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We propose a new acceleration mechanism for charged particles by using cylindrical or spherical
nonlinear acoustic waves propagating in ion-electron plasma. The acoustic wave, which is described by the
cylindrical or spherical Kortweg-de Vries equation, grows in its wave height as the wave shrinks to the
center. Charged particles confined by the electric potential accompanied with the shrinking wave get energy
by repetition of reflections. We obtain power law spectrum of energy for accelerated particles. As an
application, we discuss briefly that high energy particles coming from the Sun are produced by the present
mechanism.
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I. INTRODUCTION

It is known that the energy spectrum of cosmic rays is
well described by power laws over a very large energy span
[1]. It suggests a nonthermal acceleration mechanism of the
high energy particles by a variety of active astrophysical
objects: the solar atmosphere, supernova remnants, central
region of galaxies, and so on. However, the acceleration
mechanisms, which are important to understand the proper-
ties of the astrophysical objects, have not yet been elucidated.
One of the most well-studied acceleration mechanisms is

the Fermi acceleration [2], where charged particles gain
nonthermal energy by repetition of reflections stochasti-
cally by magnetic clouds in astrophysical shock waves. By
these multiple reflections the resulting energy spectrum of
many particles becomes a power law. As alternative pos-
sibilities, a lot of mechanisms concerning to magnetic
reconnections—double layer, monopole induction, and
shock wave (surfing effect), etc.—are studied [3]. We
consider a new acceleration mechanism by nonlinear
acoustic solitonlike waves excited in a plasma.
We consider a collisionless plasma of cold ions and

isothermal electrons. It is well known that the one-dimen-
sional planar ion-acoustic waves in the plasma are governed
by the Kortweg-de Vries (KdV) equations [4]. In fact, such
waves are really observed experimentally in the plasma
system [5].
For cylindrical and spherical ion-acoustic waves in the

plasma, modified KdVequations are introduced by Maxon

and Viecelli [6,7], and they showed existence of cylindrical
and spherical solitonlike solutions by numerical calcula-
tions. While the planar solitons propagate with constant
wave heights, the cylindrical and spherical solitons grow in
their wave heights during the propagation toward the
center. Indeed, these waves are studied by numerical
calculations of basic equations describing plasma systems
[8,9], and also observed in laboratories [10,11].
If the density fluctuation appears in the system of

cold ions and warm electrons, the extent of electron
density is broader than that of ion density. This means
that positive charge excess occurs in the high density
region. Therefore, an electric field is produced. The
inhomogeneity of density accompanied with the electric
field, described by the scalar potential field, propagates as
an acoustic wave. Suppose that charged test particles
(protons) are confined in the electric potential wall asso-
ciated with the cylindrical or spherical ion-acoustic waves;
the charged particles get energy after some reflections by
moving the potential wall as the waves shrink into the
center. An accelerated particle escapes from the potential
wall as an output when the energy of the particle exceeds
the electric potential energy.
In this paper, we present a new mechanism for the

acceleration of charged particles by using nonlinear soliton-
like acoustic waves propagating in plasma described by the
cylindrical or spherical KdV equation. We show that the
power law spectrum for accelerated output particles is
obtained. As an application, we briefly discuss a possibility
that high-energy particles coming from the Sun are pro-
duced by the present acceleration mechanism.
The organization of this paper is as follows. In the next

section, we present the basic system considered in this
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study and derive the modified KdV equation that describes
the cylindrically or spherically symmetric ion-acoustic
waves. Then, we show the properties of solitonlike sol-
utions to the equation. In Sec. III, we introduce a thin shell
wall model to mimic the cylindrical or spherical soliton
solution. Using the model, we trace a number of charged
test particle motions accelerated by the soliton numerically
and obtain the power spectrum of output particles.
Section IV is devoted to summary and discussion including
an application to the solar cosmic rays.

