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In anticipation of a LIGO detection of a black hole/neutron star merger, we expand on the intriguing
possibility of an electromagnetic counterpart. Black hole/Neutron star mergers could be disappointingly
dark since most black holes will be large enough to swallow a neutron star whole, without tidal disruption
and without the subsequent fireworks. Encouragingly, we previously found a promising source of
luminosity since the black hole and the highly magnetized neutron star establish an electronic circuit—a
black hole battery. In this paper, arguing against common lore, we consider the electric charge of the black
hole as an overlooked source of electromagnetic radiation. Relying on the well known Wald mechanism by
which a spinning black hole immersed in an external magnetic field acquires a stable net charge, we show
that a strongly magnetized neutron star in such a binary system will give rise to a large enough charge in the
black hole to allow for potentially observable effects. Although the maximum charge is stable, we show
there is a continuous flux of charges contributing to the luminosity. Most interestingly, the spinning charged
black hole then creates its own magnetic dipole to power a black hole pulsar.
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I. INTRODUCTION

The LIGO collaboration recently announced the first
detection of gravitational waves from a neutron star (NS)
collision [1]. Stepping on the heels of the gravitational
wave train, all manner of fireworks are anticipated when the
dense neutron-star matter crushes together. Anticipations
were beautifully confirmed since the FERMI and INTEGRAL
satellites detected a gamma-ray burst from the same direction
[2–4]. Over the next two weeks, dozens of instruments and a
significant fraction of the astronomical community directed
their focus and witnessed pyrotechnics in the aftermath across
the electromagnetic (EM) spectrum [5]. The era of multi-
messenger astronomy has begun spectacularly.
At the other extreme, black hole (BH) collisions are

expected to be spectacularly dark. The LIGO BH mergers
exhibited no detectable electromagnetic counterpart,
although there were intriguing gamma-ray signatures from
near GW150914 and GW170104 ([6–8], and see D’Orazio
and Loeb [9] and references therein), that may or may not
have been correlated with the gravitational-wave events.
BHs are empty space and their merger will be invisible,
unless dressed in ambient debris. The BH collisions were
the most powerful events detected since the big bang and

yet it is possible that none of the energy came out in the
electromagnetic spectrum. All of the energy emanated in
the darkness of gravitational waves.
Next in the compact object combinatorics will inevitably

be black hole/neutron star (BH/NS) collisions. While the
tidal disruption of the NS in these systems could occur for
the smallest BH partners, resulting in a short gamma-ray
burst [e.g., [10,11]], BHs larger than ∼8 M⊙, will swallow
the NS whole—an expectation further endorsed by the
large BHs LIGO observed [12–15]. Without tidal disrup-
tion, there is not an obvious source of light.
Fortunately, there is another mechanism for the system to

light up: the Black Hole Battery [16–18]. NSs are tremen-
dous magnets. As they whip around a BH companion, the
orbiting magnet creates a source of electricity. How this
electricity is channeled into a light element remains some-
what uncertain although we have suggested several viable
channels, including synchro-curvature radiation, a fireball,
and a fast radio burst [19,20].
In this article we argue that another largely overlooked

EM channel requires further exploration: BH charge.
Historically, a dismissive argument has been made that a
charged BH will discharge essentially instantaneously,
the electromagnetic force being so excessively strong.
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Any errant charges will easily and swiftly be absorbed from
the interstellar medium to counter the charge of the BH, the
argument goes. However, as shown in an elegant paper by
Wald in 1974 [21], a BH immersed in a magnetic field
actually favors charge energetically. In other words, the BH
simply will acquire stable charge if it spins in a magnetic
field. We therefore expect a BH battery—a BH pierced by
the field lines of an orbiting NS magnet—to acquire a
significant charge of the Wald value, QW ¼ 2BoaM where
Bo is the strength of the NS dipole field at the location of
the BH of mass M and a is the spin of the hole. Since
magnetic dipoles drop off quickly, by r−3, the Wald charge
is small until the final stages of merger. See Refs. [22–24]
for interesting recent studies of electromagnetic counter-
parts in charged BH/BH mergers, Ref. [25] for work on
gravitational collapse to a charged BH, and Ref. [26] which
considered the Wald mechanism applied to the central
galactic BH.
The no-hair theorem is often misinterpreted as enforcing

zero magnetic fields on a BH in vacuum. Actually, and
more sensibly, the no-hair theorem ensures that the only
magnetic field a BH can support is consistent with a
monopole of electric charge. A spinning electric charge
naturally creates a magnetic dipole. So a spinning charged
BH has all of the attributes of a pulsar: spin, a magnetic
field, and a strong electric field to create a magnetosphere.
We predict the formation of a short-lived and erratic BH
pulsar prior to merger that could well survive briefly
postmerger before the magnetosphere and charge dissipate.
The characteristics of the BH pulsar follow from the NS

magnetic field. The Wald charge on a BH immersed in an
external NS dipole field, which drops off as the cubed
distance between the two, r−3, would be

QW ≈ 10−7M

�
a
M

��
M

10 M⊙

�
2
�

BNS

1012 G

��
RNS

r

�
3

: ð1Þ

Here BNS is the NS’s magnetic field at the surface of the
NS and RNS is the radius of the NS. Note that r ≥ RNS.
At its maximum, QW;max ∼ 10−7 M (which comes to
≈1024 statCoulombs), so we can still use the Kerr solution.
Assuming a NS with a mass of 1.4 M⊙ and angular spin
frequency ofΩNS ¼ 0.1 seconds, we find that when the BH
enters the light cylinder of the NS, r ¼ RLC ¼ c=ΩNS, the
charge is 10 billion times smaller, QLC ∼ 10−10QW;max.
Over the next tmerger − tLC ∼ 3 years the charge increases.
In the final minute of inspiral, when the binary is emitting at
≳17 Hz, in the LIGO band, the charge increases by a factor
of a million. As r → RNS, Q → 1033e which is only about
103 kgs of electrons.
For reassurance that the black hole actually has time

to acquire charge, we estimate the charging timescale.
While there are lots of uncertainties in such an assessment,
we consider an initially vacuum configuration that siphons
charge from the magnetosphere of the NS. Then the

charging timescale can be estimated as the light
crossing time of the BH/NS system, r=c. The ratio of
gravitational waves (GW) inspiral time to the charging time
is tGW=ðr=cÞ ≈ 1.5ðr=ð2GM=c2ÞÞ3 for the fiducial binary
values chosen here, which confirms that the charging
timescale is much shorter than the inspiral timescale until
merger. Longer charging timescales could arise in non-
vacuum, force-free magnetospheres [e.g., [27]]. However,
because of the r3 dependence in the timescale ratio above,
one would need the charging timescale to be Oð103Þ times
longer than the light crossing time to mitigate the BH
charge in the last second of inspiral. This estimate is
encouraging, suggesting that the black hole would have
time to charge before merger.
Once charged, the spinning black hole supports a

magnetic dipole field. Take the magnetic dipole moment
of the BH to be of order m ∼QWM. The BH B-field is
comparable to, though of course less than, the field in
which it is submerged. We can estimate the magnitude of
the B-field as BBH ∼m=r3. Then using QW ¼ 2BoaM with
Bo given by the dipole field of the NS at the location of
the BH,

BBH ¼ 1
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: ð2Þ

One factor of a determines the magnitude of the Wald
charge while the other determines the magnitude of the
magnetic moment sourced by the spinning, charged BH.
Pulsars are hard to see far away (i.e., outside of the galaxy),
so we consider other channels for luminosity than just the
BH pulsar.
In addition to the BH pulsar, we suggest that the flux of

charge around the BH will create significant luminosities
potentially detectable for the range of instruments in the
LIGO network. There are two clear opportunities for
particle acceleration: At the moment the BH charges up
premerger and the moment the BH discharges postmerger.
A third interesting possibility is the continual fluxing of
charges within the magnetosphere. Although the Wald
charge appears to be stable, negative and positive charges
continue to course along field lines since in vacuum
E · B ≠ 0. And, as we discuss in Sec. V, there is no value
of the charge for which E · B ¼ 0 everywhere.
As an order of magnitude estimate, we calculate the total

power that could be released if a fraction f of the power
associated with the Wald charge in the Wald electric field,
EW , were released,

fQWEWc ≈ 2 × 1045 erg s−1

× f

�
BNS

1012 G

�
2
�
RNS

r

�
6
�

M
10 M⊙

�
2

;

where, for the electric field, we use the horizon Wald
electric field at the poles, within an immersing magnetic
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field corresponding to a NS with surface magnetic field
BNS, at a distance of 3RNS,

