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While gravitational waves have been detected from mergers of binary black holes and binary neutron
stars, signals from core collapse supernovae, the most energetic explosions in the modern Universe, have
not been detected yet. Here we present a new method to analyse the data of the LIGO, Virgo, and KAGRA
network to enhance the detection efficiency of this category of signals. The method takes advantage of a
peculiarity of the gravitational wave signal emitted in the core collapse supernova and it is based on a
classification procedure of the time-frequency images of the network data performed by a convolutional
neural network trained to perform the task to recognize the signal. We validate the method using
phenomenological waveforms injected in Gaussian noise whose spectral properties are those of the LIGO
and Virgo advanced detectors and we conclude that this method can identify the signal better than the
present algorithm devoted to select gravitational wave transient signal.
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I. INTRODUCTION

The direct observation of gravitational waves (GWs) by
the advanced kilometer-scale GW detectors, which have
been operative in the period between 2015 and 2017, is a
major milestone in physics and astrophysics [1–7]. So far,
all the observed GW signals have been produced at the
merger of compact binary systems. All but one correspond
to black hole binaries with total mass in the range of tens of
solar masses. The observation of the binary neutron star
merger in 2017 [5] is a crucial milestone of the multi-
messenger astronomy because of the combined detection of
GW and electromagnetic observations [6,7].
In the future we expect that the LIGO, Virgo, and

KAGRA interferometers will observe other astrophysical
phenomena. The collapse of the core of massive stars
(∼10–100 M⊙), in particular those producing core-collapse
supernovae (CCSNe), was considered a potential source of
detectable GWs already at the epoch of resonant bar detec-
tors. GW are emitted by aspherical mass-energy dynamics
that include quadrupole or higher-order gravitational con-
tributions. If this asymmetric dynamics is present in the
preexplosion stalled-shock phase of CCSNe, we should have
the chance to observe the violent death of massive stars also
via the gravitational channel. GW bursts from CCSNe
encode information on the core dynamics of a dying massive
star and may enlighten the mechanism driving supernovae.
Early analytic and semianalytic estimates of the GW

signature of stellar collapse andCCSNe gave optimistic signal
strengths (∼10−2 M⊙ c2), while modern multidimensional

simulations predict emission frequencies in the band of
ground-based laser interferometers (10 Hz–10 kHz) with total
emitted GWenergies in the range 10−12–10−8 M⊙ c2. These
predictions suggest that even advanced interferometers
will only be able to detect GWs from CCSNe at distances
lower than 1–100 kpcwith an optimistic rate event of the order
of 1=25 yr. In other models of more extreme scenarios,
involving nonaxisymmetric rotational instabilities, centrifugal
fragmentation and accretion disk, the emitted GW signals
may be sufficiently strong to be detectable to distances of
(10–15) Mpc. At this distance the Virgo cluster is included in
the sphere centered onEarth and, as consequence, the potential
detection rate of the advanced detectors increases up to values
higher than 1 yr.
A credible CCSNe scenario is based on a collapse of the

star’s iron core (see, e.g., [8,9], for recent reviews), which
results in the formation of a protoneutron star (PNS) and an
expanding hydrodynamic shock wave. The shock gets
immediately stalled by presence of a continuous accreting
flow. On a timescale of∼0.2–1 s, a yet-uncertain supernova
mechanism revives the shock that reaches the stellar surface
and produces the spectacular electromagnetic emission of a
type-II or type-Ib/c supernova. If the shock fails to revive, a
black hole is formed with no or very weak electromagnetic
signature associated. In this work we refer generically as
CCSNe to any core collapse event, regardless if the final
outcome is a supernovae or the formation of a black hole.
The supernova type classification is based on the

explosion light curve and spectrum, which depend largely
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on the nature of the progenitor star. The time from core
collapse to breakout of the shock through the stellar surface
and first supernova light is minutes to days, depending on
the radius of the progenitor and energy of the explosion.
Any core-collapse event generates a burst of neutrinos

