravitational potential
on large scales, as we also outline here.

A. Reconstructing the primordial CMB dipole

In contrast to the higher multipole moments of the CMB,
the observed CMB dipole is determined almost entirely by
structure on nonlinear scales, e.g., the peculiar velocity
induced by solar-system, galactic, group, and cluster scales.
This is the kinematic CMB dipole. There is, however, a
contribution from linear scales which we refer to here as the
“primordial dipole.” Note that there exists some ambiguity
in the precise definition of the kinematic and primordial
dipole because the overall observed dipole can be boosted
to any desired value, at the price of inducing aberration of
the primary CMB anisotropies (among other effects such as
the moving lens effect; see Ref. [18] for an extended
discussion). Moreover, different observables will be sensi-
tive to different components of the dipole. For example, the
lensing reconstruction method introduced in Ref. [58] and

FIG. 4. Explained variance as a function of the number of principal components. Left: Dipole field v̄LM with lmax ¼ 50 and 6 redshift
bins. Right: Quadrupole field aq;ELM with lmax ¼ 4 and 6 redshift bins.
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the spectral method described in [59,60] are sensitive to the
CMB dipole observed in a frame with vanishing aberration
of the primary CMB anisotropies. In any case, the various
primordial dipoles can be unambiguously related back
to the underlying inhomogeneities in one’s favorite gauge
(see e.g., [42]).
The first modes we might hope to reconstruct using

kSZ tomography, v̄1eff;1m at low redshift, provide a direct
measurement the local primordial dipole. To see this, first
decompose the dipole field veff , defined by

veffðn̂e; χÞ ¼
3

4π

Z
d2n̂Θðn̂e; χ; n̂Þðn̂ · n̂eÞ; ð62Þ

into a weighted sum of local dipole components

veffðn̂e; χÞ ¼
X1
m¼−1

vmeffðn̂e; χÞY1mðn̂eÞ;

vmeffðn̂e; χÞ≡
Z

d2n̂Θðn̂e; χ; n̂ÞY�
1mðn̂Þ: ð63Þ

The m ¼ −1, 0, 1 components of the locally observed
CMB dipole are defined by vmeffð0Þ≡ vmeffðn̂e; χ → 0Þ. At
χ ≠ 0, from this definition and Eq. (18) we see that
veff;1mðχÞ is an angular average of each component of
the locally observed dipole at fixed redshift. The bin-
averaged dipole field v̄1eff;1m introduces an additional
smoothing of small-scale velocities due to cancellation
along the line of sight. In a redshift bin large enough to
encompass linear scales, the kinematic dipole components
average out, and the estimator for the averaged dipole
field is a measure of the average primordial dipole in the
volume. Because the correlation length of the averaged
field is, by definition, large on the scales of the redshift bin,
a measurement of v̄1eff;1m can be used as an estimate of the
components of the locally observed primordial CMB
dipole. As we have seen in Sec. II C 3, it is possible to
achieve a very high signal-to-noise detection of v̄1eff;1m, and
therefore a high signal-to-noise detection of the local
primordial dipole.

B. Testing statistical homogeneity using
the CMB quadrupole

Using the Commander approach, the Planck 2015 data
yield a central value for the power in the CMB quadrupole
of Cmeasured

2 ¼ 253.6 μK [61]. This can be compared with
the theoretical prediction for the best-fit ΛCDM model
[62] of CΛCDM

2 ¼ 1123.6� 355.393 μK, where we have
included the theoretical cosmic variance error bar. The
measured value is a factor of roughly 4 smaller than the
theoretical prediction, and the degree to which the mea-
sured value for the CMB quadrupole is anomalously low
has been debated since its first measurement by the COBE

satellite [63]. Although it is still entirely consistent to take
the position that we simply inhabit a rare realization [64],
the low quadrupole may be a hint of new physics on
ultralarge scales.
The first modes measured by pSZ tomography can be

used to test the hypothesis that observers at other locations
measure a quadrupole consistent with our own, and there-
fore that we do not inhabit a special location in the
Universe. Because of the large correlation length of the
quadrupole field (see Appendix B), a measurement of
aq;Eα2m , the l ¼ 2 moments of the E-mode type quadrupole
field throughout most of the observable universe, should
closely match our observed CMB quadrupole. However,
the large correlation length is a consequence of the
assumption of statistical homogeneity on large scales.
Therefore, this first measurement will provide an check
of this assumption.
To quantify our ability to test statistical homogeneity

in this way, we calculate the correlation coefficient in
each bin α between the CMB temperature quadrupole and
the E-mode remote quadrupole within ΛCDM. The corre-
lation coefficient is defined as

rαl ¼ CTS;E
αlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CTT
l ðCS;E

ααl þ Nv̄ v̄
ααlÞ

q ð64Þ

where CTT
l is the CMB temperature power spectrum, CS;E

ααl
is the E-mode remote quadrupole power spectrum [defined
in Eq. (59)], and CTS;E

αl is the cross power. We can forecast
the expected error on the measurement of the correlation
coefficient in each bin using the Fisher matrix. A short
calculation yields

Frr ¼ ð2lþ 1Þ ð1þ r2αlÞ
ð1 − r2αlÞ2

ð65Þ

where the one sigma error bar is estimated as σr ¼
ffiffiffiffiffiffiffiffi
F−1
rr

p
.