EW ≈ 3.3 × 1010 statV=cm

�
BNS

1012 G

�
: ð3Þ

This is of order the largest electric field achievable in the
system and will decrease for larger BHs that cannot
approach as closely the magnetic field of the NS.
Now, it is fair to expect that given the large electric fields

involved, the BH will create its own magnetosphere [e.g.,
[28,29]], as well as enter the magnetosphere of the NS. As
the system transitions from vacuum to force-free, the Wald
argument no longer holds. Do force-free BH systems also
have charge and regions of particle acceleration, as a
neutron star pulsar does? That remains an open question
that we intend to investigate in full numerical general
relativity. Compellingly, we do show that even the classic
Blandford-Znajek solution has a small charge. It’s also
worth noting that the Goldreich-Julian pulsar [30] is force-
free and charged [31].
Before we proceed, a quick comment on notation. Where

unambiguous, wewill suppress index notation and use a · to
indicate a sum over 4-indices. Between vectors this is
unambiguous. For tensors, the order determines the index
to be summed. By example, for 2-tensors (or pseudoten-
sors) H and K, H · K sums the final index of H over the
first index ofK. ExplicitlyH · K ¼ HαμKμβ. The placement
of the free indices up or down is ambiguous in this notation.
A double ·· means H · ·K ¼ Hαμ · Kμβ ¼ HαμKμα. We will
resort to explicit indices as required in context.
We will work as generally as possible but when the time

comes to restrict to the particular Kerr metric, we use
Boyer-Linquist coordinates:

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ ðr2 þ a2Þ2 − Δa2sin2θ
Σ

sin2θdϕ2

−
4Mar sin2θ

Σ
dtdϕ; ð4Þ

with

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 þ a2 − 2Mr: ð5Þ

There are a number of useful metric quantities that greatly
ease calculations and that we compile in the Appendix.
The paper is outlined as follows. In Sec. II, we review

Wald’s argument for the charging up of a Kerr BH in a
uniform magnetic field (the Wald solution). In Sec. III we
present the equations of motion for test charges in the Wald
solution. In Sec. IV we consider charge accretion in the

Wald solution, at the poles of the BH, and its need for
generalization to charge accretion in the global spacetime.
Section V presents numerical solutions to the equations of
motion for test charges in the Wald fields addressing the
question of global charge accretion. Section V also con-
siders EM emission from the acceleration of test charges in
the Wald field. Section VI briefly considers BH charge in
the force free limit. Section VII concludes.

II. REVIEW OF WALD’S ARGUMENT

We begin with Wald’s elegant EM solution around a
spinning BH immersed in a magnetic field that is uniform at
infinity [21]. The generalization including the backreaction
of the EM field on the geometry has been studied in
[32,33]; see also [34] for a related analysis of a moving BH.
The vacuum Maxwell equations are

D · F ¼ 0 ð6Þ

for F ¼ dA, where d is the usual exterior derivative and A is
the vector potential. Imposing the Lorentz gaugeD · A ¼ 0,
Maxwell’s equations for the vector potential become

ðD ·DÞA ¼ 0: ð7Þ

Wald’s solution leverages the Killing vectors ψ and η that
correspond to the axial symmetry and the stationarity of the
Kerr spacetime, respectively. Killing vectors satisfy
Killing’s equation DðμψνÞ ¼ 0, which we massage into a
new form after taking another covariant derivative

DμDðμψνÞ ¼ DμDμψν þDμDνψμ ¼ 0: ð8Þ

We swap the order of the derivatives in the second term on
the lhs using

DμDνψ
μ ¼ DνDμψ

μ þ Rμνψ
μ: ð9Þ

For the vacuum Kerr solution Rμν ¼ 0 and Killing’s
equation ensures D · ψ ¼ 1

2
gμνDðμψνÞ ¼ 0, which together

render DμDνψ
μ ¼ 0. Consequently, Eq. (8) is just

ðD ·DÞψ ¼ 0; ð10Þ

which is precisely Eq. (7), Maxwell’s equations for the EM
vector potential in Lorentz gauge. Beautifully, the Killing
vectors are automatically solutions of Maxwell’s equations.
The vector potential is then a linear sum of the Killing
vectors ψ and η with constant coefficients.
Using Gauss’s Law and the geometric interpretation of

the Killing vectors [21], the coefficients can be chosen to
find the uncharged solution that asymptotes to a uniform
magnetic field Bo,
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A ¼ 1

2
Bo

�
ψ þ 2a

M
η

�
: ð11Þ

And in a few short steps we have the full EM solution for an
uncharged BH of spin a aligned with an otherwise uniform
magnetic field Bo.

III. EQUATIONS OF MOTION

To track the motion of charged particles we begin with
the super-Hamiltonian in terms of the canonical momentum
π [35]:

H ¼ 1

2
ðπ − qAÞ · ðπ − qAÞ: ð12Þ

The 4-velocity is defined as u ¼ _x, where a dot denotes
differentiation with respect to proper time τ so that
u · u ¼ −1. We also define p ¼ mu so that p · p ¼ −m2.
The first of Hamilton’s equations gives

p ¼ ∂H
∂π ¼ ðπ − qAÞ: ð13Þ

The other of Hamilton’s equations yields the equations of
motion

ðp ·DÞp ¼ qF · p; ð14Þ

where the rhs is the relativistic Lorentz force.
For a stationary, axisymmetric spacetime with a sta-

tionary, axisymmetric electromagnetic field, there are two
immediate constants of the motion. More formally, for any
Killing vector ψ, if the Lie derivative of the electromagnetic
field vanishes,

LψA ¼ ψ ·DA − A ·Dψ ¼ 0; ð15Þ

then the quantity π · ψ is conserved along the worldline:

p ·Dðπ · ψÞ ¼ d
dτ

ðπ · ψÞ ¼ 0: ð16Þ

Our two Killing vectors yield a conserved energy ε and a
conserved angular momentum l:

ε ¼ −π · η;

l ¼ ψ · π: ð17Þ

As Carter usefully showed, for a Killing tensor K there is
an associated conserved quantity in the absence of an
electromagnetic field, the Carter constant K · ·uu. Naively
we would expect that when A ≠ 0, that K · ·ππ is con-
served, if the field respects some suitable restrictions. It is
not clear what these restrictions are, as there is no obvious
analogue of Lie derivative with respect to a rank-2 tensor.

In fact, using a method developed by Van Holten [36],
Ref. [37] established that there is no conserved quantity
associated with the Killing tensor of the Kerr spacetime
whenever the external magnetic field is nonzero (see also
[38] for a more recent and general analysis). This is further
supported by numerical studies of charged particle motion
around a magnetized Kerr BH, which evidence chaotic
behavior and hence the nonintegrability of the equations of
motion [39,40].

