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We determine the most general nonrelativistic theory of dark matter (DM)-nucleon scattering complying
with the sole requirement of Lorentz invariance, for spin-0 and spin-1=2 DM. To do so, we first classify a
comprehensive list of amplitude terms encompassing the most general Lorentz-covariant 2-to-2
DM-nucleon scattering amplitude. We then match each term to a Galilean-invariant operator at leading
order in the nonrelativistic expansion, for both elastic and inelastic (endothermic and exothermic)
scattering. Our complete Lorentz-to-Galileo mapping can be used to promptly determine the nonrelativistic
DM-nucleon interaction and the associated nuclear form factor for any given Lorentz-invariant DM model.
It applies to both renormalizable and nonrenormalizable theories (such as effective field theories at all
orders), at any order of a perturbative expansion. We use our results to prove that, at leading order, Lorentz
invariance does not impose restrictions on the set of 16 Galilean-invariant operators commonly used to
parametrize the nonrelativistic DM-nucleon interaction. We also predict the lowest effective-operator
dimension at which the nonrelativistic operators appear in the effective field theory of a singlet DM particle.
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I. INTRODUCTION

Direct dark matter (DM) search experiments aim at
detecting the nuclear recoil of detector nuclei upon scatter-
ing with a DM particle. If DM particles are gravitationally
bound to the Milky Way halo, hence have speeds of order
of few hundred km=s at Earth’s location, and are heavier
than few GeV, the scattering can occur with a whole
nucleus rather than with individual nucleons. In these
conditions, the scattering can induce nuclear recoils with
energy of few keV or above, at the sensitivity threshold of
the experiments. Some experiments even manage to have
exceptionally low thresholds, becoming sensitive to DM
particles with mass in the hundreds of MeV ballpark.
The energy spectrum of the scattering rate measured by

the experiments depends on the specific nature of the
DM-nucleon interaction. Each type of interaction gives rise
to a specific form of the DM-nucleus scattering cross section,
which involves the related nuclear form factor. While the
natural framework for describing particle interactions is
relativistic, computing the DM-nucleus scattering cross
section starting from a theory of DM-nucleon interactions
requires resorting to a nonrelativistic (NR) framework [1,2].

Here, the main ingredients used to describe the interaction
are not fields but rather the particle momentum and spin
three-vector operators. A NR effective field theory was then
constructed in Ref. [2], where the NR Galilean-invariant
operators built out of these ingredients were endowed with a
fieldlike structure. In the same reference, the DM-nucleus
cross section was computed for a selection of phenomeno-
logically relevant NR operators. One is then left with the
task of establishing the exhaustive set of operators and their
combinations that can be of phenomenological interest, and
computing the relative cross section.
So far, two distinct approaches have been taken in the

literature. One is to start from specific, relativistic DM
models and work out the combination of NR operators
describing the interaction. The other is to begin already at
the NR level, studying the possible operators that can be
written down in this framework. Such operators, for DM
with spin 0 and 1=2, have been completely classified using
Galilean symmetry and encoded in a number of building
blocks in Ref. [3], whose phenomenology was studied e.g.,
in Refs. [4–24].
In the first approach, where relativistic models are

studied one by one, only few of the NR operators are
found in mapping to the NR framework. One may therefore
wonder whether the other operators can arise at all in more
complicated theories, or in corners of parameter space
where the dominant contributions analyzed so far are
suppressed. Such operators may give rise to interesting
phenomenology and it would thus be relevant to know if
they can ever arise in a relativistic model, and if so, in what
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models. Moreover, not all the NR operators may be
generated independently. Some may always appear in
certain combinations with others, which then raises the
question of whether such combinations are simple acci-
dents or have a subtle motivation. A possible reason could
be that Lorentz invariance imposes stronger constraints on
the scattering amplitude than the Galilean symmetry of
the NR framework. Some of these questions remain in the
second approach, where the NR operators are studied
regardless of their possible origin in a relativistic model.
For instance, this approach allows us to study the phe-
nomenology of all NR operators but has no say on possible
correlations between them, nor on the possibility that some
of these operators may never arise in relativistic theories.
In this work we try to answer these questions. To do so,

we provide a complete dictionary between the possible terms
arising in a general 2-to-2 DM-nucleon scattering amplitude
and the NR operators, assuming exclusively Lorentz invari-
ance of the relativistic interaction. In other words, we find a
comprehensive list of amplitude terms encompassing
the most general Lorentz-covariant DM-nucleon scattering
amplitude, and determine for each term the relative NR
operator at leading order in the NR expansion. We do so for
DM particles with spin 0 and 1=2, and treat both the case of
elastic and inelastic scattering, where there is a null, positive
(endothermic scattering) or negative (exothermic scattering)
mass splitting between the outgoing and the incoming DM
particles.
We remain agnostic about the possibility of generating

the various amplitude terms in specific models. An
alternative approach could be to compute the NR limit
of an effective field theory of DM-nucleon interactions.
To do so, however, one needs to specify the DM gauge
quantum numbers (and to restrict to the case of very heavy
DM-nucleon interaction mediators). This analysis was
carried out e.g., in Refs. [6,25,26] for a gauge singlet.
The parametrization of the scattering amplitude is

performed in the very same way the matrix element of a
current is parametrized in terms of form factors. Textbook
examples of this parametrization are, for instance, the
formulation of the QED current matrix element in terms
of the charge and magnetic dipole moment form factors, to
take into account loop effects in the elastic scattering of a
charged particle, or the hadronic current matrix elements, to
parametrize the effects of hadron compositeness. In both
cases this parametrization is constrained by the symmetries
of the underlying theory, by the equations of motion, and
by the conservation of the QED current. In the same way,
we parametrize here the DM-nucleon scattering amplitude
imposing solely Lorentz symmetry and the equations of
motion (we do not assume any current conservation, to be
general). There is no need to specify an underlying
Lagrangian, as the proposed complete parametrization
encompasses the scattering amplitude of any Lorentz-
invariant Lagrangian. For any specific Lagrangian, the

DM-nucleon scattering amplitude can be written as a
combination of (a subset of the) terms belonging to our
collection. The results found analyzing this collection apply
then to any Lorentz-invariant theory.
We then match each amplitude term in our collection to

a NR operator by performing a NR expansion of the term
in the small DM-nucleus relative speed. Each amplitude
term is then uniquely matched to the NR operator whose
matrix element equals its NR expression. Our NR expan-
sion is thus simply a Taylor-Laurent expansion of the
scattering amplitude, which is just a function of the
kinematical variables. A different approach could be to
perform a NR expansion of a Lagrangian, instead of the
scattering amplitude. This approach, called heavy-particle
effective theory, allows in a sense to integrate out the
DM particle mass, which is large compared to the typical
momentum transfer of a DM-nucleus scattering process,
without completely integrating out the DM field [26–31].
This expansion method was applied to the effective field
theory of a spin-1=2 DM particle, singlet under the
Standard Model (SM) gauge group, in Ref. [26], which
found the same leading-order NR matching of an analysis
where the expansion was instead performed on the
scattering amplitude [6], as here.
To make a concrete example, let the scattering amplitude

of a spin-1=2 DM particle χ scattering elastically off a
nucleon N feature the term cqμqμKαūχγαuχ ūNγ5uN , where
c is a coefficient and K, q are combinations of the nucleon
and DM momentum four-vectors, defined in Eq. (3.8)
below. This scattering amplitude can be e.g., obtained
at tree level by considering the effective operator

−ic½□ðχ̄γαχÞ�ðN̄γ5∂α

⟷
NÞ, or ic

2mN
½□∂μðχ̄γαχÞ�ðN̄γμγ5∂α

⟷
NÞ

upon using the equations of motion, with mN the nucleon
mass. The amplitude term can be factored in two parts: the
scalar function cqμqμ, which in the above current analogue
corresponds to the form factor, and Kαūχγαuχ ūNγ5uN ,
which corresponds to the parametrized current matrix
element. The latter part, i.e., that containing the fermion
bilinears and all momentum factors that are contracted with
them, is what in general in the following we refer to as
Lorentz structure. The parametrization of the DM-nucleon
scattering amplitude consists in identifying a finite set of
Lorentz structures that, when multiplied by model-
dependent functions of the few available scalars built out
of four-momenta, span the DM-nucleon scattering ampli-
tude of all possible Lorentz-invariant theories. The scalar
functions can be computed in any given model, but for our
model-independent purposes it suffices to regard them as
arbitrary functions of the Lorentz scalars built out of four-
momenta. We then match each Lorentz structure in this set
to the NR operator whose matrix element equals the struc-
ture’s NR expression. Going back to our example, a NR
expansion of the scattering amplitude returns at leading order
8icmmNq2IχSN · q, withm the DMmass, q the momentum
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transfer three-vector, q2 its square, and SN (I χ) the nucleon
(DM) spin matrix element of the spin s (identity) operator
(see Sec. IV). This expression is finally matched to the NR
operator 8icmmNq2sN · q ¼ 8cmmNq2O10 [see Eq. (2.7)].
The complete Lorentz-to-Galileo mapping provided here

can be used to determine the NR DM-nucleon interaction
and the associated nuclear form factor, without the need to
perform (almost) any computation. One merely needs to
express the relativistic scattering amplitude of a chosen
model as a linear combination of our comprehensive set of
Lorentz structures. Our dictionary then immediately returns
the NR theory describing the DM-nucleon interaction.
From there, one can straightforwardly apply the formalism
of Refs. [2,8] to determine the relevant DM-nucleus
scattering cross section (at least for those operators for
which the nuclear form factor has been computed). The
mapping can be used in both renormalizable and non-
renormalizable theories (such as effective field theories at
all orders), at any order of a perturbative expansion.
The paper is organized as follows. We start in Sec. II by

summarizing the construction of the NR operators intro-
duced in Ref. [3] (which we call building blocks to
distinguish them from all other operators, as explained
below). We discuss the properties of the different building
blocks and we clarify some subtle points about their
“completeness,” the transverse velocity operator and the
O2 operator. We end the section with a comprehensive
collection of examples where we provide the NR theory of
simple renormalizable high-energy models and of selected
effective operators. In Sec. III we classify the possible
terms entering the DM-nucleon scattering amplitude of
Lorentz-invariant theories, for both spin-0 and spin-1=2
DM, and discuss the restrictions that apply to self-
conjugated DM. In Sec. IV we provide the NR operators
associated to each term: our comprehensive Lorentz-to-
Galileo dictionary can be found in Table I for spin-0 DM
and in Table III for spin-1=2 DM. Finally, we conclude in
Sec. V.