II. BASIC SYSTEM

A. Basic equations of plasma

We consider a plasma that consists of ions and electrons.
The dynamics of the ions is described by a set of equations:

MnðiÞ
�∂vðiÞ

∂t þ ðvðiÞ ·∇ÞvðiÞ
�
¼ enðiÞðEþ vðiÞ ×BÞ−∇PðiÞ;

ð1Þ

∂nðiÞ
∂t þ∇ · ðnðiÞvðiÞÞ ¼ 0; ð2Þ

where nðiÞ, vðiÞ, PðiÞ are the number density, the velocity,
and the pressure of the ion fluid, and M is the mass of ion.
The electric and magnetic fields are denoted by E and B,
and e is the elementary charge.
We assume that there exists no global magnetic field, and

neglect the magnetic field produced by the plasma motion
[12]. The electric field E is described by E ¼ −∇ϕ, and the
electric potential ϕ is governed by the Poisson equation,

△ϕ ¼ −
e
ε0
ðnðiÞ − nðeÞÞ; ð3Þ

where nðeÞ is the number density of electrons, and ε0 is the
vacuum permittivity.
The electrons are assumed to be in thermal equilibrium

with the temperature TðeÞ, so that nðeÞ is given by

nðeÞ ¼ n0 exp

�
eϕ

kBTðeÞ

�
; ð4Þ

where kB is the Boltzmann constant, and n0 is the homo-
geneous density of electrons for ϕ ¼ 0. Furthermore, we
consider the case in whichPðiÞ is negligible, namely the ions
are cold.

B. Cylindrical KdV and spherical KdV equations

In this paper, we concentrate on nonlinear acoustic
waves with cylindrical or spherical symmetry; then the
basic equations (1) and (2) are rewritten as

∂vðiÞ
∂t þ vðiÞ

∂vðiÞ
∂r ¼ −

e
M

∂ϕ
∂r ; ð5Þ

∂nðiÞ
∂t þ ∂

∂r ðn
ðiÞvðiÞÞ þ 2γ

r
nðiÞvðiÞ ¼ 0; ð6Þ

and the Poisson equation (3) reduces to

∂2ϕ

∂r2 þ 2γ

r
∂ϕ
∂r ¼ −

e
ε0

�
nðiÞ − n0 exp

�
eϕ

kBTðeÞ

��
; ð7Þ

where γ ¼ 1=2 for the cylindrical case, and γ ¼ 1 for the
spherical case, respectively. The independent variable r is
the radial coordinate in the cylindrical or spherical coor-
dinate system.
For the purpose of taking acoustic waves that shrink

toward the center into consideration, according to the
reductive perturbation method [4], we introduce new
variables:

ξ ¼ ϵ1=2

λD
ðrþ c0tÞ; ð8Þ

τ ¼ ϵ3=2

λD
c0t; ð9Þ

where ϵ is a small constant, λD is the Debye length given by

λD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0kBTðeÞ

n0e2

s
; ð10Þ

and c0 is the sound velocity defined by

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTðeÞ

M

s
: ð11Þ

We rewrite Eqs. (5)–(7) with these variables as

ϵ1=2c0
∂vðiÞ
∂ξ þ ϵ3=2c0

∂vðiÞ
∂τ þ ϵ1=2vðiÞ

∂vðiÞ
∂ξ ¼ −ϵ1=2

e
M

∂ϕ
∂ξ ;
ð12Þ

ϵ1=2c0
∂nðiÞ
∂ξ þ ϵ3=2c0

∂nðiÞ
∂τ þ ϵ1=2

∂
∂ξ ðn

ðiÞvðiÞÞ

− ϵ3=2
2γ

ðτ − ϵξÞ n
ðiÞvðiÞ ¼ 0; ð13Þ

ϵ
∂2ϕ

∂ξ2 − ϵ2
2γ

ðτ− ϵξÞ
∂ϕ
∂ξ ¼ −λ2D

e
ε0

�
nðiÞ − n0 exp

�
eϕ

kBTðeÞ

��
:

ð14Þ

We expand variables vðiÞ, ϕ and nðiÞ by ϵ in the form
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vðiÞ

c0
¼ ϵv1 þ ϵ2v2 þ � � � ; ð15Þ

eϕ

kBTðeÞ ¼ ϵϕ1 þ ϵ2ϕ2 þ � � � ; ð16Þ

nðiÞ

n0
¼ 1þ ϵn1 þ ϵ2n2 þ � � � : ð17Þ

Substituting Eqs. (15)–(17) into Eqs. (12)–(14), we obtain a
set of equations order by order in ϵ. The lowest equations
in ϵ are

n1 ¼ −v1 ¼ ϕ1; ð18Þ

and the second lowest order equations give

∂n1
∂τ −

∂v1
∂τ − v1

∂v1
∂ξ þ ϕ1

∂ϕ1

∂ξ þ ∂
∂ξ ðn1v1Þ

−
∂3ϕ1

∂ξ3 − 2γ
v1
τ
¼ 0: ð19Þ

From Eqs. (18) and (19) we obtain

∂Φ
∂τ −Φ

∂Φ
∂ξ −

1

2

∂3Φ
∂ξ3 þ γ

Φ
τ
¼ 0; ð20Þ

where Φ ≔ ϕ1 ¼ −v1 ¼ n1. If γ ¼ 0, Eq. (20) is the KdV
equation, which describes nonlinear plane waves. In the
case γ ¼ 1=2 or 1 the equation is the extended KdV
equation that describes cylindrical or spherical waves,
respectively. From Eqs. (8) and (9) we see

r ¼ λDðϵ−1=2ξ − ϵ−3=2τÞ; ð21Þ

then r ¼ 0 corresponds to τ ¼ 0 in the lowest order with
respect to ϵ. The cylindrical or spherical wave shrinks from
an initial radius r ¼ r0 to r ¼ 0 as increasing τ from the
initial time τ ¼ τ0 < 0 to τ ¼ 0.

C. Properties of cylindrical and spherical
soliton solutions

We study characteristic properties of solitonlike wave
solutions with cylindrical or spherical symmetry. In the
case of γ ¼ 0, it is well known that the KdV equation has
soliton solutions in the form

Φ ¼ Asech2
� ffiffiffiffi

A
6

r �
ξþ A

3
τ

��
; ð22Þ

where the wave height denoted by A is a constant. The
soliton described by the solution (22) propagates with the
constant velocity A=3 in the ξ-τ plane, keeping its shape
invariant.

In the cylindrical or spherical case, γ ¼ 1=2 or 1, we set a
wave with the radius r ¼ r0 and the width is much smaller
than r0 at the initial time. In this set up, the cylindrical or
spherical wave is described approximately by the planar
wave Eq. (22). However, the wave height is no longer
constant owing to the existence of the last term in Eq. (20).
As is shown later, the wave height grows in time as the
wave shrinks toward the center. Numerical solutions to the
cylindrical KdVand the spherical KdVequations are widely
studied [6,7,13–15] and showed the growth of the wave
height.
For a wave on a finite support, Eq. (20) admits a

conserved quantity Q in the form

Q ¼ jτj2γ
Z

∞

−∞
Φ2dξ: ð23Þ

After replacing the constant A in Eq. (22) by a function
AðτÞ we substitute it into Eq. (23), then we see the peak
height of the waves grows as ðτ=τ0Þ−4γ=3 while the width
shrinks as ðτ=τ0Þ2γ=3 [13].
In the final stage, τ ∼ 0, of the cylindrical case, γ ¼ 1=2,

we find that the time derivative term and the time dependent
term, the first and the last terms, dominate the nonlinear
term and the dispersive term, the second and third terms, in
Eq. (20) for a wide range of initial conditions of numerical
calculations. Namely, Eq. (20) becomes

