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For certain geometric configurations of matter falling onto a rotating black hole, we develop a novel
linear perturbation analysis scheme to perform the stability analysis of stationary integral accretion
solutions corresponding to the steady state low angular momentum, inviscid, barotropic, irrotational,
general relativistic accretion of hydrodynamic fluid. We demonstrate that such steady states remain stable
under linear perturbation, and hence, the stationary solutions are reliable to probe the black hole spacetime
using the accretion phenomena. We report that a relativistic acoustic geometry emerges out as a
consequence of such a stability analysis procedure. We study various properties of that sonic geometry
in detail. We construct the causal structures to establish the one to one correspondences of the sonic points
with the acoustic black hole horizons and the shock location with an acoustic white hole horizon. The
influence of the spin of the rotating black holes on the emergence of such acoustic spacetime has been
discussed.
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I. INTRODUCTION

Understanding the accretion process is important to
study the observational signature of astrophysical black
holes [1,2]. One studies the dynamical and the radiative
properties of black hole accretion to construct the character-
istic black hole spectra, and such spectra is analyzed
observationally to probe the spacetime at close proximity
of the horizon of astrophysical black holes. Because of the
inner boundary conditions posed by the presence of the
event horizon, black hole accretion is necessarily transonic
[3], except for the possible cases of wind fed accretion of
supersonic stellar winds [4].
For low angular momentum accretion, flow can manifest

multitransonicity, i.e., one may observe the transition from
the subsonic to supersonic flow at more than one place
during the course of the motion of the matter falling
towards the horizon, originating out from infinity (from
a reasonably large distance). Accretion solutions passing
through more than one sonic point may be connected
through a discontinuous shock wave [3,5–32]. Study of the
aforementioned shocked multitransonic accretion is, usu-
ally, accomplished for steady state matter flow, and the
stationary integral accretion solutions are considered to
probe the shock formation phenomena as well as to
construct the corresponding black hole spectra ([15] and
the references therein), although full time-dependent

numerical simulation works are also performed to under-
stand several characteristic features of the black hole
accretion in general. For low angular momentum stationary
integral accretion solutions, it is usually assumed that the
flow in inviscid, barotropic, and irrotational.
It is relevant to note in this aspect that nonsteady features

(time variability) and various kind of local as well as global
fluctuations may be present for large-scale astrophysical
fluid flows, which may jeopardize the steady state, and the
stationary integral flow solutions may not be used to
construct the black hole spectra in such circumstances.
To ensure that one can use the stationary integral flow
solutions to study the black hole accretion in a reliable way,
it is thus imperative to establish that the steady state
accretion model under consideration remains stable under
perturbation.
In our present work, we would like to investigate the

effect of the linear perturbation on stationary accretion
solutions obtained for steady state general relativistic
accretion onto rotating astrophysical black holes, i.e.,
accretion flow studied in the Kerr metric. For low angular
momentum inviscid accretion, conical wedge-shaped flow
is ideal to simulate the geometric configuration of matter
accreting onto the black hole. It is to be mentioned here that
by ‘low’ angular momentum, we essentially mean accretion
flow with sub-Keplerian angular momentum distribution.
For such flow, the stable Keplerian orbit may not form and
hence it is not necessary to introduce the viscous dissipa-
tion to make the stable circular orbit collapse and to let the
matter accrete onto the black hole. The inviscid assumption
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is considered to be justified for such flow profile. It is
believed that such flow structure is a common feature for
accretion onto the supermassive black hole at our Galactic
centre (see [33] and references therein). Such sub-
Keplerian weakly rotating flows may be observed in
various astrophysical systems, for detached binary systems
fed by accretion from OB stellar winds [34,35], for
instance. Also for semi-detached low-mass nonmagnetic
binaries [36], and for super-massive black holes fed by
accretion from slowly rotating central stellar clusters
([37,38] and references therein) such flows are common.
Even for a standard Keplerian accretion disc, turbulence
may produce such low angular momentum flow (see, e.g.,
[39] and references therein). In supersonic astrophysical
flows, perturbation of various kinds may produce disconti-
nuities. The type of low angular momentum flow which
will be discussed in the present work is somewhat different
from thick accretion disc models in the sense that consid-
erable amount of radial advective velocity is included as the
initial boundary condition for our flow model. Such
advection may be a consequence of high-velocity stellar
wind fed accretion. Such advective accretion flows in the
Kerr metric with complete general relativistic treatment for
shock formation in conical flow has not been treated in the
literature before.
The equations governing such flow will be derived from

the first principle and the stationary integral flow solutions
corresponding to the steady state will be obtained. It will be
demonstrated that for certain values of initial conditions
governing the flow, such integral solutions may pass
through two sonic points, and flows passing through two
sonic points will be connected through a stationary shock
wave. Such stationary integral solutions will then be
linearly perturbed to demonstrate that the perturbation does
not diverge, which ensures that the stationary integral
solutions are reliable because the corresponding steady
state remains stable under linear perturbation. While
performing the aforementioned procedure of linear stability
analysis, one observes, as will be demonstrated in the
consequent sections, the linear perturbation (the corre-
sponding “sound wave”) that propagates within the accret-
ing fluid with a certain speed of propagation. It is also
observed that the propagation of such linear acoustic
perturbation can be described using a particular kind of
acoustic spacetime (conformal to a certain form of black
hole metric), that spacetime is further described by a metric.
One can write down the specific form of such an acoustic
metric embedded within the background stationary accret-
ing flow.
Such findings lead to very interesting consequences. In

the field of analogue gravity phenomena, it has been
suggested that a black holelike spacetime can be generated
within a transonic fluid by linearly perturbing such a flow.
The propagation of linear perturbation within such a fluid
can be described using a spacetime metric, conformal to the

Painleve-Gullstrand-Lemaitre [40–42] presentation of the
Schwarzschild metric [43–49]. The acoustic metric can
possess corresponding acoustic horizons, depending on
certain criteria, and such horizons may be of the black hole
or white hole types [50]. Acoustic black holes are formed
where the background fluid makes a transition from the
subsonic to the supersonic state, and acoustic white holes
are formed where the background fluid may make a
transition from the supersonic state to the subsonic state.
Since the Hawking effect, as well as its counterpart in

analogue gravity, is a kinematical effect, one can define the
acoustic surface gravity in a more general way, i.e., acoustic
surface gravity can be evaluated on any kind of acoustic
horizon. Following such an approach, it has also been
stated in the literature that depending on certain initial
conditions, there is a theoretical probability that a classical
analogue system can have an infinitely large (or, at least,
extremely large) value of acoustic surface gravity [51].
The aforementioned information leads us to the con-

clusion that not only can an accreting black hole system be
considered as a classical analogue model, but the acoustic
geometry is a natural consequence of the process of the
linear perturbation of the stationary integral accretion
solutions of steady, inviscid, barotropic, irrotational flows
of matter onto astrophysical black holes. In the present
work, we precisely demonstrate that. We discuss that the
emergent gravity phenomena are the natural consequence
of the linear stability analysis of steady-state accretion, and
hence, we make the crucial connection between two
apparently disjoint fields of research; namely, the astro-
physical accretion process and the emergent gravity phe-
nomenon. We make a formal correspondence between the
sonic surfaces in accretion astrophysics with acoustic black
hole horizons in analogue gravity, between the discontinu-
ous stationary shock in multitransonic black hole accretion
with an acoustic white hole in analogue spacetime, through
the construction of a corresponding causal structure at and
around the sonic points and shock locations, respectively.
In the subsequent section, we show that acoustic surface

gravity corresponding to an accreting black hole system can
be calculated in terms of the gradient of the background
steady state fluid velocity, as well as that of the sound
speed, with both evaluated at the acoustic horizon. At sonic
points, the transition from the subsonic to the supersonic
state is continuous, and hence, such gradients, as well as the
acoustic surface gravity, have a finite value. At the location
of the formation of a stationary shock, there is a discon-
tinuous transition from the supersonic state to the subsonic
state corresponding to the stationary integral solutions. The
gradient of the fluid, as well as the sound velocity, diverge
at the shock location. As a result, the corresponding value
of the acoustic surface gravity evaluated at the shock
location (acoustic white hole) is infinite. This is an
important finding since it manifests that the theoretical
results obtained in [51] are actually relevant for a realistic
physical system as well.
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In accretion astrophysics, it is usually believed that the
majority of the black holes contain nonzero spin angular
momentum, i.e., most of the astrophysical black holes are
of the Kerr type [52–71]. It is thus important to understand
how the black hole spin (the Kerr parameter) influences the
overall features of the emergent gravity phenomena as
observed, while linearly perturbing the background solu-
tions in the Kerr metric.
In the present work, we will demonstrate the black hole

