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We determine the most general nonrelativistic theory of dark matter (DM)-nucleon scattering complying
with the sole requirement of Lorentz invariance, for spin-0 and spin-1/2 DM. To do so, we first classify a
comprehensive list of amplitude terms encompassing the most general Lorentz-covariant 2-to-2
DM-nucleon scattering amplitude. We then match each term to a Galilean-invariant operator at leading
order in the nonrelativistic expansion, for both elastic and inelastic (endothermic and exothermic)
scattering. Our complete Lorentz-to-Galileo mapping can be used to promptly determine the nonrelativistic
DM-nucleon interaction and the associated nuclear form factor for any given Lorentz-invariant DM model.
It applies to both renormalizable and nonrenormalizable theories (such as effective field theories at all
orders), at any order of a perturbative expansion. We use our results to prove that, at leading order, Lorentz
invariance does not impose restrictions on the set of 16 Galilean-invariant operators commonly used to
parametrize the nonrelativistic DM-nucleon interaction. We also predict the lowest effective-operator
dimension at which the nonrelativistic operators appear in the effective field theory of a singlet DM particle.
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I. INTRODUCTION

Direct dark matter (DM) search experiments aim at
detecting the nuclear recoil of detector nuclei upon scatter-
ing with a DM particle. If DM particles are gravitationally
bound to the Milky Way halo, hence have speeds of order
of few hundred km/s at Earth’s location, and are heavier
than few GeV, the scattering can occur with a whole
nucleus rather than with individual nucleons. In these
conditions, the scattering can induce nuclear recoils with
energy of few keV or above, at the sensitivity threshold of
the experiments. Some experiments even manage to have
exceptionally low thresholds, becoming sensitive to DM
particles with mass in the hundreds of MeV ballpark.

The energy spectrum of the scattering rate measured by
the experiments depends on the specific nature of the
DM-nucleon interaction. Each type of interaction gives rise
to a specific form of the DM-nucleus scattering cross section,
which involves the related nuclear form factor. While the
natural framework for describing particle interactions is
relativistic, computing the DM-nucleus scattering cross
section starting from a theory of DM-nucleon interactions
requires resorting to a nonrelativistic (NR) framework [1,2].
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Here, the main ingredients used to describe the interaction
are not fields but rather the particle momentum and spin
three-vector operators. A NR effective field theory was then
constructed in Ref. [2], where the NR Galilean-invariant
operators built out of these ingredients were endowed with a
fieldlike structure. In the same reference, the DM-nucleus
cross section was computed for a selection of phenomeno-
logically relevant NR operators. One is then left with the
task of establishing the exhaustive set of operators and their
combinations that can be of phenomenological interest, and
computing the relative cross section.

So far, two distinct approaches have been taken in the
literature. One is to start from specific, relativistic DM
models and work out the combination of NR operators
describing the interaction. The other is to begin already at
the NR level, studying the possible operators that can be
written down in this framework. Such operators, for DM
with spin 0 and 1/2, have been completely classified using
Galilean symmetry and encoded in a number of building
blocks in Ref. [3], whose phenomenology was studied e.g.,
in Refs. [4-24].

In the first approach, where relativistic models are
studied one by one, only few of the NR operators are
found in mapping to the NR framework. One may therefore
wonder whether the other operators can arise at all in more
complicated theories, or in corners of parameter space
where the dominant contributions analyzed so far are
suppressed. Such operators may give rise to interesting
phenomenology and it would thus be relevant to know if
they can ever arise in a relativistic model, and if so, in what
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models. Moreover, not all the NR operators may be
generated independently. Some may always appear in
certain combinations with others, which then raises the
question of whether such combinations are simple acci-
dents or have a subtle motivation. A possible reason could
be that Lorentz invariance imposes stronger constraints on
the scattering amplitude than the Galilean symmetry of
the NR framework. Some of these questions remain in the
second approach, where the NR operators are studied
regardless of their possible origin in a relativistic model.
For instance, this approach allows us to study the phe-
nomenology of all NR operators but has no say on possible
correlations between them, nor on the possibility that some
of these operators may never arise in relativistic theories.

In this work we try to answer these questions. To do so,
we provide a complete dictionary between the possible terms
arising in a general 2-to-2 DM-nucleon scattering amplitude
and the NR operators, assuming exclusively Lorentz invari-
ance of the relativistic interaction. In other words, we find a
comprehensive list of amplitude terms encompassing
the most general Lorentz-covariant DM-nucleon scattering
amplitude, and determine for each term the relative NR
operator at leading order in the NR expansion. We do so for
DM particles with spin 0 and 1/2, and treat both the case of
elastic and inelastic scattering, where there is a null, positive
(endothermic scattering) or negative (exothermic scattering)
mass splitting between the outgoing and the incoming DM
particles.

We remain agnostic about the possibility of generating
the various amplitude terms in specific models. An
alternative approach could be to compute the NR limit
of an effective field theory of DM-nucleon interactions.
To do so, however, one needs to specify the DM gauge
quantum numbers (and to restrict to the case of very heavy
DM-nucleon interaction mediators). This analysis was
carried out e.g., in Refs. [6,25,26] for a gauge singlet.

The parametrization of the scattering amplitude is
performed in the very same way the matrix element of a
current is parametrized in terms of form factors. Textbook
examples of this parametrization are, for instance, the
formulation of the QED current matrix element in terms
of the charge and magnetic dipole moment form factors, to
take into account loop effects in the elastic scattering of a
charged particle, or the hadronic current matrix elements, to
parametrize the effects of hadron compositeness. In both
cases this parametrization is constrained by the symmetries
of the underlying theory, by the equations of motion, and
by the conservation of the QED current. In the same way,
we parametrize here the DM-nucleon scattering amplitude
imposing solely Lorentz symmetry and the equations of
motion (we do not assume any current conservation, to be
general). There is no need to specify an underlying
Lagrangian, as the proposed complete parametrization
encompasses the scattering amplitude of any Lorentz-
invariant Lagrangian. For any specific Lagrangian, the

DM-nucleon scattering amplitude can be written as a
combination of (a subset of the) terms belonging to our
collection. The results found analyzing this collection apply
then to any Lorentz-invariant theory.

We then match each amplitude term in our collection to
a NR operator by performing a NR expansion of the term
in the small DM-nucleus relative speed. Each amplitude
term is then uniquely matched to the NR operator whose
matrix element equals its NR expression. Our NR expan-
sion is thus simply a Taylor-Laurent expansion of the
scattering amplitude, which is just a function of the
kinematical variables. A different approach could be to
perform a NR expansion of a Lagrangian, instead of the
scattering amplitude. This approach, called heavy-particle
effective theory, allows in a sense to integrate out the
DM particle mass, which is large compared to the typical
momentum transfer of a DM-nucleus scattering process,
without completely integrating out the DM field [26-31].
This expansion method was applied to the effective field
theory of a spin-1/2 DM particle, singlet under the
Standard Model (SM) gauge group, in Ref. [26], which
found the same leading-order NR matching of an analysis
where the expansion was instead performed on the
scattering amplitude [6], as here.

To make a concrete example, let the scattering amplitude
of a spin-1/2 DM nparticle y scattering elastically off a
nucleon N feature the term cq”qﬂKaﬁ){y"uXﬁNysu ~» Where
c is a coefficient and K, g are combinations of the nucleon
and DM momentum four-vectors, defined in Eq. (3.8)
below. This scattering amplitude can be e.g., obtained
at tree level by considering the effective operator
—ic[D@Er“0)](Ny> 0N), or 500, (7r2)|(Ny*y> 9 N)
upon using the equations of motion, with m the nucleon
mass. The amplitude term can be factored in two parts: the
scalar function cg*q,,, which in the above current analogue
corresponds to the form factor, and Kaﬁ){y“u){ﬁNys Uy,
which corresponds to the parametrized current matrix
element. The latter part, i.e., that containing the fermion
bilinears and all momentum factors that are contracted with
them, is what in general in the following we refer to as
Lorentz structure. The parametrization of the DM-nucleon
scattering amplitude consists in identifying a finite set of
Lorentz structures that, when multiplied by model-
dependent functions of the few available scalars built out
of four-momenta, span the DM-nucleon scattering ampli-
tude of all possible Lorentz-invariant theories. The scalar
functions can be computed in any given model, but for our
model-independent purposes it suffices to regard them as
arbitrary functions of the Lorentz scalars built out of four-
momenta. We then match each Lorentz structure in this set
to the NR operator whose matrix element equals the struc-
ture’s NR expression. Going back to our example, a NR
expansion of the scattering amplitude returns at leading order
8icmqu2IXSN - ¢, with m the DM mass, ¢ the momentum
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transfer three-vector, ¢? its square, and Sy (Z ) the nucleon
(DM) spin matrix element of the spin s (identity) operator
(see Sec. IV). This expression is finally matched to the NR
operator 8icmmyq>sy - q = 8cmmyg*Oy [see Eq. (2.7)].