∂Φ
∂τ þ 1

2

Φ
τ
≈ 0; ð24Þ

then we see that the wave height grows as ∼ðτ=τ0Þ−1=2 with
a constant width. On the other hand, in the final stage of the
spherical case, γ ¼ 1, for numbers of initial conditions, we
observe numerically that the contribution of the dispersive
term becomes small, and the wave height grows as
∼ðτ=τ0Þ−1. Figure 1 and Figure 2 show the numerical
evolution of the wave forms of cylindrical and spherical
solitons. Figure 3 shows examples of the time dependence
of the wave height in both cases.
The amplitude Φ ¼ ϕ1 of the wave describes the electric

potential produced by the charge excess at the peak of the
wave. The cylindrical or spherical wave is accompanied by
the cylindrical or spherical electric potential wall. We
consider test charged particles that are confined by the
potential wall. The moving charged particles are reflected
by the shrinking potential wall, and the particles are
accelerated. When the particle gets kinetic energy greater
than the electric potential, the particle escapes from the
region enclosed by the potential wall. The wave height of
the cylindrical or spherical wave grows as the wall shrinks
toward the center, the energy spectrum of escaped particles
depends on the time evolution of the wave height.
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III. ACCELERATION OF PARTICLES

We consider that test charged particles are accelerated by
the shrinking potential wall described by the cylindrical or
spherical solitons. In order to simplify the system, we make
a model that the soliton is replaced by a thin shell wall. We
calculate test particle motion enclosed by this shrinking
thin shell wall numerically and obtain the energy spectrum
of the accelerated particles.

A. Thin shell wall models

In contrast to the plane soliton solution to the KdV
equation, the most important property of the cylindrical
or spherical soliton is that the wave height grows in time, t,

as the wave goes to the center. We reduce the cylindrical
or spherical soliton to a thin shell wall at the peak posi-
tion of the wave, where the width of the wave is
ignored. Furthermore, we ignore, here, the motion of the
wave in the ξ-τ plane. It means that the wave propagates
with the speed c0 in the r-t plane. The thin shell wall
describes the electric potential wall whose height evolves
in time.
The model of the thin shell wall is specified by the

following properties:
(1) The initial radius of the shell is r0 at the initial time

t0ð<0Þ. We assume the speed of thin shell in the
r − t plane is the sound speed c0, then the radius of
the shell is described by rðtÞ ¼ −c0t.

1050510
0

1

2

3

4

5

30252015105
5
0
5

10
15
20
25
30

FIG. 2. Evolution of the spherical soliton. Wave forms in the early stage: τ ¼ −10, −3.5, −1.8 (left panel). Wave forms in the final
stage: τ ¼ −3 × 10−3, −1.1 × 10−3, −5 × 10−4 (right panel).
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FIG. 3. Time evolution of the wave height Φmax for the cylindrical soliton (left panel). In the early stage Φmax ∝ τ−2=3, while in the
final stage Φmax ∝ τ−1=2. The same one for the spherical soliton (right panel). In the early stage Φmax ∝ τ−4=3, while in the final stage
Φmax ∝ τ−1.
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FIG. 1. Evolution of the cylindrical soliton. Wave forms in the early stage: τ ¼ −100, −35, −5 (left panel). Wave forms in the final
stage: τ ¼ −10−6, −3 × 10−7, −10−7 (right panel).
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(2) According to the growth rate of the wave height of
the cylindrical or spherical soliton discussed in the
previous section, we assume that the height of the
thin shell wall grows asΦðtÞ ¼ Φ0ðt=t0Þ−α, α ¼ 1=2
or 2=3 for the cylindrical case, and α ¼ 1 or 4=3 for
the spherical case, where Φ0 is the initial amplitude
of electric potential.

(3) We should stop the thin shell wall evolution when
the shell radius becomes the Debye length. Then the
final time is given by tf ¼ −λD=c0.

Motion of test charged particles is assumed as follows:
(1) Elastic reflection

A moving charged particle toward the thin shell
wall with the velocity v ¼ ðv⊥; vkÞ gets the velocity
v ¼ ð−v⊥ − 2c0; vkÞ after a reflection by the shrink-
ing wall with the sound velocity c0, where v⊥ and vk
are the velocity components of the normal and
tangential to the thin shell wall, respectively.

(2) Collisionless
We assume that each charged test particle moves

with a constant velocity till it hits the thin shell wall,
and the test particles do not collide with each other.