The expected correlation coefficient for l ¼ 2, as well as
the forecasted error (using the fiducial 6-bin configuration
with CMB noise/beam and galaxy shot noise as discussed
above), is shown in Fig. 5. The large magnitude of the
correlation coefficient demonstrates the high degree of
correlation between the CMB quadrupole and remote
quadrupole in the first few redshift bins (reaching 94%
in the first bin). The small errors further indicate that the
correlation can be reasonably precisely measured, at least
in the first few bins. A significant deviation from the
expected correlation would be strong evidence for the
violation of statistical homogeneity. This idea can be
explored further in the context of specific models, which
we defer to future work.
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C. Primordial potential from the remote dipole
and quadrupole fields

Above, we estimated a map of the remote CMB dipole
and quadrupole fields, we now show how such a

measurement can be transformed into an estimate of the
primordial potential at the same scales. This was first
worked out in [65] which we review and generalize here.
To reconstruct the primordial potential Ψ, the appropriate
coordinates for Ψ are spherical harmonics with the
observation point at the origin, i.e., Ψðn̂; χÞ ¼P

lmψlmðχÞYlmðn̂Þ. The dipole and quadrupole fields
depend primarily on linear scales, and one can therefore
find a linear transformation between alm and the recon-
structed underlying ψlm. Assuming statistical isotropy
and homogeneity, the transformation OX;α is a function of
l and χ only, where X ¼ v̄; q the dipole and quadrupole
fields, and α labels the redshift bin. The reconstructed
primordial field is thus of form ψ̂lmðχÞ ¼P

X;αO
X;α
l ðχÞaX;αlm . One can find the transformation

OX;α
l ðχÞ analytically by minimizing the expected deviation

of the reconstructed field from the true ψlmðχÞ as

∂
∂OX;α

l ðχÞ

�				X
X;α

OX;α
l ðχÞaX;αlm − ψlmðχÞ

				2
�

¼ 0 ð66Þ

which is solved by

2
6666666664

Oq;1
l ðχÞ

Ov;1
l ðχÞ
..
.

Oq;Nbins
l ðχÞ

Ov;Nbins
l ðχÞ

3
7777777775
¼

2
6666664

Cv̄ v̄
11l Cv̄q

11l Cv̄ v̄
12l … Cv̄q

1Nbinsl

Cqv̄
11l Cqq

11l Cqv̄
12l … Cqq

1Nbinsl

..

. ..
. ..

. . .
. ..

.

Cqv̄
Nbins1l

Cqq
Nbins1l

Cqv̄
Nbins2l

… Cqq
NbinsNbinsl

3
7777775

−1
2
666666664

βq;1l ðχÞ
βv;1l ðχÞ

..

.

βq;Nbins
l ðχÞ

βv;Nbins
l ðχÞ

3
777777775

ð67Þ

where the CXY
αβl are the possible auto and cross-power

spectra of the binned dipole and quadrupole fields and

βX;αl ðχÞ ¼ hψlmðχÞaXαlm�i ¼ 2

π

Z
k2dkPðkÞΔX;α

l ðkÞjlðkχÞ

ð68Þ

where ΔX;α
l ðkÞ are the transfer functions for X ¼ q, v̄ in

redshift bin α and PðkÞ is the primordial scalar power
spectrum. Applying these equations, one can in principle
assemble a 3D map of the primordial potential on large
scales. One can incorporate the measurements of the low
multipole temperature and polarization moments of the
primary CMB with the information from the dipole and
quadrupole fields to improve the reconstruction. We
explore this reconstruction problem further in future
work.

VI. CONCLUSIONS

In this paper we presented a method to extract large-scale
information about the Universe from the kinetic and
polarized Sunyaev Zel’dovich effects in a unified way.
We constructed optimal quadratic estimators for the remote
dipole and quadrupole fields using the cross-correlation of
CMB and large-scale structure. For the calculation of the
signal we used the results from our previous publications
[42,44], except for the tensor contribution to the quadrupole
field which we added in Appendix D. This gives a complete
description of these large-scale observables which we will
explore further for cosmological applications in the future.
In the case of the kSZ effect, we found that the dipole field
can be reconstructed mode by mode over a variety of scales
with high fidelity using next-generation experiments such
as CMB S4 and LSST.
In the case of the remote quadrupole field an equivalent

experiment in polarization can reconstruct the remote

FIG. 5. The correlation coefficient equation (64) between the
CMB temperature quadrupole and the E-mode type remote
quadrupole as a function of bin. We assume a 6-bin configuration
with reconstruction noise on the remote quadrupole expected by
CMB S4 combined with LSST. The error bars are computed from
the Fisher estimate in Eq. (65).
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quadrupole field from scalar perturbations mode by mode
on the largest scales with a signal to noise of order 1 to 10.
Although the pSZ signal is far smaller, this is possible
because the noise from the primary and lensing B-mode
CMB polarization is correspondingly small. For the remote
quadrupole field from tensors we found that the same setup
is not enough for a mode-by-mode reconstruction (but
might be enough for a first detection), even with the
optimistic assumption of r ¼ 0.1. However a 10 times
reduced CMB noise level would provide a mode-by-mode
reconstruction of the remote B-mode quadrupole field from
tensors for l≲ 4.
We have also presented some of the first applications of a