II. NONRELATIVISTIC BUILDING BLOCKS

The possible NR interaction operators for DM-nucleon
elastic scattering were originally classified in Ref. [3], for
spin-0 and spin-1=2 DM. The analysis carried out in
Ref. [3] is restricted to the center-of-mass frame, but the
classification can be easily made frame independent by
exploiting Galilean invariance, as we show in the following
(see e.g., Ref. [2]). The construction involves writing down
all possible rotationally and boost-invariant operators built
with the operators corresponding to the available classical
kinematical ingredients: the initial and final DM momen-
tum, p and p0 respectively, and the initial and final nucleon
momentum, k and k0 respectively. Let us also denote with
mN the nucleon mass, and with m and mþ δ the initial and
final DM mass, respectively. δ ¼ 0 yields elastic scattering,
while δ positive or negative yields inelastic endothermic or

exothermic scattering, respectively. Momentum conserva-
tion implies that there are only three independent combi-
nations of momenta, which can be chosen to be

P≡ pþ p0; K≡ kþ k0; iq≡ iðp− p0Þ ¼ iðk0 − kÞ:
ð2:1Þ

This choice is convenient as all these operators are
Hermitian (Hermitian conjugation effectively exchanges
the initial and final states [2]), thus any combination
thereof is automatically Hermitian. Any non-Hermiticity,
if present, can be parametrized as an imaginary part to the
otherwise real operator coefficient. The mass-splitting
parameter δ, for instance, effectively breaks Hermiticity
at the amplitude level by introducing an asymmetry
between initial and final states, thus it always appears
multiplied by the imaginary unit as iδ.
NR boost invariance then requires operator construction to

adopt combinations of momenta that are (proportional to)
velocity differences. For elastic scattering, the only two such
combinations are iq and the “elastic” transverse velocity

v⊥el ≡ P
2m

−
K

2mN
: ð2:2Þ

The generalization for generic δ is

v⊥inel ≡ v⊥el −
δ

q2
q; ð2:3Þ

satisfying

v⊥inel · q ¼ 0; i:e: v⊥el · q ¼ δ: ð2:4Þ

The two definitions of transverse velocity satisfy

v⊥el2 ¼ v2N −
q2

4μ2N
; v⊥inel2 ¼ v⊥el2 −

δ2

q2
; ð2:5Þ

with vN the DM-nucleon relative speed and μN ≡mmN=
ðmþmNÞ the DM-nucleon reduced mass. For the scattering
to be kinematically allowed the DM mass splitting must
satisfy jδj ≤ 1

2
μTv2 (at least for δ < 0), with μT the

DM-nucleus reduced mass and v the DM-nucleus relative
speed. v ∼Oð10−3Þ (in speed-of-light units) is the NR
expansion parameter, and we treat

q
μN

; vN; v⊥el ; v⊥inel ∼OðvÞ; δ

μN
∼Oðv2Þ: ð2:6Þ

Notice that q ¼ p − p0 is not strictly proportional to a
velocity difference for δ ≠ 0, but the non-boost-invariant
correction is subleading for jδj ≪ m [12]. At the order
of the NR expansion where this effect becomes relevant,
Oðv3Þ, we also expect other relativistic corrections that

COMPLETE LORENTZ-TO-GALILEO DICTIONARY FOR … PHYS. REV. D 98, 123003 (2018)

123003-3



spoil Galilean invariance. However, as explained in
Sec. IV, we truncate the expansion at an order where
Galilean invariance is intact.
Operators that depend on the DM and/or nucleon spin can

be represented by a generic Hermitian matrix acting on spin
states of each particle. For spin-1=2 particles, due to the Pauli
matrices σ forming, together with the identity matrix I2, a
basis of 2 × 2 Hermitian matrices, one can parametrize the
interaction operator as a linear combination of I2 and
s≡ σ=2. Notice, in fact, that any product of two factors of
s reduces to the aforementioned linear combination through
the identity σiσj ¼ δijI2 þ iεijkσk. The spin operators, sχ for
a spin-1=2 DM and sN for the nucleon, are boost invariant.
In the followingwe treat the cases of spin-0 and spin-1=2DM
in a unified way, by setting sχ ≡ 0 for spin-0 DM.
The NR operators can be classified by combining the

above Hermitian and boost-invariant ingredients (iq, v⊥el , sχ
and sN) in all possible rotationally invariantways. Forgeneric
δ one may use v⊥inel in place of v⊥el , as done in Ref. [12];
however we prefer to adopt v⊥el even for inelastic scattering to
make direct contact with the formalism of and the nuclear
form factors provided in Refs. [2,8], where elastic scattering
was assumed (see below for a more in-depth discussion). In
contracting the above vectors, one can use both the δij and
εijk SUð2Þ-invariant tensors, which means one can take both
scalar products as well as vector products of these vectors.
Given that products and contractions of two epsilon tensors
return sums of products of Kronecker deltas, however, only
operators featuring a singlevector product are independent. It
was found in Ref. [3] that, with these rules, one can construct
16 independent Galilean-invariant building blocks, denoted
Oi below, each of which can be multiplied by an arbitrary
function of the scalar operators q2 and v⊥el2, as well as of the
nondynamical constants mN , m, q · v⊥el ¼ δ, coupling coef-
ficients and so on. Notice that, as in Ref. [2], we call the 16
operators Oi’s building blocks to distinguish them from all
possible operators (this distinction is not necessary in the
majority of the phenomenological analyses, where they are
often the only operators taken into account). These building
blocks are, following the numbering introduced inRefs. [2,8],

O1 ≡ 1;

O3 ≡ isN · ðq × v⊥elÞ; O4 ≡ sχ · sN;

O5 ≡ isχ · ðq × v⊥elÞ; O6 ≡ ðsχ · qÞðsN · qÞ;
O7 ≡ sN · v⊥el ; O8 ≡ sχ · v⊥el ;
O9 ≡ isχ · ðsN × qÞ; O10 ≡ isN · q;

O11 ≡ isχ · q; O12 ≡ v⊥el · ðsχ × sNÞ;
O13 ≡ iðsχ · v⊥elÞðsN · qÞ; O14 ≡ iðsχ · qÞðsN · v⊥elÞ;
O15 ≡ ½sχ · ðq × v⊥elÞ�ðsN · qÞ; O16 ≡ ðsχ · v⊥elÞðsN · v⊥elÞ;
O17 ≡ i½sχ · ðq × v⊥elÞ�ðsN · v⊥elÞ: ð2:7Þ

For spin-0 DM we only have the subset of 4 building blocks
not featuring sχ , namely

O1;O3;O7;O10 spin-0DM:

Notice that the two building blocks that can be obtained by
exchanging sχ ⟷ sN in O15 and O17 are not independent
from the ones above. In fact, by using εijkεiab ¼ δjaδkb −
δjbδka to reduce ðq × v⊥elÞ · ½ðs1 × s2Þ × x� to a single cross
product in two different ways, we get

ðsχ · qÞ½sN · ðq × v⊥elÞ� ¼ O15 − q2O12 − iδO9; ð2:8Þ
iðsχ · v⊥elÞ½sN · ðq × v⊥elÞ� ¼ O17 þ v⊥el2O9 − iδO12; ð2:9Þ

obtained by setting x ¼ q and x ¼ v⊥el respectively.
Despite some of the above building blocks can be written

as a product of two other building blocks, namely

O13 ¼ O8O10; O14 ¼ O7O11; O15 ¼ −O5O10;

O16 ¼ O7O8; O17 ¼ O5O7; ð2:10Þ
the associated nuclear form factors are not related in any
simple way. In this sense, regarding a building block as a
product of two other building blocks has no sensible
implication: as an example, every one of the Oi’s can be
regarded as the product of itself with O1, without the
DM-nucleus scattering cross section featuring necessarily
the form factor related to O1. Furthermore, some products,
such as O3O5, may appear at fist sight to have a more
complicated structure than those that can be realized with
the building blocks (2.7). However, we remark that they can
be easily cast in terms of the building blocks (2.7): for
instance, expressing the product of two Levi-Civita tensors
as a sum of products of Kronecker deltas we get

O3O5 ¼ −q2v⊥el2O4 þ v⊥el2O6 þ q2O16 þ iδðO13 þO14Þ
þ δ2O4: ð2:11Þ

The building blocks (2.7) naturally split in different
categories. Considering that the spatial-parity P and time-
reversal T transformations reverse velocities and three-
momenta, while spins are reversed by T but kept unchanged
byP, we can classify the building blocks according to theirP
and T quantum numbers:

O1;O3;O4;O5;O6;O16 P-even andT-even;

O7;O8;O9;O17 P-odd andT-even;

O13;O14 P-even andT-odd;

O10;O11;O12;O15 P-odd andT-odd:

When computing theDM-nucleus cross section, interactions
that depend or do not depend on the nucleon spin receive
quantitatively different enhancement. It is therefore useful to
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classify the building blocks as to whether they depend on sN
(spin-dependent) or not (spin-independent or coherent):

O1;O5;O8;O11 spin-independent;

O3;O4;O6;O7;O9;O10;O12;O13;

O14;O15;O16;O17 spin-dependent:

Finally, the building blocks can be organized hierarchically
according to their NR suppression:

O1;O4 ∼Oðv0Þ;
O7;O8;O9;O10;O11;O12 ∼Oðv1Þ;
O3;O5;O6;O13;O14;O16 ∼Oðv2Þ;

O15;O17 ∼Oðv3Þ:

This of course does not mean that building blocks with
different levels of suppression cannot appear together in
the same operator at leading order. For instance, a fairly
common expression when computing the NR limit of a
scattering amplitude is

ðq × sχÞ · ðq × sNÞ ¼ q2O4 −O6; ð2:12Þ

where O4 and O6 both appear at the same order of the
nonperturbative expansion (see e.g., the example of DM
with magnetic dipole moment in Sec. II A). However, in an
operator as the one in Eq. (2.31) below, describing the
interaction of a spin-1=2 DM particle with a nucleon
mediated by a vector field, the Oðv0Þ building blocks O1

and O4 (the standard spin-independent and spin-dependent
interactions) naturally dominate unless suppressed by very
small coefficients.
The most general interaction operator can be written in

terms of the NR building blocks (2.7) as

X
i

fiðq2; v⊥el2ÞOi; ð2:13Þ

with the fi’s arbitrary functions of q2, v⊥el2, and of the
nondynamical constants. Notice that the fi’s are part of the
operator, as q2 and v⊥el2 are themselves quantum operators.
The reason for O2 ≡ v⊥el2, as first introduced in Ref. [2],
being missing among the building blocks (2.7), is that we
do not treat it as an independent building block but rather
we store all the operator’s dependence on v⊥el2 in the fi’s: in
this sense, O2 ¼ v⊥el2O1.
Unfortunately, the different notations used by Refs. [3]

and [2] seem to have caused some confusion in the
literature. Some authors do not include in their study all
independent building blocks because some of these were
ignored in Refs. [2,8]. The analyses carried out in these
latter references are admittedly restricted, for instance, to
those operators arising at tree level in field theory models

with a DM-nucleon mediator with spin 0 or 1. We do not
find this to be a sufficient reason to only include some
building blocks in a comprehensive and truly model-
independent analysis. We reiterate that there exists, in fact,
an infinite number of possible operators, reflected by the
fi’s being in principle arbitrary functions of q2 and v⊥el2. For
instance, O4 and q2O4 are different operators, though they
employ the same building block O4; in the same way,
O6=q2 and q4v⊥el10O6 are different operators, though they
employ the same building block O6. Despite the possible
number of operators being infinite, each operator can be
uniquely expressed as a linear combination of the 16
independent building blocks (2.7), as in Eq. (2.13).
Another source of confusion in the literature is about the