A. Carter constant

Although a proof of the absence of a Carter constant
exists in the references cited above, we present a simple
little argument here that suggests another route to the proof.
Carter showed that for a Hamiltonian of the form

H ¼ Hr þHθ

2ðUr þUθÞ
; ð18Þ

where Ur is solely function of r, Uθ is solely a function of
θ, Hr is a function of r and all π’s except πθ, and Hθ is a
function of θ and all π’s except πr, there exists a

K ¼ UrHθ − UθHr

ðUr þUθÞ
; ð19Þ

such that the Poisson bracket vanishes:

fK;Hg ¼ ∂K
∂xi

∂H
∂πi −

∂K
∂πi

∂H
∂xi ¼ 0: ð20Þ

In other words, K is a constant of motion. The proof goes
like this: We rewrite

K ¼ 2UrH −Hr: ð21Þ

Then

fH;Kg ¼ 2fH;UrgH − fH;Hrg: ð22Þ

By design

fHr;Hθg ¼ 0;

fUr;Uθg ¼ 0: ð23Þ

We also note that

fH;Hrg ¼ −
H

ðUr þUθÞ
fUr;Hrg ¼ −2HfUr;Hg: ð24Þ

Using these in the original Poisson bracket, we quickly get
that

fH;Kg ¼ 0; ð25Þ
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and K is conserved. We could equally well have written
K ¼ −2UθH þHθ and followed through to the same
conclusion.
For a charged, Kerr BH, the vector potential is just

A ¼ −
Q
2M

η; ð26Þ

and the Hamiltonian becomes

H ¼ 1

2
ðπ − qAÞ · ðπ − qAÞ ¼ 1

2
ðπ · π − 2qπ ·Aþ q2A ·AÞ;

ð27Þ

which this has the form of Eq. (18) with

Hr ¼ Δπ2r −
ðr2 þ a2Þ2

Δ
π2t −

a2

Δ
π2ϕ

þ −
4Mar
Δ

πtπϕ þ
qQ
M

r2πt −
q2Q2

4M2
Δ

Hθ ¼ π2θ þ a2sin2θπ2t þ
1

sin2θ
π2ϕ

þ qQ
M

a2cos2θπt þ
q2Q2

4M2
a2sin2θ

Ur þUθ ¼ Σ: ð28Þ

So the charged, Kerr solution has a conserved K.
However, when the vector potential has the form

A ¼ ctηþ cϕψ ; ð29Þ

as it does in our setting, then the Hamiltonian has the form

H ¼ Hr þHθ þH×

2ðUr þUθÞ
; ð30Þ

where we replace

−
Q
2M

→ ct

Hr → Hr − 2qr2cϕπϕ

Hθ → Hθ − 2qa2cos2θcϕπϕ; ð31Þ

and

H× ¼ q2Σðc2ϕψ · ψ þ 2cϕctη · ψÞ
¼ q2sin2θðc2ϕððr2 þ a2Þ2 − Δa2sin2θÞ − cϕct4MarÞ;

ð32Þ

and H× is a function of ðr; θÞ that is no longer separable.
Suppose we try to find a new constant, K̄, by examining the
nonvanishing piece of fH;Kg for K ¼ 2UrH −Hr. If we
can rewrite fH;Kg ¼ fH;Zg then we can subtract Z to

find a new constant, K̄ ¼ K − Z. The nonvanishing piece
comes explicitly from the term fH;Hrg,

fH;Kg ¼ −
1

2ðUr þ UθÞ
fH×; Hrg: ð33Þ

We can in fact manipulate this into the form fH;Zg:

fH;Kg ¼ −
1

2ðUr þ UθÞ
fH×; Hrg

¼
�

Hr

2ðUr þUθÞ
; H×

�

¼
�
H −

Hθ

2ðUr þUθÞ
; H×

�

¼ fH;H×g þ
1

2ðUr þ UθÞ
fH×; Hθg

¼ fH;H×g þ fH;Hθg þ
H

2ðUr þ UθÞ2
fUθ; Hθg

¼ fH;H×g þ fH;Hθg − 2HfH;Uθg
¼ fH;H× þHθ − 2UθHg ¼ fH;Zg: ð34Þ

Notice that the Poisson bracket with Z is not zero unless
H× ¼ 0. Subtracting Z from K gives our new constant

K̄ ¼ K − Z ¼ 2ðUr þ UθÞH − ðHr þHθ þH×Þ; ð35Þ

but this is identically zero. In other words, we have lost our
Carter constant and the equations are anticipated to be
nonintegrable, permitting chaotic behavior.
Granted, the above argument lacks the compelling

feature of the uniqueness of K̄, which we have not proven.
And this might even seem like a slight of hand. But notice
that this method would have led to the correct form for K in
the charged Kerr solution. Start with −Hr. Take fH;−Hrg
with H× ¼ 0 and reexpress as fH;Zg:

fH;−Hrg ¼ H
ðUr þ UθÞ

fUr;Hrg

¼ −2H
�

Hr

2ðUr þ UθÞ
; Ur

�
¼ −2HfH;Urg
¼ fH;−2UrHg ¼ fH;Zg ð36Þ

to find K ¼ −Hr − Z ¼ 2UrH −Hr, which is Eq. (20) as
promised.
Notice, we do have a Carter constant in the equatorial

plane because H× becomes separable when θ is constant at
π=2 and for radial motion along the poles because H× ¼ 0
when θ is constant at 0 and π.
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IV. CHARGE ACCRETION

Now here is where the situation gets interesting for us in
the astrophysical context. The uncharged solution is unsta-
ble to the acquisition of charge. Wald demonstrates that a
positive charge released from infinity along the pole will be
accreted onto the BH and a negative charge will be repelled
(if the BH spin aligns with Bo, and the reverse if the spin is
antialigned). Without loss of generality, we assume aligned
spin in the discussions.
Wald’s argument, based on energetics, as interesting as it

is, restricts to the poles and is not transparently covariant.
Carter showed that the electrostatic potential for a ZAMO
(zero angular momentum observer) is constant on the
horizon, which means Wald’s argument applies off the
poles if you ask a ZAMO [41]. However, as we show that
does not equate to E · B ¼ 0. We will run through the
dynamics on the symmetry axis before delving into the
implications of generalizing off the poles.
Lower a charged test particle with charge q down the axis

of symmetry along the poles (θ ¼ 0; π) from infinitely far
away to the horizon at r ¼ rþ. The conserved energy is

ε ¼ −π · η ¼ −ðp · ηþ qA · ηÞ: ð37Þ

The first term is the kinetic energy, according to an observer
on the worldline u ¼ η, and the second term is an
electrostatic potential energy. Focusing on the second term,
the change in the electrostatic energy of the particle at the
horizon versus at infinity is

δε ¼ −qA · ηjrþ þ qA · ηj∞: ð38Þ

From this and the electromagnetic four-potential for the
fields around an uncharged BH (Eq. (11) we find a so-
called injection energy

δε ¼ −qA · ηjrþ þ qA · ηj∞
¼ −q

�
1

2
Boðψ · ηþ 2aη · ηÞ

�����rþ
∞

¼ −q
�
1

2
Boðgtϕ þ 2agttÞ

�����rþ
∞
: ð39Þ

On the poles gtϕ ¼ 0, and on the horizon gtt ¼ 0 while
gtt ¼ −1 at infinity giving

δε ¼ −qBoa: ð40Þ

Since δε=q < 0 for a positive charge, the potential is higher
at infinity and lower at the horizon. Intuitively, the electric
field, and therefore the electric force on a positive charge,
will point from high to low potential. So we therefore
expect the BH to accrete positive charges until δε=q ¼ 0.
A BH of charge Q in a uniform field Bo has electro-

magnetic four potential

A ¼ 1

2
Boψ þ 1

2M
ð2BoaM −QÞη: ð41Þ

Running through the same argument for a test charge q
lowered from infinity to the event horizon of a charged BH,
the change in the electrostatic energy is

δε ¼ q

�
Q
2M

− Boa

�
: ð42Þ

ForQ ¼ QW ≡ 2BoaM, the energy difference vanishes and
the BH has charged up to a stable value.
However, this argument is not explicitly covariant. Only

an observer on the worldline u ¼ η measures the electro-
static potential as

V ¼ −A · η: ð43Þ

The set of such (noninertial) observers cannot fire rockets
hard enough when too near the event horizon. In other
words, close enough to the BH, there is no such timelike
worldline. A stronger argument, which we will pursue in a
subsequent section would be to look for force-free sol-
utions, which require the covariant condition

1

4
TrðF · F̃Þ ¼ E · B ¼ 0: ð44Þ

And, in fact, E · B ¼ 0 along the poles only when the BH
has acquired the Wald charge. This confirms the argument
that when the BH is charged toQW ¼ 2BoaM particles will
no longer experience EM forces along the poles.
However, this argument does not generalize off the

poles. Away from the poles, A · η ≠ 0 since both ψ · η
and η · η are nonzero and theta dependent. Consequently,
there is no value of Q which kills δε.
Off the poles, we could ask a ZAMO what she sees in

terms of the electrostatic energy. A particle has zero angular
momentum when l ¼ 0. If we take the particle off a
geodesic, set _θ ¼ 0 and fire rockets so that _r ¼ 0, then

uZ ¼ utðηþ ΩψÞ; ð45Þ

and for q ¼ 0,

l=m ¼ 0 ¼ uZ · ψ ¼ uZϕ ¼ utðψ · ηþ Ωψ · ψÞ; ð46Þ

which fixes Ω to the ZAMO’s angular velocity:

Ω ¼ −
ψ · η
ψ · ψ

¼ −
gtϕ
gϕϕ

¼ 2Mar
ðr2 þ a2Þ2 − Δa2sin2θ

: ð47Þ

Then u · u ¼ −1 fixes ut,

ðutÞ2ðη2 þΩ2ψ2 þ 2Ωη · ψÞ ¼ ðutÞ2ðη2 þΩη · ψÞ ¼ −1:
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Expressing this in terms of metric components, and using
the useful relations in the Appendix, we have

ut ¼ g1=2ϕϕ

ð−gttgϕϕ þ gtϕgtϕÞ1=2
¼ ð−gttÞ1=2:

The ZAMO would also conclude that at the Wald charge
δε vanishes. But this argument is pretty weak, given its
reliance on a particular observer.
Furthermore, there is no value of Q for which the

covariant quantity E · B ¼ 0 everywhere. In other words,
although charges along the pole will not experience EM
forces when the BH has the Wald charge, particles every-
where else will experience forces and will continue to flux
around, creating regions of particle acceleration and there-
fore also the potential for EM radiation. To make unam-
biguous claims about the flow of charges required we will
examine the dynamical equations, which we do next.

V. PARTICLE ACCELERATION

Considering the equations of motion again,

ðp ·DÞp ¼ qF · p: ð48Þ

Notice that the Lorentz force, on the rhs, is proportional to
the electric field, Eq ¼ F · u, as perceived by the charged
particle with 4-velocity u since in the particle’s own frame
there is no motion and so no magnetic force.
Now, the Lorentz force does vanish on the poles at

the Wald charge, but does not vanish off the poles.
Furthermore,

1

4
TrðF · F̃Þ ¼ E · B ≠ 0 ð49Þ

off the poles so particles can slide along the field lines as we
now show. Since E · B is a covariant quantity, we choose to
examine E · B ¼ EZ · BZ, in terms of the fields as measured
by a ZAMO. The electric field is

EZ ¼ F · uZ

¼ utZð∂A · ðηþΩψÞ þ ðηþ ΩψÞ · ∂AÞ: ð50Þ

The last term vanishes because of symmetries, giving

EZ ¼ ∂A · uZ

¼ −∂V − ∂uZ · A; ð51Þ

where

V ≡ −A · uZ ð52Þ

is the electrostatic potential as seen by a ZAMO. At the
Wald charge V ¼ 0 everywhere, but as Eq. (51) shows, EZ
is not necessarily zero everywhere when V is.

Meanwhile, since uϕ ¼ 0,

BZ ¼ −
1

2
ϵ̃μναβFαβuν

¼ −
1

2
ϵ̃μtαϕ∂αAϕut: ð53Þ

With ϵ̃trθϕ ¼ 1ffiffiffiffi−gp ϵtrθϕ and the Levi-Civita symbol is defined

by permutations of ϵtrθϕ ¼ 1. Since ϵ̃μtαϕ ¼ −ϵ̃tijϕ, we can
write

EZ · BZ ¼ 1

2
ϵ̃ijϕð∂iAÞ · uZð∂jAϕÞut

¼ 1

2
ϵ̃ijϕð∂iAtÞð∂jAϕÞutut

¼ 1

2
ffiffiffiffiffiffi−gp ∂ ½rAt∂θ�Aϕ ¼ E · B ð54Þ

using utut ¼ −1. The final expression no longer depends
on the velocity of the observer, which is gratifying. The
expression is valid for all Q and for all θ and actually only
relies on the axisymmetry and stationarity of the spacetime
and the vector potential.
And here we get to the crux, there is no value of Q for

which E · B ¼ 0 for all θ as evidenced by the sequence of
plots in Fig. 1. This is also apparent explicitly on sub-
stitution of the expressions for EZ and BZ in the above
equation. At the Wald charge, E · B ¼ 0 at the poles and on
the equator, but at no other values of θ.
Since the Wald charge cannot kill E or E · B, it must be

that charges are accelerated along the B-lines. At first we
wondered if this suggested that the charge on the BH is
not stable. But investigating the flow of charges in the
following section reveals that the BH continues to absorb
positive and negative charges in equal measure, maintain-
ing Q ¼ QW .

A. Orbits of test charges

If we could analytically calculate a current density J,
then we could compute a flux across the horizon

Φ ∝
I
H
J · dA; ð55Þ

and determine if the flux is overall positive, negative,
or zero.
The current density is given by the product of the charge

density and its four velocity J ¼ ρu. For the purpose of
computing the sign of the horizon charge flux, we can
follow single charges and compute the quantity qu, for test-
charge q. We will not be concerned about the EM fields due
to these test charges. So if we can generally solve for u, for
any value of the BH charge and initial conditions of the
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charged test particle, then we can compute the sign of the
horizon charge flux and answer our question.
If we could determine an analogue to the Carter constant,

we would also know πθ ¼ muθ. Then we could use

u · u ¼ −1 ð56Þ

to solve for ur. We would then know the current and the
flux. However, as we’ve already argued we do not in
general have a Carter constant and so we cannot calculate u
analytically in general.
We can easily calculate the 4-velocity and thereby the

flux at the poles. Start a particle at rest at ri along the poles

ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2i þ a2Þ

Δi

s
η: ð57Þ

To find the orbit from this initial condition we use the
constant of motion ε (l ¼ 0) evaluated at θ ¼ 0. The
energy is fixed by the initial conditions:

εi ¼ m

�
Δi

r2i þ a2

�
1=2

þ q
2M

ð2BoaM −QÞ
�

Δi

r2i þ a2

�
:

Since this energy is conserved, we can set ε ¼
−ðmutgtt þ qAtÞ equal to its initial value εi to solve
for ut:

FIG. 1. Shaded contours of E · B=B2
o for the specified BH charge. Yellow shading is where E · B > 0 and blue shading represents

where E · B < 0. Magnetic field vectors, as seen by ZAMOs, are drawn as blue triangles while ZAMO electric field vectors are drawn as
red triangles. Each panel, from left to right, top to bottom is drawn for an increasing value of the BH charge Q, in units of the Wald
charge, QW . The black sphere sphere represents the BH horizon.
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mut ¼ εiðr2 þ a2Þ
Δ

−
q
2M

ð2BoaM −QÞ: ð58Þ

Notice that ut blows up at the horizon confirming infinite
time dilation at the horizon. Then from u · u ¼ −1, we have
the remaining component of the 4-velocity

ur ¼ �
�
−1þ Δ

r2 þ a2
ðutÞ2

�
1=2

�
Δ
Σ

�
1=2

: ð59Þ

At the poles the current into the event horizon, which has
a radial normal, is just J ¼ qu and clearly this current is
independent of charge only at the Wald value of Q because
ε becomes independent of q, as does ut and therefore ur.
To find the charge flux across the horizon anywhere else,

we numerically integrate the orbits of oppositely charged
particles.
As initial data we are free to set the clock to τ ¼ 0 and

the initial ϕð0Þ ¼ 0 due to the symmetry of the metric. We
choose to start orbits at rest uri ¼ uθi ¼ uϕi ¼ 0 at the radius
ri ¼ 40M (unless specified). We then vary the initial θi
over the range 0 ≤ θi ≤ π=2. The timelike condition
u · u ¼ −1 fixes uti ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−1=gtt

p
. The energy and angular

momentum are then found from Eq. (17), and will depend
on θi through the metric components:

ε ¼ m
ffiffiffiffiffiffiffiffi
−gtt

p
− qAt

l ¼ m
gtϕffiffiffiffiffiffiffiffi−gtt

p þ qAϕ: ð60Þ

Notice that each orbit has a different ε and l depending on
its initial θi and charge.
For each initial value of θi we numerically compute the

trajectories of a test mass with positive and negative charge.
While we do not extensively explore all possible initial
conditions, we note that the at-rest initial condition orbits
considered here have a similar quality in that they all orbit
at a constant cylindrical radius and rotate azimuthally
around the BH. The charges stay very close to their starting
cylindrical radius because they are confined to the vertical
magnetic field lines. The azimuthal rotation is due to the
E ×B drift, in the same direction for both signs of test
charge.
This simple qualitative behavior can lead to a number of

different fates for the test charge for which we plot
examples in Fig. 2, and categorize into four types:

(i) Expulsion from the system along B-field lines, when
E · B is initially directed out of the system for the
given test charge sign (see the top left panel
of Fig. 2).