The complete Lorentz-to-Galileo mapping provided here
can be used to determine the NR DM-nucleon interaction
and the associated nuclear form factor, without the need to
perform (almost) any computation. One merely needs to
express the relativistic scattering amplitude of a chosen
model as a linear combination of our comprehensive set of
Lorentz structures. Our dictionary then immediately returns
the NR theory describing the DM-nucleon interaction.
From there, one can straightforwardly apply the formalism
of Refs. [2,8] to determine the relevant DM-nucleus
scattering cross section (at least for those operators for
which the nuclear form factor has been computed). The
mapping can be used in both renormalizable and non-
renormalizable theories (such as effective field theories at
all orders), at any order of a perturbative expansion.

The paper is organized as follows. We start in Sec. II by
summarizing the construction of the NR operators intro-
duced in Ref. [3] (which we call building blocks to
distinguish them from all other operators, as explained
below). We discuss the properties of the different building
blocks and we clarify some subtle points about their
“completeness,” the transverse velocity operator and the
O, operator. We end the section with a comprehensive
collection of examples where we provide the NR theory of
simple renormalizable high-energy models and of selected
effective operators. In Sec. III we classify the possible
terms entering the DM-nucleon scattering amplitude of
Lorentz-invariant theories, for both spin-0 and spin-1/2
DM, and discuss the restrictions that apply to self-
conjugated DM. In Sec. IV we provide the NR operators
associated to each term: our comprehensive Lorentz-to-
Galileo dictionary can be found in Table I for spin-0 DM
and in Table III for spin-1/2 DM. Finally, we conclude in
Sec. V.

II. NONRELATIVISTIC BUILDING BLOCKS

The possible NR interaction operators for DM-nucleon
elastic scattering were originally classified in Ref. [3], for
spin-O0 and spin-1/2 DM. The analysis carried out in
Ref. [3] is restricted to the center-of-mass frame, but the
classification can be easily made frame independent by
exploiting Galilean invariance, as we show in the following
(see e.g., Ref. [2]). The construction involves writing down
all possible rotationally and boost-invariant operators built
with the operators corresponding to the available classical
kinematical ingredients: the initial and final DM momen-
tum, p and p’ respectively, and the initial and final nucleon
momentum, k and k' respectively. Let us also denote with
my the nucleon mass, and with m and m + 6 the initial and
final DM mass, respectively. § = 0 yields elastic scattering,
while 6 positive or negative yields inelastic endothermic or

exothermic scattering, respectively. Momentum conserva-
tion implies that there are only three independent combi-
nations of momenta, which can be chosen to be

ig=i(p—p') = i(k' — k).
(2.1)

P=p+p'. K=k+Fk,

This choice is convenient as all these operators are
Hermitian (Hermitian conjugation effectively exchanges
the initial and final states [2]), thus any combination
thereof is automatically Hermitian. Any non-Hermiticity,
if present, can be parametrized as an imaginary part to the
otherwise real operator coefficient. The mass-splitting
parameter &, for instance, effectively breaks Hermiticity
at the amplitude level by introducing an asymmetry
between initial and final states, thus it always appears
multiplied by the imaginary unit as id.

NR boost invariance then requires operator construction to
adopt combinations of momenta that are (proportional to)
velocity differences. For elastic scattering, the only two such
combinations are iq and the “elastic” transverse velocity

P K
t=—— 2.2
vel om 2mN ( )
The generalization for generic ¢ is
vilnel = veLl ~ 49 (23)
q
satisfying
vl -g=0, ie. vi-g=3. (2.4)
The two definitions of transverse velocity satisfy
2 2
q o
L T TR RN CE)

with vy the DM-nucleon relative speed and uy = mmy/
(m + my) the DM-nucleon reduced mass. For the scattering
to be kinematically allowed the DM mass splitting must
satisfy |8] <Zupv* (at least for 6 <0), with uy the
DM-nucleus reduced mass and v the DM-nucleus relative
speed. v~ O(1073) (in speed-of-light units) is the NR
expansion parameter, and we treat

q o
— oy, 03, vk~ O(v), —~0(1?).

2.6
HN KN ( )

Notice that ¢ =p —p’ is not strictly proportional to a
velocity difference for 6 # 0, but the non-boost-invariant
correction is subleading for |§| <« m [12]. At the order
of the NR expansion where this effect becomes relevant,
O(v?), we also expect other relativistic corrections that
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spoil Galilean invariance. However, as explained in
Sec. 1V, we truncate the expansion at an order where
Galilean invariance is intact.

Operators that depend on the DM and/or nucleon spin can
be represented by a generic Hermitian matrix acting on spin
states of each particle. For spin-1/2 particles, due to the Pauli
matrices ¢ forming, together with the identity matrix /,, a
basis of 2 x 2 Hermitian matrices, one can parametrize the
interaction operator as a linear combination of 7, and
s = 6/2. Notice, in fact, that any product of two factors of
s reduces to the aforementioned linear combination through
the identity o'c/ = &;;1, + ig;;;0*. The spin operators, s,, for
a spin-1/2 DM and s, for the nucleon, are boost invariant.
In the following we treat the cases of spin-0 and spin-1/2 DM
in a unified way, by setting s, = 0 for spin-0 DM.

The NR operators can be classified by combining the
above Hermitian and boost-invariant ingredients (ig, vy, s,
and sy ) in all possible rotationally invariant ways. For generic
5 one may use v, in place of vi, as done in Ref. [12];
however we prefer to adopt v} even for inelastic scattering to
make direct contact with the formalism of and the nuclear
form factors provided in Refs. [2,8], where elastic scattering
was assumed (see below for a more in-depth discussion). In
contracting the above vectors, one can use both the §;; and
&;jx SU(2)-invariant tensors, which means one can take both
scalar products as well as vector products of these vectors.
Given that products and contractions of two epsilon tensors
return sums of products of Kronecker deltas, however, only
operators featuring a single vector product are independent. It
was found in Ref. [3] that, with these rules, one can construct
16 independent Galilean-invariant building blocks, denoted
O, below, each of which can be multiplied by an arbitrary
function of the scalar operators ¢* and v}2, as well as of the
nondynamical constants my, m, q - vé; = J, coupling coef-
ficients and so on. Notice that, as in Ref. [2], we call the 16
operators O;’s building blocks to distinguish them from all
possible operators (this distinction is not necessary in the
majority of the phenomenological analyses, where they are
often the only operators taken into account). These building
blocks are, following the numbering introduced in Refs. [2,8],

O] = I],
Oy =isy-(q xvé),

=is,- (g xvy),

[
[l

1
=58y vy,

Oy =is,- (sy xq), O=isy-q,
On=is,-q. O =vy- (s, xsy),
Oi=i(s, vi)(sy - q). O =ils, q)(sy-vi)
Ois=1s, - (gxvy)lisy-q), Oig= (s, vy) sy -vap)

O =ils, - (g % v&)l(sx - v). 2.7)

For spin-0 DM we only have the subset of 4 building blocks
not featuring s,,, namely

01 s 03, 07, 010 Spin—O DM.

Notice that the two building blocks that can be obtained by
exchanging s, «— sy in O;5 and O,; are not independent
from the ones above. In fact, by using &;x€i0p = 640k, —
8p0ka to Teduce (g x vy) - [(s; X 82) x x] to a single cross
product in two different ways, we get

(s, - @)[sy - (g xvi)] = O15 = ¢* Oy — 80,

i(s, - vi)lsy - (g xvy)] = O + v32 0y — i60,,

(2.8)

(2.9)
obtained by setting x = ¢ and x = Véi respectively.

Despite some of the above building blocks can be written
as a product of two other building blocks, namely

O13 = O30y,
016 - 07(9&

014 = 0;0,
017 = 0505,

O15 = =050,
(2.10)

the associated nuclear form factors are not related in any
simple way. In this sense, regarding a building block as a
product of two other building blocks has no sensible
implication: as an example, every one of the O;’s can be
regarded as the product of itself with O;, without the
DM-nucleus scattering cross section featuring necessarily
the form factor related to O;. Furthermore, some products,
such as 0305, may appear at fist sight to have a more
complicated structure than those that can be realized with
the building blocks (2.7). However, we remark that they can
be easily cast in terms of the building blocks (2.7): for
instance, expressing the product of two Levi-Civita tensors
as a sum of products of Kronecker deltas we get

0305 = =¢°v;? Oy + v5°Og + ¢*O16 + 18(O13 + Oya)
+820;,. (2.11)
The building blocks (2.7) naturally split in different
categories. Considering that the spatial-parity P and time-
reversal T transformations reverse velocities and three-
momenta, while spins are reversed by 7" but kept unchanged
by P, we can classify the building blocks according to their P
and T quantum numbers:
Olv 03, 04’ OS? 06’ 016
07’ OSa (997 (917
013,014
O]Os Ollv 0121 015

P-even and T-even,

P-odd and T-even,

P-even and T-odd,
P-odd and T-odd.
When computing the DM-nucleus cross section, interactions

that depend or do not depend on the nucleon spin receive
quantitatively different enhancement. It is therefore useful to
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classify the building blocks as to whether they depend on s

(spin-dependent) or not (spin-independent or coherent):
Ol ) 057 087 Oll
03’ 047 067 07’ 09’ 0109 0127 013’
014’ 0157 0167 017

spin-independent,

spin-dependent.