spin dependence of the corresponding analogue gravity
phenomena. In this way, we also try to understand how the
properties of the background black hole metric influence
the characteristic feature of the sonic metric embedded
within the accreting fluids.
In what follows, we demonstrate how one obtains the

governing equations corresponding to the low angular
momentum, inviscid, polytropic, irrotational, axially sym-
metric, non-self-gravitating general relativistic accretion of
hydrodynamic fluid onto a rotating black hole in the
background Kerr metric. We shall set G ¼ c ¼ MBH ¼ 1
where G is the universal gravitational constant, c is the
velocity of light, andMBH is the mass of the black hole. The
radial distance will be scaled by GMBH=c2, and any
velocity will be scaled by c. We shall use the negative-
time-positive-space metric convention.

II. BASIC EQUATIONS GOVERNING
THE FLOW

We consider the following metric for a stationary rotating
spacetime

ds2 ¼ −gttdt2 þ grrdr2 þ gθθdθ2 þ 2gϕtdϕdtþ gϕϕdϕ2;

ð1Þ

where the metric elements are functions of r, θ, and ϕ.
The metric elements in the Boyer-Lindquist coordinates are
given by [72]

gtt ¼
�
1 −

2

μr

�
; grr ¼

μr2

Δ
; gθθ ¼ μr2;

gϕt ¼ gtϕ ¼ −
2asin2θ

μr
; gϕϕ ¼ Σ

μr2
sin2θ; ð2Þ

where

μ ¼ 1þ a2

r2
cos2θ; Δ ¼ r2 − 2rþ a2;

Σ ¼ ðr2 þ a2Þ2 − a2Δsin2θ: ð3Þ

The event horizon of the Kerr black hole is located at
rþ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
.

We assume the hydrodynamic fluid accreting onto the
Kerr black hole to be perfect, irrotational, and described

by an adiabatic equation of state. The energy momentum
tensor for such fluids is given by

Tμν ¼ ðpþ εÞvμvν þ pgμν; ð4Þ
where p and ε are the pressure and the energy density of the
fluid, respectively. vμ is the four velocity of the fluid that
satisfies the normalization condition vμvμ ¼ −1. The adia-
batic equation of state is given by the relation p ¼ kργ ,
where ρ is the rest-mass energy density and γ ¼ cp=cv is
the adiabatic index (cp and cv are specific heats at constant
pressure and at constant volume, respectively). The total
energy density ε is the sum of the rest-mass energy density
and the internal energy density (due to the thermal energy),
i.e., ε ¼ ρþ εthermal. The continuity equation, which
ensures the conservation of mass, is given by

∇μðρvμÞ ¼ 0; ð5Þ
where the covariant divergence is defined as∇μvν ¼ ∂μvν þ
Γν
μλv

λ with the Christoffel symbols Γν
μλ ¼ 1

2
gνσ½∂λgσμ þ

∂μgσλ − ∂σgμλ�. The energy-momentum conservation equa-
tion is given by

∇μTμν ¼ 0: ð6Þ
A substitution of Eq. (4) in Eq. (6) provides the general
relativistic Euler equation for a barotropic ideal fluid as

ðpþ εÞvμ∇μvν þ ðgμν þ vμvνÞ∇μp ¼ 0: ð7Þ

The specific enthalpy of the flow is defined as h ¼
ðpþ εÞ=ρ. We assume the flow to be isentropic; i.e., the
specific entropy of the flow s=ρ is constant where s is
the entropy density. Therefore, for an isentropic flow, the
following thermodynamical identity where T is the temper-
ature of the fluid,

dh ¼ Td

�
s
ρ

�
þ 1

ρ
dp; ð8Þ

gives dp ¼ ρdh, which, when used in h ¼ ðpþ εÞ=ρ, also
gives dε ¼ ρdh. Thus, the adiabatic sound speed is given by

c2s ¼
∂p
∂ε

����
s
ρ¼constant

¼ ρ

h
∂h
∂ρ : ð9Þ

The relativistic Euler equation for isentropic flow can thus be
written as

vμ∇μvν þ
c2s
ρ
ðvμvν þ gμνÞ∂μρ ¼ 0: ð10Þ

For general relativistic irrotational isentropic fluid, the
irrotationality condition is given by [45]

∂μðhvνÞ − ∂νðhvμÞ ¼ 0: ð11Þ

LINEAR PERTURBATIONS OF LOW ANGULAR MOMENTUM … PHYS. REV. D 98, 123022 (2018)

123022-3



III. ACCRETION FLOW GEOMETRY

We consider an axially symmetric accretion flow in the
Kerr background. The flow is assumed to be symmetric
about the equatorial plane. The four velocity components
are written as (vt, vr, vθ, vϕ). We assume that the velocity
component along the vertical direction is negligible com-
pared to the radial component vr; i.e., vθ ≪ vr. Also, due to
axial symmetry, the ∂ϕ term in the continuity equation
given by Eq. (5) would vanish. Thus, the continuity
equation for such flow can be written as

∂tðρvt
ffiffiffiffiffiffi
−g

p Þ þ ∂rðρvr
ffiffiffiffiffiffi
−g

p Þ ¼ 0; ð12Þ

where g is the determinant of the metric gμν. For the Kerr
metric, g ¼ −sin2θr4μ2. The accretion flow variables, i.e.,
the velocity components and the density, are, in general,
functions of the t, r, θ coordinates. However, assuming
that the flow thickness is small compared to the radial size
of the accretion disc, one can do an averaging of any flow
variable fðt; r; θÞ along the θ direction by the following
approximation [73]

Z
fðt; r; θÞdθ ≈Hθf

�
t; r; θ ¼ π

2

�
; ð13Þ

where Hθ is the characteristic angular scale of the flow.
Such an averaging is very common in accretion disc
literature, and it is usually known as a vertical averaging
of the flow. Thus, the continuity equation for vertically
averaged axially symmetric accretion can be written as
[74,75]

∂tðρvt
ffiffiffiffiffiffi
−g̃

p
HθÞ þ ∂rðρvr

ffiffiffiffiffiffi
−g̃

p
HθÞ ¼ 0; ð14Þ

where g̃ is the value of g on the equatorial plane; i.e.,
g̃ ¼ −r4. The advantage of vertical averaging is that all of
the variables are defined by their values measured on the
equatorial plane, and any information about the geometry
of the flow along the vertical direction is contained in the
term Hθ. Hθ is a function of the local flow thickness HðrÞ.
The angular scale Hθ of the flow thickness, i.e., the angle
made by the flow thickness at the center of the black hole
at any radial distances r from the center of the black hole
along the equatorial plane, is given by Hθ ¼ HðrÞ=r,
assuming the flow thickness to be small at all r.
There are mainly three models of flow geometry in the

literature. The simplest one is called the constant height
model (CH). For such flow geometry, the flow thickness
remains constant for all r; i.e., for such flow, HðrÞ ¼
constant or Hθ ∝ 1=r. In the second model, the flow
geometry is considered to be quasispherical or wedge-
shaped conical. Such flow is known as conical flow (CF).
For conical flow geometry, the angular scale Hθ remains
constant at all r. In other words, the flow thickness is

proportional to the radial distance or HðrÞ ∝ r. The third
model is the most complicated one. In this model, the flow
is considered to be in hydrostatic equilibrium in the vertical
direction, and it is known as vertical equilibrium model
(VE). Further details on such classification are available in
[76]. In the VE model, the local flow thickness will also
depend on the flow variables. The general relativistic
calculation by [77] for a stationary case gives the flow
thickness for the VE model through the following relation

−
2p
ρ

þH2
VEðrÞ
r4

ðv2ϕ − a2ðv2t − 1ÞÞ ¼ 0: ð15Þ

As evident from the above relation, the flow thickness in
the VE model is a complicated function of the flow
variables p, ρ, vϕ, vt as well as the black hole spin a.
In the present work, we consider the conical flow model,

where the accretion flow is assumed to maintain a wedge-
shaped conical geometry. As mentioned earlier, in such
flow the local flow thickness is proportional to the radial
distance measured along the equatorial plane; i.e., H

r ¼
constant or Hθ being the characteristic angular scale of
local flow is constant for such conical flow geometry. Thus,
Hθ does not depend on the accretion flow variables like
velocity or density. Therefore, linear perturbation of these
quantities (discussed in the next section) will have no effect
on it. For simplicity, therefore, we will write Hθ simply as
H0. The same is true for the CH model also. However, due
to the complicated dependence of HðrÞ on the flow
variables in the VE model, the flow thickness will also
be perturbed when the flow variables are perturbed. This
will make the analysis too complicated to be presented
here, and it may be reported elsewhere. Therefore, as
mentioned earlier, we do not consider the CH and VE
models and work only with the CF model. From now on, all
of the equations will be derived by assuming that the flow
variables are vertically averaged and their values are
computed on the equatorial plane.