(ii) Plunge into the horizon for charges that start at small
values of θi, such that their initial cylindrical radius
ri sin θi is small (see Fig. 3).

(iii) Regular vertical oscillations (in the direction of the
magnetic field and BH spin axis) at fixed cylindrical

radius for BHs with charge below the Wald charge
(see the top right panel of Fig. 2).

(iv) Nonregular vertical oscillations at fixed cylindrical
radius for BHs with charge above the Wald charge
(see the bottom left panel of Fig. 2).

These orbit types can be understood from the electric and
magnetic field structure of the Wald solution for different
BH charges. The electric and magnetic field vectors, along
with contours of E ·B are plotted in Fig. 1. The primary
change in field configuration with increasing BH charge is
the dominance of a quadrupolar electric field below the
Wald charge vs a predominately monopolar electric field
above the Wald charge. This follows since the electric field
sourced by the monopole of charge on the BH eventually
dominates over the quadrupolar electric field generated by a
Kerr BH in a uniform magnetic field [42]. The transition
occurs at the Wald charge, at which point the electric field
at the poles becomes zero, having opposite signs in the z
direction (direction of BH spin) below and above the Wald
charge. Across all cases the x-component (direction
perpendicular to BH spin) of the electric field does not
change appreciably.
For each of the panels for which Q ≠ QW in Fig. 1, it is

clear that there is a nonzero value of E ·B above the
poles of the BH. This means that in the top left panel,
for example, positive charges that start at an initial
position within the cylinder containing the BH horizon
(x2 þ y2 ≲ r2þ) will follow a trajectory directly into the BH
(e.g., Fig. 3). Test charges of the opposite sign of charge
will be expelled from the BH (e.g., the top left panel
of Fig. 2).
Consider further the Q ¼ 0 case displayed in the top left

panel of Fig. 1. Moving farther in the x-direction from the
BH (a larger cylindrical radius), the charges with negative
charge are still expelled as long as they are in the blue-
shaded region of negativeE ·B in the top hemisphere, or in
the yellow-shaded region of positive E ·B in the bottom
hemisphere, where the E-field is aligned to accelerate
negative charges out of the system along the z-directed
B-field. The positive charges, however, are no longer
guided by the B-field into the BH horizon, rather they
move in the negative z-direction until crossing a line
where E ·B changes sign, and hence the direction of the
z-component of the E-field changes sign. This results in a
vertical oscillation of the test charge about the E · B ¼ 0
line at ∼� 50° in the top hemisphere of the Q ¼ 0 panel
(and also the analogue in the lower hemisphere). E × B
drift causes the orbit to rotate azimuthally. This type of
regularly oscillating orbit can be seen in the top right panel
of Fig. 2.
A similar vertical oscillation occurs around the equator

(θ ¼ π=2) for negative charges. To see why this is, again
consider the upper hemisphere of the BH magnetosphere in
the Q ¼ 0 panel of Fig. 1. Negative charges with initial
conditions below the line where E · B becomes positive
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will be forced downwards initially along magnetic field
lines until they cross the equatorial plane, where the E · B
reverses sign again, forcing the negative charge back into
the upper hemisphere. Hence negative charges in the
equatorial regions are not expelled.
A similar situation as described for theQ ¼ 0 case holds

for Q < QW (e.g., the top right panel of Fig. 1). A
difference being that the monopolar E-field sourced by
Q is added to the quadrupolar E-field of theQ ¼ 0 case and

causes E ·B to change sign at a smaller θ than for Q ¼ 0.
This causes the region of stably orbiting positive charges in
the region between the poles and the equatorial plane to
shrink and move to higher latitudes until at the Wald
charge this region disappears because at Q ¼ QW , E · B
changes sign only at the equator and goes to zero at the
poles. Hence, at the Wald charge, test charges of both
signs fall in at the poles while in the equatorial region
negatively charged test charges orbit stably around the

FIG. 2. Examples of orbits of charged particles around the spinning BH in the Wald field, with at-rest initial conditions (ri ¼ 10M,
θi ¼ π=6). Red triangles are electric field vectors and blue lines represent the uniform immersing magnetic field, aligned with the BH
spin axis. The left column is for negatively charged test charges and the right column is for positively charged test charges. The initial
position of the charge is marked by a blue dot and the final position is marked by a red dot.
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positively charged BH, tracing out cylinders oriented along
the z-axis.
For Q > QW, as illustrated in the bottom right panel of

Fig. 1, the E-field is dominated by a monopole resulting
in an E ·B at the poles that is oppositely directed from
the Q < QW case. Hence, for Q > QW the BH prefers to
discharge back to the Wald charge along the poles. In the
equatorial region there still exist negative charges on
vertically oscillating orbits of nearly constant cylindrical
radius. However, as shown in the bottom and middle left
panels of Fig. 2, the vertical oscillations occur in much
more complicated patterns than in the Q > QW case. We
leave investigation of these orbits for future work.
This general description of orbits in the Wald field leads

to a global picture of charging and discharging of a
spinning BH in a uniform B-field that we summarize with
Figs. 4 and 5. In Figs. 4 and 5 we display the fate of test
charges for grids of initial conditions. In the left columns of
Figs. 4 and 5, we display the total flux evaluated at the
horizon for positively charged particles (red-dashed line),
negatively charged particles (blue line), and the total from
both charges (black-dashed line). Because this is the flux at
the horizon, the flux of positively charged particles (red) is
always less than or equal to zero while the flux of
negatively charged particles is always greater than or equal
to zero. This is because the flux is proportional to qur, and
ur < 0 for a particle falling into the horizon.
In the right columns of Figs. 4 and 5 we show the final

cylindrical radius (rf sin θf) of the positively charged and
negatively charged test particles with the same color
scheme as in the left column. The dotted black lines show
the initial radial distribution, chosen to be at a constant
spherical radius. We stop numerical integration when a test
charge either reaches r ¼ 250M, at which point we plot the
spherical radius to show that the charge has been expelled,
or when the particle passes within 0.01M of the horizon, or

after a maximum time chosen to be approximately the time
for the particle to orbit the BH.
Figure 4 displays the horizon flux and final radii vs the

black hole charge in units of the Wald charge. Figure 5
displays these quantities vs the initial starting position θi.
TheWald argument on the poles can be readily seen from

the top row of Fig. 4. In the left panel we see that for
Q < QW the net flux into the horizon at the pole is negative,
meaning the BH is charging up and that this flux is due
entirely to positive charges. Above the Wald charge, the
flux is the opposite sign and due entirely to negative
charges. The right panel in the top row of Fig. 4 shows that
the this is caused by positive charges falling in below the
Wald charge and negative charges falling in above the Wald
charge. The middle row of Fig. 5 shows clearly that at the
poles, when the BH is charged to the Wald charge, both
signs of charge fall in, resulting in zero charge accretion.

FIG. 4. The horizon charge flux (left column) and the final
cylindrical radius of a test charge (right column) as a function of
BH charge in units of the Wald charge, for the labeled initial theta
coordinate, θi, of the test charge. When a charge reaches spherical
radius 250M we plot the final radius at this maximum value to
show that it has been expelled.