nature of O2, first introduced in Ref. [2] where however it
was excluded from the analysis of NR operators and form
factors. In reporting the list of independent NR building
blocks, many authors also include O2 along with O1. As
explained above, despite being different operators, O2 is
not an independent building block in that it is proportional
to O1. In this sense, O2 ¼ v⊥el2O1 is not dissimilar from
q2O1. There is only a technical reason why one needs to be
more careful with factors of v⊥el with respect to factors of q.
Due to momentum-conservation laws, the momentum
transfer q between a DM particle and a bound nucleon
is the same as the momentum transfer between the DM
particle and the nucleus hosting the nucleon. In other
words, the q operator only acts on center-of-mass variables,
and is therefore insensitive to the internal nuclear structure.
For this reason, the operator fðq2ÞOi yields the same
squared form factor as Oi, merely multiplied by a factor
fðq2Þ2 (we are here deliberately confusing the operator q2

with its matrix element between momentum eigenstates).
This is not true for the v⊥el operator, which acts on both
center-of-mass and internal nuclear variables [2]. Therefore
O2, despite differing from O1 by a mere multiplicative v⊥el2
(operatorial) factor, requires a dedicated analysis to deter-
mine the related form factor.
The above discussion may possibly explain why O2 was

explicitly included by Ref. [2] in the list of potentially
interesting operators, while other similar operators such as
q2O1, or O1=q2 which is dominant for electrically charged
DM particles [see Eq. (2.36) below], were not. O2 was
however excluded from the analysis of NR operators and
form factors of Refs. [2,8], because it is not generated at
leading order of the NR expansion by any relativistic
interaction [2], at least in the tree-level computations
performed so far in the literature. In other words, cancel-
lations between Lorentz-invariant operators have to occur
for O2 to appear in the NR theory. We will confirm here
that this is indeed the case, at any order of a perturbative
expansion of any (renormalizable or nonrenormalizable)
Lorentz-invariant theory, for DM with spin 0 or 1=2.
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To conclude, let us discuss further our choice of defining
the NR building blocks with v⊥el rather than v⊥inel, for generic
δ. More in general, this is a choice about presenting our
results in terms of v⊥el rather than v⊥inel. This was done to
make direct contact with the results of Refs. [2,8], where
the nuclear form factors corresponding to some of the
operators in Eq. (2.7) were provided. If we did otherwise,
all our formulas would have to be expressed back in terms
of v⊥el before the interaction operator could be matched to
the correct form factors to be used; or alternatively, one
may appropriately modify some of the form factors to
match the v⊥inel building blocks, as done e.g., in Ref. [12].
To avoid this extra step, which would be needed to connect
our results to those of Refs. [2,8], we decided to present all
calculations in terms of v⊥el . It is straightforward, however,
to express our formulas in terms of v⊥inel. Let us define, for
each of the Oi’s in Eq. (2.7), the respective building block
Oinel

i by substituting v⊥el with v⊥inel. This yields Oinel
i ¼ Oi,

apart from

Oinel
7 ¼ O7 þ i

δ

q2
O10; Oinel

8 ¼ O8 þ i
δ

q2
O11; ð2:14aÞ

Oinel
12 ¼ O12 þ i

δ

q2
O9; Oinel

13 ¼ O13 − i
δ

q2
O6; ð2:14bÞ

Oinel
14 ¼ O14 − i

δ

q2
O6;

Oinel
16 ¼ O16 þ i

δ

q2
ðO13 þO14Þ þ

δ2

q4
O6; ð2:14cÞ

Oinel
17 ¼ O17 − i

δ

q2
O15: ð2:14dÞ

One can then use these equations, or more straightfor-
wardly the inverted relations

O7 ¼ Oinel
7 − i

δ

q2
Oinel

10 ; O8 ¼ Oinel
8 − i

δ

q2
Oinel

11 ;

ð2:15aÞ

O12 ¼ Oinel
12 − i

δ

q2
Oinel

9 ; O13 ¼ Oinel
13 þ i

δ

q2
Oinel

6 ;

ð2:15bÞ

O14 ¼ Oinel
14 þ i

δ

q2
Oinel

6 ;

O16 ¼ Oinel
16 − i

δ

q2
ðOinel

13 þOinel
14 Þ þ δ2

q4
Oinel

6 ; ð2:15cÞ

O17 ¼ Oinel
17 þ i

δ

q2
Oinel

15 ; ð2:15dÞ

together with Eq. (2.5), to express all our results in terms
of v⊥inel.

A. Examples

Before continuing, let us make some examples to
connect the NR theory discussed above with the high-
energy description of some simple renormalizable DM
models and DM effective operators. The NR reduction of
the scattering amplitude has been performed in the liter-
ature for a variety of models (see e.g., Refs. [2,4,6,12,26]).
We provide here the leading-order NR theory of spin-0 and
spin-1=2 DM particles interacting with nucleons through
scalar, vector and tensor (spin-2) mediators, together with
that of DM particles interacting with photons via a (tiny)
electric charge, a magnetic or electric dipole moment, and
an anapolemoment. For simplicitywewill only treat the case
of elastic scattering (δ ¼ 0) and non-self-conjugated DM.
A scalar DM particle ϕ may interact with nucleons

through a scalar mediator SwithmassmS via the Lagrangian

L ¼ λϕ†ϕSþ N̄ðaI4 þ ibγ5ÞNS; ð2:16Þ

with λ a parameter with mass-dimension 1 and a, b
dimensionless coefficients. The DM-nucleon scattering
amplitude reads at tree level

PSλūNðaI4 þ ibγ5ÞuN; ð2:17Þ

with PS ¼ 1=ðqμqμ −m2
SÞ, qμ being the four-momentum

transfer. One can use the formulas and results in Sec. IV
(see otherwise e.g., Refs. [6,26]) to show that the amplitude
matches to a NR model described by the operator

−
2λ

q2 þm2
S
ðamNO1 − bO10Þ; ð2:18Þ

where qμqμ ≃ −q2 in the NR limit. In the notation of
Eq. (2.13) we have at leading order

f1ðq2; v⊥el2Þ ¼ −
2λamN

q2 þm2
S
; f10ðq2; v⊥el2Þ ¼

2λb
q2 þm2

S
;

ð2:19Þ

all other fi’s vanishing. Of course, O10 is negligible with
respect to O1 unless a ¼ 0 or b=a is sufficiently large to
compensate for its NR q=mN suppression. If S is heavy
enough, it can be integrated out yielding the effective
Lagrangian

L ¼ λ

m2
S
ϕ†ϕN̄ðaI4 þ ibγ5ÞN þ � � � : ð2:20Þ

At leading order we recover the above results with all
coefficients truncated at the first order of a qμqμ=m2

S
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expansion, e.g., PS ≃ −1=m2
S (contact limit). Notice that

taking into account higher-order corrections toPS in f1 may
be subleading to considering O10, due to their larger q
suppression.
A spin-1=2 DM particle χ may interact with nucleons

through the scalar S via the Lagrangian

L ¼ χ̄ðaI4 þ ibγ5ÞχSþ N̄ðcI4 þ idγ5ÞNS: ð2:21Þ

The DM-nucleon scattering amplitude reads at tree level

PSūχðaI4 þ ibγ5Þuχ ūNðcI4 þ idγ5ÞuN; ð2:22Þ

which in the NR limit matches

−
4

q2 þm2
S
ðacmmNO1 þ bcmNO11 − admO10 þ bdO6Þ:

ð2:23Þ

Once again O1 dominates unless suppressed by small or
vanishing coefficients. O10 and O11 are nonrelativistically
suppressed, and O6 is even more suppressed. Integrating S
out yields the effective Lagrangian

L ¼ 1

m2
S
χ̄ðaI4 þ ibγ5ÞχN̄ðcI4 þ idγ5ÞN þ � � � ; ð2:24Þ

for which the above formulas hold in the contact limit,
namely 1=ðq2 þm2

SÞ ≃ 1=m2
S.

A scalar DM ϕ may interact with nucleons through a
vector mediator Vμ with mass mV ,

L ¼ ½a∂μðϕ†ϕÞ þ ibðϕ†∂μ

⟷
ϕÞ�Vμ þ N̄ðcγμ þ dγμγ5ÞNVμ:

ð2:25Þ

The DM-nucleon scattering amplitude reads at tree level

−PVð−iaqμ þ bPμÞūNðcγμ þ dγμγ5ÞuN; ð2:26Þ

with PV ¼ 1=ðqμqμ −m2
VÞ, matching to

4

q2þm2
V
ðadmNO10þbcmmNO1−2bdmmNO7Þ: ð2:27Þ

Notice that the ac term of the amplitude vanishes due to the
equations of motion. As above, O1 dominates unless
suppressed by small or vanishing coefficients. If mV is
larger than all other masses and energy scales, one can
integrate out Vμ to obtain the effective Lagrangian

L¼−
1

m2
V
½a∂μðϕ†ϕÞþ ibðϕ†∂μ

⟷
ϕÞ�N̄ðcγμþdγμγ5ÞNþ�� � ;

ð2:28Þ

for which again the above results apply in the contact limit.
If, instead, mV ≪ q, PV ≃ −1=q2 and the amplitude is
greatly enhanced with respect to the case of a heavy
mediator.
The interaction of a spin-1=2 DM χ with nucleons

through Vμ can be described by

L ¼ χ̄ðaγμ þ bγμγ5ÞχVμ þ N̄ðcγμ þ dγμγ5ÞNVμ: ð2:29Þ

The DM-nucleon scattering amplitude reads at tree level

−PVūχðaγμ þ bγμγ5Þuχ ūNðcγμ þ dγμγ5ÞuN; ð2:30Þ

matching to

4

q2 þm2
V
ðacmmNO1 þ 2bcmðmNO8 −O9Þ

− 2admNðmO7 þO9Þ − 4bdmmNO4Þ: ð2:31Þ

Here O1 dominates along with O4, unless suppressed by
small or vanishing coefficients. O10 and O11 are non-
relativistically suppressed, andO6 is even more suppressed.
Integrating out Vμ yields the effective Lagrangian

L ¼ −
1

m2
V
χ̄ðaγμ þ bγμγ5ÞχN̄ðcγμ þ dγμγ5ÞN þ � � � ;

ð2:32Þ

for which the above results apply in the contact limit.
A DM particle with a (tiny) electric charge Qe interacts

with nucleons through photon exchange via the Lagrangian

L ¼ Qeiðϕ†∂μ

⟷
ϕÞAμ for spin-0DM; ð2:33Þ

L ¼ Qeχ̄γμχAμ for spin-1=2DM; ð2:34Þ

yielding for the DM-nucleon scattering amplitude

−QQNe2Pγūχγμuχ ūNγμuN; ð2:35Þ

withQp ¼ 1 for the proton andQn ¼ 0 for the neutron, and
Pγ ¼ 1=qμqμ. In the NR limit this matches to