Finally, the building blocks can be organized hierarchically
according to their NR suppression:

01. 04 (v%)
07,04, 09, Oy, 011, 012 "’O(Ul)’
03,05, 06. 013, 014, Oy (v°)

015,017 (v°)

This of course does not mean that building blocks with
different levels of suppression cannot appear together in
the same operator at leading order. For instance, a fairly
common expression when computing the NR limit of a
scattering amplitude is
(g x5,) (g xsy) = ¢ O4 = O, (2.12)

where O, and Og both appear at the same order of the
nonperturbative expansion (see e.g., the example of DM
with magnetic dipole moment in Sec. II A). However, in an
operator as the one in Eq. (2.31) below, describing the
interaction of a spin-1/2 DM particle with a nucleon
mediated by a vector field, the O(2+°) building blocks O,
and O, (the standard spin-independent and spin-dependent
interactions) naturally dominate unless suppressed by very
small coefficients.

The most general interaction operator can be written in
terms of the NR building blocks (2.7) as

> _fild vi?)O (2.13)

with the f;’s arbitrary functions of ¢*, v?, and of the
nondynamical constants. Notice that the f;’s are part of the
operator, as g* and vZ? are themselves quantum operators.
The reason for O, = v}?, as first introduced in Ref. [2],
being missing among the building blocks (2.7), is that we
do not treat it as an independent building block but rather
we store all the operator’s dependence on véz in the f;’s: in
this sense, O, = v520;.

Unfortunately, the different notations used by Refs. [3]
and [2] seem to have caused some confusion in the
literature. Some authors do not include in their study all
independent building blocks because some of these were
ignored in Refs. [2,8]. The analyses carried out in these
latter references are admittedly restricted, for instance, to

those operators arising at tree level in field theory models

with a DM-nucleon mediator with spin O or 1. We do not
find this to be a sufficient reason to only include some
building blocks in a comprehensive and truly model-
independent analysis. We reiterate that there exists, in fact,
an infinite number of possible operators, reflected by the
fi’s being in principle arbitrary functions of ¢* and v%. For
instance, O, and ¢>O, are different operators, though they
employ the same building block O,; in the same way,
Os/q* and g*v5'°0Oq are different operators, though they
employ the same building block Og4. Despite the possible
number of operators being infinite, each operator can be
uniquely expressed as a linear combination of the 16
independent building blocks (2.7), as in Eq. (2.13).

Another source of confusion in the literature is about the
nature of O,, first introduced in Ref. [2] where however it
was excluded from the analysis of NR operators and form
factors. In reporting the list of independent NR building
blocks, many authors also include O, along with O;. As
explained above, despite being different operators, O, is
not an independent building block in that it is proportional
to O;. In this sense, O, = v3?O, is not dissimilar from
q*O;,. There is only a technical reason why one needs to be
more careful with factors of v2; with respect to factors of g.
Due to momentum-conservation laws, the momentum
transfer ¢ between a DM particle and a bound nucleon
is the same as the momentum transfer between the DM
particle and the nucleus hosting the nucleon. In other
words, the g operator only acts on center-of-mass variables,
and is therefore insensitive to the internal nuclear structure.
For this reason, the operator f(g?)Q; yields the same
squared form factor as O;, merely multiplied by a factor
f(g?)* (we are here deliberately confusing the operator ¢>
with its matrix element between momentum eigenstates).
This is not true for the vé operator, which acts on both
center-of-mass and internal nuclear variables [2]. Therefore
O,, despite differing from O by a mere multiplicative v
(operatorial) factor, requires a dedicated analysis to deter-
mine the related form factor.

The above discussion may possibly explain why O, was
explicitly included by Ref. [2] in the list of potentially
interesting operators, while other similar operators such as
q*O,, or O,/ q* which is dominant for electrically charged
DM particles [see Eq. (2.36) below], were not. O, was
however excluded from the analysis of NR operators and
form factors of Refs. [2,8], because it is not generated at
leading order of the NR expansion by any relativistic
interaction [2], at least in the tree-level computations
performed so far in the literature. In other words, cancel-
lations between Lorentz-invariant operators have to occur
for O, to appear in the NR theory. We will confirm here
that this is indeed the case, at any order of a perturbative
expansion of any (renormalizable or nonrenormalizable)
Lorentz-invariant theory, for DM with spin O or 1/2.
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To conclude, let us discuss further our choice of defining
the NR building blocks with v rather than vi-,, for generic
0. More in general, this is a ch01ce about presenting our
results in terms of v} rather than v . This was done to
make direct contact with the results of Refs. [2,8], where
the nuclear form factors corresponding to some of the
operators in Eq. (2.7) were provided. If we did otherwise,
all our formulas would have to be expressed back in terms
of v} before the interaction operator could be matched to
the correct form factors to be used; or alternatively, one
may appropriately modify some of the form factors to
match the "mel building blocks, as done e.g., in Ref. [12].
To avoid this extra step, which would be needed to connect
our results to those of Refs. [2,8], we decided to present all
calculations in terms of v}. It is stralghtforward however,
to express our formulas in terms of "mel Let us define, for
each of the O;’s in Eq. 2.7, the respective building block
Oirel by substituting v with v . This yields O = O,,

inel*

apart from
Omel (97 + l 010, Olnel 08 + l 011, (2148.)
inel . 4 inel
012 = 012+1709, 013 —013 06’ (214b)
q ‘I
inel __ : o
O =0u- 1_2067
q
inel . 4 52
0166 = 016+l?(013 +O|4) +?06, (2140)
inel : o
017 = (917 - 1?015. (214d)

One can then use these equations, or more straightfor-
wardly the inverted relations

o . o
O Omel i 2 Ollr};al’ 08 — Olsnel _ i?Ollnlel?

(2.15a)
.0 6 .
012 — me _ 1?0191’161’ 013 — Omel 2 0161161’
(2.15b)
inel : 4 inel
0142014 +I?O6 5
inel : o inel inel 52 inel
016:016 —lq2 (O +O >+?06 , (215(3)
5 .
O = O + i O, (2.154)
‘]

together with Eq. (2.5), to express all our results in terms

of vmel

A. Examples

Before continuing, let us make some examples to
connect the NR theory discussed above with the high-
energy description of some simple renormalizable DM
models and DM effective operators. The NR reduction of
the scattering amplitude has been performed in the liter-
ature for a variety of models (see e.g., Refs. [2,4,6,12,26]).
We provide here the leading-order NR theory of spin-0 and
spin-1/2 DM particles interacting with nucleons through
scalar, vector and tensor (spin-2) mediators, together with
that of DM particles interacting with photons via a (tiny)
electric charge, a magnetic or electric dipole moment, and
an anapole moment. For simplicity we will only treat the case
of elastic scattering (5 = 0) and non-self-conjugated DM.

A scalar DM particle ¢ may interact with nucleons
through a scalar mediator S with mass mg via the Lagrangian

L =2¢'pS + N(aly + iby’)NS, (2.16)
with A a parameter with mass-dimension 1 and a, b
dimensionless coefficients. The DM-nucleon scattering
amplitude reads at tree level
PsﬂﬁN(aI4 + ib}/S)MN, (217)
with Pg = 1/(¢*q, — m%), ¢* being the four-momentum
transfer. One can use the formulas and results in Sec. IV
(see otherwise e.g., Refs. [6,26]) to show that the amplitude
matches to a NR model described by the operator

22
2 (amyO, = bO)y),

- 2.18
q2+ms ( )

where ¢"q, ~ —g? in the NR limit. In the notation of
Eq. (2.13) we have at leading order

2/1amN 2Ab
fi(g* vg?) = At fro(q* v3 )—m
(2.19)

all other f;’s vanishing. Of course, O, is negligible with
respect to O unless a = 0 or b/a is sufficiently large to
compensate for its NR ¢/my suppression. If S is heavy
enough, it can be integrated out yielding the effective
Lagrangian

= %q’ﬁqﬁﬂ/(ah + iby®)N + (2.20)

N

At leading order we recover the above results with all
coefficients truncated at the first order of a ¢*q,/ mg
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expansion, e.g., Ps~ —1/m% (contact limit). Notice that
taking into account higher-order corrections to Pg in f{ may
be subleading to considering O;(, due to their larger ¢
suppression.

A spin-1/2 DM particle y may interact with nucleons
through the scalar S via the Lagrangian

L = jy(aly + iby’)yS + N(cl, + idy’)NS.  (2.21)

The DM-nucleon scattering amplitude reads at tree level

Psii, (aly + iby” u ity (cly + idy’Juy,  (2.22)

which in the NR limit matches

4
g (acmmy©; + bemyOyy — adm®y + bdOy).
S

(2.23)

Once again O; dominates unless suppressed by small or
vanishing coefficients. O,y and O, are nonrelativistically
suppressed, and Oy is even more suppressed. Integrating S
out yields the effective Lagrangian

. o .
L= W}((alﬁt + iby®)yN(cly + idy’)N +---,  (2.24)

N

for which the above formulas hold in the contact limit,
namely 1/(¢> + m3) ~1/m3.