FIG. 3. The same as Fig. 2 but for a plunging orbit.
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This is in agreement with the observation from Fig. 1 that
E ·B changes sign at the poles at the Wald charge.
The bottom two rows in Fig. 4, as well as the top and

bottom rows of Fig. 5 demonstrate that no charge is
accreted away from the poles, but for different reasons.
At the equator, particles orbit stably. In between the poles
and the equator, particles are expelled or orbit stably
depending on θi and the value of Q, as discussed above.
It is interesting to note that at and above the Wald charge,

there exists a charged magnetosphere surrounding the BH
in the equatorial regions. Below the Wald charge, a region
of opposite charges orbit at higher latitudes than the
equatorial charged region. The stability and long term
existence of these charged regions, however, is only
determined here in the noninteracting test-charge regime.
The back reaction of this charged region on the electro-
magnetic fields of the Wald solution must be included to

discuss the astrophysical importance of the Wald magneto-
sphere. For example, charges being accelerated along
B-field lines as they orbit the BH could be in high enough
quantity to screen the accelerated electric fields, thus
leading to the generation of a force-free magnetosphere.
We discuss this possibility in Sec. VI.

B. Prospects for electromagnetic radiation

Consider the charging process. As discussed above, at
the poles, charges of one sign are accelerated into the BH
while charges of the opposite sign are expelled from the
BH. In the nonpolar regions charges can orbit stably as they
are accelerated on oscillating orbits in the direction aligned
with the magnetic field and BH spin, or they can be con-
tinuously expelled along B-field lines. All of these accel-
erated charges will emit electromagnetic (EM) radiation.
EM radiation from the charging/discharging process

could come from a few mechanisms: Dipole radiation
from acceleration of ingoing and outgoing charges and
synchrotron and curvature radiation of stable orbits and
ingoing and outgoing orbits. The most promising of these
processes for generating bright EM signals is synchro-
curvature radiation of particles expelled and beamed away
from the BH, as these experience the highest accelerations.
Because positively charged particles, initially at rest, stay

on cylindrical orbits, there is a cylinder of initial coor-
dinates given by ri sin θi ≤ rþ that will accelerate into the
BH. There will also be particles continuously accelerated
away from the BH even at the Wald charge. This can be
seen in the right middle panel of Fig. 5. The red line shows
that away from the poles positive particles are continuously
ejected from the system. While these particles will not be
accelerated at the poles at the Wald charge, they can be
accelerated near to the BH and could also contribute to a
continuous signal of synchro-curvature radiation, if this is a
stable configuration. Here we estimate a maximum power
in EM radiation that could be emitted by these charges
during the charging/discharging process of a Kerr BH, or
even while the BH is charged at the Wald charge.
The power generated by curvature radiation is

Pc ¼
2

3
q2c

γ4q
R2
c
: ð61Þ

As a charge is accelerated, radiation-reaction forces limit
the maximum velocity u of the particle to where curvature
radiation losses balance the power input from the electric
field, qE · u ¼ −PcðuÞ. For juj → c we approximate the
radiation reaction condition as [18]

EZ ¼ 2

3
q
γ4q
R2
c
: ð62Þ

We use EZ of the QW ¼ 0 Wald solution with a magnetic
field due to a magnetic dipole at a distance Rc ¼ 20M and

FIG. 5. The horizon charge flux (left column) and the final
cylindrical radius of a test charge (right column) as a function of
θi for a BH with the labeled charge in units of the Wald charge.
When a charge reaches spherical radius 250M we plot the final
radius at this maximum value to show that it has been expelled.
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pole strength of BNS ¼ 1012 G. Then at r ∼ 5M above the
pole, the radiation reaction limited Lorentz factor of the
charge is

γq ¼ 6.7 × 107
�

EZ

2.8 × 109 statV cm−1

�
1=4

�
Rc

20M

�
1=2

;

ð63Þ

which represents a maximum Lorentz factor in the mag-
netosphere that is only weakly dependent on EZ.
This large value of γ is in agreement with previous

studies that estimate maximum particle Lorentz factors in
magnetospheres sourced by NS strength magnetic fields
[18,19,28]. It is physically justified by the large accelerat-
ing electric field. If instead we were to solve for the velocity
of an electron uniformly accelerated with acceleration
ae ¼ ðq=mÞEZ, then we find that the velocity of the
electron in units of c is βe ¼ ðaet=cÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðaet=cÞ2

p
.

This results in the acceleration of the electron to γ ¼ 107

in approximately 10−10 seconds. Meaning that our approxi-
mate radiation-reaction velocities are reached after the
electron moves by of order a centimeter, a very short
distance compared to the scale of the system. For example,
this is ≈10−5ðM=M⊙Þ× smaller than the gravitational
radius.
The maximum γq can tell us the maximum power

radiated by one charge via curvature radiation. The total
number of charges is given by the Wald charge divided by
the elementary charge,

Q
e
¼ 4.54 × 1033

�
BNS

1012G

��
RNS

r

�
3
�

M
10 M⊙

�
2

: ð64Þ

For charging and discharging this is the obvious choice.
For a continual flux at the Wald charge, we choose this
as a characteristic value because the repelling charge on the
BH is likely comparable to the orbiting charge of opposite
sign and the expelled charge. This at least describes a
possible stable situation where the system remains electri-
cally neutral at large distance. Then the total power from
curvature radiation during charge or discharge, or while the
BH is charged at the stable Wald charge is,

Pc ¼ 7.1× 1042 erg s−1
�

BNS

1012 G

�
2
�

Rc

20 M

�
−6
�

M
10 M⊙

�
2

:

ð65Þ

Curvature radiation of this energy will spark a pair
cascade filling accelerating regions with an electron-posi-
tron pair plasma that will eventually screen the accelerating
fields (see [19] and references therein). This may not be an
issue if we are only considering charging and discharging
of the BH because (dis)charging of the BH should take
of order the same time as the generation of the pair cascade

(a light crossing time of the system). For a continuous
signal due to ejection of charges at the Wald charge,
however, the transition to a force-free magnetosphere
may occur before the near-merger separations needed for
an observable signal, and hence the stable fluxing scenario
may be altered.
This latter case, however, is similar to the that of a Pulsar

magnetosphere, where particle production screens accel-
erating electric fields everywhere except for gaps where the
force-free equations break down. In this case, the accel-
erating vacuum electric field can be reduced, and the region
of acceleration is diminished to the size of the accelerating
gap. While we plan to study this effect for the BHNS
system with force-free and particle-in-cell simulations, for
now we note that because our maximum Lorentz factor is
only weakly dependent on the accelerating electric field,
and because the gap height is likely larger than the
acceleration distance estimated above (estimated to be of
order the gravitational radius in Ref. [43]), we expect these
approximate results to be on the right track.
In the case of charging and discharging, the important

question is when will such a large magnetic field suddenly
appear or disappear. For the case of the inspiral of a BH and
highly charged NS, the orbital decay timescale should
occur more slowly than the charging time of the BH and
hence the charge of the BH will increase at the rate that the
magnetic field immersing the BH increases. For a dipole
magnetic field at time dependent distance aðtÞ from the
BH, QWaldðtÞ ∝ a3ðtÞ ∝ t3=4 (assuming GW decay of the
binary [44]). At a critical separation the E and B fields will
become large enough for the pair cascade to spark. Hence
no sudden immersing of the BH in the electro-vacuum field
of the NS is expected.
The discharging case may only happen if the NS is

swallowed. In this case the destruction of the immersing
field will also occur at either the light crossing time of the
BH [45], or the resistive time of the force-free magneto-
sphere that has been generated by pair production [27]. In
the former case, powerful radiation from cleaning of the
fields is generated, but at wavelengths of order the horizon
size. Such km wavelength radiation is not detectable as it
has a frequency below the plasma frequency of the galaxy
[see [19]]. In the latter case, a possible EM signature of a
long-lived BH magnetosphere is discussed in Refs. [19,27].
If the Wald solution is valid before the NS is swallowed,
then a discharging signature similar to the one discussed
here may also accompany the merger.
In summary, a powerful EM signal with luminosity given

by Eq. (65) could be generated by rapid charging or
discharging of a BH to or from the Wald charge, at the
BH poles. A similar luminosity could also be generated by
a BH at the stable Wald charge from the continual
expulsion of charges away from the poles. In a related
scenario, a magnetosphere sourced by the spinning,
charged BH could result in emission mechanisms similar
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to that of a pulsar. A more refined prediction for detection
would benefit from an understanding of the back reaction
of charge acceleration in the Wald field.