measurement of the remote dipole and quadrupole fields. In
particular, it should be possible to measure the local CMB
dipole sourced by linear scales (what we refer to as the
primordial dipole) and to test the statistical homogeneity of
the Universe with the first modes detected at the lowest
redshifts reconstructed using kSZ and pSZ tomography
respectively. A high fidelity reconstruction of the dipole
and quadrupole fields also opens the possibility of recon-
structing a 3D map of the primordial potential and the
tensor field, and we presented a generalization of the
reconstruction methods of Ref. [65] that would be well
suited to this task.
The results of this paper illustrate the exciting oppor-

tunity to learn more about the largest observable scales
from the statistics of small-scale fluctuations. The next
generation of CMB experiments is well poised to take
advantage of the this opportunity, motivating a more
realistic suite of forecasts tailored to these efforts, and
further exploration of the range of early-universe and large-
scale physics that can be probed with new observables. We
hope that our results can contribute to a new sense of
optimism for the prospects of learning a great deal more
about the early universe in the not too distant future.
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APPENDIX A: TRANSFER FUNCTION FOR THE
DIPOLE FIELD

In this appendix, we summarize the contributions to the
transfer function for the dipole field Δv

lðk; χÞ appearing in
Eq. (18). From Ref. [42], we have

Δv
lðk; χÞ≡ 4πil

2lþ 1
Kvðk; χÞ½ljl−1ðkχÞ

− ðlþ 1Þjlþ1ðkχÞ�TðkÞ: ðA1Þ

Here, we incorporate the transfer function TðkÞ for the
Newtonian potential (e.g., evaluated using the Bardeen-
Bond-Kaiser-Szalay fitting function [66]), and the dipole
field receives contributions from the Sachs Wolfe (SW),
integrated Sachs Wolfe (ISW), and Doppler effects through
the kernel Kvðk; zχÞ:

Kvðk; χÞ≡ ½KDðk; χÞ þKSWðk; χÞ þKISWðk; χÞ�; ðA2Þ

where

KDðk; χÞ≡ kDvðχdecÞj0ðkΔχdecÞ
− 2kDvðχdecÞj2ðkΔχdecÞ − kDvðχÞ; ðA3Þ

KSWðk; χÞ≡ 3

�
2DΨðχdecÞ −

3

2

�
j1ðkΔχdecÞ; ðA4Þ

KISWðk; χÞ≡ 6

Z
ae

adec

da
dDΨ

da
j1ðkΔχðaÞÞ: ðA5Þ

Here, χdec is the total distance to decoupling and Δχdec ¼
χdec − χ is the distance from χ to decoupling. DvðχÞ is the
velocity growth function, andDΨðχÞ is the potential growth
function for long-wavelength modes, which are defined as

Ψðx; tÞ ¼ DΨðtÞΨiðxÞ; v ¼ −DvðtÞ∇ΨiðxÞ: ðA6Þ

Approximate forms for these growth functions can be
found in Refs. [41,42]. The leading order behavior of
Kvðk; χÞ in the limit where k → 0 is cubic in k, not linear
as would be expected from the individual kernels,
Eqs. (A3)–(A5). This is a consequence of diffeomorphism
invariance, as discussed in Ref. [42].
The dominant contribution to the remote dipole field

on all but the very largest scales is the local Doppler
contribution in Eq. (A3). In this limit, the remote dipole
field reduces to the line-of-sight peculiar velocity field. To
illustrate this, we have calculated the remote dipole power
spectrum including all the terms above, as well as only
using only the peculiar velocity term [the third term in
Eq. (A3)]. The ratio of these two power spectra is shown in
Fig. 6. We see that the peculiar velocity term constitutes the
majority of the signal, with the additional components
contributing at the ∼10% level on the largest scales.
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APPENDIX B: REDSHIFT CORRELATIONS
AND BIN AVERAGING

Our quadratic estimators are sensitive to the bin-
averaged multipole moments of the dipole field and
quadrupole field. To understand the physical meaning of
these quantities and their power spectra, it is helpful to
examine the redshift correlation function of the unaveraged
fields; several examples are shown in Fig. 7. The top plot
shows the unaveraged correlation function of the L ¼ 2
mode of the remote quadrupole field from scalar perturba-
tions. It is clear from this plot that the quadrupole field
at L ¼ 2 within a redshift bin (here we used 6 bins) is
essentially constant. This property holds over a variety of
multipoles, as discussed in Ref. [44]. Therefore the bin-
average quadrupole field for all practical purposes can be
identified with the unaveraged field.

FIG. 6. Ratio of the binned power spectrum Cv̄ v̄
l of the dipole

field computed using only the peculiar velocity term [the third
term in Eq. (A3)] to the full remote dipole power spectrum.