(3) Particle escaping criterion
If the kinetic energy of a particle exceeds the

height of the thin shell wall ΦðtÞ, the wall cannot
confine the particle; then the particle escapes to the
infinity as an output particle.

A typical trajectory of a test particle reflected by the
shrinking thin shell wall is shown in Fig. 4.

B. Numerical studies for acceleration of particles

We consider protons as ions, i.e., M is the proton mass
MP, and settle a thin shell wall initially with r0 ¼ 106λD
and Φ0 ¼ kBTðeÞ. The initial time and final time are given
by t0 ¼ −r0=c0 and tf ¼ −λD=c0, where the sound veloc-
ity c0 is given by Eq. (11).
Here, we consider the initial distribution of the test

charged particles. We assume theMaxwell distribution with
the temperature T ≤ TðeÞ of test charged particles with a

constant spatial density enclosed by the thin shell wall
(see Fig. 5).
We trace a number of test particles moving and reflected

by the thin shell wall, and obtain the energy spectrum of
output particles in α ¼ 2=3 and α ¼ 1=2 in the cylindrical
case, and α ¼ 4=3 and α ¼ 1 in the spherical case. Figure 6
and Figure 7 show that the high-energy part of the energy
spectrum is described by a power law, E−p, in these models.
Table I shows that the values of power index −p for
different α and several initial temperatures of the test
particles T. In both cylindrical and spherical models, the
power index −p depends on α, which determines the
evolution of the electric potential height. However, it does
not depend on the temperature of initial distribution of the
test charged particles.
In the numerical experiments with 105 initial test

particles, the maximum energy of the output particle is
3.8 × 102 kBTðeÞ for α ¼ 2=3, and 5.1 × 10 kBTðeÞ for
α ¼ 1=2 in the cylindrical model. The same one is
4.2 × 106 kBTðeÞ for α ¼ 4=3, and 2.1 × 103 kBTðeÞ for
α ¼ 1 in the spherical model. All particles escape from the
thin shell wall before t ¼ tf in the present calculations. The
power law spectrum of the output particles, which does not
depend on the initial numbers of particles, has no character-
istic scale of energy; then if we set much numbers of test

FIG. 4. A typical trajectory of a test particle in the cylindrical case (left panel). The particle is reflected elastically by the shrinking thin
shell. Time evolution of electric potential,Φ ∝ t−2=3, is drawn by the solid (red) curve, and particle energy gained by reflections is shown
by bars (right panel).

FIG. 5. Initial distribution function of 105 test charged particles
is assumed to be the Maxwell distribution.

PARTICLE ACCELERATION BY ION-ACOUSTIC … PHYS. REV. D 98, 123010 (2018)

123010-5



particles initially, we can get more energetic output
particles. The maximum energy is limited by the appli-
cability of the soliton model. Particles can be accelerated
till the radius of cylindrical or spherical solitons become the
Debye length. Therefore, if the initial numbers of particles
is large enough, we would obtain the energy Emax ¼ ΦðtfÞ
as the maximum.
To clarify which part of energy in initial particle

distribution contributes the output energy spectrum, we
divide initial particles into three groups:

ðiÞ E ≤ Φ0=2 ðv0 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0=M

p
Þ; ð25Þ

ðiiÞ Φ0=2 < E ≤ Φ0 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0=M

p
< v0 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Φ0=M

p
Þ;
ð26Þ

ðiiiÞ Φ0 < E ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Φ0=M

p
< v0Þ; ð27Þ

by the initial kinetic energy (see Fig. 8). In the spherical
model with α ¼ 4=3, we calculate acceleration of particles
and obtain the output energy spectrum as shown in Fig. 9.
We can see that the lowest energy group (i) contributes the
higher part of the output energy spectrum. Since the

–
– – – – – – –

– –
–

– –
– –

–
– –

– –

–

–

– –

–
– – – – – – –

– –
–

– –
–

–
–

– –
– –

–

–

– – – –

0.0 0.5 1.0 1.5 2.0 2.5

–
– – – – – –

–
–

–

–
–

–
–

–
–

– –

–
– – – – – –

–
–

–

–
–

–
–

–
–

– –

0.0 0.5 1.0 1.5

FIG. 6. Energy spectrum of output particles in the cylindrical model. The case of α ¼ 2=3 (left panel), and the case of α ¼ 1=2 (right
panel).
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FIG. 7. Energy spectrum of output particles in the spherical model. The case of α ¼ 4=3 (left panel), and the case of α ¼ 1 (right
panel).