IV. LINEAR PERTURBATION ANALYSIS
AND THE ACOUSTIC GEOMETRY

The scheme of the linear perturbation analysis would be
the following: We shall write the accretion variables, e.g.,
four velocity components and density about their stationary
background values up to first order in perturbation. These
expressions are then used in the basic governing equations,
such as the continuity equation, normalization condition,
and the irrotationality condition. Keeping only the terms
that are linear in the perturbed quantities gives equations
relating different perturbed quantities up to first order in
perturbations. Further manipulations of these equations
gives a wave equation that describes the propagation of the
perturbation of the mass accretion rate, which is defined
later in this section. Such wave equations mimic the wave
equation for a massless scalar field in curved spacetime.
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Finally, comparing theses two wave equations, one obtains
the acoustic metric.
Below we derive some useful relations using the irro-

tationality condition [Eq. (11)], the normalization condition
vμvμ ¼ −1, and the axial symmetry, which will later be
used to derive the wave equation for linear perturbation.
From the irrotationality condition given by Eq. (11), with
μ ¼ t and ν ¼ ϕ, and with axial symmetry, we have

∂tðhvϕÞ ¼ 0: ð16Þ

Again, with μ ¼ r and ν ¼ ϕ and the axial symmetry, the
irrotationality condition gives

∂rðhvϕÞ ¼ 0; ð17Þ

so we get that hvϕ is a constant of the motion. Equation (16)
gives

∂tvϕ ¼ −
vϕc2s
ρ

∂tρ: ð18Þ

Substituting vϕ ¼ gϕϕvϕ þ gϕtvt in the above equation
provides

∂tvϕ ¼ −
gϕt
gϕϕ

∂tvt −
vϕc2s
gϕϕρ

∂tρ: ð19Þ

The normalization condition vμvμ ¼ −1 provides

gttðvtÞ2 ¼ 1þ grrðvrÞ2 þ gϕϕðvϕÞ2 þ 2gϕtvϕvt; ð20Þ
which, after differentiating with respect to t, gives

∂tvt ¼ α1∂tvr þ α2∂tvϕ; ð21Þ

where α1 ¼ − vr
vt
, α2 ¼ − vϕ

vt
, and vt ¼ −gttvt þ gϕtvϕ.

Substituting ∂tvϕ in Eq. (21) using Eq. (19) gives

∂tvt ¼
�
−α2vϕc2s=ðρgϕϕÞ
1þ α2gϕt=gϕϕ

�
∂tρþ

�
α1

1þ α2gϕt=gϕϕ

�
∂tvr:

ð22Þ
We perturb the velocities and density around their steady
background values as following

vμðr; tÞ ¼ vμ0ðrÞ þ vμ1ðr; tÞ ð23Þ

ρðr; tÞ ¼ ρ0ðrÞ þ ρ1ðr; tÞ; ð24Þ

where μ ¼ t; r;ϕ and the subscript “0" denotes the
stationary background part and the subscript “1” denotes
the linear perturbations. Using Eqs. (23)–(24) in Eq. (22),
and retaining only the terms of first order in perturbed
quantities, we obtain

∂tvt1 ¼ η1∂tρ1 þ η2∂tvr1 ð25Þ

where

η1 ¼ −
c2s0

Λvt0ρ0
½Λðvt0Þ2 − 1 − grrðvr0Þ2�;

η2 ¼
grrvr0
Λvt0

and Λ ¼ gtt þ
g2ϕt
gϕϕ

: ð26Þ

A. Linear perturbation of mass accretion rate

For stationary background flow, the ∂t part of the
equation of continuity, i.e., Eq. (14), vanishes, and inte-
gration over spatial coordinate provides

ffiffiffiffiffiffi
−g̃

p
H0ρ0vr0 ¼

constant. Multiplying the quantity
ffiffiffiffiffiffi
−g̃

p
H0ρ0vr0 by the

azimuthal component of volume element dϕ, and integrat-
ing the final expression, gives the mass accretion rate,
Ψ0 ¼ Ω̃

ffiffiffiffiffiffi
−g̃

p
H0ρ0vr0. Ψ0 gives the rate of infall of mass

through a particular surface. Ω̃ arises due to the integral
over ϕ and is just a geometrical factor, and therefore, we
can redefine the mass accretion rate by setting it to unity
without any loss of generality. Thus, we define

Ψ0 ≡
ffiffiffiffiffiffi
−g̃

p
H0ρ0vr0: ð27Þ

Now, let us define a quantity Ψ≡ ffiffiffiffiffiffi
−g̃

p
Hρðr; tÞvrðr; tÞ

which has the stationary value equal to Ψ0. Using the
perturbed quantities given by Eqs. (23) and (24), we have

Ψðr; tÞ ¼ Ψ0 þ Ψ1ðr; tÞ; ð28Þ
where

Ψ1ðr; tÞ ¼
ffiffiffiffiffiffi
−g̃

p
H0ðρ0vr1 þ vr0ρ1Þ: ð29Þ

Using Eqs. (23)–(25) and (28) in the continuity of Eq. (14),
and differentiating Eq. (29) with respect to t, gives,
respectively,

ρ0η2∂tvr1 þ ðvt0 þ ρ0η1Þ∂tρ1 ¼ −
1ffiffiffiffiffiffi

−g̃
p

H0

∂rΨ1; ð30Þ

and

ρ0∂tvr1 þ vr0∂tρ1 ¼
1ffiffiffiffiffiffi

−g̃
p

H0

∂tΨ1: ð31Þ

In deriving Eq. (30), we have used Eq. (25). With these two
equations given by Eqs. (30) and (31), we can write ∂tvr1
and ∂tρ1 solely in terms of derivatives of Ψ1 as

∂tvr1 ¼
1ffiffiffiffiffiffi

−g̃
p

H0ρ0Λ̃
½−ðvt0 þ ρ0η1Þ∂tΨ1 − vr0∂rΨ1�

∂tρ1 ¼
1ffiffiffiffiffiffi

−g̃
p

H0ρ0Λ̃
½ρ0η2∂tΨ1 þ ρ0∂rΨ1�; ð32Þ

where Λ̃ is given by
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Λ̃ ¼ grrðvr0Þ2
Λvt0

− vt0 þ
c2s0
Λvt0

½Λðvt0Þ2 − 1 − grrðvr0Þ2�: ð33Þ

Now, let us go back to the irrotationality condition given by
the Eq. (11). Using μ ¼ t and ν ¼ r gives the following
equation

∂tðhgrrvrÞ − ∂rðhvtÞ ¼ 0: ð34Þ

For stationary flow, this provides ξ0 ¼ −h0vt0 ¼ constant,
which is the specific energy of the system.We substitute the
density and velocities in Eq. (34) using Eq. (23), (24), and

vtðr; tÞ ¼ vt0ðrÞ þ vt1ðr; tÞ: ð35Þ

Keeping only the terms that are linear in the perturbed
quantities, and differentiating with respect to time t, gives