FIG. 7. The correlation function of the dipole and quadrupole field is plotted at ðχα; χα þ δχÞ, where χα is fixed to be the midpoint of a
redshift bin. The redshift values are given across the top axis, and the corresponding comoving distance values along the bottom axis,
consistent with the binning in Table I. Specifically, the different curves from left to right fix χα ¼ 0.16, 0.48, 0.79, 1.11, 1.43, 1.75, in
units of H−1

0 . Top: Correlation of the quadrupole field q2MðχÞ, which has a very large correlation length. Middle: Correlation of the
dipole field v1MðχÞ. The correlations are smaller than in the quadrupole case because the effective velocities are dominated by the
Doppler effect. Bottom: Correlation of the dipole field v5MðχÞ. The correlation length is much smaller than the bin size, in particular for
low redshift bins.
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The second plot shows the unaveraged L ¼ 1moment of
the dipole field. Here the correlation length is much
smaller, due to the Doppler contribution from small-scale
velocities. If the correlation length is smaller than the bin
size then, due to cancellations within the bin, the averaged
field will have substantially smaller power than the
unaveraged field. The bottom plot shows that for L ¼ 5,
in particular for the low redshift bins, this condition is
strongly violated, and we expect a much smaller signal in
the mean field. We quantify this effect on the signal in
Fig. 8 by comparing the unaveraged and averaged power
spectra. Here, it can be seen that at L ¼ 1, the power in the
averaged and unaveraged dipole field is comparable for
both a 6-bin and 24-bin configuration, while for L ¼ 5
there is a substantial difference, especially for the 6-bin
case. This effect was also seen in the simulations performed
in Ref. [42]. These results illustrate the importance of
distinguishing the bin-averaged and unaveraged power
when characterizing the dipole field signal.

APPENDIX C: SCALAR CONTRIBUTIONS TO
THE REMOTE QUADRUPOLE

In this appendix, we review the contributions to the
quadrupole field transfer function Δq

lðk; χÞ appearing in
Eq. (53). From Ref. [44], we have

Δq
lðk; χÞ ¼ −5il

ffiffiffi
3

8

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
jlðkχÞ
ðkχÞ2 TðkÞ

× ½GSWðk; χÞ þ GISWðk; χÞ þ GDopplerðk; χÞ�:
ðC1Þ

Note that this expression is zero for l ¼ 0 and l ¼ 1. The
various Doppler kernels are given by

GSWðk; χÞ ¼ −4π
�
2DΨðχdecÞ −

3

2

�
j2ðkΔχdecÞ;

GISWðk; χÞ ¼ −8π
Z

ae

adec

da
dDΨ

da
j2ðkΔχðaÞÞ;

GDopplerðk; χÞ ¼
4π

5
kDvðχdecÞ½3j3ðkΔχdecÞ − 2j1ðkΔχdecÞ�;

ðC2Þ

where the growth functions DΨ and Dv are as defined in
Appendix A.

APPENDIX D: TENSOR CONTRIBUTIONS
TO THE REMOTE QUADRUPOLE

We present here the detailed derivation of the primordial
tensor modes contributions to the CMB temperature
quadrupole, used in Sec. III D 1. The CMB quadrupole
as seen by an electron along our past light cone in the n̂e
direction at comoving distance χ is given by

qmeffðn̂e; χÞ ¼
Z

d2n̂½ΘSðχ; n̂e; n̂Þ þ ΘTðχ; n̂e; n̂Þ�Y�
2mðn̂Þ:

ðD1Þ

Let us focus on the anisotropy due to tensors, ΘTðχ; n̂e; n̂Þ,
and define

qm;T
eff ðn̂e; χÞ ¼

Z
d2n̂ΘTðχ; n̂e; n̂ÞY�

2mðn̂Þ: ðD2Þ

It will be helpful to go to Fourier space,

ΘTðχ; n̂e; n̂Þ ¼
Z

d3k
ð2πÞ3Θ

Tðk; n̂Þeiχn̂e·k̂; ðD3Þ

FIG. 8. Power spectrum Cvv
l of the dipole field as a function of redshift χ. We compare Cvv

l , the power evaluated in the bin center, with
Cv̄ v̄
l , the power of the average field. At L ¼ 1 the average field is comparable in size to the unaveraged field, while for L ¼ 5 the

cancellations are important. The effect of cancellations is expectedly larger for larger bins.
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and then decompose into þ and × components

ΘTðk; μ;ϕÞ ¼ ΘTþðk; μÞð1 − μ2Þ cos ð2ϕÞ
þ ΘT

×ðk; μÞð1 − μ2Þ sin ð2ϕÞ; ðD4Þ

where μ≡ k̂ · n̂. These two components can further be
expanded into multipoles using

ΘT
ðþ;×Þðk; μÞ ¼

X
l

ð−iÞlð2lþ 1ÞPlðμÞΘT
l;ðþ;×ÞðkÞ; ðD5Þ

where Pl are the Legendre polynomials. The latter can be
expressed in terms of spherical harmonics as

Plðn̂ · k̂Þ ¼ 4π

2lþ 1

Xl
m¼−l

Y�
lmðn̂ÞYlmðk̂Þ: ðD6Þ

For k̂ ¼ ẑ, μ is simply equal to cos θ with ðθ;ϕÞ being the
angles associated with the n̂ vector. In this case, the
decomposition (D4) can be easily rewritten in terms of
spherical harmonics using the following relations:

ð1 − μ2Þ cos ð2ϕÞ ¼ sin2θ cos ð2ϕÞ

¼ 2

ffiffiffiffiffiffi
2π

15

r
½Y2;2ðn̂Þ þ Y2;−2ðn̂Þ�; ðD7Þ

ð1 − μ2Þ sin ð2ϕÞ ¼ sin2θ sin ð2ϕÞ

¼ 2

i

ffiffiffiffiffiffi
2π

15

r
½Y2;2ðn̂Þ − Y2;−2ðn̂Þ�: ðD8Þ

For a general wave number k, this result can be actively
rotated using the Wigner rotation operator D̂. The rotation
of spherical harmonics satisfies D̂Ylm ¼ P

m00Dl
m00mYlm00 ,

where the Wigner rotation matrix is related to the spin-
weighted spherical harmonics according to

Dl
msðϕk; θk; 0Þ ¼ ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
sYl;−mðk̂Þ: ðD9Þ

The expressions in Eqs. (D7)–(D8) generalize to

ð1−μ2Þcosð2ϕÞ

¼4π

5

ffiffiffi
2

3

r X
m00

ð−1Þm00 ½2Y2;−m00 ðk̂Þþ−2Y2;−m00 ðk̂Þ�Y2m00 ðn̂Þ;

ðD10Þ

ð1− μ2Þ sin ð2ϕÞ

¼ 4π

5i

ffiffiffi
2

3

r X
m00

ð−1Þm00 ½2Y2;−m00 ðk̂Þ− −2Y2;−m00 ðk̂Þ�Y2m00 ðn̂Þ:

ðD11Þ
This allows forΘTðk; n̂Þ to be expressed entirely in terms of
spherical harmonics:

ΘTðk; n̂Þ¼ ð4πÞ2
5

ffiffiffi
2

3

r X
l0;m0;m00

ð−iÞl0 ð−1Þm00
Y�
l0m0 ðk̂ÞYl0m0 ðn̂Þ

× ½ð2Y2;−m00 ðk̂Þþ−2Y2;−m00 ðk̂ÞÞY2m00 ðn̂ÞΘT
l0;þðkÞ

− ið2Y2;−m00 ðk̂Þ−−2Y2;−m00 ðk̂ÞÞY2m00 ðn̂ÞΘT
l0;×ðkÞ�:
ðD12Þ

Our interest is determining the contribution of ΘT
ðþ;×Þðk; n̂Þ

to the effective quadrupole qm;T
eff ðn̂e; χÞ. One can verify that

when Eq. (D12) is replaced into Eq. (D3) and then into
Eq. (D2), there will be a product of 5 spherical harmonics:
three with argument n̂ and two with argument k̂. The
integral over n̂ is performed using the triple product
identity for the Wigner 3-j symbols. This givesZ

d2n̂Yl0m0 ðn̂ÞY2m00 ðn̂ÞY�
2mðn̂Þ

¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ 1Þð5Þð5Þ

4π

r �
l0 2 2

m0 m00 −m

�

×

�
l0 2 2

0 0 0

�
: ðD13Þ

Note that the selection rules for the 3-j symbols above
imply that we need l0 ¼ 0, 2, 4 andm0 þm00 −m ¼ 0. The
products of spherical harmonics with argument k̂ can be
simplified using the identity,

s1Yl1m1
ðn̂Þs2Yl2m2

ðn̂Þ ¼
X
S;L;M

ð−1Þl1þl2þL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ

4π

r �
l1 l2 L

m1 m2 M

��
l1 l2 L

s1 s2 S

�
SY

�
LMðn̂Þ;

ðD14Þ

which when applied on the þ component results in
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Y�
l0m0 ðk̂Þ½2Y2;−m00 ðk̂Þ þ −2Y2;−m00 ðk̂Þ� ¼ ð−1Þm0 X

S;L;M

ð−1Þl0þL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ 1Þð5Þð2Lþ 1Þ

4π

r �
l0 2 L

−m0 −m00 M

�

×

��
l0 2 L

0 2 S

�
þ
�
l0 2 L

0 −2 S

��
SY

�
LMðk̂Þ: ðD15Þ

Here the selection rules imply S ¼ �2. The sum over the first Wigner 3-j symbol in Eq. (D13) and the first Wigner 3-j
symbol in Eq. (D15) can be simplified using orthogonality relations, yielding

X
m0;m00

�
l0 2 2

m0 m00 −m

��
l0 2 L

−m0 −m00 M

�
¼ ð−1Þl0 δL2δMm

5
: ðD16Þ

Equations (D13), (D15), (D16) lead to the following expression for the þ component of the tensor contribution to the
effective quadrupole:

qm;T
eff;þðn̂e; χÞ ¼

Z
d3k
ð2πÞ3 e

iχn̂e·k̂
ð4πÞ2
5

ffiffiffi
2

3

r X
l0¼0;2;4

ð−iÞl0 ð2l
0 þ 1Þð5Þ
4π

ΘT
l0;þðkÞ

×

�
l0 2 2

0 0 0

��
l0 2 L

0 2 −2

�
½2Y�

2mðk̂Þ þ −2Y�
2mðk̂Þ�

¼
Z

d3k
ð2πÞ3 e

iχn̂e·k̂4π
ffiffiffi
6

p �
1

15
ΘT

0;þðkÞ þ
2

21
ΘT

2;þðkÞ þ
1

35
ΘT

4;þðkÞ
�
½2Y�

2mðk̂Þ þ −2Y�
2mðk̂Þ�; ðD17Þ

where we evaluated the nonzero 3-j symbols at l0 ¼ 0, 2, 4. The expression for the × component is obtained with the
replacementsΘT