4QQNe2
mmN

q2
O1; ð2:36Þ

where we see that the operator O1=q2 is relevant.
Interactions of spin-1=2 DM particles with photons

through a magnetic dipole moment μ, an electric dipole
moment d or an anapole moment a are described by the
effective Lagrangians

L ¼ μ

2
χ̄σμνχFμν DM magnetic dipole moment; ð2:37Þ
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L ¼ d
2
χ̄iσμνγ5χFμν DM electric dipole moment; ð2:38Þ

L ¼ aχ̄γμγ5χ∂νFμν DM anapole moment; ð2:39Þ

respectively. The respective NR operators describing
DM-nucleon scattering are, up to an overall sign [4,6],

2eμ

�
QNmNO1 þ 4QN

mmN

q2
O5 þ 2gNm

�
O4 −

O6

q2

��

magnetic dipole; ð2:40Þ

8edQN
mmN

q2
O11 electric dipole; ð2:41Þ

4maeð2mNQNO8 − gNO9Þ anapole moment; ð2:42Þ
where gp ¼ 5.59 and gn ¼ −3.83 are the proton and
neutron g factors. One sees that also O5=q2, O6=q2, and
O11=q2 appear as NR operators.
The case of a spin-0 or spin-1=2 DM particle interacting

with SM matter through a massive spin-2 mediator, Gμν,
coupled to the energy-momentum tensors Tμν

SM;DM of both
sectors, was studied e.g., in Ref. [32]. The effective
Lagrangian can be written as

L ¼ −
1

Λ
ðaGμνT

μν
SM þ bGμνT

μν
DMÞ þ � � � ; ð2:43Þ

with Λ a large enough energy scale. The leading-order NR
operator describing DM-nucleon scattering was found to
be, for both spin-0 and spin-1=2 DM,

abm2m2
N

m2
GΛ

2

�
3FT −

1

3
FS

�
O1; ð2:44Þ

with FS and FT the gravitational scalar and tensor form
factors of the nucleon, respectively.

III. GENERAL LORENTZ-COVARIANT
DM-NUCLEON SCATTERING

AMPLITUDE

We now proceed to classifying the possible terms
featured in the scattering amplitude of a generic Lorentz-
invariant DM model. We remain agnostic about the
possibility of generating the various terms in specific
models, and simply classify all possible terms compatible
with Lorentz invariance. The most general DM-nucleon
scattering amplitude can be written as

aΓN þ bΓN5 þ cμΓ
μ
N þ dμΓ

μ
N5 þ eμνΓ

μν
N ; ð3:1Þ

where we defined the “Hermitian” nucleon bilinears (in the
sense that they are the matrix elements of Hermitian
operators)

ΓN ≡ ūNðk0ÞuNðkÞ; ΓN5 ≡ ūNðk0Þiγ5uNðkÞ; ð3:2Þ

Γμ
N ≡ ūNðk0ÞγμuNðkÞ; Γμ

N5 ≡ ūNðk0Þγμγ5uNðkÞ; ð3:3Þ

Γμν
N ≡ ūNðk0ÞσμνuNðkÞ; Γμν

N5≡ ūNðk0Þiσμνγ5uNðkÞ: ð3:4Þ

For brevity, we will denote with ΓNð5Þ, Γ
μ
Nð5Þ, Γ

μν
Nð5Þ both

versions of each bilinear, with and without γ5. The general-
ity of the above expression for the amplitude is due to the
16 matrices

Γi ¼ fI4; iγ5; γμ; γμγ5; σμνg; ð3:5Þ

forming a basis of linear Hermitian matrices on the four-
spinor vector space, where we defined

σμν ≡ i
2
½γμ; γν�; γ5 ≡ −

i
4!
εμνρσγ

μγνγργσ ¼ iγ0γ1γ2γ3:

ð3:6Þ

Any product of Dirac matrices can be reduced to a linear
combination of the Γi’s by using standard formulas, see
e.g., Ref. [33], which means that any nucleon bilinear can
be reduced to the form (3.1). Γμν

N5, which we only
introduced here for future reference, is linearly dependent
on Γμν

N due to

σμνγ5 ¼ i
2
εμνρσσρσ: ð3:7Þ

For the amplitude (3.1) to transform properly under the
Lorentz group, the coefficients a, b, cμ, dμ, eμν should
transform as Lorentz tensors of rank 0,1,2 as appropriate.
These coefficients must be constructed with the ingredients
available in the scattering process, which are the initial
and final four-momenta of the DM particle, p and p0
respectively, and of the nucleon, k and k0 respectively.
Energy-momentum conservation, which we impose on the
amplitude throughout this work, implies that only three out
of four momenta are linearly independent. It is convenient
to adopt the following Hermitian combinations (see dis-
cussion in the previous section),

P≡ pþ p0; K ≡ kþ k0; iq≡iðp − p0Þ ¼ iðk0 − kÞ;
ð3:8Þ

where q is the four-momentum transfer.
All scalar, vector and tensor coefficients entering

Eq. (3.1) are in principle arbitrary functions of all the
scalars one can build with the above ingredients, namely

P2; K2; qμqμ; P · K; iP · q; ð3:9Þ

wherewe denoted the squared four-momentum transfer with
qμqμ to avoid confusion with the squared three-momentum
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transfer q2. Notice that K · q ¼ 0, whereas P · q only
vanishes for δ ¼ 0. These functions can be computed in
any given model, but cannot be specified in our model-
independent approach: parametrizing a scattering amplitude
based solely on Lorentz symmetry can only be done up to
one or more arbitrary functions of the independent scalars.
These functions correspond, for example, to what in the
parametrization of the QED and hadronic currents are called
form factors, and depend on the underlying model used to
compute the amplitude (see Sec. II A for some simple explicit
examples). For instance, they trivially depend on the specific
coefficients of the DM-nucleon Lagrangian used to compute
the scattering amplitude, which in turn depend on the
DM-quark and DM-gluon couplings as established by the
chiral expansion [19,26,34–38]. In the following we implic-
itly assume that the coefficients depend on the scalars (3.9)
through these unspecified functions, and we only focus on
the possible arrangements of four-momenta yielding their
Lorentz structure.
The Lorentz structure of the coefficients in Eq. (3.1) can

be obtained by taking all possible suitable products and
contractions of four-momenta and possibly the completely
antisymmetric Levi-Civita tensor εμνρσ. Since the product
of two Levi-Civita tensors can be expressed as a sum of
products of metric tensors, we can restrict ourselves to
considering the most general tensor structures one can build
with just one occurrence of εμνρσ . Some of the tensor
coefficients entering eμν may in principle also be propor-
tional to the metric tensor, but they do not contribute due to
the fact that they are contracted with the antisymmetric
tensor Γμν

N . If the DM has spin 1=2, the coefficients are
themselves DM fermion bilinears, and more in general for
arbitrary spin the coefficients contain the polarization
tensors of the initial and final DM states.
Application of the equations of motion to the amplitude

in Eq. (3.1) does not simplify the problem of determining
the most general form of its scalar, vector and tensor
coefficients. In fact, if we eliminate Γμ

N and Γμ
N5 using the

Gordon and Gordon-like identities

iΓμν
N qν ¼ 2mNΓ

μ
N − KμΓN; Γμν

N5Kν ¼ 2mNΓ
μ
N5 þ iqμΓN5;

ð3:10Þ

we can write Eq. (3.1) as

a0ΓN þ b0ΓN5 þ e0μνΓ
μν
N þ dμ

2mN
Γμν
N5Kν; ð3:11Þ

which means we must still find the most general form
of both the scalar (a0 and b0), vector (dμ), and tensor (e0μν)
coefficients.
Let us introduce some notation before moving on. We

will sometimes use uppercase Latin letters (Aμ, Bμ, etc.) to
denote the momenta four-vectors in Eq. (3.8). When
contracting momenta with the Levi-Civita tensor, we will

substitute the contracted momenta to the contracted tensor
indices, e.g., εμAνB ¼ εμανβAαBβ. Because we only have
three independent momenta, εμABC either vanishes or is
equal to �Δμ with

Δμ ≡ iεμPKq: ð3:12Þ

A. Spin-0 DM

If the DM has spin 0, its polarization tensor is trivial and
the coefficients in Eq. (3.1) can only depend on the
momenta. Their Lorentz structure must be given by suitable
multiplications and contractions of four-momenta and
possibly the εμνρσ tensor. In the following we treat the
case of complex scalar DM, and postpone to Sec. III A 4 a
discussion on the restrictions that apply for real scalar DM.

1. Scalar coefficients

The scalar coefficients are functions of the nonzero
scalars listed in Eq. (3.9). Notice that there are only two
dynamical variables, the internal energy and the momen-
tum transfer (or alternatively the scattering angle). These
can be parametrized in terms of the Mandelstam variables

s ¼
�
Pþ K

2

�
2

¼ 1

4
ðP2 þ K2 þ 2P · KÞ; t ¼ qμqμ:

ð3:13Þ

Other scalar combinations return the model parameters
such asmN ,m and δ. For instance, iP · q ¼ −iδð2mþ δÞ is
a constant.

2. Vector coefficients

Disregarding an arbitrary multiplicative scalar factor, the
only possible vector coefficients are

Pμ; Kμ; iqμ;Δμ: ð3:14Þ

This list can be effectively reduced by using the following
relations, consequence of the equations of motion:

Γμ
NKμ ¼ 2mNΓN; Γμ

N5Kμ ¼ 0; ð3:15Þ

iΓμ
Nqμ ¼ 0; iΓμ

N5qμ ¼ 2mNΓN5: ð3:16Þ

We have therefore that Γμ
Nð5ÞKμ and Γ

μ
Nð5Þqμ either vanish or

can be expressed as functions of ΓNð5Þ. Given that the
problem of determining all possible amplitude terms
featuring ΓNð5Þ has been treated in the previous section
on the scalar coefficients, we can effectively restrict our
study of the vector coefficients to those included in the
collective vector

Λμ ≡ Pμ;Δμ: ð3:17Þ

COMPLETE LORENTZ-TO-GALILEO DICTIONARY FOR … PHYS. REV. D 98, 123003 (2018)

123003-9



3. Tensor coefficients

Again disregarding the arbitrary multiplicative scalar, the
possible tensor coefficients are

PμKν;iPμqν;iKμqν;PμΔν;KμΔν;iqμΔν;εμνPK;iεμνPq;iεμνKq:

ð3:18Þ

Since the tensor coefficients are ultimately contracted with
the antisymmetric tensor Γμν

N , we include neither the metric
tensor nor terms of the form AμAν (nor ΔμΔν, which can be
however expressed in terms of the metric tensor and AμBν).
For the same reason we do not bother distinguishing BμAν

from AμBν, and ΔμAν from AμΔν.
As above, it is useful to use the equations of motion in

the form of Eq. (3.10) as well as

Γμν
N Kν ¼ iqμΓN; iΓμν

N5qν ¼ −KμΓN5; ð3:19Þ

together with εαβμνΓNμν ¼ −2Γαβ
N5 by Eq. (3.7). We can thus

express the amplitude terms involving some of the above
tensor coefficients in terms of Lorentz structures already
taken into account in our study of the vector and scalar
coefficients. For instance, it is clear that any term of the
form AμBνΓ