VI. CHARGED FORCE-FREE SOLUTIONS

Force-free solutions are notoriously hard to come by, and
we reserve the attempt at a force-free set-up for another
work (see e.g., [46,47] for formal aspects of force-free
electrodynamics, and [48–55] for studies of force-free
fields in BH spacetimes). However, the reader might be
concerned, as we were, that force-free solutions somehow
ensure an uncharged BH. Although this would not prohibit
the charge up during the vacuum phase, it would be worth
knowing if charge could be sustained. We consider the
Blandford–Znajek (BZ) split monopole on a BH to show
that the BH retains charge. A related analysis for non-
rotating BHs was performed in [56] based on a force-free
solution derived in [57].

A. Charge of the Blandford–Znajek
split monopole: Gauss’s law

Although our main interest is in computing the electric
charge enclosed within the horizon of the BH, it is
instructive to do something slightly more general and
calculate the charge inside an arbitrary sphere of radius
R, defined as the 2-surface r ¼ R in Boyer–Lindquist
coordinates. Applying Gauss’s law the chargeQ is given by

4πQðRÞ ¼
Z
r¼R

⋆F ¼
Z
r¼R

ð⋆FÞθϕdθ ∧ dϕ: ð66Þ

The Maxwell equations and force-free (FF) conditions are

D · F ¼ J; ð67Þ

F · J ¼ 0; ð68Þ

where the second equation clearly matches the case of a test
particle, for which J ¼ qu, with zero Lorentz force in
Eq. (48). For an axisymmetric, stationary current, a func-
tion ωðr; θÞ can be defined through the FF conditions [29]

At;r ¼ −ωAϕ;r; At;θ ¼ −ωAϕ;θ: ð69Þ

The Hodge dual ð⋆FÞαβ ¼ ð1=2ÞεαβμνFμν (with εtrθϕ ¼
− ffiffiffiffiffiffi−gp

) gives

ð⋆FÞθϕ ¼ −
1

2
εθϕμνFμν ¼ −

ffiffiffiffiffiffi
−g

p
Ftr

¼ −
ffiffiffiffiffiffi
−g

p
grrAϕ;rðωgtt − gtϕÞ: ð70Þ

The BZ split monopole solution corresponds to

ω ¼ a
8M2

�
1þO

�
a
M

�
2
�
;

Aϕ ¼ −Cj cos θj þ Ca2

M2
fðrÞsin2θj cos θj þO

�
a
M

�
4

;

ð71Þ

where C is just a constant gauging the strength of the split
monopole and fðrÞ is the dimensionless function [58]:

fðrÞ ¼ 1þ 3ðr=MÞ − 6ðr=MÞ2
12

ln

�
r
2M

�

þ 11

72
þM
3r

þ r
2M

−
r2

2M2
þ r2ð2r − 3MÞ

8M3

×

�
Li2

�
2M
r

�
− ln

�
1 −

2M
r

�
ln

�
r
2M

��
;

and

Li2ðxÞ ¼ −
Z

1

0

lnð1 − txÞ
t

dt: ð72Þ

Notice that the absolute value in Aϕ is enforced so that
the radial magnetic field is odd upon reflection about the
equator,

Br ¼ −
1

2
εrναβFαβuν ∝ Aϕ;θðut þ ωuϕÞ; ð73Þ

and Aϕ;θ clearly changes sign under θ → π − θ. In other
words, it is a split monopole. Another check one can make
is to compute the magnetic charge on the BH (using F
instead of ⋆F in Gauss’s law) and verify that it is zero by
symmetry. If we ask an observer at rest very far from the
BH, they see a split monopole field that goes like
Br ∼�C=r2, so C has the meaning of a magnetic charge.
Substituting (71) in (70) we have

ð⋆FÞθϕ ¼ Ca3

M4
r2f0ðrÞsin3θj cos θj

�
1

8
−
2M3

r3

�

×

�
1þO

�
a
M

�
2
�
: ð74Þ

Finally, the angular integral yieldsZ
sin3θj cos θjdθdϕ ¼ π; ð75Þ

and we arrive at

QðRÞ ¼ Ca3

4M4
R2f0ðRÞ

�
1

8
−
2M3

R3

��
1þO

�
a
M

�
2
�
: ð76Þ
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Two interesting values of R are the horizon rþ ≃ 2M and
infinity. We find

QðrþÞ ¼
Ca3

8M3

�
61

24
−
π2

4

��
1þO

�
a
M

�
2
�
;

Qð∞Þ ¼ −
Ca3

128M3

�
1þO

�
a
M

�
2
�
: ð77Þ

The standard application of Gauss’s law in an asymptoti-
cally flat spacetime is from far away. Interestingly, the
charge is not the same at infinity as at the horizon,
suggesting the magnetosphere is charged as well. This
suggests that the magnetosphere carries positive charge
QM ∼ −ð5=4ÞQrþ . Figure 6 shows a plot of the charge as a
function of the Gaussian surface radius R at the order in
a=M to which we are working.

B. Which observer sees charge Q?

Notice that Eq. (66), can be related to the naive form of
Gauss’s Law:

4πQ ¼
Z
r¼rþ

⋆F ¼
Z
r¼rþ

ðE · nÞ ffiffiffiffiffiffiffi
g2D

p
dθdϕ; ð78Þ

but does not necessarily correspond to any fields measured
by timelike observers on the horizon. In other words, with

E · n ¼ ðF · uÞ · n; ð79Þ
we can use the results of the previous section to glean the u
required to measure the field for a normal to a sphere

nμ ¼ g−1=2rr ð0; 1; 0; 0Þ; ð80Þ
and then we equate the integrand on the rhs of Eq. (78)
using Eq. (79) to find

Erg
−1=2
rr ¼ g−1=2rr Frμuμ ¼ NFtr

¼ −NgrrðFrμgμtÞ; ð81Þ

where we used Eq. (70) and

N ¼
ffiffiffiffiffiffi−gpffiffiffiffiffiffiffi
g2D

p ¼ Σ
ððr2 þ a2Þ2 − Δa2sin2θÞ1=2 : ð82Þ

At the horizon,

Nþ ¼ Σþ
2Mrþ

: ð83Þ

There is an observer that satisfies the above with 4-velocity
of the form

uμ ¼ −Ng−1=2rr gμt

¼ Ng−1=2rr ð−gtt; 0; 0;−gtϕÞ: ð84Þ
Mercifully, our observer has timelike norm at the

horizon. Exploiting relations Eq. (A5)

u · u ¼ N2
Δ
Σ
ðgttgttgtt þ 2gttgtϕgtϕ þ gtϕgtϕgϕϕÞ

¼ N2
Δ
Σ
ðgttðgttgtt þ gtϕgtϕÞ þ gtϕðgttgtϕ þ gtϕgϕϕÞÞ

¼ N2
Δ
Σ
gtt ¼ −1; ð85Þ

as desired.
Notice that we can neatly verify that E · B ¼ 0. To do so

we note that for this u the nonzero E-field components are
E ¼ ð0; Er; Eθ; 0Þ and so

E · B ¼ ErBr þ EθBθ ¼ 0: ð86Þ
Now for this A we can also express Er as

Er ¼ Frϕð−ωut þ uϕÞ ¼ Aϕ;rðωut − uϕÞ: ð87Þ
Using that uϕ ¼ gϕμuμ ¼ 0 according to Eq. (A5), we
compare Er to

ffiffiffiffiffiffi
−g

p
Bθ ¼ −

1

2
ϵθναβFαβuν ¼

1

2
ϵθijFijut ¼ −Aϕ;rut; ð88Þ

to find

Er ¼ −
ffiffiffiffiffiffi
−g

p
Bθ

�
ωut − uϕ

ut

�
: ð89Þ

Similarly

Eθ ¼
ffiffiffiffiffiffi
−g

p
Br

�
ωut − uϕ

ut

�
: ð90Þ

Putting these in Eq. (86) immediately yields 0.