l;þðkÞ → ΘT
l;×ðkÞ and ½2Y�

2mðk̂Þ þ −2Y�
2mðk̂Þ� → i½2Y�

2mðk̂Þ − −2Y�
2mðk̂Þ�. The next step is to express the lth

moment due to tensor perturbations as

ΘT
l;ðþ;×ÞðkÞ ¼ −

1

2

Z
ae

adec

da
dhðþ;×Þ
da

jlðkΔχðaÞÞ; ðD18Þ

where ΔχðaÞ ¼ −
R
a
ae
da0½Hða0Þa02�−1 and the metric perturbations, hðþ;×Þ, are defined as

gij ¼ a2

0
BB@

1þ hþ h× 0

h× 1 − hþ 0

0 0 1

1
CCA: ðD19Þ

When the result in Eq. (D18) is replaced into the quadrupole (D17), the recursion relations for the spherical Bessel
functions, ð2lþ 1ÞjlðxÞ ¼ xjl−1ðxÞ þ xjlþ1ðxÞ, allow for a simplification. If applied twice, the recursion relations imply

jlþ2ðxÞ
ð2lþ 1Þð2lþ 3Þ þ 2

jlðxÞ
ð2lþ 3Þð2l − 1Þ þ

jl−2ðxÞ
ð2lþ 1Þð2l − 1Þ ¼

jlðxÞ
x2

; ðD20Þ

which yields a simple expression for the quadrupole,

qm;T
eff ðn̂e; χÞ ¼ qm;T

eff;þðn̂e; χÞ þ qm;T
eff;×ðn̂e; χÞ

¼
Z

d3k
ð2πÞ3 e

iχn̂e·k̂fGq
T;þðk; χÞ½2Y�

2mðk̂Þ þ −2Y�
2mðk̂Þ� þ iGq

T;×ðk; χÞ½2Y�
2mðk̂Þ − −2Y�

2mðk̂Þ�g; ðD21Þ

with the kernel defined as
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Gq
T;ðþ;×Þðk; χÞ≡ 2π

ffiffiffi
6

p Z
adec

ae

da
dhðþ;×Þ
da

j2ðkΔχðaÞÞ
½kΔχðaÞ�2 :

ðD22Þ

It will be convenient to define a total effective quadrupole
as the sum of the projections on the spin-weighted basis:

q̃�;T
eff ðn̂e; χÞ≡

X2
m¼−2

qm;T
eff ðn̂e; χÞ�2Y2mðn̂eÞ: ðD23Þ

We also will make use of the multipolar expansion of this
quantity

q̃�;T
eff ðn̂e; χÞ ¼

X
lm

ðaq;Elm ðχÞ � iaq;Blm ðχÞÞ�2Ylmðn̂eÞ: ðD24Þ

This relationship can be inverted to solve for the multipole
coefficients,

aq;Elm ðχÞ � iaq;Blm ðχÞ ¼
Z

d2n̂eq̃
�;T
eff ðn̂e; χÞ�2Y

�
lmðn̂eÞ:

ðD25Þ

Using the result from Eqs. (D21) and (D23), Eq. (D25)
becomes

aq;Elm ðχÞ � iaq;Blm ðχÞ ¼
Z

d2n̂e

X2
m0¼−2

Z
d3k
ð2πÞ3 e

iχk·n̂efGq
T;þðk; χÞ½2Y�

2m0 ðk̂Þ þ −2Y�
2m0 ðk̂Þ�

þ iGq
T;×ðk; χÞ½2Y�

2m0 ðk̂Þ − −2Y�
2m0 ðk̂Þ�g�2Y2m0 ðn̂eÞ�2Y

�
lmðn̂eÞ: ðD26Þ

Expanding the exponential with the identity,

eiχk·n̂e ¼
X
L;M

4πiLjLðkχÞY�
LMðk̂ÞYLMðn̂eÞ; ðD27Þ

there will be five spherical harmonics: three with argument n̂e and two with argument k̂. The former yield

Z
d2n̂e�2Y2m0 ðn̂eÞ�2Y

�
lmðn̂eÞYLMðn̂eÞ ¼ ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5Þð2lþ 1Þð2Lþ 1Þ

4π

r �
l 2 L

−m m0 M

��
l 2 L

�2 ∓ 2 0

�
: ðD28Þ

For the remaining two spherical harmonics with argument k̂, we can use the identity in Eq. (D14) to express them as just
one spherical harmonic:

½2Y�
2m0 ðk̂Þ � −2Y�

2m0 ðk̂Þ�Y�
LMðk̂Þ ¼ ð−1ÞMþm0 X

L0;M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð2Lþ 1Þð2L0 þ 1Þ

4π

r
½2Y�

L0M0 ðk̂Þ � ð−1ÞLþL0
−2Y�

L0M0 ðk̂Þ�

×

�
L 2 L0

−M −m0 M0

��
L 2 L0

0 2 −2

�
: ðD29Þ

When the results of Eqs. (D28) and (D29) are combined in (D26), the four Wigner 3-j symbols can be simplified
as follows:

X
M;m0

ð−1ÞMþm0þm

�
l 2 L

−m m0 M

��
L 2 L0

−M −m0 M0

�
¼ δlL0δmM0

2lþ 1
; ðD30Þ

where we used the selection rule of the 3-j symbols M þm0 −m ¼ 0, and

�
l 2 L

�2 ∓ 2 0

��
L 2 l

0 2 −2

�
¼ ð−1ÞlþL

�
l 2 L

�2 ∓ 2 0

��
l 2 L

−2 2 0

�
¼

�
l 2 L

�2 ∓ 2 0

��
l 2 L

2 −2 0

�
:

ðD31Þ

The result thus far reads
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aq;Elm ðχÞ � iaq;Blm ðχÞ ¼
Z

d3k
ð2πÞ3

X
L

5iLð2Lþ 1Þ
�
l 2 L

2 −2 0

��
l 2 L

�2 ∓ 2 0

�
jLðkχÞ

× fGq
T;þðk; χÞ½2Y�

lmðk̂Þ þ ð−1ÞLþl
−2Y

�
lmðk̂Þ� − iGq

T;×ðk; χÞ½2Y�
lmðk̂Þ − ð−1ÞLþl−2Y�

lmðk̂Þ�g: ðD32Þ

This expression can be further simplified with the selection rule jl − 2j ≤ L ≤ lþ 2. This implies that for all l ≥ 2, only
the terms L ¼ l − 2, l − 1, l, lþ 1, lþ 2 will contribute. The 3-j symbols can then be expressed in each case as

iLð2Lþ 1Þ
�
l 2 L

2 −2 0

��
l 2 L

�2 ∓ 2 0

�
jLðkχÞ

				
L¼lþ2

¼ −il
lðl − 1Þ

4ð2lþ 1Þð2lþ 3Þ jlþ2ðkχÞ ðD33Þ

iLð2Lþ 1Þ
�
l 2 L

2 −2 0

��
l 2 L

�2 ∓ 2 0

�
jLðkχÞ

				
L¼lþ1

¼ �ilþ1
ðl − 1Þ

2ð2lþ 1Þ jlþ1ðkχÞ ðD34Þ

iLð2Lþ 1Þ
�
l 2 L

2 −2 0

��
l 2 L

�2 ∓ 2 0

�
jLðkχÞ

				
L¼l

¼ il
3ðl − 1Þðlþ 2Þ
2ð2l − 1Þð2lþ 3Þ jlðkχÞ ðD35Þ

iLð2Lþ 1Þ
�
l 2 L

2 −2 0

��
l 2 L

�2 ∓ 2 0

�
jLðkχÞ

				
L¼l−1

¼∓ ilþ1
ðlþ 2Þ

2ð2lþ 1Þ jl−1ðkχÞ ðD36Þ

iLð2Lþ 1Þ
�
l 2 L

2 −2 0

��
l 2 L

�2 ∓ 2 0

�
jLðkχÞ

				
L¼l−2

¼ −il
ðlþ 1Þðlþ 2Þ

4ð2lþ 1Þð2l − 1Þ jl−2ðkχÞ ðD37Þ

Some recursion relations are now required:

jlðxÞ ¼
x

2lþ 1
½jl−1ðxÞ þ jlþ1ðxÞ�; ðD38Þ

j0lðxÞ ¼
1

2lþ 1
½ljl−1ðxÞ − ðlþ 1Þjlþ1ðxÞ�; ðD39Þ

jlðxÞ
x2

¼ jl−2ðxÞ
ð2lþ 1Þð2l − 1Þ þ 2

jlðxÞ
ð2lþ 3Þð2l − 1Þ þ

jlþ2ðxÞ
ð2lþ 1Þð2lþ 3Þ ; ðD40Þ

j0lðxÞ
x

¼ ljl−2ðxÞ
ð2lþ 1Þð2l − 1Þ þ

jlðxÞ
ð2lþ 3Þð2l − 1Þ −

ðlþ 1Þjlþ2ðxÞ
ð2lþ 1Þð2lþ 3Þ ; ðD41Þ

j00lðxÞ ¼
lðl − 1Þjl−2ðxÞ
ð2lþ 1Þð2l − 1Þ −

ð2l2 þ 2l − 1ÞjlðxÞ
ð2lþ 3Þð2l − 1Þ þ ðlþ 1Þðlþ 2Þjlþ2ðxÞ

ð2lþ 1Þð2lþ 3Þ : ðD42Þ

The first two relations allow for the L ¼ l� 1 terms to be written as

∓ ilþ1
ðlþ 2Þ

2ð2lþ 1Þ jl−1ðkχÞ � ilþ1
ðl − 1Þ

2ð2lþ 1Þ jlþ1ðkχÞ ¼∓ ilþ1

2

�
2jlðkχÞ

kχ
þ 1

k
djlðkχÞ

dχ

�
: ðD43Þ

A simplification occurs for the L ¼ l − 2, l, lþ 2 terms relying on the last three recursion relations,