that releases most of the protoneutron star’s gravitational
binding energy (∼1053 erg ∼ 0.15 M⊙ c2) on a timescale of
the order of 10 s. This neutrino burst was detected from
SN 1987A and confirmed the basic theory of CCSNe [10].
Multidimensional simulations of core-collapse super-

novae are currently at the frontier of research in the field
following the two main basic explosion paradigms: the
neutrino-drivenmechanism, thought to be active for slowly
rotating progenitors and responsible for the most common
SNe, and the magneto-rotational mechanism, active only
for fast rotating-progenitors and responsible for rare but
highly energetic events, like hypernovae and long GRBs.
Several groups worldwide are currently attacking this

problem with two- and three-dimensional simulations using
the world’s most powerful supercomputers. Multiple chal-
lenges arise during the numerical modeling: (i) accurate
solution of the neutrino transport equations during the
evolution; (ii) incorporation of the complete interactions of
electron, muon and tau neutrinos and their anti-particles
with matter; (iii) use of high resolution to resolve numeri-
cally fine structure features in the convective and turbulent
flow around the protoneutron star; this is of special
importance for the development of magneto-rotational
instabilities in fast-rotating progenitors; (iv) accurate (gen-
eral relativistic) description of gravity; (v) use of sophis-
ticated equations of state to describe the behavior of matter
at high densities. The different groups studying the problem
use different approaches to tackle each of these challenges
and, to this point, no one has carried out a definitive three-
dimensional simulation including all the physical ingre-
dients and with sufficiently high resolution to give the
worldwide community confidence in the results.
Despite he problem complexity, these calculations give

acceptable remnant neutron-star masses and predicted
already few distinct signatures of GW signals in both
the time and frequency domains. The core-bounce signal is
the part of the waveform which is best understood [11],
and it can be directly related to the rotational properties of
the core [12–14]. However, fast-rotating progenitors are
not common and their bounce signal will be probably
difficult to observe in typical galactic events, due to its high
frequency and low amplitude.
In addition, during the post-bounce evolution of the

newly formed proto-neutron star (PNS), the convection
determines the excitation of highly damped modes in the
PNS by accreting material and instabilities (SASI), with a
peculiar GW emission. In this case the GW waveforms last
for about 200–500 ms until the supernova explodes (see
e.g., [15]) or, in the case of black hole formation, the typical
duration is 1 s or above [16]. The peculiarity is that the

signal frequencies raise monotonically with time due to the
contraction of the PNS, whose mass steadily increases.
Characteristic frequencies of the PNS can be as low as
∼100 Hz, specially those related to g-modes [15–20] and
SASI [16,19,20], which make them a target for ground-
based interferometers with the highest sensitivity at those
frequencies.
These information can be used in the search of the GW

signal embedded in the detector noise, with the perspective
to increase the confidence detection of signal emitted in
the deeper universe. In the case of the search of GW binary
systems the dominant analysis technique is the matched
filter, based on models computed in the general relativity
(GR) framework. Then, the posterior probability distribu-
tion for the signal parameters are estimated from the noisy
detector data using probabilistic Bayesian methods. These
techniques can be used in the case of a detailed prediction
of the waveform, a case different to the present one. For this
reason the approach used in the past for CCSNe relies
on fully unbiased algorithms, which do not require any
assumptions about the GW morphology. In general, these
algorithms assign a loudness measure to each event, whose
significance is evaluated by computing the rate at which
the background noise produces events of equal or higher
loudness (false alarm rate, FAR).
Currently, in the CCNSe case we can take advantage of

the signal peculiarity, in particular that associated to
monotonically raise of the frequency related to the g-mode
excitation. The aim of this paper is to present a search
strategy of events in coincidence in the advanced detector
network, characterized by a raising monotonic behavior
in the time-frequency plane, similar to the one observed
in numerical simulations.
This strategy is based on machine learning techniques.