∂tðh0grr∂tvr1Þ þ ∂t

�
h0grrc2s0v

r
0

ρ0
∂tρ1

�

− ∂rðh0∂tvt1Þ − ∂r

�
h0vt0c2s0

ρ0
∂tρ1

�
¼ 0: ð36Þ

We can also write

∂tvt1 ¼ η̃1∂tρ1 þ η̃2∂tvr1; ð37Þ

with

η̃1 ¼ −
�
Λη1 þ

gϕtvϕ0c2s0
gϕϕρ0

�
; η̃2 ¼ −Λη2: ð38Þ

Using Eq. (37) in Eq. (36), and dividing the resultant
equation by h0vt0, provides

∂t

�
grr
vt0

∂tvr1

�
þ ∂t

�
grrc2s0v

r
0

ρ0vt0
∂tρ1

�

− ∂r

�
η̃2
vt0

∂tvr1

�
− ∂r

��
η̃1
vt0

þ c2s0
ρ0

�
∂tρ1

�
¼ 0; ð39Þ

where we have used h0vt0 ¼ constant. Finally, substituting
∂tvr1 and ∂tρ1 in Eq. (39) using Eq. (32), we get

∂t

�
kðrÞð−gtt þ ðvt0Þ2

�
1 −

1

c2s0

���

þ ∂t

�
kðrÞ

�
vr0v

t
0

�
1 −

1

c2s0

���

þ ∂r

�
kðrÞ

�
vr0v

t
0

�
1 −

1

c2s0

���

þ ∂r

�
kðrÞ

�
grr þ ðvr0Þ2

�
1 −

1

c2s0

���
¼ 0; ð40Þ

where

kðrÞ ¼ grrvr0c
2
s0

vt0vt0Λ̃
and gtt ¼ 1

Λ
¼ 1

gtt þ g2ϕt=gϕϕ
: ð41Þ

Equation (40) can be written as ∂μðfμν∂νΨ1Þ ¼ 0, where
fμν is given by the symmetric matrix

fμν ¼ grrvr0c
2
s0

vt0vt0Λ̃

×

2
64−gtt þ ðvt0Þ2

�
1 − 1

c2s0

	
vr0v

t
0

�
1 − 1

c2s0

	
vr0v

t
0

�
1 − 1

c2s0

	
grr þ ðvr0Þ2

�
1 − 1

c2s0

	
3
75:

ð42Þ

This is the main result of this section, and it will be used in
the next section to obtain the acoustic metric and in
Sec. VIII for linear stability analysis of the stationary
accretion solutions in the Kerr metric. In the Schwarzschild
limit (a ¼ 0), we have vt0Λ̃ ¼ 1þ ð1 − c2s0Þgϕϕðvϕ0 Þ2.
Thus, the fμν in Eq. (42) matches the result obtained by
[74] in the Schwarzschild limit.

B. The acoustic metric

The linear perturbation analysis performed in the pre-
vious section provides the equation describing the propa-
gation of the linear perturbation of the mass accretion rate
Ψ1ðr; tÞ, and it is given by the following equation

∂μðfμν∂νΨ1Þ ¼ 0; ð43Þ

where μ, ν each run over r, t. This equation could be
compared to the wave equation of a massless scalar field φ
propagating in a curved spacetime given by [78]

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νφÞ ¼ 0: ð44Þ

Thus, comparing these two equations, one obtains the
acoustic metric Gμν, which is related to fμν in the following
way

ffiffiffiffiffiffiffi
−G

p
Gμν ¼ fμν; ð45Þ

where G is the determinant of the acoustic metric Gμν. fμν

could be written as fμν ¼ kðrÞf̃μν, where kðrÞ is the overall
multiplicative factor, and f̃μν is the matrix part as given in
Eq. (42). Thus, Gμν ¼ ðkðrÞ= ffiffiffiffiffiffiffi

−G
p Þf̃μν, and therefore, Gμν

is related to f̃μν by a conformal factor given by kðrÞ= ffiffiffiffiffiffiffi
−G

p
.

One of our main goals of the present work is to show that
the acoustic horizon is the transonic surface of the accretion
flow and to demonstrate that by studying the causal
structure of the acoustic spacetime. However, the location
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of the event horizon, or the causal structure of the
spacetime, does not depend on the conformal factor of
the spacetime metric. Thus, in order to investigate these
properties of the acoustic spacetime, we can take Gμν to be
the same as f̃μν by ignoring the conformal factor. Thus, the
acoustic metric Gμν and Gμν, apart from the conformal
factor, are given by

Gμν ¼

2
64−gtt þ ðvt0Þ2

�
1 − 1

c2s0

	
vr0v

t
0

�
1 − 1

c2s0

	
vr0v

t
0

�
1 − 1

c2s0

	
grr þ ðvr0Þ2

�
1 − 1

c2s0

	
3
75
ð46Þ

and

Gμν ¼

2
64−grr − ðvr0Þ2

�
1 − 1

c2s0

	
vr0v

t
0

�
1 − 1

c2s0

	
vr0v

t
0

�
1 − 1

c2s0

	
gtt − ðvt0Þ2

�
1 − 1

c2s0

	
3
75:
ð47Þ

V. LOCATION OF THE ACOUSTIC
EVENT HORIZON

The metric corresponding to the acoustic spacetime is
given by Eq. (47). The metric elements of Gμν are
independent of time, and thus, the metric is stationary.
In general relativity, the event horizon for such stationary
spacetime is defined as a time like a hypersurface r ¼
constant whose normal nμ ¼ ∂μr ¼ δrμ is null with respect
to the spacetime metric. In a similar way, we can define the
event horizon of the acoustic spacetime as a null timelike
hypersurface. Thus, the location of the acoustic horizon is
given by the condition [25,79–81]

Gμνnμnν ¼ Gμνδrμδ
r
ν ¼ Grr ¼ 0: ð48Þ

Therefore, on the event horizon, we have the following
condition

c2s0 ¼
grrðvr0Þ2

1þ grrðvr0Þ2
: ð49Þ

Now it is convenient to move to the corotating frame as
defined in [73]. Let u be the radial velocity of the fluid in
the corotating frame, which is referred as the “advective
velocity,” and let λ ¼ −vϕ=vt be the specific angular
momentum. For stationary flow, the advective velocity
and the specific angular momentum will be denoted with a
subscript “0” as earlier. In this corotating frame, we can
write vr, vt, and vt in terms of u, λ as

vr ¼ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrð1 − u2Þ

p ð50Þ

vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgϕϕ þ λgϕtÞ2
ðgϕϕ þ 2λgϕt − λ2gttÞðgϕϕgtt þ g2ϕtÞð1 − u2Þ

s
ð51Þ

and

vt ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gttgϕϕ þ g2ϕt

ðgϕϕ þ 2λgϕt − λ2gttÞð1 − u2Þ

s
: ð52Þ

In the corotating frame, Eq. (49) becomes

u20jh ¼ c2s0jh; ð53Þ

where the subscript “h” implies that the quantity is to be
evaluated at the horizon and would imply the same here-
after. Thus, we see that the acoustic horizon is located at a
radius where the advective velocity u0 becomes equal to the
speed of sound cs0, which is exactly the surface known as
the transonic surface. Thus, the transonic surface of the
accretion flow and the acoustic horizon coincide.