TABLE I. Power indices: The thin shell wall models are
characterized by the index α, where the wave height is described
as Φ ¼ Φ0ðt=t0Þ−α. Energy spectra of the output particles are
given by E−p.

Cylindrical model:

T=TðeÞ ¼ 0.1 T=TðeÞ ¼ 0.5 T=TðeÞ ¼ 1.0

α ¼ 2=3 p ¼ 2.5 p ¼ 2.5 p ¼ 2.6
α ¼ 1=2 p ¼ 4.9 p ¼ 4.4 p ¼ 4.6

Spherical model:

T=TðeÞ ¼ 0.01 T=TðeÞ ¼ 0.1 T=TðeÞ ¼ 1.0

α ¼ 4=3 p ¼ 0.84 p ¼ 0.84 p ¼ 0.87
α ¼ 1 p ¼ 2.1 p ¼ 2.0 p ¼ 2.1

FIG. 8. Initial particles are classified into three groups by
energy: (i) E ≤ Φ0=2 (light blue), (ii) Φ0=2 < E ≤ Φ0 (dark
blue), (iii) Φ0 < E (gray).
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particles with higher energy than Φ0 cannot be trapped by
the thin shell wall, then the particles in higher initial energy
group (iii) are not accelerated effectively. Further, we find
that law initial energy groups (i) and (ii) make some
peaks in lower range of the output energy with interval
Δðv=c0Þ ∼ 2. The particles gain the velocity by 2c0 for each
reflection; then these peaks correspond to the numbers of
reflections of test particles by the shrinking shell with the
speed c0.

IV. SUMMARY AND DISCUSSION

We have investigated a new acceleration mechanism,
soliton acceleration, for charged particles by using cylin-
drical or spherical nonlinear acoustic waves propagating in
the plasma that consists of cold ions and warm electrons.
We have shown that power law spectra for accelerated
output particles are obtained.
The proposed mechanism is different from the Fermi

acceleration in the following two points. First, in contrast to
the Fermi acceleration, where the charged particles are
accelerated by stochastic reflections by magnetic clouds, in
the soliton acceleration, the particles are accelerated deter-
ministically in a cylindrical or spherical electric potential
wall that shrinks with an acoustic soliton. In both mech-
anisms, the power law of energy spectrum of accelerated
particles is obtained. The reason for the power law in the
Fermi acceleration is stochasticity; while in the soliton
acceleration, the reason is that the growth rate of the wave
height is the power law in time.
Secondly, in the Fermi acceleration, only particles with

energies that exceed the thermal energy by much can cross
the shock and can be accelerated. It is not clear what
mechanism causes the initial particles to have energies
sufficiently high. This is the so-called “injection problem”.
However, particles with the energy less than the initial
electric potential energy are accelerated effectively in the
soliton acceleration. Therefore there is no injection problem
in the present mechanism.
We expect that the soliton acceleration mechanism

presented in this article can apply to the high energy

protons of cosmic rays. For example, we try to apply to the
high energy protons coming from the Sun. The high energy
protons with the energy range from MeV to GeV are
observed when the solar flare occurs [16]. The solar flare is
an energetic electromagnetic phenomenon in a short time
scale. It is widely considered that reconnection of the
magnetic field lines occurs during solar flare activities [3].
In the magnetic reconnection region, where the footpoint
region of the flare at the chromosphere is, the plasma
density decreases by coronal mass ejection, and the
magnetic field becomes negligibly small. The cylindrical
or spherical solitons of ion-acoustic waves with the size of
reconnection region would be excited there [17]. Here, we
ignore the magnetic field and plasma bulk flow.
We set the temperature of the solar plasma as TðeÞ