A scalar DM ¢ may interact with nucleons through a
vector mediator V¥ with mass my,

«—>

L =1[ad, (") +ib(¢"0,¢)|V* + N(cy, + dy,r’ )NV~
(2.25)

The DM-nucleon scattering amplitude reads at tree level

—Py(—iag, + bP,)uy(cy* + dy*y’ uy, (2.26)
with Py = 1/(q*q, — m}), matching to
——— (admyO,g+becmmyOy —2bdmmyO;).  (2.27)

q* +m3,

Notice that the ac term of the amplitude vanishes due to the
equations of motion. As above, O; dominates unless
suppressed by small or vanishing coefficients. If my is
larger than all other masses and energy scales, one can
integrate out V¥ to obtain the effective Lagrangian

«—

L= ad, () + (' D8N (e +dy N+
14

(2.28)

for which again the above results apply in the contact limit.
If, instead, my < q, Py ~—1/¢* and the amplitude is
greatly enhanced with respect to the case of a heavy
mediator.

The interaction of a spin-1/2 DM yx with nucleons
through V# can be described by

L = jy(ay* + by*y°)xV, + N(cy* +dy*y’)NV,.  (2.29)

The DM-nucleon scattering amplitude reads at tree level

~Pyii, (ay* + by'y’ )u ity (cy, + dy,y)uy,  (2.30)
matching to
—_— O, +2b (O G)
g (acmmyQO; + 2bem(myOg 9)
—2admy(mO; 4+ Og) —4bdmmyO,). (2.31)

Here O; dominates along with O, unless suppressed by
small or vanishing coefficients. O, and O,; are non-
relativistically suppressed, and O is even more suppressed.
Integrating out V* yields the effective Lagrangian

1 _
L= ——xlay" + by yN(ey" + dy' )N + - -
4
(2.32)
for which the above results apply in the contact limit.

A DM particle with a (tiny) electric charge Qe interacts
with nucleons through photon exchange via the Lagrangian

L = Qei(¢9,¢)A" for spin-0DM,  (2.33)
L = Qeyy!'yA, for spin-1/2 DM, (2.34)

yielding for the DM-nucleon scattering amplitude
—QONe* P, ity u,liyy ity (2.35)

with @, = 1 for the proton and Q,, = 0 for the neutron, and
P, =1/4"q,. In the NR limit this matches to

mm

4QQNe2 qu 0,

(2.36)

where we see that the operator O, /g is relevant.

Interactions of spin-1/2 DM particles with photons
through a magnetic dipole moment y, an electric dipole
moment d or an anapole moment a are described by the
effective Lagrangians

L= g J0"xF,, DM magnetic dipole moment, (2.37)
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d
L= 3 Zi6"y°xF,, DM electric dipole moment, (2.38)

L = ayy*y’y?’F,, DM anapole moment,  (2.39)

respectively. The respective NR operators describing
DM-nucleon scattering are, up to an overall sign [4,6],

mm (@)

magnetic dipole, (2.40)
8edQy N Oy, electric dipole,  (2.41)
q
dmae(2myQnOs — gyOy) anapole moment, (2.42)

where g, =5.59 and g, = —3.83 are the proton and
neutron g factors. One sees that also Os/q>, Og/q*, and
O,,/q* appear as NR operators.

The case of a spin-0 or spin-1/2 DM particle interacting
with SM matter through a massive spin-2 mediator, G*,
coupled to the energy-momentum tensors T’y 1,y of both
sectors, was studied e.g., in Ref. [32]. The effective
Lagrangian can be written as

1
£ = = (aG iy + bGuTh) +-. (243)

with A a large enough energy scale. The leading-order NR
operator describing DM-nucleon scattering was found to
be, for both spin-0 and spin-1/2 DM,

abm®m3, ( 1 >
——— |3Fr—=F5|O (2.44)
222 T N 1
mgAA 3
with Fg and Fp the gravitational scalar and tensor form
factors of the nucleon, respectively.

III. GENERAL LORENTZ-COVARIANT
DM-NUCLEON SCATTERING
AMPLITUDE

We now proceed to classifying the possible terms
featured in the scattering amplitude of a generic Lorentz-
invariant DM model. We remain agnostic about the
possibility of generating the various terms in specific
models, and simply classify all possible terms compatible
with Lorentz invariance. The most general DM-nucleon
scattering amplitude can be written as

al'y 4+ bys + ¢,y +d s + e, 0, (3.1)
where we defined the “Hermitian” nucleon bilinears (in the
sense that they are the matrix elements of Hermitian
operators)

Ty =ay(K)uy(k), Tys=ayk&)iruyk), (3.2)
D = a0 )un(®). T = i) P un(®), (33)
I = iy (K)o uy (k). T% =iy (K)ic"Puy(k).  (3.4)

For brevity, we will denote with Ly s)s F’;\,(S), F’I(,D(S) both
versions of each bilinear, with and without y°. The general-
ity of the above expression for the amplitude is due to the
16 matrices

Ly ={L.iy’. /" p'r. o}, (3.5)
forming a basis of linear Hermitian matrices on the four-
spinor vector space, where we defined

i i .
ot =5l V===’ = i’y

4!
(3.6)

Any product of Dirac matrices can be reduced to a linear
combination of the I';’s by using standard formulas, see
e.g., Ref. [33], which means that any nucleon bilinear can
be reduced to the form (3.1). I'ys, which we only
introduced here for future reference, is linearly dependent
on Iy due to

oy = 2 e, (3.7)

For the amplitude (3.1) to transform properly under the
Lorentz group, the coefficients a, b, c,, d,, e,, should
transform as Lorentz tensors of rank 0,1,2 as appropriate.
These coefficients must be constructed with the ingredients
available in the scattering process, which are the initial
and final four-momenta of the DM particle, p and p’
respectively, and of the nucleon, k and k' respectively.
Energy-momentum conservation, which we impose on the
amplitude throughout this work, implies that only three out
of four momenta are linearly independent. It is convenient
to adopt the following Hermitian combinations (see dis-
cussion in the previous section),

K=k+K,

P=p+p, iqg=i(p - p') = i(k' = k),

(3.8)

where ¢ is the four-momentum transfer.

All scalar, vector and tensor coefficients entering
Eq. (3.1) are in principle arbitrary functions of all the
scalars one can build with the above ingredients, namely

P2, K?,¢"q,,P-K,iP-q, (3.9)
where we denoted the squared four-momentum transfer with
4"q, to avoid confusion with the squared three-momentum
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transfer g>. Notice that K -g =0, whereas P-g only
vanishes for 6 = 0. These functions can be computed in
any given model, but cannot be specified in our model-
independent approach: parametrizing a scattering amplitude
based solely on Lorentz symmetry can only be done up to
one or more arbitrary functions of the independent scalars.
These functions correspond, for example, to what in the
parametrization of the QED and hadronic currents are called
form factors, and depend on the underlying model used to
compute the amplitude (see Sec. I A for some simple explicit
examples). For instance, they trivially depend on the specific
coefficients of the DM-nucleon Lagrangian used to compute
the scattering amplitude, which in turn depend on the
DM-quark and DM-gluon couplings as established by the
chiral expansion [19,26,34-38]. In the following we implic-
itly assume that the coefficients depend on the scalars (3.9)
through these unspecified functions, and we only focus on
the possible arrangements of four-momenta yielding their
Lorentz structure.

The Lorentz structure of the coefficients in Eq. (3.1) can
be obtained by taking all possible suitable products and
contractions of four-momenta and possibly the completely
antisymmetric Levi-Civita tensor /7. Since the product
of two Levi-Civita tensors can be expressed as a sum of
products of metric tensors, we can restrict ourselves to
considering the most general tensor structures one can build
with just one occurrence of &*7°. Some of the tensor
coefficients entering e, may in principle also be propor-
tional to the metric tensor, but they do not contribute due to
the fact that they are contracted with the antisymmetric
tensor I'y/. If the DM has spin 1/2, the coefficients are
themselves DM fermion bilinears, and more in general for
arbitrary spin the coefficients contain the polarization
tensors of the initial and final DM states.

Application of the equations of motion to the amplitude
in Eq. (3.1) does not simplify the problem of determining
the most general form of its scalar, vector and tensor
coefficients. In fact, if we eliminate Iy, and I'y s using the
Gordon and Gordon-like identities

lF}}(]Dql/ = 2mNF/;V — KMFN, Fl[:/’/ﬁKL/ = 2mNF/;/5 + iq”FNS’

(3.10)

we can write Eq. (3.1) as

d
a,FN + b/FNS + e;wrljt;/ + 2_/‘1#]4\;’5[(1”
my

(3.11)
which means we must still find the most general form
of both the scalar (a’ and &), vector (d,), and tensor (e}, )
coefficients.

Let us introduce some notation before moving on. We
will sometimes use uppercase Latin letters (A#, B*, etc.) to
denote the momenta four-vectors in Eq. (3.8). When
contracting momenta with the Levi-Civita tensor, we will

substitute the contracted momenta to the contracted tensor
indices, e.g., &8 = ¢*PA B;. Because we only have
three independent momenta, *4BC either vanishes or is
equal to £A* with

AF = jelPKa,

(3.12)

A. Spin-0 DM

If the DM has spin 0, its polarization tensor is trivial and
the coefficients in Eq. (3.1) can only depend on the
momenta. Their Lorentz structure must be given by suitable
multiplications and contractions of four-momenta and
possibly the €*7° tensor. In the following we treat the
case of complex scalar DM, and postpone to Sec. [l A4 a
discussion on the restrictions that apply for real scalar DM.