VI. CAUSAL STRUCTURE OF THE ACOUSTIC
SPACETIME

An acoustic null geodesic corresponding to the radially
traveling (dϕ ¼ 0, dθ ¼ 0) acoustic phonons is given by
ds2 ¼ 0. Thus,

�
dr
dt

�
�
≡ b� ¼ −Grt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

rt − GrrGtt

p
Grr

; ð54Þ

where the acoustic metric elements Gtt; Grt ¼ Gtr; Grr are
given by Eq. (47). These are expressed in terms of the
background metric elements, the sound speed, and the
velocity variables u0ðrÞ and λ0 ¼ −vϕ0=vt0 using Eqs. (50)
and (51)

Gtt ¼ −
1

grrð1 − u20Þ
�
1 −

u20
c2s0

�

Gtr ¼ Grt ¼
u0

ð1 − u20Þ
�
1 −

1

c2s0

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgϕϕ þ λ0gϕtÞ2

grrðgϕϕ þ 2λ0gϕt − λ20gttÞðgϕϕgtt þ g2ϕtÞ

s

Grr ¼
1

gttgϕϕ þ g2ϕt

×

�
gϕϕ −

ðgϕϕ þ λ0gϕtÞ2
ðgϕϕ þ 2λ0gϕt − λ20gttÞ

ð1 − 1
c2s0
Þ

ð1 − u20Þ
�
: ð55Þ

tðrÞ can be obtained as

tðrÞ� ¼ t0 þ
Z

r

r0

dr
b�

: ð56Þ
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We can introduce a new set of coordinates as following

dz ¼ dt −
1

bþ
dr; and dw ¼ dt −

1

b−
dr: ð57Þ

In terms of these new coordinates, the acoustic line element
can be written as

ds2jϕ¼θ¼const ¼ Ddzdw; ð58Þ
where D is found to be equal to Gtt.
b�ðrÞ is a function of the stationary solution u0ðrÞ and

the sound speed cs0ðrÞ. Therefore, we have to first obtain
u0ðrÞ and cs0ðrÞ for the stationary accretion flow. This is
done by simultaneously numerically integrating the equa-
tions describing the gradient of the advective velocity
du0=dr and the gradient of the sound speed dcs0=dr,
which are derived in Appendix A. We use the fourth order
Runge-Kutta method to integrate these equations. The
solutions are characterized by the parameters [ξ0, γ, λ0,
a]. Remember that ξ0 ¼ −h0vt0 is the specific energy of the
flow that is a conserved quantity for the flow under
consideration. Thus, given a particular set of [ξ0, γ, λ0,
a], we get u0ðrÞ and cs0ðrÞ by numerically solving
Eqs. (A8) and (A7) simultaneously, and then, using these
solutions of u0ðrÞ and cs0ðrÞ, we get b�ðrÞ. The integration
in Eq. (56) is then performed by applying the Euler method.
Finally, we plot tðrÞ� as a function of r to see the causal
structure of the acoustic spacetime.

A. Monotransonic case

Let us first consider the case where the accretion flow is
monotransonic. For such accretion flow, there exists only
one transonic surface. In other words, the flow starts its
journey from large radial distance subsonically, i.e., ju0j <
jcs0j orM ¼ ju0j=jcs0j < 1, whereM is the Mach number
of the flow, and at some certain radial distance r, the
advective velocity becomes equal to the speed of sound, or
M ¼ 1. The radius r at which M becomes equal to 1 is
called the transonic point. For the flow under consideration,
the transonic points are the critical points of the flow where
the denominator in the expression of du0=dr becomes 0
(see Appendix A). Thus, the transonic points are given by
r ¼ rcrit, which in turn are obtained by solving Eq. (A10)
for given values of the parameters [ξ0; γ; λ0; a]. For r < rcrit,
the flow is supersonic, i.e., M > 1, and it remains
supersonic all the way up to the event horizon rþ.
We would like to choose the parameters [ξ0; γ; λ0] in a

way such that Eq. (A10) has exactly one solution outside
the event horizon (i.e., for r > rþ) for all values of a and
see how the radius of the transonic surface, or equivalently
rcrit, varies with the black hole spin a. Then, with the same
[ξ0; γ; λ0], we pick a few values of the black hole spin a and
draw the causal structure of the acoustic space time, and we
show that the location of the acoustic horizon matches rcrit
for that value of a. In Fig. 1, we plot the critical points rcrit
of monotransonic flow as a function of the black hole spin.

In Fig. 2, we show the causal structure of the acoustic
spacetime for monotransonic accretion flow. The parame-
ters ½ξ0; γ; λ0� ¼ ½1.1; 1.4; 2.1� are the same for all of the
plots, while the black hole spins are a ¼ −0.9;−0.5, 0, 0.5,
0.9 by row, from top to bottom. Solid lines represent tþðrÞ
vs r, i.e., z ¼ constant lines, and the dotted lines represent
the t−ðrÞ vs r, i.e., w ¼ constant lines. It is illustrated from
the causal structures that the radius of the acoustic horizon,
where tþðrÞ diverges, is same as the critical points rcrit for
the given value of [ξ0; γ; λ0; a].

B. Multitransonic case

For a given set of values of the parameters [ξ0; γ; λ0; a],
Eq. (A10) can have more than one, or more specifically
three, solutions for r > rþ. The corresponding flow
in such a case is said to be a multicritical flow as it
allows multiple critical points rin; rmid; rout, such that
rin < rmid < rout. These critical points can be character-
ized by performing a critical point analysis. Such analysis
shows that the inner and outer critical points rin and rmid,
respectively, are of the saddle type, whereas the middle
critical point rmid is the center type. Thus, the accretion
flow can only pass through the outer or inner critical
points. When the accretion flow passes through both the
outer and inner critical points, the accretion flow is called
a multitransonic flow. Multicritical flows are not neces-
sarily multitransonic flows. This could be understood as
the following: suppose the flow starts its journey from
large radial distance subsonically, and at r ¼ rout, it makes
a transition from the subsonic state to the supersonic state.
Thus, rout is basically the outer acoustic horizon. After the
flow becomes supersonic, it may encounter a shock
formation that makes the flow subsonic from supersonic
discontinuously, i.e., the dynamical variables, such as the

FIG. 1. The critical points rcrit (which are transonic points of the
monotransonic accretion flow) are plotted as a function of the
black hole spin a for the set of values ½ξ0; γ; λ0� ¼ ½1.1; 1.4; 2.1�.
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velocity, sound speed, density, and pressure, make a
discontinuous jump. After it becomes subsonic due the
shock formation, it again passes through the inner critical
point and becomes supersonic from subsonic. Therefore,

in the presence of shock formation, the flow can pass
through both the outer and inner critical points, and
hence, the flow is multitransonic. However, all of the
set parameters [ξ0; γ; λ0; a] that allow multiple critical

FIG. 2. Causal structure of the acoustic spacetime for monotransonic accretion. tþðrÞ vs r, i.e., z ¼ constant lines are represented by
the solid lines, and t−ðrÞ vs r, i.e., w ¼ constant lines are represented by the dashed lines. t�ðrÞ are given by Eq. (56). The causal
structures are plotted with ½ξ0; γ; λ0� ¼ ½1.1; 1.4; 2.1� for a ¼ −0.9;−0.5, 0, 0.5, 0.9, by rows, from top to bottom. It could be noticed that
the acoustic horizon where the tþðrÞ lines diverges, it coincides with the critical point rcrit. This further illustrates that the transonic
surface of the accretion flow is indeed the acoustic horizon of the embedded acoustic spacetime.
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points do not allow shock formation. In other words, only
a subset of parameters allowing multiple critical points
allows shock formation. This is best shown by plotting the
parameter space.

We have assumed a nondissipative inviscid accretion
flow. Therefore, the flow has conserved specific energy
and mass accretion rate. Thus, the shock produced in such a
flow is assumed to be of the energy preserving Rankine

FIG. 3. Mach number M vs r plot (on the left) and the corresponding causal structure (on the right). The parameters [ξ0 ¼ 1.002,
γ ¼ 1.35, λ0 ¼ 3.05] are the same as where the black hole spin is a ¼ 0.5 (top panel), a ¼ 0.55 (middle panel), and a ¼ 0.6 (bottom
panel). The solid lines represents tþðrÞ vs r lines, and the dashed lines represents the t−ðrÞ vs r lines.
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Hugonoit type, which satisfies the general relativistic
Rankine Hugonoit conditions [25,29,82–87]