FIG. 6. Electric charge Q enclosed within a sphere of radius R,
plotted as a function of R=M and normalized by Ca3=M3. The
dashed horizontal line corresponds to the value −1=128 that the
curve approaches to at infinity. The inset is a detail of the same
plot showing the minimum of Q at R ≃ 10M.
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C. Neutron-star pulsar charge

Although our goal was to provide evidence that a BH
surrounded by a force-free magnetosphere can support
charge, it is instructive to compare this situation with that of
a NS. As a crude model of a NS pulsar we consider a
magnetic dipole in the Goldreich–Julian set-up [30], i.e.,
with a corotating magnetosphere within the light cylinder
and ignoring gravitational effects (see [31] for a rigorous
analysis of the same model; see also [59] for a study of
more general models of pulsar magnetospheres).
The vanishing of the Lorentz force for a charge with

3-velocity v⃗ relates the electric and magnetic fields as

E⃗ ¼ −v⃗ × B⃗: ð91Þ

In a corotating magnetosphere the charge’s velocity is given
by v⃗ ¼ ΩNSr sin θϕ̂, with ΩNS the star’s angular velocity,
and as we mentioned the magnetic field is idealized as that
of a magnetic dipole with moment m⃗≡mẑ. Then

E⃗ ¼ ΩNSm
r2

sin θðsin θr̂ − 2 cos θθ̂Þ: ð92Þ

Using Gauss’s law we obtain the following result for the
charge contained in the NS:

4πQNS ¼
Z
r¼RNS

E⃗ · r̂r2 sin θdθdϕ ¼ 8π

3
ΩNSm; ð93Þ

which is in fact independent of the radius of the Gaussian
sphere. Thus, in contrast to the BH case we focused on, the
magnetosphere surrounding the star carries zero net charge
in this simplified model.
We can define the characteristic magnetic field strength,

BNS, of the NS via the relation m≡ BNSR3
NS, so that

QNS ¼
2

3
ΩNSBNSR3

NS: ð94Þ

The numerical factor is of course rather meaningless given
the simplifications we have made, but we may expect this
result to give a correct order of magnitude.
Comparing with an estimate of the peak Wald charge

expected before the merger with a maximally spinning BH,
QW ∼ BNSM2, we find,

QNS

QW
∼ 10−4

�
ΩNS

1 s−1

��
RNS

106 cm

�
3
�
10 M⊙

MBH

�
2

: ð95Þ

This shows that the increase in the charge of the BH upon
swallowing the NS is likely to be negligible compared to
the maximum charge accreted during the inspiral phase as
quantified by the Wald charge.

VII. SUMMARY

The wealth of information gained from the NS/NS
merger GW170817 and GRB170817 speaks compellingly
to the prodigious importance of electromagnetic counter-
parts to gravitational-wave signals. Arguing against con-
vention, in this paper we have put forth the idea that a
valuable counterpart to a BH/NS merger may exist by
leveraging the charge BHs can support.
BH charge is typically dismissed in astrophysical set-

tings based on the expectation that charge will be both
negligibly tiny and/or extremely short-lived. The pre-
sumption that charge is short-lived is countered by the
Wald mechanism—a rotating BH embedded in an external
magnetic field will accrete a stable net charge. Further, the
charge need not be tiny given the magnitude of strong NS
B-fields and rather could be relevant to observations.
A simple estimate of the magnetic field created by the

BH as charge reaches its maximum value immediately
before the merger with a strongly magnetized NS gives
BBH ∼ ða=MÞ2BNS=2, comparable to the NS magnetic
field for highly spinning BHs. As found observationally,
and through theoretical investigation, whether or not a
NS can generate a magnetosphere and produce pulsar
emission depends on the spin period of the NS. For
example, Sturrock [60] and Ruderman and Sutherland
[28] calculate that a NS must have a period shorter than
∼1.7ðBNS=1012Þ8=13 seconds to sustain charge acceleration
across a vacuum gap and hence the pulsar magnetosphere.
The spin period of a maximally spinning, 10 M⊙ BH is of
order milliseconds. Hence, if the analogy can be applied to
the BH-pulsar case, this means that BHs sourcing magnetic
fields above 107 − 108 G should be able to sustain a
magnetosphere, and possibly drive an emission mechanism
similar to that of the pulsar case. Promisingly, recent
numerical work has employed particle-in-cell simulations
of BH magnetospheres finding that small polar gaps,
analogous to the NS-pulsar case, can be opened and result
in particle acceleration (see [43] and references therein).
For mergers involving NS surface magnetic fields of
BNS ∼ 1012 G, the final ∼20M of inspiral, would allow
the BH to source a magnetic dipole field of ≳108 G, above
the pulsar limit.
It should be emphasized, however, that this “black hole

pulsar,” as we have called it, has an essential difference
relative to a NS: its magnetic field is created by a rotating
electric charge, unlike the star’s intrinsic dipole field. After
all, a corotating observer sees only an electric field due to
the charge on the BH. Granted, the pulsar features of such a
BH may be hard to observe given its short lifetime and their
scarcity within galactic distances. And any detailed pre-
dictions would require an analysis of the generalization to a
time-dependent, nonuniform external magnetic field.
Another source of luminosity can stem from the accel-

eration of charges surrounding a BH, which we have shown
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is not precluded by the stability of the net charge. The
vacuum situation we considered suggests some interesting
properties, as demonstrated in the complex, likely chaotic,
dynamics. And even though our estimates for the emitted
power via curvature radiation are large enough to be
interesting (of order kilonova luminosities, e.g., [61]), a
more accurate prediction would pose similar difficulties
that make the NS-pulsar studies so challenging.
We began with vacuum solutions, however the BH may

well create its own force-free magnetosphere. If that
transpires, we can ask whether a BH charge and its
associated effects should then be dismissed. Again, against
expectation, we showed that a BH enclosed by a force-free
magnetosphere does in fact carry charge. Still, the situation
we focused on—the Blandford–Znajek split monopole—is
an approximate force-free solution valid for small a=M,
leading to a correspondingly small electric charge. We
believe nonetheless that this outcome is interesting enough
to motivate a more thorough numerical study on the
existence of electric charge in force-free BH magneto-
spheres. We note that, without speculating on the origin of
charge on BH/BH pairs, the same mechanisms would be at
work to illuminate these systems if they exist.
Finally, it is interesting to speculate, should an electro-

magnetic counterpart to a BH/NS or BH/BH merger be
observed, about the prospects of testing fundamental
physics. The no-hair theorem immediately comes to mind,
as the detection of a BH pulsar could in principle be
sensitive to an intrinsic magnetic (dipole or higher)
moment. A positive detection could also be used to
constrain modified gravity theories in which the analogue
of the Wald mechanism (e.g., [62]) might differ signifi-
cantly from that in general relativity.
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APPENDIX

Calculations are greatly facilitated by a list of clean
relationships among metric quantities. We compile those
relations here.

Again, in Boyer–Lindquist coordinates:

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ ðr2 þ a2Þ2 − Δa2sin2θ
Σ

sin2θdϕ2

−
4Mar sin2θ

Σ
dtdϕ; ðA1Þ

with

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 þ a2 − 2Mr: ðA2Þ

Useful metric quantities are

ffiffiffiffiffiffi
−g

p ¼ Σ sin θ;

grr ¼ Δ
Σ
;

gθθ ¼ 1

Σ
;

gtt ¼ −
�ðr2 þ a2Þ2 − Δa2sin2θ

ΔΣ

�
;

gtϕ ¼ −
2Mar
ΔΣ

;

gϕϕ ¼ Δ − a2sin2θ
ΣΔsin2θ

: ðA3Þ

Other useful equalities:

Σ ¼ Δþ 2Mr − a2sin2θ;

gttgϕϕ − g2tϕ ¼ −Δsin2θ;

gtt ¼ gϕϕ
ðgttgϕϕ − g2tϕÞ

;

gtϕ ¼ −gtϕ
ðgttgϕϕ − g2tϕÞ

;

gϕϕ ¼ gtt
ðgttgϕϕ − g2tϕÞ

: ðA4Þ

Also, by the definition of an inverse

gttgtt þ gtϕgtϕ ¼ 1;

gttgtϕ þ gtϕgϕϕ ¼ 0;

gttgtϕ þ gtϕgϕϕ ¼ 0: ðA5Þ
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