1. Scalar coefficients

The scalar coefficients are functions of the nonzero
scalars listed in Eq. (3.9). Notice that there are only two
dynamical variables, the internal energy and the momen-
tum transfer (or alternatively the scattering angle). These
can be parametrized in terms of the Mandelstam variables

P+K\2 1
s:<—+ ) :Z(P2+K2+2P-K), 1= q"q,.

2
(3.13)
Other scalar combinations return the model parameters
such as my, m and 6. For instance, iP - ¢ = —i8(2m + &) is
a constant.

2. Vector coefficients

Disregarding an arbitrary multiplicative scalar factor, the

only possible vector coefficients are

Pﬂ9Kﬂ9iqﬂsAﬂ' (3.14)

This list can be effectively reduced by using the following
relations, consequence of the equations of motion:

l—‘l]l\,K u = 2mNFN,

.K,=0,  (3.15)

iCvg, =0, iT'ysq, = 2myTys. (3.16)
We have therefore that F’;,@K , and F’;,(S)qﬂ either vanish or
can be expressed as functions of I'y(s). Given that the
problem of determining all possible amplitude terms
featuring I'y(s) has been treated in the previous section
on the scalar coefficients, we can effectively restrict our
study of the vector coefficients to those included in the
collective vector

A= PH A, (3.17)
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3. Tensor coefficients

Again disregarding the arbitrary multiplicative scalar, the
possible tensor coefficients are

PYKY,iP q" iK' q" P* A" K* A" ig! AY e PK jgnPa jgrKa,

(3.18)

Since the tensor coefficients are ultimately contracted with
the antisymmetric tensor Iy, we include neither the metric
tensor nor terms of the form A#A* (nor A* A¥, which can be
however expressed in terms of the metric tensor and A#BY).
For the same reason we do not bother distinguishing B*A*
from A#BY, and A*AY from A*AY.
As above, it is useful to use the equations of motion in
the form of Eq. (3.10) as well as
'K, =iq'Ty, iTysq, = —K*T'ys, (3.19)
together with T, w = —2I ;ﬁs by Eq. (3.7). We can thus
express the amplitude terms involving some of the above
tensor coefficients in terms of Lorentz structures already
taken into account in our study of the vector and scalar
coefficients. For instance, it is clear that any term of the
form A,B,I'\ or &,y = —2A,B,I"\/s reduces to cases
already treated above. We can therefore effectively restrict
the above list of tensor coefficients to the sole term

PrAY. (3.20)

4. Real scalar DM

For a self-conjugated field, particle and antiparticle
coincide. Any order of the perturbative expansion of the
S-matrix element can thus be written as a sum of terms,
each of which featuring the construction and destruction
operators in the two combinations: a'(p,)a(p,): and
:a(p,)a’ (p):, py and p, being integration variables.
Only the first term is present for a non-self-conjugated
field. The first term is multiplied by a function g(p,, p,) of
four-momenta (including k and k"), which also incorporates
the nucleon fermion bilinears, whereas the second is
multiplied by g(—p;,—p,). So upon integration over p,
and p, we obtain for the scattering amplitude

9(p.p') +9(=p'.=p) = g(p.P )1 +79).  (3.21)
where we denoted with 79 the parity of g under p «— —p’
exchange, g(—p’,—p) = n%(p, p'). For instance, ig* and
K* are even under p «— —p’, while P# (and thus also A*)
is odd. Therefore, all scalars in Eq. (3.9) but P - K are even
(remember that iP - ¢ « 6 = 0 in this case). Also, iqﬂF’li,G)
has 79 = 41 whereas P”F’;,(S) and A”F*;,<5> have 9 = —1.
Therefore, the two latter structures are restricted to appear
multiplied by P - K, or by a scalar function of P - K with the
same parity, for a real scalar. On the other hand, terms like

iqMF’;,(S) and P,A, Iy can only appear multiplied by a
function of the scalars in Eq. (3.9) with positive parity.
As an example of how to generate these Lorentz structures,
the effective interaction operator (9,¢*)Ny*y*N induces at
tree level a scattering amplitude that can be written as
Eq. (3.21) with g(p,p') = —ig,’\s, a structure with
n? = +1. The effective operator i(¢9,¢)Ny*N yields
instead g(p, p') = P,I'y, with parity n? = —1. As it is, this
structure can thus not enter the theory of a real scalar, as one
can see already at the Lagrangian level by noticing that

¢0,¢ = 0. On the other hand, a structure as (P - K)P,I'y
has even parity and is therefore allowed in the theory of a real
scalar, where it could arise at tree level from the effective
operator i[(0,¢$) 0, ¢ — $0,(9,9)|(Ny* 8 N). Despite these
simple examples only featuring tree-level amplitudes, we
remark that Eq. (3.21) also holds at loop level.

B. Spin-1/2 DM

For a spin-1/2 DM particle y, apart from depending on
the above ingredients (momenta and Levi-Civita tensor),
each coefficient in Eq. (3.1) is a linear combination of the
r,, T, I, I's, and I';” DM bilinears, defined as

x x5’
F){ = _)/ (p’)ux(p), F){S = ﬁ/(p’)iysul(p),
Ly =a,p")r'up), FJI;S =y (pl)yﬂysuﬂf(p)’

I =, (p)o"u, p).

(3.22)

(3.23)

Ff;’; =i, (p')ic"y u,(p).
(3.24)

The u, spinor describes the initial DM particle, with mass
m, while the u,, spinor describes the final DM particle, with
mass m + 6. F)’;g is linearly dependent on the others due to

Eq. (3.7), and we only introduced it here for future
reference. As for the nucleon bilinears, we will denote
with T'y(s), FZ (5)° FZ '(’5) both versions of each DM bilinear,

with and without y°.

To determine the most general set of the amplitude
coefficients in Eq. (3.1), we can proceed as follows. We
treat here the case of Dirac DM, see Sec. III B 4 below for a
discussion of the restrictions that apply for Majorana DM.
We first contract the linearly independent DM bilinears
Ly F;’;(s)’ [" with a single Levi-Civita tensor in all
possible ways. As commented above, products of multiple
Levi-Civita tensors do not return independent structures.
This exercise produces

v a v
r yed”.

5)
(3.25)
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We exploited the fact that, by Eq. (3.7), T,,,,e* = -2
Notice that, by construction of the above list, no new
structure can be obtained by contracting two free indices.
We can now suitably contract these structures with
momenta four-vectors, and multiply (in the sense of a
tensor product) the result with tensors formed by momenta
(and £"?° whenever not present already), to obtain the most
general rank 0, 1 and 2 tensor coefficients. Given that the
latter operation of tensor product can only increase the
rank, and we are interested in forming tensors of rank at
most 2, the only tensors we can employ in the product are
the vector and tensor coefficients discussed above for the
case of spin-0 DM, i.e., A* [given in Eq. (3.17)] and P*A".

Regarding contracting the structures in Eq. (3.25) with
momenta four-vectors, we can again use the equations of
motion to find relations among some of these contractions,
to reduce the number of terms that need to be considered.
Direct use of the equations of motion returns the following
useful relations, analogous to those already considered for
the nucleon:

TP, = (2m+8),, ThpP, =-isl,s.  (3.26)
iTyq, = —idl,. Mg, =—(Q2m+6),s.  (3.27)

Ty P,=—ig'T, —idly. F;!;ISJPu =(2m +5)F;I;5 —ig"Ts,
(3.28)

i1y q,=—(2m+8)Ty + P'T,,, il5q, = P'T,s—idThs.
(3.29)

It is thus clear the only expressions that need attention are
those where the only momentum four-vector the bilinears
r (5) and r (”5) are contracted with is K¥, given that
contractions with P# and/or ig" reduce to expressions
involving lower-rank DM bilinears. Other relations exist,
that may be of help in reducing the number of structures to
be taken into account, see e.g., Ref. [39], but we do not use
them here. The point here being not seeking a minimal,
complete set of independent structures (assuming such a
thing exists), but rather a set of structures that is large
enough to encompass the most general scattering ampli-
tude. The list of Lorentz structures obtained following the
above prescription [disregarding the arbitrary dependence
of any coefficient on the scalars in Eq. (3.9)] is provided in
the following.

1. Scalar coefficients

To obtain the scalar coefficients we can only saturate all
free indices of the structures in Eq. (3.25) with momenta
four-vectors:

Ay TYPK.A
ar X Ba=p-

Tysp T Ke T (3.30)

x(5)

Semicolons separate terms originating from different struc-
tures in Eq. (3.25). As for the nucleon tensor bilinears,
contraction of I ;{5 with any pair of momenta four-vectors
can be cast in terms of I';(5) and possibly Fﬁ 5y which are
considered separately. Here and in the following we
therefore disregard this type of term.

2. Vector coefficients

The structures in Eq. (3.25) allow us to build the
following vector coefficients:

Lyts) A F;I;(s) d F;(S)K PUAE F;(S)gauABv
5 8Py F;/(ls)KaQ A, F;a(ﬂKaS/fﬂAB,
T K AgP,. (3.31)

€qap here stands for both eypx, i€ypy and ieqk,.
Contrary to semicolons, commas separate terms originating
from the same structure in Eq. (3.25).