⟦ρvμημ⟧ ¼ ⟦ρvr⟧ ¼ 0

⟦Ttμη
μ⟧ ¼ ⟦ðpþ εÞvtvr⟧ ¼ 0

⟦Tμνη
μην⟧ ¼ ⟦ðpþ εÞðvrÞ2 þ pgrr⟧ ¼ 0; ð59Þ

where ημ ¼ δrμ is the normal to the surface of the shock
formation. ⟦f⟧ is defined as ⟦f⟧ ¼ fþ − f−, where fþ and
f− are values of f after and before the shock, respectively.
The first condition comes from the conservation of the mass
accretion rate, and the last two conditions come from the
energy-momentum conservation. These conditions are to
be satisfied at the location of the shock formation. In order
to find out the location of the shock formation, it is
convenient to construct a shock-invariant quantity, which
depends only on u0, cs0 and γ, using the conditions above.
The first and second conditions are trivially satisfied, owing
to the constancy of the mass accretion rate and the specific
energy. The first condition is basically ðΨ0Þþ ¼ ðΨ0Þ−, and
the third condition is ðTrrÞþ ¼ ðTrrÞ−. Thus, we can define
a shock-invariant quantity Ssh ¼ Trr=Ψ0 that also satisfies
⟦Ssh⟧ ¼ 0 and is given by (see Appendix B)

Ssh ¼
ðu20ðγ − c2s0Þ þ c2s0Þ

u0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u20

p
ðγ − 1 − c2s0Þ

: ð60Þ

The procedure to find the location of the shock formation
is the following. Let us denote the values of Ssh along the
flow passing through the outer critical point as Soutsh and the
same for the flow passing through inner critical point as Sinsh.
At the location of the shock formation rsh, we have
Soutsh ¼ Sinsh. Thus, evaluating the Soutsh and Sinsh we find rsh
by noting the value of r, for which Soutsh ¼ Sinsh. In general,
there are two such values of rsh such that one is between the
inner and middle critical points rin < rsh1 < rmid and the
other one is between the middle and outer critical points
rmid < rsh2 < rout. However, the literature shows that the
shock formation at rsh1 is unstable, and the formation at rsh2
is stable. Therefore, only rsh2 is the allowed location of the
shock formation, and hence, we shall hereafter refer to only
this location as the location of the shock formation.
In the left column of Fig. 3, we show the phase portraits

of the flow, i.e., the Mach number vs radial distance plots
for three different values of the Kerr parameter a ¼ 0.5,
0.55, 0.6, keeping [ξ0; γ; λ0] to be the same as [ξ0 ¼ 1.002,
γ ¼ 1.35, λ0 ¼ 3.05]. These chosen values of the param-
eters [ξ0; γ; λ0; a] allow the flow to be multicritical, as well
as multitransonic, by allowing shock formation. The shock
transition of the flow has been denoted by a vertical dashed
line in the phase portrait, which implies that the shock
formation at that location makes the flow to jump from the
supersonic state in the branch passing through the outer

critical point to the subsonic state in the branch passing
through the inner critical point.
In the right column of Fig. 3, we show the causal

structure corresponding the flow shown by the phase
portrait in the left column in the particular row. In the
causal structure plots, the vertical dashed line in the left is
the location of the inner critical point, and the vertical
dashed line on the right is the location of the shock
formation. The outer critical point is located at the white
line separating densely populated diverging tþðrÞ lines. It is
obvious from the causal structure that the inner and outer
critical points are the inner and outer acoustic horizons of
the acoustic spacetime. Also, it could be noticed that for an
observer in the region rin < r < rsh2, the surface of the
shock formation would resemble a white hole horizon.
Thus, the shock formation can be regraded as the presence
of an acoustic white hole.

VII. ACOUSTIC SURFACE GRAVITY

The Hawking temperature of an astrophysical black hole
is given in terms of the surface gravity, which can be
derived by using the Killing vector that is null on the event
horizon. Similarly, the analogue Hawking temperature TAH
may be given in terms of the acoustic surface gravity κ as
TAH ¼ ℏκ=ð2πKBÞ in the units we are working with. KB is
the Boltzmann constant and ℏ ¼ h=2π, where h is the
Planck constant. Suppose χμ is the Killing vector of the
acoustic spacetime that is null on the acoustic horizon, i.e.,
χμχμjh ¼ Gμνχ

μχνjh ¼ 0. Then the acoustic surface gravity
is obtained by using the following relation [81,88]

∇αð−χμχμÞ ¼ 2κχα: ð61Þ

The acoustic metric given by Eq. (47) is independent of
time t. Therefore, we have the stationary Killing vector
χμ ¼ δμt , which is null on the horizon, i.e., Gμνχ

μχνjh ¼
Gttjh ¼ 0. Now, χμ ¼ Gμνχ

ν ¼ Gμνδ
ν
t ¼ Gμt. Therefore,

from the α ¼ r component of Eq. (61), the acoustic surface
gravity is obtained to be

κ ¼ 1

2Grt
∂rð−GttÞju2

0
¼c2s : ð62Þ

Using the expressions ofGtt andGrt from Eq. (55) provides

κ ¼
����κ0

�
du0
dr

−
dcs0
dr

�����
h
; ð63Þ

where

κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgttgϕϕ þ g2ϕtÞðgϕϕ þ 2λ0gϕt − λ20gttÞ

q
ð1 − c2s0Þðgϕϕ þ λ0gϕtÞ ffiffiffiffiffiffi

grr
p ð64Þ

and the subscript “h,” as mentioned earlier, denotes that
the quantities have been evaluated at the acoustic horizon.
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On the equatorial plane (θ ¼ π
2
), the metric elements are

given by

gtt ¼ 1 −
2

r
; gϕt ¼ −

2a
r
;

gϕϕ ¼ r3 þ a2rþ 2a2

r
ð65Þ

Thus, κ0 can be further written as

κ0 ¼
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − 2rþ a2Þðgϕϕ þ 2λ0gϕt − λ20gttÞ

q
ð1 − c2s0Þðr3 þ a2rþ 2a2 − 2aλ0Þ ffiffiffiffiffiffi

grr
p : ð66Þ

The acoustic surface gravity is thus obtained as a function
of the background metric elements and the stationary
values of the accretion variables. The surface gravity
depends explicitly on the black hole spin a.

VIII. STABILITY ANALYSIS

The wave equation describing the propagation of the
mass accretion rate, as given by Eq. (40), could be used to
check whether the steady state accretion flow solutions are
stable under linear perturbations. We discuss two different
kind of solutions of the wave equation given by Eq. (40).
We follow the technique introduced by [89] for this
purpose. Let us take the trial solution as

Ψ1ðr; tÞ ¼ PωðrÞ exp½iωt�: ð67Þ
Using this trial solution in the wave equation
∂μðfμν∂νΨ1Þ ¼ 0, where fμν is Eq. (42), provides

−ω2fttPω þ iω½ftr∂rPω þ ∂rðfrtPωÞ� þ ∂rðfrr∂rPωÞ ¼ 0:

ð68Þ

A. Standing wave analysis

In order to form a standing wave, the amplitude of the
wave PωðrÞ must vanish at two different radii r1 and r2 for
all times, i.e., Pωðr1Þ ¼ 0 ¼ Pωðr2Þ. The outer point r2
could be located at the source, at a large distance from
which accreting materials are coming. However, in order
for the inner condition Pωðr1Þ ¼ 0 to be satisfied, the
accretor must have a physical surface. Also, the solution
must be continuous in the range r1 ≤ r ≤ r2. If the accretor
is a black hole, then the accretion flow is necessarily
supersonic at the event horizon [1,3]. Also, there is no
physical surface or mechanism to make the wave amplitude
vanish at the horizon, and hence, in the case of a black hole,
standing waves are not formed. If the accretion flow has a
supersonic region, then it is also possible to develop the
shock at some radius, and this would make the solution
discontinuous. Therefore, in order for the standing wave to
be formed, the flow must be subsonic in the region
r1 ≤ r ≤ r2. For this reason, we consider subsonic flow
in the following.