These are tools applied even to big chunks of data in
different contexts, analyzed with minimal human super-
vision, and able to resolve ambiguity and tolerate unpre-
dictability. In this framework pattern recognition, seen as
practical outcome of the machine learning technique which
divides data into classes, is a data analysis approach widely
used for recognizing regularities in images. This approach
has been tested already on GW data in particular for the real
time detection and the parameter estimation of binary black
hole mergers [21–24]. Here we present a method helpful
for the search of signals associated to the supernovae
explosions. In the following sections, after the discussion
of the scientific problem of the detection of the transient
signal due to the supernovae explosion, we will describe the
phenomenological waveforms generated to simulate the
CCNSe GW signal, the architecture of the convolutional
neural network and the whole method developed to
recognize the signal. Finally, to validate the method, we
present the results obtained by injecting waveforms in
Gaussian noise with the spectral behavior of the LIGO
and Virgo Advanced detectors.
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II. PHENOMENOLOGICAL WAVEFORMS
FOR CCSNE

The first step of a signal search based on machine
learning technique is to provide a training data set, where
the GW signals are present. It follows that we have to
produce GW templates representative of CCSNe covering
the parameter space of possible core collapse events.
At present the outcome of multidimensional numerical
simulations is a limited set of GW waveforms because of
the massive amount of computational resources needed to
produce each of them. In addition the progenitors models
used in these simulations can be biased: most of them are
developed with the aim to compare the model prediction
with the observations of the supernovae SN1987A or
they are focused to the case of fast-rotating progenitors,
a small fraction of the total number of observable events.
Furthermore, due to the numerical challenge of these
simulations and the various approximations used, it is
unclear how close the existing numerical templates are
to the actual GW signal for a specific type of progenitor.
Therefore, the existing numerical templates seems to have
just a partial coverage of the CCSNe parameter space.
For this reason, to validate our search method, we use a

more flexible approach. We have developed a parametrized
phenomenological waveform designed to match the most
common features observed in the numerical models of
CCSNe and we devote the next section to present the
simulation used to produce the template bank, which covers
a wider parameter space.

A. Reference numerical simulations

We base our phenomenological templates on the numeri-
cal simulations by [15,16,18–20,25]. In all these works, the
authors present the gravitational waves signals extracted
from core-collapse simulations, plot spectrograms of the
signal, and interpret those spectrograms in terms of
excitation of modes (g-modes and SASI modes) and
convection. A more detailed analysis and interpretation
of the waveforms in terms of eigenmodes of the proto-
neutron star (PNS) has been carried out by [26–30]. These
simulations were performed in two and three dimensions
(2D/3D), using either a modified Newtonian potential or
general relativity (XCFC approximation) and a neutrino
treatment with different degrees of sophistication (from a
simple leakage to Ray-by-Ray+ transport). The progenitors
used are nonrotating stars (except for [16]) with solar
metallicity (except [16] and some models of [15]) and
correspond to zero-age main-sequence masses in the range
8–40 M⊙. This kind of progenitor is most likely to form
type II supernovae and in some cases a failed supernova
(unnovae, in which a black hole is formed). We focus in this
work exclusively in this kind of progenitors. A galactic
supernova (or an unnova) is very likely to have such a
nonrotating progenitor, so the features presented in these

work are the most relevant for a possible detection. We note
that the fraction of CCSNe associated to the collapse of
rapidly rotating core is probably below 1% (see discussion
in [31]).
Waveforms from the collapse of nonrotating progenitors

have the next features identified by several of authors:
(1) Bounce signal: in practice almost nonexistant. Only

fast rotating models give a strong signal at bounce
[12–14].

(2) Prompt convection: Some models show prompt
convection right after bounce, which lasts for
50–100 ms at about 100Hz (see, e.g., [18,32]).
The amplitude of this signal is currently under
debate and it may depend on fine details of the
numerical simulations and on the equation of state.