3. Tensor coefficients

The tensor coefficients that can be built are

TPl ThgAy  TosKaPuAy T2 Eapyn,

T emusP Thls  TPKGA,,  THK,P,;
F;”SDCUAB’ F)((lﬂKagﬁPﬂw F;ﬂKaEﬁyABPw

T%AP,. (3.32)

4. Majorana DM

For Majorana DM, not only the u spinor but also the v
spinor enters the scattering amplitude, since particle and
antiparticle coincide. At any order of perturbation theory
the scattering amplitude has the form

i, ")y (p, P )u, () — v, (P)r (=P, —p)v,(P"),

with y a matrix-valued function of the external four-
momenta (including k and k) in spinor space. y can take
the form of a product of Dirac matrices, momenta four-
vectors and nucleon fermion bilinears, with Lorentz indices
contracted among all of these ingredients, the result being
multiplied by a scalar function of momenta. The minus sign
in front of the second term originates from normal ordering
the construction and destruction operators of fermion states,
:a(p)a’ (p') = —a' (p')a(p), which instead appear auto-
matically normal ordered for the first term.

As explained at the beginning of this section one can
write, without using the equations of motion, y(p, p’) =
>:9:(p, p')T;, where the g;’s are functions of momenta and
the I';’s are the matrices of the complete set in Eq. (3.5).
Denoting with 7/ the parity of g, under p «— —p

(3.33)
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exchange, g;(—p’,—p) = n’g;(p, p'), the scattering ampli-
tude can be written as

Zgi(p,p’)[ﬁx(ﬂ/)ﬂul(ﬂ) =070, (p)Tiv, (p)]. (3.34)
Using now

v,(p)Tiv, (') = —nSa(pTu(p),

with #¢ =1 for [; = Iy, iy, y*y> and ¢ = -1 for I'; =
y#, 0", we can finally write the scattering amplitude as

Zgi(p,p’)(l + 00, (p" )i, (p).  (3.36)

(3.35)

Amplitude terms with 777 = —1 then vanish, and the

scattering amplitude contains only terms with 777 = +1.
This means for instance that terms like Fﬁrzv(s)ﬂ,
F?KaFN(S)’ F;SAaFN<5), and F)((wKaFN(S)M’ which are
allowed for Dirac DM, can only appear in the scattering
amplitude for Majorana DM multiplied by P - K, or by
another scalar function with negative n¢ parity. On the other
hand, terms like F)’;SFN(S)”, YAy (s), F)‘;‘eWPKF’;\,(S), and
iF;’fﬂ Kaeﬂ”KqP,,F’ﬁ(S), can only be present multiplied by a
scalar function with positive #9 parity.

As an example, I;T'y,, and (P - K)I',I'y are the negative-
parity tree-level scattering amplitudes induced by the

effective operators yy*yNy,N and —(7 & y)(N 0, N),

respectively, which vanish due to yy*y=0 and 70,xy=0
for a Majorana fermion. On the other hand, the positive-
parity term (P-K)[%T'y, is the tree-level amplitude

induced by the effective operator —(zy* " x)(Ny,0,N),
which does not vanish.

The list of structures with positive parity is a follows.
Scalar coefficients:
V5K T5Ag (3.37)

Ty5); TV KA

Vector coefficients:

W
l“)(5 ,

A,

F)‘;KGAM; F)‘(’S A,,Pﬂ;

(3.38)

ot T
Fj(g(lﬂPA s lrlsga/d(qa

af
F){ K(xgﬂﬂPA'
Tensor coefficients:

Ty5Pubi T, TSKPA Teap.

a T CTOH
FxseayPAPw ll}eaﬂKqu ’F)( KaAL/?
ap .
T%K,P,;

T K g P

U af
F)( EauPA> F){ KaEﬁPﬂw

(3.39)

IV. MATCHING TO THE NONRELATIVISTIC
THEORY

In this section we match each of the scattering amplitude
terms classified above to a NR operator. To do so, we
perform a Taylor-Laurent expansion in the small expansion
parameter v (the DM-nucleus relative speed), which is
allowed given that the scattering amplitude is just a function
of the kinematical variables. Notice that the expansion is not
a simple Taylor series as, for instance, the propagators of
massless particles can cause the appearance of negative
powers of the momentum transfer (see e.g., the case of DM
with an electric charge or with a magnetic or electric dipole
moment in Sec. [ A). Each amplitude term is then uniquely
matched to the NR operator whose matrix element equals its
NR expression. As remarked in the previous section, each
Lorentz structure can appear in the scattering amplitude
multiplied by a function of the scalar factors (3.9). In
computing the NR limit of a scalar function times a
Lorentz structure, the function is understood to be truncated
at the lowest nonzero order.

The NR expansion of four-momenta is carried out at first
order in the particle speed, thus expanding the Lorentz
factor as y ~ 1. At this order of the NR expansion the
Galilean symmetry is intact. The four-vectors of interest
here, defined in Egs. (3.8) and (3.12), are expanded as

(2m> <2mN>
Pt~ R ,
P K

() ) @2

with

(4.1)

K-q P-q 5

my  2m

)

¢’ =

(4.3)

[\

We used here €212 = —¢gy,3 = 1.

The NR expression of the fermion bilinears can be
obtained by using the following first-order approximation
of the four-spinor of a generic spin-1/2 particle with mass
M and momentum @), in the chiral representation:

(2M—Q-6)§>
M +Q-06)¢)’

)= (

where £ is a two-spinor, and we adopted the normalization
#(Q)u(Q) =2M. For the final DM particle, the mass
m + & can be expanded in powers of §~ O(v?) consis-
tently with the NR expansion, the result being that the mass
splitting 6 does not appear in the expression of the spinor at
the considered expansion order. Let us now define, for both
the nucleon and the spin-1/2 DM particle,

(4.4)

I =¢7¢g, S = ¢fsé. (4.5)
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For the nucleon fermion bilinears we then get, at leading
order in each entry,

FNS >~ —21q . SN? (46b)
2myZ
I = < NN ) (4.6¢)
KIN - 2lq X SN
2K - S
I, ~ ( N ) (4.6d)
4mNSN

0 —quN — 2K x SN
r%, ~ . . (4.6e)
quN+2KXSN 4mN€l~ijN

M ~ < 0 _4mNSNA . >

M\ dmySy  —iejug" Ty — 2K'S) + 2K7 S}y

(4.6f)
while for the DM bilinears we have
I, ~2mZ,, (4.7a)
[s~2igq-S,, (4.7b)
ZmIX
I ~ ] , (4.7¢)
PI,+2igxS§,

o (25 47d

BN\ 4mS, )’ (4.74)

0 igL, —2P x S
o~ ( , “ “ ) (4.7¢)
—igZ,+2P xS, 4me; ;. Sk
0 —4mS,

F"g ~ < 7 ] ) (4.71)

# 4mS, ie;jpq*T, —2P'S, +2PIS)

Again we notice that 6 does not appear in these expressions
at the considered order of the NR expansion.

A. Scalar factors
The NR expression of the scalar factors in Eq. (3.9) is

P? ~4m?, (4.8)
K? ~4ml, (4.9)
q"q, ~ —q*, (4.10)
P - K ~4mmy, (4.11)
iP-gq~-2imé. (4.12)

Notice that, oppositely to ¢*, no factors of v}* appear at

leading order. To obtain a v} factor one has therefore to

engineer a cancellation between leading-order terms, e.g.,
I AN
N5 "5 ) =l

The NR expression of the Mandelstam variables is

(4.13)

2
sz(m+mN)<m+mN+q—+ﬂNv;2+5>,
dpy

te -, (4.14)

where we truncated the expansion of s at O(v?) rather
than at the leading O(1°) to display its dependence
on the dynamical variables ¢*> and v}. As explained in
Sec. IIT A 1, there are only two dynamical variables: the
internal energy, which in the NR limit is parametrized most
naturally in terms of the DM-nucleon relative velocity and
hence v%%, and the momentum transfer g®. The scalar
factors are functions of these and of the model parameters
my, m and &.

In the following, as done so far, we neglect the (in
principle arbitrary) dependence of the various amplitude
terms on the scalar factors, and only focus on their Lorentz
structure.

B. Spin-0 DM

In Table I we list the Lorentz structures one can form
with the amplitude coefficients given in Sec. III A. For each
structure we provide the NR operator it matches to in the
NR theory and its spatial-parity and time-reversal quantum
numbers. In the last column we indicate the #Y parity of

TABLE 1. The Lorentz structures parametrizing the DM-
nucleon scattering amplitude for scalar DM, and the NR operators
they match to. The third and fourth columns report the spatial-
parity and time-reversal quantum numbers of each structure/
operator, respectively. The last column indicates the #9 parity of
each structure, relevant for a real scalar (see Sec. III A 4): each
structure can only appear in the scattering amplitude multiplied
by a scalar function with the same 77 parity (notice also that 6 = 0
for self-conjugated DM).

Lorentz Structure NR Operator P T
FN ZmN(’)l + + +
I'ys 20y - - +
P,y 4mmy O, + + -
P, —8mmy O, - 4+ -
AT 8mmy (q*O7 +i50,) - 4+ -
A, s 16mm3,0; + + =
P,ATY 32mPmy (—v5*0y +i50;) - - +
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each structure (see Sec. III A 4): for a real scalar DM,
structures with 79 = +1 (—1) can only appear multiplied by
a scalar function with positive 79 parity (negative n? parity,
such as P - K). Notice that for a self-conjugated DM field
one has to set 6 = 0.