Multiplying Eq. (68) by PωðrÞ and integrating the
resulting equation between r1 and r2 gives

ω2

Z
r2

r1

P2
ωfttdr − iω

Z
r2

r1

∂r½ftrP2
ω�dr

−
Z

r2

r1

½Pω∂rðfrr∂rPωÞ�dr ¼ 0: ð69Þ

Boundary conditions at r1 and r2 make the middle term
vanish, and integrating the last term by parts, Eq. (69) can
be written as

ω2

Z
r2

r1

P2
ωfttdrþ

Z
r2

r1

frrð∂rPωÞ2dr ¼ 0; ð70Þ

which provides

ω2 ¼ −

R
r2
r1
frrð∂rPωÞ2drR
r2
r1
fttP2

ωdr
: ð71Þ

From Eq. (42), ftt is given by

ftt ¼ grrvr0c
2
s0

vt0vt0Λ̃

�
−gtt þ ðvt0Þ2

�
1 −

1

c2s0

��
; ð72Þ

and frr is given by

frr ¼ grrvr0c
2
s0

vt0vt0Λ̃

�
grr þ ðvr0Þ2

�
1 −

1

c2s0

��
: ð73Þ

As gtt > 0 and c2s0 < 1

−gtt þ ðvt0Þ2
�
1 −

1

c2s0

�
< 0; ð74Þ

and using Eq. (50), we have

grr þ u20
grrð1 − u20Þ

�
1 −

1

c2s0

�
¼

ð1 − u20Þ þ u20ð1 − 1
c2s0
Þ

grrð1 − u20Þ

¼
ð1 − u2

0

c2s0
Þ

grrð1 − u20Þ
> 0; ð75Þ

where we have used the fact that the accretion flow is
subsonic u20 < c2s0. Hence, ω

2 > 0. Therefore, ω has two
real roots, the trial solution is oscillatory, and the stationary
accretion solution is stable.

B. Traveling wave analysis

We consider the traveling wave solution with the wave-
length, which is small compared to the characteristic radius
of the accretor, which, for the case of black hole, could be
taken as the radius of the event horizon. For such solutions,
the frequency will be very large, and hence, the solution
could be written as a power series of the following form
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PωðrÞ ¼ exp

�X∞
n¼−1

knðrÞ
ωn

�
: ð76Þ

Substituting the trail solution in Eq. (68) enables us to find
out leading order terms by equating the coefficients of
individual power of ω to zero. Thus, we get

coefficient of ω2∶ frrð∂rk−1Þ2 þ 2iftr∂rk−1 − ftt ¼ 0

ð77Þ

coefficient of ω∶ frr½∂2
rk−1 þ 2∂rk−1k0� þ i½2ftr∂rk0

þ ∂rftr� þ ∂rfrr∂rk−1 ¼ 0 ð78Þ

coefficient of ω0∶ frr½∂2
rk0 þ 2∂rk−1∂rk1 þ ð∂rk0Þ2�

þ ∂rfrr∂rk0 þ 2iftr∂rk1 ¼ 0: ð79Þ

Equation (77) gives

k−1ðrÞ ¼ i
Z

−ftr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðftrÞ2 − fttfrr

p
frr

dr: ð80Þ

Using k−1ðrÞ from Eq. (80) in Eq. (78) gives

k0ðrÞ ¼ −
1

2
ln½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðftrÞ2 − fttfrr

q
� þ constant ð81Þ

and using Eq. (80) and (81) in Eq. (79) gives

k1ðrÞ ¼ � i
2

Z ∂rðfrr∂rk0Þ þ frrð∂rk0Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðftrÞ2 − fttfrr

p dr: ð82Þ

Now,

det fμν ¼ fttfrr − ðfrtÞ2 ¼
�
grrvr0c

2
s

vt0vt0Λ̃

�
2

F ; ð83Þ

where vt0 is the stationary value of vt given by Eq. (52), and
vr0 and vt0 are the stationary values of vr and vt given by
Eq. (50) and (51), respectively, and

F ¼
�
−gttgrr þ

�
1 −

1

c2s

�
ð−gttðvr0Þ2 þ grrðvt0Þ2Þ

�
: ð84Þ

In terms of λ0, u0 and the background metric elements F
can be written as

F ¼−
gϕϕ

grrðgϕϕgttþg2ϕtÞ

×

�
1þ ð1−c2sÞ

c2sð1−u20Þ
� ð1þλ0

gϕt
gϕϕ
Þ2

ð1þ2λ0
gϕt
gϕϕ

−λ20
gtt
gϕϕ
Þ−u20

��
< 0:

ð85Þ

Thus, k−1ðrÞ and k1ðrÞ are purely imaginary, and the
leading contribution to the amplitude of the wave comes
from k0ðrÞ.
So that the trial solution does not diverge and is stable,

the power series in Eq. (76) must converge, i.e., we have to
show jkn=ωnj ≫ jknþ1=ωnþ1j. As the frequency is very
large ω ≫ 1, the contributions from higher order terms
are very small. Thus, it should suffice to show that
jωk−1j ≫ jk0j ≫ jk1=ωj. k−1; k0; k1 are complicated func-
tions of the accretion variables, and thus, it is not possible to
have an analytic form. However, we can find the spatial
dependence at a large distance r → ∞, where the spacetime
is effectively Newtonian. From the constancy of the mass
accretion rate, we have vr ∝ 1=ðρr2Þ. At the asymptotic
limit, ρ approaches its constant ambient value ρ∞, and
hence, at r → ∞, vr∞ ∝ 1=r2. Similarly, the sound speed
has its ambient value cs0∞. vt0 ∼ 1 and vt0 ∼ −1. Also,
Λ̃∞ ∝ ðvr0Þ2. Thus, in this asymptotic limit, we have

ftt ∼ r2; frr ∼ r2; ftr ∼ r0;

ðfrtÞ2 − fttfrr ∼ r4; ð86Þ

which gives k−1 ∼ r, k0 ∼ ln r, and k1 ∼ 1=r. Therefore, the
sequence converges in the leading order even at large r.
Considering the first three terms in the expansion in Eq. (76),
the amplitude of the wave can be approximated as

jΨ1j ≈
��

vt0vt0Λ̃
grrvr0c

2
s

�
2 1

−F

�1
4

: ð87Þ

IX. CONCLUDING REMARKS

In this work, we demonstrate that the emergence of
acoustic spacetime as an analogue system is a natural
outcome of the linear stability analysis of the relativistic
black hole accretion. It is interesting to investigate whether,
in general, the emergence of a gravity like phenomena is a
consequence of linear perturbation analysis only, or any
complex nonlinear perturbation (of any order) of fluid may
lead to the emergent gravity phenomena. In other words, it
is important to know how universal the analogue gravity
phenomena is—whether black hole like spacetime can be
generated by only one means (linear perturbation) or any
kind of perturbation of a general nature would lead to the
construction of an analogue system. In another work [90],
we have started explaining this for standard Newtonian
fluid flow. In our future work, we would like to explore the
possibility of obtaining (or not) an acoustic spacetime
through the process of higher order perturbation analysis of
relativistic astrophysical accretion. It is to be noted that
the correspondence between the analogue system and the
accretion astrophysics can be established through the
process of linear stability analysis of stationary integral
accretion solutions. That means that only the steady state
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accretion has been considered. The body of literature in
accretion astrophysics is huge and diverse, and hence, there
are several excellent works that exist in literature where
complete time-dependent numerical simulation has been
performed to study the nonsteady flow of hydrodynamic
fluid, including various kinds of time variabilities
[31,32,91–120]. Also, in our present work, we limited
our stability analysis procedure within a purely analytical
framework and did not opt for any numerical studies in this
aspect. There are, however, a number of works existing in
the literature (for some recent works, see [121–124]) which
study, fully numerically, the stability analysis of spherically
or axially symmetric black hole accretion in two or three
dimensions. We, however, did not concentrate on such an
approach since our main motivation was to explore how the
emergent gravity phenomena can be observed through the
stability analysis of steady-state solutions of hydrodynamic
accretion.
In the present work, we have explicitly performed the

perturbation analysis to make a correspondence between
the analogue gravity and the accretion astrophysics around
black holes. Various properties of the corresponding
analogue spacetime, however, can be studied by examining
the stationary solutions as well, both for matter flow in
spherically symmetric as well as for axially symmetric
accretion [25,26,76,125–129].
In theoretical physics, one of the main objectives of

studying the analogue gravity phenomenon is to understand
the Hawking-like effects—the emission of phonons from
the close vicinity of the acoustic horizon, which is
considered to be analogous to the usual Hawking radiation
emanating out from standard gravitational black holes.
Even though the detailed analysis of quantum Hawking-