−
lðl − 1Þ

4ð2lþ 1Þð2lþ 3Þ jlþ2 −
ðlþ 1Þðlþ 2Þ

4ð2lþ 1Þð2l − 1Þ jl−2ðkχÞ þ
3ðlþ 2Þðl − 1Þ
2ð2l − 1Þð2lþ 3Þ jlðkχÞ

¼ −
1

4k2
d2jlðkχÞ

dχ2
−

1

k2χ
djlðkχÞ

dχ
þ jlðkχÞ

�
1

4
−

1

2ðkχÞ2
�
: ðD44Þ
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Combing the above relations one finds

aq;Elm ðχÞ � iaq;Blm ðχÞ ¼
Z

d3k
ð2πÞ3 5i

lfGq
T;þðk; χÞ½∓ iAlðk; χÞ½2Y�

lmðk̂Þ − −2Y�
lmðk̂Þ� þ Blðk; χÞ½2Y�

lmðk̂Þ þ −2Y�
lmðk̂Þ��

þ iGq
T;×ðk; χÞ½∓ iAlðk; χÞ½2Y�

lmðk̂Þ þ −2Y�
lmðk̂Þ� þ Blðk; χÞ½2Y�

lmðk̂Þ − −2Y�
lmðk̂Þ��g; ðD45Þ

where

Alðk; χÞ≡ 1

2

�
2jlðkχeÞ

kχe
þ 1

k
d
dχe

jlðkχeÞ
�
; ðD46Þ

Blðk; χÞ≡ −
1

4k2
d2jlðkχÞ

dχ2
−

1

k2χ
djlðkχÞ

dχ

þ jlðkχÞ
�
1

4
−

1

2ðkχÞ2
�
: ðD47Þ

From Eq. (D45) one easily infers the expressions for aq;Elm
and aq;Blm

aq;Elm ðχÞ¼
Z

d3k
ð2πÞ3 5i

lBlðk;χÞfGq
T;þðk;χÞ½2Y�

lmðk̂Þ

þ−2Y�
lmðk̂Þ�þ iGq

T;×ðk;χÞ½2Y�
lmðk̂Þ−−2Y�

lmðk̂Þ�g;
ðD48Þ

aq;Blm ðχÞ¼
Z

d3k
ð2πÞ3 5i

lAlðk;χÞf−Gq
T;þðk;χÞ½2Y�

lmðk̂Þ

−−2Y�
lmðk̂Þ�− iGq

T;×ðk;χÞ½2Y�
lmðk̂Þþ−2Y�

lmðk̂Þ�g:
ðD49Þ

It follows from these definitions that

CT;E
l ðχ; χ0Þ ¼ haq;Elm ðχÞaq;E;�l0m0 ðχ0Þiδll0δmm0

¼ 2

Z
k2dk
ð2πÞ3 50PhðkÞIq

Tðk; χÞIq
Tðk; χ0Þ

× Blðk; χÞBlðk; χ0Þδll0δmm0 ðD50Þ

CT;B
l ðχ; χ0Þ ¼ haq;Blm ðχÞaq;B;�l0m0 ðχ0Þiδll0δmm0

¼ 2

Z
k2dk
ð2πÞ3 50PhðkÞIq

Tðk; χÞIq
Tðk; χ0Þ

× Alðk; χÞAlðk; χ0Þδll0δmm0 ðD51Þ

CT;EB
l ðχ; χ0Þ ¼haq;Elm ðχÞaq;B;�l0m0 ðχ0Þi ¼ 0: ðD52Þ

Figure 9 shows CT;E
l ðχ; χÞ, in plain lines, and CT;B

l ðχ; χÞ,
in dashed lines, evaluated in the same redshift bin (see
Table I). In deriving these expressions we have used
the fact that the þ and × polarizations do not mix

(hGq
T;þðk; χÞGq

T;×ðk0; χ0Þi ¼ 0), and we have rewritten the
kernel explicitly in terms of the primordial tensor power
spectrum Ph. To this end, one can define a tensor growth
function, DT , as

hðþ;×Þðk; aÞ≡DTðk; aÞhi;ðþ;×ÞðkÞ ðD53Þ

where hi;ðþ;×ÞðkÞ is the primordial tensor perturbation. This
allows for the kernel in Eq. (D22) to be rewritten as

Gq
T;ðþ;×Þðk; χÞ ¼ 2π

ffiffiffi
6

p
hi;ðþ;×ÞðkÞ

×
Z

adec

ae

da
dDTðk; aÞ

da
j2ðkΔχðaÞÞ
½kΔχðaÞ�2

≡ hi;ðþ;×ÞðkÞIq
Tðk; χÞ; ðD54Þ

hence one finds

hGq
T;ðþ;×Þðk; χÞGq

T;ðþ;×Þðk0; χ0Þi
¼ ð2πÞ3δð3Þðk − k0ÞPhðkÞIq

Tðk; χÞIq
Tðk; χ0Þ: ðD55Þ

FIG. 9. Power spectra of primordial tensor modes contributions
to the CMB temperature quadrupole from E modes [CT;E

l ðχ; χ0Þ,
plain lines) and B modes (CT;B

l ðχ; χ0Þ, dashed lines], evaluated at
the same redshift, χ ¼ χ0 ¼ χα, taken to be the midpoints of the
bins given in Table I. The power increases with redshift, and is
roughly similar for E and B modes.
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