μν
N or εμνABΓ

μν
N ¼ −2AμBνΓ

μν
N5 reduces to cases

already treated above. We can therefore effectively restrict
the above list of tensor coefficients to the sole term

PμΔν: ð3:20Þ

4. Real scalar DM

For a self-conjugated field, particle and antiparticle
coincide. Any order of the perturbative expansion of the
S-matrix element can thus be written as a sum of terms,
each of which featuring the construction and destruction
operators in the two combinations: a†ðp2Þaðp1Þ: and
:aðp2Þa†ðp1Þ:, p1 and p2 being integration variables.
Only the first term is present for a non-self-conjugated
field. The first term is multiplied by a function gðp1; p2Þ of
four-momenta (including k and k0), which also incorporates
the nucleon fermion bilinears, whereas the second is
multiplied by gð−p1;−p2Þ. So upon integration over p1
and p2 we obtain for the scattering amplitude

gðp; p0Þ þ gð−p0;−pÞ ¼ gðp; p0Þð1þ ηgÞ; ð3:21Þ

where we denoted with ηg the parity of g under p ⟷ −p0
exchange, gð−p0;−pÞ ¼ ηggðp; p0Þ. For instance, iqμ and
Kμ are even under p ⟷ −p0, while Pμ (and thus also Δμ)
is odd. Therefore, all scalars in Eq. (3.9) but P · K are even
(remember that iP · q ∝ δ ¼ 0 in this case). Also, iqμΓ

μ
Nð5Þ

has ηg ¼ þ1 whereas PμΓ
μ
Nð5Þ and ΔμΓ

μ
Nð5Þ have η

g ¼ −1.
Therefore, the two latter structures are restricted to appear
multiplied by P · K, or by a scalar function of P · K with the
same parity, for a real scalar. On the other hand, terms like

iqμΓ
μ
Nð5Þ and PμΔνΓ

μν
N can only appear multiplied by a

function of the scalars in Eq. (3.9) with positive parity.
As an example of how to generate theseLorentz structures,

the effective interaction operator ð∂μϕ
2ÞN̄γμγ5N induces at

tree level a scattering amplitude that can be written as
Eq. (3.21) with gðp; p0Þ ¼ −iqμΓ

μ
N5, a structure with

ηg ¼ þ1. The effective operator iðϕ∂μ

⟷
ϕÞN̄γμN yields

instead gðp; p0Þ ¼ PμΓ
μ
N , with parity ηg ¼ −1. As it is, this

structure can thus not enter the theory of a real scalar, as one
can see already at the Lagrangian level by noticing that

ϕ∂μ

⟷
ϕ ¼ 0. On the other hand, a structure as ðP · KÞPμΓ

μ
N

has even parity and is therefore allowed in the theory of a real
scalar, where it could arise at tree level from the effective

operator i½ð∂μϕÞ∂ν

⟷
ϕ − ϕ∂ν

⟷
ð∂μϕÞ�ðN̄γμ∂ν

⟷
NÞ. Despite these

simple examples only featuring tree-level amplitudes, we
remark that Eq. (3.21) also holds at loop level.

B. Spin-1=2 DM

For a spin-1=2 DM particle χ, apart from depending on
the above ingredients (momenta and Levi-Civita tensor),
each coefficient in Eq. (3.1) is a linear combination of the
Γχ , Γχ5, Γ

μ
χ , Γμ

χ5, and Γμν
χ DM bilinears, defined as

Γχ ≡ ūχ0 ðp0ÞuχðpÞ; Γχ5 ≡ ūχ0 ðp0Þiγ5uχðpÞ; ð3:22Þ

Γμ
χ ≡ ūχ0 ðp0ÞγμuχðpÞ; Γμ

χ5 ≡ ūχ0 ðp0Þγμγ5uχðpÞ; ð3:23Þ

Γμν
χ ≡ ūχ0 ðp0ÞσμνuχðpÞ; Γμν

χ5 ≡ ūχ0 ðp0Þiσμνγ5uχðpÞ:
ð3:24Þ

The uχ spinor describes the initial DM particle, with mass
m, while the uχ0 spinor describes the final DM particle, with
mass mþ δ. Γμν

χ5 is linearly dependent on the others due to
Eq. (3.7), and we only introduced it here for future
reference. As for the nucleon bilinears, we will denote
with Γχð5Þ, Γ

μ
χð5Þ, Γ

μν
χð5Þ both versions of each DM bilinear,

with and without γ5.
To determine the most general set of the amplitude

coefficients in Eq. (3.1), we can proceed as follows. We
treat here the case of Dirac DM, see Sec. III B 4 below for a
discussion of the restrictions that apply for Majorana DM.
We first contract the linearly independent DM bilinears
Γχð5Þ, Γμ

χð5Þ, Γμν
χ with a single Levi-Civita tensor in all

possible ways. As commented above, products of multiple
Levi-Civita tensors do not return independent structures.
This exercise produces

Γχð5Þ; Γμ
χð5Þ; Γα

χð5Þε
μνρ
α ; Γμν

χð5Þ; Γμα
χ ενρσα :

ð3:25Þ
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We exploited the fact that, by Eq. (3.7), Γχαβε
αβμν ¼ −2Γμν

χ5.
Notice that, by construction of the above list, no new
structure can be obtained by contracting two free indices.
We can now suitably contract these structures with
momenta four-vectors, and multiply (in the sense of a
tensor product) the result with tensors formed by momenta
(and εμνρσ whenever not present already), to obtain the most
general rank 0, 1 and 2 tensor coefficients. Given that the
latter operation of tensor product can only increase the
rank, and we are interested in forming tensors of rank at
most 2, the only tensors we can employ in the product are
the vector and tensor coefficients discussed above for the
case of spin-0 DM, i.e., Λμ [given in Eq. (3.17)] and PμΔν.
Regarding contracting the structures in Eq. (3.25) with

momenta four-vectors, we can again use the equations of
motion to find relations among some of these contractions,
to reduce the number of terms that need to be considered.
Direct use of the equations of motion returns the following
useful relations, analogous to those already considered for
the nucleon:

Γμ
χPμ ¼ ð2mþ δÞΓχ ; Γμ

χ5Pμ ¼ −iδΓχ5; ð3:26Þ

iΓμ
χqμ ¼ −iδΓχ ; iΓμ

χ5qμ ¼ −ð2mþ δÞΓχ5; ð3:27Þ

Γμν
χ Pν¼−iqμΓχ − iδΓμ

χ ; Γμν
χ5Pν ¼ð2mþδÞΓμ

χ5− iqμΓχ5;

ð3:28Þ
iΓμν

χ qν¼−ð2mþδÞΓμ
χ þPμΓχ ; iΓμν

χ5qν¼PμΓχ5− iδΓμ
χ5:

ð3:29Þ
It is thus clear the only expressions that need attention are
those where the only momentum four-vector the bilinears
Γμ
χð5Þ and Γμν

χð5Þ are contracted with is Kμ, given that

contractions with Pμ and/or iqμ reduce to expressions
involving lower-rank DM bilinears. Other relations exist,
that may be of help in reducing the number of structures to
be taken into account, see e.g., Ref. [39], but we do not use
them here. The point here being not seeking a minimal,
complete set of independent structures (assuming such a
thing exists), but rather a set of structures that is large
enough to encompass the most general scattering ampli-
tude. The list of Lorentz structures obtained following the
above prescription [disregarding the arbitrary dependence
of any coefficient on the scalars in Eq. (3.9)] is provided in
the following.

1. Scalar coefficients

To obtain the scalar coefficients we can only saturate all
free indices of the structures in Eq. (3.25) with momenta
four-vectors:

Γχð5Þ; Γα
χð5ÞKα; Γα

χð5ÞΔα; Γαβ
χ KαΔβ: ð3:30Þ

Semicolons separate terms originating from different struc-
tures in Eq. (3.25). As for the nucleon tensor bilinears,
contraction of Γαβ

χð5Þ with any pair of momenta four-vectors
can be cast in terms of Γχð5Þ and possibly Γμ

χð5Þ, which are

considered separately. Here and in the following we
therefore disregard this type of term.

2. Vector coefficients

The structures in Eq. (3.25) allow us to build the
following vector coefficients:

Γχð5ÞΛμ; Γμ
χð5Þ; Γα

χð5ÞKαΛμ; Γα
χð5ÞεαμAB;

Γα
χð5ÞΔαPμ; Γαμ

χð5ÞKα; Γαμ
χ Δα; Γαβ

χ KαεβμAB;

Γαβ
χ KαΔβPμ: ð3:31Þ

εαμAB here stands for both εαμPK , iεαμPq, and iεαμKq.
Contrary to semicolons, commas separate terms originating
from the same structure in Eq. (3.25).

3. Tensor coefficients

The tensor coefficients that can be built are

Γχð5ÞPμΔν; Γμ
χð5ÞΛν; Γα

χð5ÞKαPμΔν; Γα
χð5ÞεαPμν;

Γα
χð5ÞεαμABPν; Γμν

χð5Þ; Γαμ
χ KαΛν; Γαμ

χ5KαPν;

Γαμ
χ εανAB; Γαβ

χ KαεβPμν; Γαβ
χ KαεβμABPν;

Γαμ
χ ΔαPν: ð3:32Þ

4. Majorana DM

For Majorana DM, not only the u spinor but also the v
spinor enters the scattering amplitude, since particle and
antiparticle coincide. At any order of perturbation theory
the scattering amplitude has the form

ūχðp0Þγðp; p0ÞuχðpÞ − v̄χðpÞγð−p0;−pÞvχðp0Þ; ð3:33Þ

with γ a matrix-valued function of the external four-
momenta (including k and k0) in spinor space. γ can take
the form of a product of Dirac matrices, momenta four-
vectors and nucleon fermion bilinears, with Lorentz indices
contracted among all of these ingredients, the result being
multiplied by a scalar function of momenta. The minus sign
in front of the second term originates from normal ordering
the construction and destruction operators of fermion states,
:aðpÞa†ðp0Þ ≔ −a†ðp0ÞaðpÞ, which instead appear auto-
matically normal ordered for the first term.
As explained at the beginning of this section one can

write, without using the equations of motion, γðp; p0Þ ¼P
igiðp; p0ÞΓi, where the gi’s are functions of momenta and

the Γi’s are the matrices of the complete set in Eq. (3.5).
Denoting with ηgi the parity of gi under p ⟷ −p0
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exchange, gið−p0;−pÞ ¼ ηgi giðp; p0Þ, the scattering ampli-
tude can be written as

X
i

giðp; p0Þ½ūχðp0ÞΓiuχðpÞ − ηgi v̄χðpÞΓivχðp0Þ�: ð3:34Þ

Using now

v̄χðpÞΓivχðp0Þ ¼ −ηCi ūðp0ÞΓiuðpÞ; ð3:35Þ

with ηCi ¼ 1 for Γi ¼ I4; iγ5; γμγ5 and ηCi ¼ −1 for Γi ¼
γμ; σμν, we can finally write the scattering amplitude as

X
i

giðp; p0Þð1þ ηgi η
C
i Þūχðp0ÞΓiuχðpÞ: ð3:36Þ

Amplitude terms with ηgi η
C
i ¼ −1 then vanish, and the

scattering amplitude contains only terms with ηgi η
C
i ¼ þ1.