⊙ ¼
1–100 eV, and the number density of electrons as
n0 ¼ 1015–1016 m−3, then the Debye length as λD ¼
10−4–10−3 m, and the sound velocity c0¼104–105m=sec
for a flare region in the solar atmosphere. The radius of the
initial wave is assumed to be the size of the reconnection
region: r0 ¼ 104 m ¼ 107–108λD [17]. The time scale of
the soliton acceleration is given by the initial radius of
the wave divided by the speed of the wave, namely
10−1 ∼ 1 sec. We assumed that the injection energy of
the particles is of the same order as the thermal energy of

the solar atmosphere, i.e., kBT
ðeÞ
⊙ .

According to the numerical calculation by the shell
models in the previous section, the output energy spectrum
is power law E−p with the index p ¼ 2.5–4.9 for the
cylindrical model, and p ¼ 0.8–2.1 for the spherical model
(see Table I). If the model is applicable till the cylindrical or
spherical shell wall shrinks to the size of Debye length, the
maximum energy is estimated as

Emax≈Φ0

�
tf
t0

�
−α

¼ kBTðeÞ
�
r0
λD

�
α

≈2GeV–5 TeV; ð28Þ

where the number of input particles is assumed to be large
enough. Our model would be a candidate for origin of the
solar cosmic rays energetically.

FIG. 9. Energy distribution of output particles. Particles in groups (i) and (ii) make peaks with the interval Δðv0=c0Þ ∼ 2 (left panel).
High energy part of distribution is shown in the right panel. Almost particles in the high energy part consist of the groups (i) and (ii).
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We have found that the growth rate of the wave height of
a soliton changes in time from the initial stage to the final
stage (see Fig. 3). If we take the change of growth rate into
account, we can consider hybrid shell models, i.e.,

Cylindrical shell model;

initially∶ Φ ∝ ðt=t0Þ−2=3; finally∶ Φ ∝ ðt=t0Þ−1=2;
ð29Þ

Spherical shell model;

initially∶ Φ ∝ ðt=t0Þ−4=3; finally∶ Φ ∝ ðt=t0Þ−1;
ð30Þ

to the solar cosmic rays. In the hybrid models, we obtain the
energy spectrum shown in Fig. 10. If the double power law
reported in Ref. [16] should be explained by the acceleration
mechanism, the soliton acceleration, which leads the double
power law naturally, would be a hopeful candidate.
The maximum value of output energy (28) exceeds the

observed value of solar cosmic rays [16]. In realistic cases,
the final size of the wave would be much larger than the
Debye length, and the KdV description, which is obtained
by the reductive perturbation method for weakly nonlinear
waves, would break down due to the full nonlinearity of the
waves in the final stage. We have used the solution of the
KdV equation to the highly nonlinear stage in this work in
order to understand fundamental properties of the particle
acceleration mechanism. One of the necessary properties
for the acceleration mechanism by the waves with the

electric potential is growth of the amplitude with a power
law in time as the waves shrink. To explain the observed
data of the solar cosmic rays, it is important to investigate
the fully nonlinear solutions for the ion-acoustic wave
rather than the weakly nonlinear wave solution described
by the KdV equation [18].
The soliton acceleration mechanism presents the source

of high energy particles at a footpoint of a solar flare. To
explain observed data of the solar cosmic rays, we should
consider the escape process of the high energy particles
from the solar atmosphere, and the propagation process
toward a detector on the earth, and so on. These processes
would reduce the energy and modify the spectrum of
particles produced by the mechanism. However, the
discussion of these processes is beyond the scope of this
article.
In this work, we neglect the magnetic field for simplicity.

In most astrophysical phenomena the magnetic field plays
important roles. It would be possible to generalize the soliton
acceleration mechanism proposed in this paper in the
environment of nonvanishing magnetic field. We will study
this issue in the next work.
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