like effects may not be possible in a purely classical
analogue system, the study of the acoustic surface gravity
may have significant importance in such systems. The
acoustic surface gravity itself is an important entity to
study, as it may help to understand the flow structure as
well as the acoustic spacetime. Therefore, the acoustic
surface gravity may be studied independently without
studying the analogue Hawking radiationlike phenomena,
characterized by the analogue Hawking temperature, which
may be too small to be detected experimentally in such a
system. The acoustic surface gravity plays an important
role in studying the non-negligible effects associated with
the analogue Hawking effects, which could be examined
through modified dispersion relations. Such studies have
been performed in purely analytical work as well as in
experimental setups [130–135].
The deviation of the Hawking-like effect in the dis-

persive medium depends very sensitively on the gradient of
dynamical velocity as well as that of the sound speed. In
most of the above-mentioned studies, the sound speed is
taken to be constant, or, in other words, the flow is taken to
be isothermal. Also, the velocity gradient is estimated by

prescribing a particular velocity profile using certain
assumptions. On the other hand, in our current work, the
values of the space gradient of both the dynamical flow
velocity and the speed of sound have been computed very
accurately. Thus it is obvious that the non-universal feature
of the Hawking like effect could be further modified by
studying the black hole accretion system as an analogue
gravity system. Therefore, it is obvious that though the
accreting black hole system may not provide any direct
signature of the Hawking-like effect, it can still be
considered as a very important, as well as a unique
theoretical construct, to study analogue gravity phenomena.
Lastly, one may argue that the analogue Hawking

temperature may be significant in case of accretion around
a primordial black hole. However, the accretion process of
primordial black holes itself is an area that is not com-
pletely understood. To study accretion in such a system,
one has to first construct a self-consistent model of
accretion onto such primordial black holes. Such a study
is clearly beyond the scope of the present work, and hence,
we concentrated only on large astrophysical black holes.
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APPENDIX A: ACCRETION FLOW EQUATIONS

To derive the expression for the gradient of advective
velocity du0=dr and the gradient of the sound speed
dcs0=dr, we use the expressions for the two conserved
quantities of the flow. The mass accretion rate Ψ0 in terms
of u0 is given by

Ψ0 ¼ 4πH0r2ρ0
u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

grrð1 − u20Þ
p ; ðA1Þ

and the relativistic Bernoulli’s constant is given by

ξ0 ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gttgϕϕ þ g2ϕt

ðgϕϕ þ 2λ0gϕt − λ20gttÞð1 − u2Þ

s
: ðA2Þ

For adiabatic flow with conserved specific entropy, in other
words an isentropic flow, the enthalpy is given by dh ¼
dp=ρ, which, when used in the definition of enthalpy given
h ¼ ðpþ εÞ=ρ, gives h ¼ dε=dρ. The energy density ε
includes rest-mass energy ρ and an internal energy equal
to p=ðγ − 1Þ. Thus, ε ¼ ρþ p=ðγ − 1Þ. For a polytropic
equation of state p ¼ kργ, the enthalpy is therefore given by
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h0 ¼
γ − 1

γ − ð1þ c2s0Þ
: ðA3Þ

To obtain an equation for the gradient of the sound speed, one
defines a new quantity _Ξ via the following transformation

_Ξ ¼ Ψ0ðγkÞ
1

γ−1: ðA4Þ
k is a measure of the specific entropy of the accreting matter,
as the entropy per particle σ is related to k as

σ ¼ 1

γ − 1
log kþ γ

γ − 1
þ constant: ðA5Þ

Thus, _Ξ represents the total inward entropy flux and could be
labeled as the stationary entropy accretion rate. Expressing ρ
in terms of k; γ; h; c2s0, the entropy accretion rate could be
written as

_Ξ ¼ 4πH0

u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrð1 − u20Þ

p r2
� ðγ − 1Þc2s0
γ − ð1þ c2s0Þ

� 1
γ−1
: ðA6Þ

Taking the logarithmic derivative of the above equation
with respect to r, the gradient of the sound speed could be
written as

dcs0
dr

¼ −
cs0ðγ − ð1þ c2s0ÞÞ

2

�
1

u0ð1 − u20Þ
du0
dr

þ 1

r
þ 1

2

Δ0

Δ

�
;

ðA7Þ
where Δ ¼ r2 − 2rþ a2, as given by Eq. (3), and the Δ0
denotes the first derivative of Δ with respect to r. The
gradient of the advective velocity could be found by
taking logarithmic derivative of Eq. (A1) and Eq. (A2)
(substituting dh=h0 ¼ c2s0dρ=ρ0) and eliminating dρ=ρ0,
which gives

du0
dr

¼ u0ð1 − u20Þ½c2s0ð2r þ Δ0
ΔÞ − Δ0

Δ þ B0
B �

2ðu20 − c2s0Þ
¼ N

D
; ðA8Þ

where B ¼ ðgϕϕ þ 2λ0gϕt − λ20gttÞ, and B0 is the first
derivative of B with respect to r. The critical points of
the flow are obtained by equating D ¼ N ¼ 0. D ¼ 0

gives the location of critical points at u20jcrit ¼ c2s0jcrit, and
N ¼ 0 gives

u20jr¼rcrit
¼ c2s0jr¼rcrit

¼
Δ0
Δ − B0

B
2
r þ Δ0

Δ

����
r¼rcrit

: ðA9Þ

Using the above condition, we can substitute u20 and c
2
s0 in

Eq. (A2) at the critical points, which provides

ξ0 ¼
1

1 − 1
γ−1

Δ0
Δ−

B0
B

2
rþΔ0

Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δþ rΔ0

2Bþ rB0

r ����
r¼rcrit

: ðA10Þ

Thus, for a given value of ξ0, which is a constant along the
flow, and that of γ; λ0 and a, the above equation could be
solved for rcrit numerically, and the critical points could be
found. To find the value of the gradient of the advective
velocity at the critical points, we use L’Hospital rule,
which gives

du0
dr

����
crit

¼ −β �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4αΓ

p
2α

; ðA11Þ

where

α¼ 1þ γ−3c2s0jr¼rcrit

β¼ 2cs0ð1−c2s0Þðγ− ð1þc2s0ÞÞ
�
1

r
þ Δ0

2Δ

�����
r¼rcrit

Γ¼ c2s0ð1−c2s0Þ2
�
ðγ− ð1þc2s0ÞÞ

�
1

r
þ Δ
2Δ0

�
2

−Γ1

�
r¼rcrit

Γ1¼ 1−c2s0
2c2s0

�
Δ02

Δ2
−
Δ00

Δ

�
−

1

2c2s0

�
B02

B2
−
B00

B

�
−
1

r2
:

ðA12Þ

Δ00 and B00 are the second derivatives of Δ and B with
respect to r, respectively. For a given set of parameters
[ξ0; γ; λ0; a], we can now solve Eqs. (A8) and (A7)
simultaneously to obtain the Mach number as a function
of the radial coordinate r. Depending on the values of the
parameters [ξ0; γ; λ0; a], the phase portrait may contain
one or more critical points.

APPENDIX B: SHOCK-INVARIANT QUANTITY

h0 is given by Eq. (A3). c2s0 ¼ ð1=h0Þdp=dρ ¼
ð1=h0Þkγργ−1, which gives ρ0 (and hence also p, and ε)
in terms of k, γ, and cs0. Thus,

ρ ¼ k−
1

γ−1

� ðγ − 1Þc2s0
γðγ − 1 − c2s0Þ

� 1
γ−1

p ¼ k−
1

γ−1

� ðγ − 1Þc2s0
γðγ − 1 − c2s0Þ

� γ
γ−1

ε ¼ k−
1

γ−1

� ðγ − 1Þc2s0
γðγ − 1 − c2s0Þ

� 1
γ−1
�
1þ c2s0

γðγ − 1 − c2s0Þ
�
: ðB1Þ

Now, Ψ0¼constant×r2ρvr0 and Trr¼ðpþεÞðvr0Þ2þpgrr,
where vr0 ¼ u0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrð1 − u20Þ

p
. Therefore, the shock-invari-

ant quantity Ssh ¼ Trr=Ψ0 becomes

Ssh ¼
ðu20ðγ − c2s0Þ þ c2s0Þ

u0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u20

p
ðγ − 1 − c2s0Þ

; ðB2Þ

where we have removed any overall factor of r as a shock-
invariant quantity that is to be evaluated at constant r ¼ rsh.
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