This means for instance that terms like Γμ
χΓNð5Þμ,

Γα
χKαΓNð5Þ, Γα

χ5ΔαΓNð5Þ, and Γαμ
χ KαΓNð5Þμ, which are

allowed for Dirac DM, can only appear in the scattering
amplitude for Majorana DM multiplied by P · K, or by
another scalar function with negative ηg parity. On the other
hand, terms like Γμ

χ5ΓNð5Þμ, Γ
α
χΔαΓNð5Þ, Γα

χεαμPKΓ
μ
Nð5Þ, and

iΓαβ
χ KαεβμKqPνΓ

μν
Nð5Þ, can only be present multiplied by a

scalar function with positive ηg parity.
As an example, Γμ

χΓNμ and ðP · KÞΓχΓN are the negative-
parity tree-level scattering amplitudes induced by the

effective operators χ̄γμχN̄γμN and −ðχ̄ ∂μ
⟷

χÞðN̄ ∂μ

⟷
NÞ,

respectively, which vanish due to χ̄γμχ¼0 and χ̄ ∂μ

⟷
χ¼0

for a Majorana fermion. On the other hand, the positive-
parity term ðP · KÞΓμ

χΓNμ is the tree-level amplitude

induced by the effective operator −ðχ̄γμ∂ν
⟷

χÞðN̄γμ∂ν

⟷
NÞ,

which does not vanish.
The list of structures with positive parity is a follows.

Scalar coefficients:

Γχð5Þ; Γα
χ5Kα; Γα

χΔα; Γαβ
χ KαΔβ: ð3:37Þ

Vector coefficients:

Γμ
χ5; Γα

χKαΛμ; Γα
χεαμPA; iΓα

χ5εαμKq; Γα
χ5ΔαPμ;

Γαμ
χ Δα; Γαβ

χ KαεβμPA: ð3:38Þ

Tensor coefficients:

Γχð5ÞPμΔν; Γμ
χΛν; Γα

χ5KαPμΔν; Γα
χεαPμν;

Γα
χ5εαμPAPν; iΓα

χεαμKqPν ;Γαμ
χ KαΛν;

Γαμ
χ5KαPν; Γαμ

χ εανPA; Γαβ
χ KαεβPμν;

iΓαβ
χ KαεβμKqPν: ð3:39Þ

IV. MATCHING TO THE NONRELATIVISTIC
THEORY

In this section we match each of the scattering amplitude
terms classified above to a NR operator. To do so, we
perform a Taylor-Laurent expansion in the small expansion
parameter v (the DM-nucleus relative speed), which is
allowed given that the scattering amplitude is just a function
of the kinematical variables. Notice that the expansion is not
a simple Taylor series as, for instance, the propagators of
massless particles can cause the appearance of negative
powers of the momentum transfer (see e.g., the case of DM
with an electric charge or with a magnetic or electric dipole
moment in Sec. II A). Each amplitude term is then uniquely
matched to the NR operator whose matrix element equals its
NR expression. As remarked in the previous section, each
Lorentz structure can appear in the scattering amplitude
multiplied by a function of the scalar factors (3.9). In
computing the NR limit of a scalar function times a
Lorentz structure, the function is understood to be truncated
at the lowest nonzero order.
The NR expansion of four-momenta is carried out at first

order in the particle speed, thus expanding the Lorentz
factor as γ ≃ 1. At this order of the NR expansion the
Galilean symmetry is intact. The four-vectors of interest
here, defined in Eqs. (3.8) and (3.12), are expanded as

Pμ ≃
�
2m

P

�
; Kμ ≃

�
2mN

K

�
; ð4:1Þ

qμ ≃
�
q0

q

�
; Δμ ≃ −

�
iðP × KÞ · q

4immNðq × v⊥elÞ

�
; ð4:2Þ

with

q0 ≡ K · q
2mN

¼ P · q
2m

− δ: ð4:3Þ

We used here ε0123 ¼ −ε0123 ¼ 1.
The NR expression of the fermion bilinears can be

obtained by using the following first-order approximation
of the four-spinor of a generic spin-1=2 particle with mass
M and momentum Q, in the chiral representation:

uðQÞ ≃ 1ffiffiffiffiffiffiffi
4M

p
� ð2M − Q · σÞξ
ð2M þ Q · σÞξ

�
; ð4:4Þ

where ξ is a two-spinor, and we adopted the normalization
ūðQÞuðQÞ ¼ 2M. For the final DM particle, the mass
mþ δ can be expanded in powers of δ ∼Oðv2Þ consis-
tently with the NR expansion, the result being that the mass
splitting δ does not appear in the expression of the spinor at
the considered expansion order. Let us now define, for both
the nucleon and the spin-1=2 DM particle,

I ≡ ξ0†ξ; S≡ ξ0†sξ: ð4:5Þ
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For the nucleon fermion bilinears we then get, at leading
order in each entry,

ΓN ≃ 2mNIN; ð4:6aÞ

ΓN5 ≃ −2iq · SN; ð4:6bÞ

Γμ
N ≃

�
2mNIN

KIN − 2iq × SN

�
; ð4:6cÞ

Γμ
N5 ≃

�
2K · SN
4mNSN

�
; ð4:6dÞ

Γμν
N ≃

�
0 −iqIN − 2K × SN

iqIN þ 2K × SN 4mNεijkSkN

�
; ð4:6eÞ

Γμν
N5 ≃

�
0 −4mNSN

4mNSN −iεijkqkIN − 2KiSjN þ 2KjSiN

�
;

ð4:6fÞ

while for the DM bilinears we have

Γχ ≃ 2mI χ ; ð4:7aÞ

Γχ5 ≃ 2iq · Sχ ; ð4:7bÞ

Γμ
χ ≃

�
2mI χ

PI χ þ 2iq × Sχ

�
; ð4:7cÞ

Γμ
χ5 ≃

�
2P · Sχ
4mSχ

�
; ð4:7dÞ

Γμν
χ ≃

�
0 iqIχ − 2P × Sχ

−iqIχ þ 2P × Sχ 4mεijkSkχ

�
; ð4:7eÞ

Γμν
χ5 ≃

�
0 −4mSχ

4mSχ iεijkqkIχ − 2PiSjχ þ 2PjSiχ

�
: ð4:7fÞ

Again we notice that δ does not appear in these expressions
at the considered order of the NR expansion.

A. Scalar factors

The NR expression of the scalar factors in Eq. (3.9) is

P2 ≃ 4m2; ð4:8Þ

K2 ≃ 4m2
N; ð4:9Þ

qμqμ ≃ −q2; ð4:10Þ

P · K ≃ 4mmN; ð4:11Þ

iP · q ≃ −2imδ: ð4:12Þ

Notice that, oppositely to q2, no factors of v⊥el2 appear at
leading order. To obtain a v⊥el2 factor one has therefore to
engineer a cancellation between leading-order terms, e.g.,

−
�
Pμ

2m
−

Kμ

2mN

�
2

≃ v⊥el2: ð4:13Þ

The NR expression of the Mandelstam variables is

s ≃ ðmþmNÞ
�
mþmN þ q2

4μN
þ μNv⊥el2 þ δ

�
;

t ≃ −q2; ð4:14Þ

where we truncated the expansion of s at Oðv2Þ rather
than at the leading Oðv0Þ to display its dependence
on the dynamical variables q2 and v⊥el . As explained in
Sec. III A 1, there are only two dynamical variables: the
internal energy, which in the NR limit is parametrized most
naturally in terms of the DM-nucleon relative velocity and
hence v⊥el2, and the momentum transfer q2. The scalar
factors are functions of these and of the model parameters
mN , m and δ.
In the following, as done so far, we neglect the (in

principle arbitrary) dependence of the various amplitude
terms on the scalar factors, and only focus on their Lorentz
structure.

B. Spin-0 DM

In Table I we list the Lorentz structures one can form
with the amplitude coefficients given in Sec. III A. For each
structure we provide the NR operator it matches to in the
NR theory and its spatial-parity and time-reversal quantum
numbers. In the last column we indicate the ηg parity of

TABLE I. The Lorentz structures parametrizing the DM-
nucleon scattering amplitude for scalar DM, and the NR operators
they match to. The third and fourth columns report the spatial-
parity and time-reversal quantum numbers of each structure/
operator, respectively. The last column indicates the ηg parity of
each structure, relevant for a real scalar (see Sec. III A 4): each
structure can only appear in the scattering amplitude multiplied
by a scalar function with the same ηg parity (notice also that δ ¼ 0
for self-conjugated DM).

Lorentz Structure NR Operator P T ηg

ΓN 2mNO1 þ þ þ
ΓN5 −2O10 − − þ
PμΓ

μ
N 4mmNO1 þ þ −

PμΓ
μ
N5

−8mmNO7 − þ −

ΔμΓ
μ
N 8mmNðq2O7 þ iδO10Þ − þ −

ΔμΓ
μ
N5 16mm2

NO3 þ þ −

PμΔνΓ
μν
N 32m2m2

Nð−v⊥el2O10 þ iδO7Þ − − þ
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each structure (see Sec. III A 4): for a real scalar DM,
structures with ηg ¼ þ1 (−1) can only appear multiplied by
a scalar function with positive ηg parity (negative ηg parity,
such as P · K). Notice that for a self-conjugated DM field
one has to set δ ¼ 0.
All NR building blocks available for spin-0 DM,

namely O1, O3, O7 and O10, appear independently
(meaning that they can be singled out with an appropriate
combination of Lorentz structures). They also all appear at
least at leading order, i.e., not necessarily suppressed by
q2 or v⊥el2 (operatorial) factors.
O2, alias v⊥el2O1, does not appear at leading order. Since

v⊥el2 is not generated at leading order by the scalar factors
(3.9) either, we conclude that O2 cannot appear at leading
order in a theory of spin-0 DM without cancellations. This
result is valid at any order of a perturbative expansion
and in any renormalizable or nonrenormalizable theory.
The same holds e.g., for the operators v⊥el2O3 and v⊥el2O7,
while the operator v⊥el2O10 is generated by PμΔνΓ

μν
N .