All NR building blocks available for spin-0 DM,
namely O, O;, O; and Oj,, appear independently
(meaning that they can be singled out with an appropriate
combination of Lorentz structures). They also all appear at
least at leading order, i.e., not necessarily suppressed by
g* or v5? (operatorial) factors.

O,, alias v;?0y, does not appear at leading order. Since
v5? is not generated at leading order by the scalar factors
(3.9) either, we conclude that O, cannot appear at leading
order in a theory of spin-0 DM without cancellations. This
result is valid at any order of a perturbative expansion
and in any renormalizable or nonrenormalizable theory.
The same holds e.g., for the operators v>O; and v52O;,
while the operator v20), is generated by P,A,I'y.

Using Eqgs. (2.5) and (2.15) we can express the above NR
operators in terms of vi- rather than v, for instance

el’

ATh = 8mmyg*Or, (4.15)

PATY = 32m>m} (—vih 2Ot + isOBe).

inel

(4.16)

For a scalar DM field ¢, neutral under the SM gauge
group and interacting with the nucleon N through an
effective Lagrangian [6,19,26,40-44], it is easy to guess
the lowest-dimensional operators that can produce at tree
level the Lorentz structures in Table I, assuming all factors
of momenta come from derivatives. For instance, the
dimension-5 effective operator ¢'pN(y°)N yields the
amplitude term T'y(s), while the dimension-6 operator

i(pT0,)Ny*(y°)N yields P,I'\s5)- We also see that to

TABLE II.

generate the amplitude term A”F‘If,(5> we need at least a
dimension-8 operator such as &*°[0,(¢"0,¢)][Ny,(r")

0, N]. Therefore, while the NR building blocks O, and O,
can arise already at dimension 5, O; does not arise below
dimension 6 and O3 does not arise below dimension 8
for a complex scalar. For a real scalar, as explained in
Sec. IIT A 4, the Lorentz structures can only appear multi-
plied by a scalar function with the same #“ parity. Therefore,
P,I"\s and A, I'y s cannot appear in the scattering amplitude
without being multiplied by a n?-odd scalar function, that
with the least number of momentum factors being P - K.
One can then argue that the simplest term giving rise to O is
(P - K)P,I'\s, which can be derived at tree level from the

dimension-8 effective operator i[((?#qﬁ)aqb —¢%97(8,,¢)]

(Ny*y> 0¥ N). Similarly, Oy can arise from (P - K)A, s
which is the matrix element of a dimension-10 effective
operator. Predicting at what order of an effective theory a
given NR building block appears cannot be done within the
effective field theory formalism, unless one analyzes all
possible operators with increasing dimension, which is of
course a daunting task. This is a nontrivial way in which our
results can be used.

C. Spin-1/2 DM

We list the numerous Lorentz structures one can form
with the amplitude coefficients given in Sec. IIIB in
Table III, relegated to the appendix to avoid cluttering.
Again we provide for each Lorentz structure the NR
operator it matches to, and indicate its P and 7 quantum
numbers. We also indicate in the last column the 79, parity
of each Lorentz structure (see Sec. III B 4): for Majorana
DM, structures with 797¢ = +1 (—1) can only appear in the
scattering amplitude multiplied by a scalar function with

Examples of effective operators for Dirac DM matching to NR operators containing a given building

block. The building blocks in the first column are those that cannot be obtained from a singlet spin-1/2 DM-nucleon
effective field theory at dimension 6 or below. For each NR building block, the second column features a Lorentz
structure matching to a NR operator containing that building block, see Table III. This Lorentz structure is chosen so
to contain the least number of momentum factors. Shown in the third column is the effective operator whose matrix
element is given by the second column. Its dimension in the effective theory is provided in the last column.

Lorentz Structure Effective Operator Dimension
T W _ «—
o TieansaTis i€ 10, 21 V1, 0, N) ’
s LesKlvs iy v’y (Ny 0uN) !
s FPulhs i 00NN !
‘o «— _ «—>
O Histdl s 710, (2121° 0,1 |(N° 0, ) ’
W «— —
s FisKalulvs =(trr’ 0,x)(Ny*y* 0,N) s
Ot/f W «— _ «— _ «—
O T KapurkTy i (1045 0,)0))[(0aN )1, 0,N = Ny, 0,(0.N)] ’
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positive 7Y parity (negative 19 parity, such as P - K). Notice
again that for a self-conjugated DM field one has to
set 6 = 0.

As for spin-0 DM, all NR building blocks in Eq. (2.7)
appear independently at leading order for spin-1/2 DM.
The NR bu11d1ng blocks 04, 06’ Og, 010, O“, 012, 013,
Oy4 can also independently appear multiplied by v
without cancellations of the leading-order contribution.
In particular, O, = vf(’)l does not appear at leading order
for spin-1/2 DM, as for spin-O0 DM, at any order of a
perturbative expansion and in any renormalizable or non-
renormalizable theory. Notice that the Lorentz structures
Teeupk Uy iTY Kuepup P and iUy K yeg i, PT are
only nonvanishing for inelastic scattering.

In the effective field theory of a Dirac DM field y, neutral
under the SM gauge group and interacting with the nucleon
N [6,19,26,40—44], the NR building blocks O;, Oy, Os,
Og, and Oy, can appear already at dimension 5 through
electric and magnetic dipole interactions with the photon
[4,6,26] (see the examples in Sec. Il A). Apart from Os,
they are also induced by the dimension-6 four-fermion
effective operators together with O;, Og, Og, Oy, O, and
O,,. However, the effective theory does not allow us to
predict the order at which the remaining building blocks are
generated, unless one analyzes one by one all effective
operators of increasing dimension. On the contrary, as
already discussed above, the minimum dimension at which
a given building block can appear at tree level in the
effective theory can be guessed quite easily in our
approach, using the following recipe. The building block
of interest can be searched for in Table III to select the
corresponding Lorentz structures (i.e., those matching to a
NR operator featuring that building block). If all factors of
momenta in the amplitude come from derivatives, effective
operators can then be easily built whose tree-level scatter-
ing amplitude returns the selected Lorentz structures. This
exercise reveals that O3, O3, O4, Oy5, Oy, and Oy can
appear at dimension 8, 7, 7, 9, 8, and 9, respectively.
Examples of effective operators matching at tree level to
NR operators featuring these building blocks are given in
Table II. Special care is needed for self-conjugated DM, as
illustrated in Sec. IV B for a real scalar. For Majorana DM
one finds that Oy, Oy, Os, Oy, Oy, O;,, and Oy, cannot
appear at tree level below dimension 6, 6, 8, 6, 8, 8, and 9
of the effective theory, respectively. Again we remark that
these conclusions cannot be easily deduced within the
framework of the effective field theory, while they are quite
straightforward in our approach.

V. CONCLUSIONS

NR Milky Way halo DM particles interact with whole
nuclei within direct DM detection experiments. Computing
the DM-nucleus scattering cross section from a relativistic
model of DM-nucleon interactions requires determining the

associated NR theory, which can be parametrized in terms
of the 16 Galilean-invariant building blocks (2.7) for DM
with spin 0 or 1/2. The approaches taken so far in the
literature are to compute the NR theory of selected models
of DM-nucleon interactions, or otherwise to study the
phenomenology of the NR building blocks regardless of
their possible origin in high-energy models. The question
remained, whether all the building blocks (and more in
general all the possible NR operators) can appear inde-
pendently, or appear at all. In fact, there may in principle
exist some degree of dependency among the different
building blocks, possibly dictated by subtle constraints
imposed by the Lorentz symmetry of the high-energy
theory, which the simple models explored so far were
unable to reveal.

To answer this question, we classified in this work a
comprehensive list of amplitude terms encompassing the
most general Lorentz-covariant 2-to-2 DM-nucleon scatter-
ing amplitude, and determined for each of them the relative
NR operator at leading order in the NR expansion. We did
so for DM particles with spin O and 1/2, and treated both
the case of elastic and inelastic (endothermic and exother-
mic) scattering. This complete Lorentz-to-Galileo mapping
can be used to determine the NR DM-nucleon interaction
and the associated nuclear form factor, without the need to
perform (almost) any computation. Once the relativistic
scattering amplitude is expressed as a linear combination of
our comprehensive set of Lorentz structures, our dictionary
immediately returns the associated NR theory. From there,
the formalism of Refs. [2,8] to determine the relevant DM-
nucleus scattering cross section can be straightforwardly
applied. Our mapping can be used with both renormalizable
and nonrenormalizable theories (such as effective field
theories at all orders), at any order of a perturbative
expansion. The dictionary itself can be found in Table I
for spin-0 DM and in Table III for spin-1/2 DM.

Using this complete dictionary we were able to reach the
following conclusions. All 16 (4) NR building blocks (2.7)
are generated independently at leading order of the NR
expansion, for spin-1/2 (spin-0) DM. This could be seen as
a confirmation that Lorentz invariance does not impose
further constraints than Galilean invariance at the consid-
ered expansion order. This also holds for self-conjugated
DM, despite the restrictions that apply to the scattering
amplitude in this case.