Using Eqs. (2.5) and (2.15) we can express the above NR
operators in terms of v⊥inel rather than v⊥el , for instance

ΔμΓ
μ
N → 8mmNq2Oinel

7 ; ð4:15Þ

PμΔνΓ
μν
N → 32m2m2

Nð−v⊥inel2Oinel
10 þ iδOinel

7 Þ: ð4:16Þ

For a scalar DM field ϕ, neutral under the SM gauge
group and interacting with the nucleon N through an
effective Lagrangian [6,19,26,40–44], it is easy to guess
the lowest-dimensional operators that can produce at tree
level the Lorentz structures in Table I, assuming all factors
of momenta come from derivatives. For instance, the
dimension-5 effective operator ϕ†ϕN̄ðγ5ÞN yields the
amplitude term ΓNð5Þ, while the dimension-6 operator

iðϕ†∂μ

⟷
ϕÞN̄γμðγ5ÞN yields PμΓ

μ
Nð5Þ. We also see that to

generate the amplitude term ΔμΓ
μ
Nð5Þ we need at least a

dimension-8 operator such as εμνρσ½∂σðϕ†∂ν

⟷
ϕÞ�½N̄γμðγ5Þ

∂ρ

⟷
N�. Therefore, while the NR building blocksO1 andO10

can arise already at dimension 5, O7 does not arise below
dimension 6 and O3 does not arise below dimension 8
for a complex scalar. For a real scalar, as explained in
Sec. III A 4, the Lorentz structures can only appear multi-
plied by a scalar function with the same ηg parity. Therefore,
PμΓ

μ
N5 andΔμΓ

μ
N5 cannot appear in the scattering amplitude

without being multiplied by a ηg-odd scalar function, that
with the least number of momentum factors being P · K.
One can then argue that the simplest term giving rise toO7 is
ðP · KÞPμΓ

μ
N5, which can be derived at tree level from the

dimension-8 effective operator i½ð∂μϕÞ∂ν

⟷
ϕ − ϕ∂ν

⟷
ð∂μϕÞ�

ðN̄γμγ5∂ν
⟷

NÞ. Similarly, O3 can arise from ðP · KÞΔμΓ
μ
N5

which is the matrix element of a dimension-10 effective
operator. Predicting at what order of an effective theory a
given NR building block appears cannot be done within the
effective field theory formalism, unless one analyzes all
possible operators with increasing dimension, which is of
course a daunting task. This is a nontrivial way in which our
results can be used.

C. Spin-1=2 DM

We list the numerous Lorentz structures one can form
with the amplitude coefficients given in Sec. III B in
Table III, relegated to the appendix to avoid cluttering.
Again we provide for each Lorentz structure the NR
operator it matches to, and indicate its P and T quantum
numbers. We also indicate in the last column the ηgηC parity
of each Lorentz structure (see Sec. III B 4): for Majorana
DM, structures with ηgηC ¼ þ1 (−1) can only appear in the
scattering amplitude multiplied by a scalar function with

TABLE II. Examples of effective operators for Dirac DM matching to NR operators containing a given building
block. The building blocks in the first column are those that cannot be obtained from a singlet spin-1=2 DM-nucleon
effective field theory at dimension 6 or below. For each NR building block, the second column features a Lorentz
structure matching to a NR operator containing that building block, see Table III. This Lorentz structure is chosen so
to contain the least number of momentum factors. Shown in the third column is the effective operator whose matrix
element is given by the second column. Its dimension in the effective theory is provided in the last column.

Lorentz Structure Effective Operator Dimension

O3 iΓα
χ εαμKqΓ

μ
N5 −iεαμνρ½∂ρðχ̄γαχÞ�½N̄γμγ

5∂ν

⟷
N� 8

O13 Γα
χ5KαΓN5 iχ̄γαγ5χðN̄γ5∂α

⟷
NÞ 7

O14 Γχ5PμΓ
μ
N5 iðχ̄γ5∂μ

⟷
χÞN̄γμγ5N

7

O15 Γα
χ5ΔαΓN5 εαμνρ½∂ρðχ̄γαγ5∂μ

⟷
χÞ�ðN̄γ5∂ν

⟷
NÞ 9

O16 Γα
χ5KαPμΓ

μ
N5 −ðχ̄γαγ5∂μ

⟷
χÞðN̄γμγ5∂α

⟷
NÞ 8

O17 Γαβ
χ KαεβμPKΓ

μ
N iεβμνρðχ̄σαβ∂ν

⟷
χÞ�½ð∂αN̄Þγμ∂ρ

⟷
N − N̄γμ∂ρ

⟷
ð∂αNÞ� 9
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positive ηg parity (negative ηg parity, such as P · K). Notice
again that for a self-conjugated DM field one has to
set δ ¼ 0.
As for spin-0 DM, all NR building blocks in Eq. (2.7)

appear independently at leading order for spin-1=2 DM.
The NR building blocks O4, O6, O9, O10, O11, O12, O13,
O14 can also independently appear multiplied by v⊥el2,
without cancellations of the leading-order contribution.
In particular, O2 ¼ v⊥el2O1 does not appear at leading order
for spin-1=2 DM, as for spin-0 DM, at any order of a
perturbative expansion and in any renormalizable or non-
renormalizable theory. Notice that the Lorentz structures
Γα
χεαμPKΓ

μ
N , iΓ

αβ
χ KαεβμPqPνΓ

μν
N and iΓαβ

χ KαεβμKqPνΓ
μν
N are

only nonvanishing for inelastic scattering.
In the effective field theory of a Dirac DM field χ, neutral

under the SM gauge group and interacting with the nucleon
N [6,19,26,40–44], the NR building blocks O1, O4, O5,
O6, and O11, can appear already at dimension 5 through
electric and magnetic dipole interactions with the photon
[4,6,26] (see the examples in Sec. II A). Apart from O5,
they are also induced by the dimension-6 four-fermion
effective operators together withO7,O8,O9,O10,O11, and
O12. However, the effective theory does not allow us to
predict the order at which the remaining building blocks are
generated, unless one analyzes one by one all effective
operators of increasing dimension. On the contrary, as
already discussed above, the minimum dimension at which
a given building block can appear at tree level in the
effective theory can be guessed quite easily in our
approach, using the following recipe. The building block
of interest can be searched for in Table III to select the
corresponding Lorentz structures (i.e., those matching to a
NR operator featuring that building block). If all factors of
momenta in the amplitude come from derivatives, effective
operators can then be easily built whose tree-level scatter-
ing amplitude returns the selected Lorentz structures. This
exercise reveals that O3, O13, O14, O15, O16, and O17 can
appear at dimension 8, 7, 7, 9, 8, and 9, respectively.
Examples of effective operators matching at tree level to
NR operators featuring these building blocks are given in
Table II. Special care is needed for self-conjugated DM, as
illustrated in Sec. IV B for a real scalar. For Majorana DM
one finds that O1, O4, O5, O6, O7, O12, and O14 cannot
appear at tree level below dimension 6, 6, 8, 6, 8, 8, and 9
of the effective theory, respectively. Again we remark that
these conclusions cannot be easily deduced within the
framework of the effective field theory, while they are quite
straightforward in our approach.

V. CONCLUSIONS

NR Milky Way halo DM particles interact with whole
nuclei within direct DM detection experiments. Computing
the DM-nucleus scattering cross section from a relativistic
model of DM-nucleon interactions requires determining the

associated NR theory, which can be parametrized in terms
of the 16 Galilean-invariant building blocks (2.7) for DM
with spin 0 or 1=2. The approaches taken so far in the
literature are to compute the NR theory of selected models
of DM-nucleon interactions, or otherwise to study the
phenomenology of the NR building blocks regardless of
their possible origin in high-energy models. The question
remained, whether all the building blocks (and more in
general all the possible NR operators) can appear inde-
pendently, or appear at all. In fact, there may in principle
exist some degree of dependency among the different
building blocks, possibly dictated by subtle constraints
imposed by the Lorentz symmetry of the high-energy
theory, which the simple models explored so far were
unable to reveal.
To answer this question, we classified in this work a

comprehensive list of amplitude terms encompassing the
most general Lorentz-covariant 2-to-2 DM-nucleon scatter-
ing amplitude, and determined for each of them the relative
NR operator at leading order in the NR expansion. We did
so for DM particles with spin 0 and 1=2, and treated both
the case of elastic and inelastic (endothermic and exother-
mic) scattering. This complete Lorentz-to-Galileo mapping
can be used to determine the NR DM-nucleon interaction
and the associated nuclear form factor, without the need to
perform (almost) any computation. Once the relativistic
scattering amplitude is expressed as a linear combination of
our comprehensive set of Lorentz structures, our dictionary
immediately returns the associated NR theory. From there,
the formalism of Refs. [2,8] to determine the relevant DM-
nucleus scattering cross section can be straightforwardly
applied. Our mapping can be used with both renormalizable
and nonrenormalizable theories (such as effective field
theories at all orders), at any order of a perturbative
expansion. The dictionary itself can be found in Table I
for spin-0 DM and in Table III for spin-1=2 DM.
Using this complete dictionary we were able to reach the

following conclusions. All 16 (4) NR building blocks (2.7)
are generated independently at leading order of the NR
expansion, for spin-1=2 (spin-0) DM. This could be seen as
a confirmation that Lorentz invariance does not impose
further constraints than Galilean invariance at the consid-
ered expansion order. This also holds for self-conjugated
DM, despite the restrictions that apply to the scattering
amplitude in this case.
While all NR building blocks can also appear naturally

multiplied by a power of the squared three-momentum
transfer q2, not all appear multiplied by powers of the
squared transverse velocity v⊥el2 without cancellation of the
leading-order contribution. In particular, O2 ¼ v⊥el2O1

cannot appear at leading order in a theory of spin-0 or
spin-1=2 DM without cancellations. While this result was
known for the simple models studied at tree level in the
literature so far, our work proves its validity at any order of
a perturbative expansion and for any renormalizable or
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nonrenormalizable Lorentz-invariant theory, including
effective field theories at all orders.
The NR matching of the effective field theory of a singlet

DM field in terms of the building blocks (2.7) was only
studied in the literature up to dimension 6, e.g., in
Refs. [6,26]. Not all the NR building blocks appear at
dimension 6 or below, but predicting at what order of the
effective field theory expansion these operators arise,
without examining one by one all effective operators of
increasing dimension, is impossible in the effective field
theory approach. This can instead be done within our
framework. One can first select in Table I and Table III the
Lorentz structures with the lowest mass dimension which
map to the NR operator of interest. It is then easy to infer,
assuming all factors of momenta come from derivatives,
the effective operators whose matrix element equals those
Lorentz structures (see Secs. III A 4, III B 4, IV B and IV C

for some examples). Doing so, we can predict that the
building block O3 does not arise at tree level below
dimension 8 for complex scalar DM, and dimension 10
for a real scalar. O7, which can arise a dimension 6 for a
complex scalar, does not arise at tree level below dimension
8 for a real scalar. For Dirac DM, O3, O13, O14, O15, O16,
andO17 can appear at tree level in the effective field theory
at dimension 8, 7, 7, 9, 8, and 9, respectively. For Majorana
DM, O1, O4, O5, O6, O7, O12, and O14 cannot appear at
tree level below dimension 6, 6, 8, 6, 8, 8, and 9,
respectively.
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APPENDIX: MAPPING FOR SPIN-1=2 DM

Table III contains the Lorentz structures one can form with the amplitude coefficients given in Sec. III B, see Sec. IV C
for further detail. For each Lorentz structure we indicate the NR operator it matches to, together with its P and T quantum
numbers. In the last column we indicate the ηgηC parity, which is relevant for Majorana DM (see Sec. III B 4. In this case one
has to set δ ¼ 0).

TABLE III. Same as Table I but for spin-1=2DM. The last column reports the ηgηC parity of each structure, relevant
for a Majorana fermion (see Sec. III B 4): each structure with ηgηC ¼ þ1 (−1) can only appear in the scattering
amplitude multiplied by a scalar function with ηg ¼ þ1 (−1) (notice also that δ ¼ 0 for self-conjugated DM).

Lorentz Structure NR Operator P T ηgηC

ΓχΓN 4mmNO1 þ þ þ
ΓχΓN5 −4mO10 − − þ
Γχ5ΓN 4mNO11 − − þ
Γχ5ΓN5 4O6 þ þ þ
Γα
χKαΓN 8mm2

NO1 þ þ −
Γα
χKαΓN5 −8mmNO10 − − −

Γα
χ5KαΓN 16mm2

NO8 − þ þ
Γα
χ5KαΓN5 −16mmNO13 þ − þ

Γα
χΔαΓN −16mm2

Nðq2O8 þ iδO11Þ − þ þ
Γα
χΔαΓN5 16mmNðq2O13 − iδO6Þ þ − þ

Γα
χ5ΔαΓN 32m2m2

NO5 þ þ −

Γα
χ5ΔαΓN5 32m2mNO15 − − −

Γαβ
χ KαΔβΓN 64m2m3

Nðv⊥el2O11 − iδO8Þ − − þ
Γαβ
χ KαΔβΓN5

64m2m2
Nðv⊥el2O6 þ iδO13Þ þ þ þ

ΓχPμΓ
μ
N 8m2mNO1 þ þ −

ΓχPμΓ
μ
N5 −16m2mNO7 − þ −

Γχ5PμΓ
μ
N 8mmNO11 − − −

Γχ5PμΓ
μ
N5

−16mmNO14 þ − −

(Table continued)
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TABLE III. (Continued)

Lorentz Structure NR Operator P T ηgηC

ΓχΔμΓ
μ
N 16m2mNðq2O7 þ iδO10Þ − þ −

ΓχΔμΓ
μ
N5 32m2m2

NO3 þ þ −

Γχ5ΔμΓ
μ
N 16mmNðq2O14 − iδO6Þ þ − −

Γχ5ΔμΓ
μ
N5 32mm2

Nðq2O12 −O15 þ iδO9Þ − − −

Γμ
χΓNμ 4mmNO1 þ þ −

Γμ
χΓN5μ −8mNðmO7 þO9Þ − þ −

Γμ
χ5ΓNμ 8mðmNO8 −O9Þ − þ þ

Γμ
χ5ΓN5μ −16mmNO4 þ þ þ

Γα
χKαPμΓ

μ
N 16m2m2

NO1 þ þ þ
Γα
χKαPμΓ

μ
N5 −32m2m2

NO7 − þ þ
Γα
χ5KαPμΓ

μ
N 32m2m2

NO8 − þ −

Γα
χ5KαPμΓ

μ
N5 −64m2m2

NO16 þ þ −

Γα
χKαΔμΓ

μ
N 32m2m2

Nðq2O7 þ iδO10Þ − þ þ
Γα
χKαΔμΓ

μ
N5 64m2m3

NO3 þ þ þ
Γα
χ5KαΔμΓ

μ
N 64m2m2

Nðq2O16 þ iδO13Þ þ þ −

Γα
χ5KαΔμΓ

μ
N5 128m2m3

Nðv⊥el2O9 þO17 − iδO12Þ − þ −

Γα
χΔαPμΓ

μ
N −32m2m2

Nðq2O8 þ iδO11Þ − þ −

Γα
χΔαPμΓ

μ
N5 64m2m2

Nðq2O16 þ iδO14Þ þ þ −

Γα
χ5ΔαPμΓ

μ
N 64m3m2

NO5 þ þ þ
Γα
χ5ΔαPμΓ

μ
N5 −128m3m2

NO17 − þ þ
Γα
χ εαμPKΓ

μ
N −16immNδO9 − − þ

Γα
χ εαμPKΓ

μ
N5 32mm2

NðO13 − iδO4Þ þ − þ
Γα
χ5εαμPKΓ

μ
N 32m2mNðO14 − iδO4Þ þ − −

Γα
χ5εαμPKΓ

μ
N5 64m2m2

NO12 − − −

iΓα
χ εαμPqΓ

μ
N 8m½q2ðmNO8 −O9Þ þ imNδO11� − þ þ

iΓα
χ εαμPqΓ

μ
N5 16mmNðO6 − q2O4Þ þ þ þ

iΓα
χ5εαμPqΓ

μ
N 16m2ð−q2O4 −mNO5 þO6Þ þ þ −

iΓα
χ5εαμPqΓ

μ
N5 −32m2mNO9 − þ −

iΓα
χ εαμKqΓ

μ
N −8mN ½q2ðmO7 þO9Þ þ imδO10� − þ −

iΓα
χ εαμKqΓ

μ
N5 16m2

Nð−mO3 − q2O4 þO6Þ þ þ −

iΓα
χ5εαμKqΓ

μ
N 16mmNð−q2O4 þO6Þ þ þ þ

iΓα
χ5εαμKqΓ

μ
N5 −32mm2

NO9 − þ þ
Γαμ
χ KαΓNμ 16mmNðO14 − iδO4Þ þ − −

Γαμ
χ KαΓN5μ 8m2

Nð−O10 þ 4mO12Þ − − −

Γαμ
χ5KαΓNμ 16mmNO9 − þ −

Γαμ
χ5KαΓN5μ 32mm2

NO4 þ þ −

Γαμ
χ ΔαΓNμ 32m2mN ½−mNv⊥el2O11 þ q2O12 −O15 þ iδðmNO8 þO9Þ� − − þ

(Table continued)
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TABLE III. (Continued)

Lorentz Structure NR Operator P T ηgηC

Γαμ
χ ΔαΓN5μ 64m2m2

Nð−O13 þO14Þ þ − þ
Γαβ
χ KαεβμPKΓ

μ
N

−16mm2
N ½q2O7 þ 4mO17 þ iδðO10 − 4mO12Þ� − þ þ

Γαβ
χ KαεβμPKΓ

μ
N5

32mm3
Nð−O3 þ 4mv⊥el2O4 − 4mO16Þ þ þ þ

iΓαβ
χ KαεβμPqΓ

μ
N

32m2mNð−mNv⊥el2O11 þ q2O12 −O15 þ imNδO8Þ − − þ
iΓαβ

χ KαεβμPqΓ
μ
N5

64m2m2
NðO14 − iδO4Þ þ − þ

iΓαβ
χ KαεβμKqΓ

μ
N

32mm2
Nðq2O12 −O15Þ − − −

iΓαβ
χ KαεβμKqΓ

μ
N5

64mm3
NðO14 − iδO4Þ þ − −

Γαβ
χ KαΔβPμΓ

μ
N

128m3m3
Nðv⊥el2O11 − iδO8Þ − − −

Γαβ
χ KαΔβPμΓ

μ
N5

256m3m3
Nð−v⊥el2O14 þ iδO16Þ þ − −

ΓχPμΔνΓ
μν
N 64m3m2

Nð−v⊥el2O10 þ iδO7Þ − − þ
Γχ5PμΔνΓ

μν
N 64m2m2

Nðv⊥el2O6 þ iδO14Þ þ þ þ
Γμ
χPνΓNμν 16mmNð−O13 þ iδO4Þ þ − þ

Γμ
χPνΓN5μν −16mmNO9 − þ þ

Γμ
χ5P

νΓNμν −8m2ðO11 þ 4mNO12Þ − − −

Γμ
χ5P

νΓN5μν −32m2mNO4 þ þ −

Γμ
χΔνΓNμν 32mm2

Nð−mv⊥el2O10 −O15 þ imδO7Þ − − þ
Γμ
χ5ΔνΓNμν 64m2m2

Nð−O13 þO14Þ þ − −

Γα
χKαPμΔνΓ

μν
N 128m3m3

Nð−v⊥el2O10 þ iδO7Þ − − −

Γα
χ5KαPμΔνΓ

μν
N 256m3m3

Nð−v⊥el2O13 þ iδO16Þ þ − þ
Γα
χ εαμPKPνΓ

μν
N −16m2mNðq2O8 þ 4mNv⊥el2O9 þ 4mNO17 þ iδO11Þ − þ −

Γα
χ5εαμPKPνΓ

μν
N 32m3mNð−4mNv⊥el2O4 þO5 þ 4mNO16Þ þ þ þ

iΓα
χ εαμPqPνΓ

μν
N 32m2mNð−O15 þ iδO9Þ − − −

iΓα
χ5εαμPqPνΓ

μν
N 64m3mNð−O13 þ iδO4Þ þ − þ

iΓα
χ εαμKqPνΓ

μν
N 32mm2

N ½−mv⊥el2O10 −O15 þ iδðmO7 þO9Þ� − − þ
iΓα

χ5εαμKqPνΓ
μν
N 64m2m2

Nð−O13 þ iδO4Þ þ − −

Γμν
χ ΓNμν 32mmNO4 þ þ −

Γμν
χ5ΓNμν 8ðmNO10 −mO11 − 4mmNO12Þ − − −

Γαμ
χ KαPνΓNμν 4mmNðq2O1 þ 4mNO3 − 16mmNv⊥el2O4 þ 4mO5 þ 16mmNO16Þ þ þ þ

Γαμ
χ5KαPνΓNμν 16m2mNðO11 þ 4mNO12Þ − − þ

Γαμ
χ KαPνΓN5μν 16mm2

Nð−O10 þ 4mO12Þ − − þ
Γαμ
χ KαΔνΓNμν −32mm3

Nðq2O7 þ 4mO17 þ iδO10Þ − þ þ
Γαμ
χ εναPKΓNμν −64m2m2

NO12 − − þ
iΓαμ

χ εναPqΓNμν 32m2mNO9 − þ þ
iΓαμ

χ εναKqΓNμν 32mm2
NO9 − þ −

Γαβ
χ KαεβμPKPνΓ

μν
N

64m2m2
N ½v⊥el2ð−mNO10 þmO11 þ 4mmNO12Þ þ iδðmNO7 −mO8Þ� − − −

iΓαβ
χ KαεβμPqPνΓ

μν
N

−128im3m2
NδO12 − þ −

iΓαβ
χ KαεβμKqPνΓ

μν
N

−128im2m3
NδO12 − þ þ

Γαμ
χ ΔαPνΓNμν 32m3mN ½q2O8 þ 4mNv⊥el2O9 þ 4mNO17 þ iδðO11 − 4mNO12Þ� − þ −
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