While all NR building blocks can also appear naturally
multiplied by a power of the squared three-momentum
transfer g%, not all appear multiplied by powers of the
squared transverse velocity vZ? without cancellation of the
leading-order contribution. In particular, O, = v5%0,
cannot appear at leading order in a theory of spin-0 or
spin-1/2 DM without cancellations. While this result was
known for the simple models studied at tree level in the
literature so far, our work proves its validity at any order of
a perturbative expansion and for any renormalizable or
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nonrenormalizable Lorentz-invariant theory, including
effective field theories at all orders.

The NR matching of the effective field theory of a singlet
DM field in terms of the building blocks (2.7) was only
studied in the literature up to dimension 6, e.g., in
Refs. [6,26]. Not all the NR building blocks appear at
dimension 6 or below, but predicting at what order of the
effective field theory expansion these operators arise,
without examining one by one all effective operators of
increasing dimension, is impossible in the effective field
theory approach. This can instead be done within our
framework. One can first select in Table I and Table III the
Lorentz structures with the lowest mass dimension which
map to the NR operator of interest. It is then easy to infer,
assuming all factors of momenta come from derivatives,
the effective operators whose matrix element equals those

Lorentz structures (see Secs. I[II A4, IIIB 4, IV B and IV C|

for some examples). Doing so, we can predict that the
building block O; does not arise at tree level below
dimension 8 for complex scalar DM, and dimension 10
for a real scalar. O,, which can arise a dimension 6 for a
complex scalar, does not arise at tree level below dimension
8 for a real scalar. For Dirac DM, O3, O3, O14, Oy5, Oy,
and O can appear at tree level in the effective field theory
at dimension 8,7, 7,9, 8, and 9, respectively. For Majorana
DM, Oy, O4, Os, Og, Oy, O5, and O}, cannot appear at
tree level below dimension 6, 6, 8, 6, 8, 8, and 9,
respectively.
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APPENDIX: MAPPING FOR SPIN-1/2 DM

Table III contains the Lorentz structures one can form with the amplitude coefficients given in Sec. III B, see Sec. IV C
for further detail. For each Lorentz structure we indicate the NR operator it matches to, together with its P and 7 quantum
numbers. In the last column we indicate the 793 parity, which is relevant for Majorana DM (see Sec. III B 4. In this case one

has to set 6 = 0).

TABLEIII.  Same as Table I but for spin-1/2 DM. The last column reports the 794 parity of each structure, relevant

for a Majorana fermion (see Sec. Il B 4): each structure with 793¢ = +1 (—1) can only appear in the scattering
amplitude multiplied by a scalar function with #¢ = +1 (—1) (notice also that § = O for self-conjugated DM).

Lorentz Structure NR Operator P T nonc
Iy dmmy O, + +
[ Uys —4mQOq - - +
Lysln 4my Oy, - - +
LysDns 404 + 4+ +
[YK Uy 8mm% 0, + + -
7K Ls —8mmyO - - -
I7sKo Iy 16mm% Oq - + =+
[VsKoLys —16mmy O3 + - +
TRy —16mm3 (¢ Ox + i60y) -+ 1
YA ys 16mmy (q* O3 — i60¢) + - +
[7sAdly 32m*m3,Os + o+ -
F;SAU:FNS 32m?myO;s - - -
TYK, ATy 64m>my (05> Oy, = i60y) - -
T K AgTys 64m>m3 (v52Og + i60,3) + o+ +
TPy 8m*my O, + + —
r,P,Is —16m*my0O; -+ -
TysPuly 8mmyOyy - - -
FXSP;:F’;\IS —16mmyO,4 + - -
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TABLE III. (Continued)

Lorentz Structure NR Operator P T ninC
r,AI 16m*my(q*O; + i60,4) -+ -
T, A,ys 32m*m%, 0, + + _
[sA,I 16mmy(q> O,y — i60¢) + — -
T8, 32mm3,(¢* Oy — O15 + i60y) - - -
BA VS 4mmy O, + + -
T ys,, —8my(mO; + Oq) - + -
YTy, 8m(myOg — Oy) — + +
Ff;sFNsu —16mmy0, + + +
IK,P,T 16m*m3,0, + + +
9K, P,ys =32m*m}, O, -+ +
K. P.Ty 32m?>m3%,0g - ¥ -
F}lsKaP”F% —64m>m3,0,4 + + -
ek, A, 32m?>m3, (> O + i80,) -+ +
4K, A, s 64m*m3 O, + o+ +
T8 K A, Ty 64m*m%(q*Oy6 + i60;3) +  + -
T2 KA, Tys 128m?>m3 (v52O0g + Oy7 — i80,) -+ -
TYA,P, I =32m*m3,(¢*Og + i50y,) -+ -
T3A.P,Tys 64m*miy (4> O\ + i5014) + o+ -
[Y5A.P Uy 64m3m3,Os + + +
T% AP, Uys —128m3m3,0,, - 4 +
e pkly —16immy60, - - +
IYenpklys 32mmy (O3 = i80,) + - +
T2se gk Ty 32m*my (O, — i60y) + - -
Teseaurk s 64m*m3,0y, - - -
TS €qup Uy 8m|q*(myOg — Og) + im0, ] - + +
iT8€,p,ys 16mmy (O — g*O,) + + +
iF)(;SgaMPqF/IlV 16m*(~q* O = myOs + Og) + + -
i s€aupqlns =32m*my Oy -t -
T equrgy =8my[q*(mO; + Oy) + im50, ] -+ -
T eaurql s 16m3 (-mOs = ¢*O4 + Og) +  + -
%Sk g 16mmy (—q*O4 + Og) + + +
s Eauial s —32mm3 Oy - ¥ +
KDy 16mmy (0,4 — i60,) + - -
/K, Lys,, 8my (=049 + 4mO,) - - -
TSKayy 16mmy Oy - + -
TS Kol ysy 32mm3,0, + + -
ALy, 32m?my[-myvi? Oy + ¢*O1p = Oys + i8(my O + Oy)] - - +
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TABLE III. (Continued)

Lorentz Structure NR Operator P T ninC
LA ys, 64m*my, (=013 + Oyy) + - +
F;D;ﬂKaS/jypkrlfv —16mm%[q*O7 + 4mO,;7 + i8(Oyy — 4mO,,)) - + +
F;((lﬂKagﬁﬂPKrlzf/s 32mm3,(—O3 + 4mv2 0y — 4mOi4) + + +
Ty K wepup 32mPmy (=myvii* Oy + ¢*O1y = O5 + imy50y) - - +
iF?ﬂKaeﬂﬂPqF’;vs 64m>m3, (014 — i60,) + - +
TP K e g 32mmy (q* Oy = Oys) - - -
T K we s 64mm3, (0,4 — i60,) + - -
T K, AP, T, 128m3m3, (v52 04, — i80g) - - -
T K, AP, T, 256m’ m (—vy* O + i80s6) + - -
I,P,ATY 64m>*m3,(—v52O0y9 + i807) - - +
I,sP, ATy 64m*m3 (v52O0g + i6014) + 4+ +
Dy P Ty, 16mmy(—0,3 + i50,) + - +
Y PTys,, —16mmy Oy - + +
P Ty, —8m*(Oy; + 4myO)) - - -
Y PTysy, —32m2my O, +  + -
ATy, 32mm% (—-mvi2 0,9 — Oy5 + ims0;) - - +
YA Ty, 64m>m3, (=013 + Oyy) + - -
YK, P, AT 128m*m3, (—v520y9 + i807) - - -
T8K P ATy 256m3m3, (—v52 O3 + i60¢) + - +
Teqpx PN —16m*my(q*Og + dmyvi2Og + 4my O, + i60; ) - + -
TeeqpkP,TY 32mPmy (=4myvi04 + Os + 4myO¢) + 4+ +
T2€0up, PTY 32m*my (=05 + i60,) - - -
A 64m3my (=05 + i60,) + - +
T2€uka PN 32mm3, [-mvi2 0 — Oy5 + i6(mO7 + Oy)] - - +
i eauicgPLTN 64m>m3, (=05 + i60,) + - -
T 32mmpy O, + + -
|09 BV 8(myOyg — mOy; — 4mmyOy;) - - -
YK, PTy,, dmmy(q*O) + 4myO; — 16mmyv 2Oy + 4mOs + 16mmyO ) + 4+ +
Ko P Ty 16m?my(O;y + 4myO;,) - - +
LK P Tys, 16mm%(—=Oyy + 4m0O,) - - +
K ATy, =32mm3, (q*O7 + 4mO,; + i50,) -+ +
| A=A BN —64m>m%, 0, - - +
iF;'?”eéquNm 32m%my O, - + +
iF;”e;KqFNﬂb 32mm3,0y - + -
r)‘;/}KaEﬂ”Pprrlj‘v” 64m*m% [v52(—myOy + mOyy + dmmyO,5) + i8(myO7 — mOy)] - - -
iF}lﬂKas/;,,qu,,F’ﬁ/ —128im*m%60,, - + -
iF}IﬁKGE/;,,KqP,,F/ﬁ —-128im*m3,80,, - + +
T AP Ty 32m*my[q? O + 4myvi2 Oy + 4myOy7 + i5(Oyy — 4myO,)] - + -
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