(3) Excitation of g-modes of the PNS: basically all
simulations in the literature show this feature. Its
frequency starts around 100 Hz and grows in time as
the mass of the PNS grows creating a characteristic
raising arch in the spectrogram. It may start right
after the bounce or with some delay (up to ∼200ms).
The signal last until the onset of the explosion or the
formation of the black hole. This signal has been
identified as the lowest order l ¼ 2 g-mode (2g1) of
the inner core of the PNS [29].

(4) SASI modes: SASI modes are observed in models in
which the SASI is active [16,19,20]. It starts at
∼100 Hz, usually with some delay after bounce, and
its frequency grows in time, albeit at a lower pace
than g-modes. Its frequency growth is close to linear
rather than an arch.

(5) Memory: The explosion and the anisotropic neutrino
emission, leave a low frequency signal in the range
∼1–10 Hz (e.g., [18,32]), usually described as a
memory effect.

B. Parametrized templates

We concentrate this work in the g-modes, the most
common feature of all models, which also are responsible
for the bulk of the GW signal in the postbounce evolution
of the PNS. The aim of our phenomenological template is
to mimic the raising arch observed in core-collapse
simulations. To this end we will consider a toy model
for the GW emission in CCSNe. The idea is that at each
time in the postbounce evolution, the PNS is in quasihy-
drostatic equilibrium and any perturbation will excite
the eigenmodes of the system, in particular g-modes.
Nonspherical eigenmodes, in particular l ¼ 2 modes, will
emit GWs at some characteristic frequencies corresponding
to these eigenmodes. This premise has been shown to be
a quite accurate description of most of the waveforms
[27–29]. These modes are continually being excited by the
hot bubble surrounding the PNS, in particular by con-
vective motions and SASI [18,32]. At the same time these
excited modes are damped by the PNS conditions (e.g., by
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the existence of convective layers that do not allow for
buoyantly supported waves) and by the presence of non-
linearities and instabilities (e.g., turbulence). Therefore, the
GW emission can be modeled as a damped harmonic
oscillator with a random forcing, in which the frequency
varies with time.
Following these arguments, we can model the strain

measured at the detector as the solution of:

∂tthþ ωðtÞ
Q

∂thþ ωðtÞ2h ¼ aðtÞ; ð1Þ

where ωðtÞ≡ 2πfðtÞ is the angular frequency correspond-
ing to the eigenmode excited in the PNS, Q is the Q-factor,
which we consider to be constant for simplicity, and aðtÞ is
an acceleration driving the signal (the random forcing).
We model the frequency as a 2 degree polynomial:

fðtÞ ¼ f0 þ f1ðt − tiniÞ þ f2ðt − tiniÞ2; t ∈ ½tini; tend�;
ð2Þ

where t refers to the postbounce time and f0, f1, and f2
are three coefficients determining the behavior of the
frequency evolution. tini and tend correspond to the begin-
ning and end of the signal, being tend − tini its duration.
Note that the beginning of the signal tini do not necessarily
have to coincide with the time of bounce (t ¼ 0), so it is
possible to incorporate in the model the typical delays (up
to 200 ms) observed in numerical simulations.
Instead of using f1 and f2 directly it is more convenient

to define f1s ≡ fðt ¼ 1 sÞ and t2, the latter being the time
at which the polynomial has a maximum. Given that the
spectrograms of numerical simulations are not showing any
maximum in the evolution of the features characterized as
g-modes (at least in the preexplosion phase), the value of
t2 has to fulfill that t2 ≥ tend. Using f0, f1s and t2 as
parameters, the frequency can be expressed as

fðtÞ ¼ f0 þ
2ðf1s − f0Þðt2 − tiniÞ

ð2t2 − tini − 1Þð1 − tiniÞ
ðt − tiniÞ ð3Þ

−
f1s − f0

ð2t2 − tini − 1Þð1 − tiniÞ
ðt − tiniÞ2; ð4Þ

where time is expressed in seconds.
To mimic the sudden downflows observed in numerical

simulations responsible for the excitation of the g-modes,
we model aðtÞ as a series of N instantaneous accelerations
of the form anδðt − tnÞ, n ¼ 1;…N, with values of tn
distributed randomly in the interval ½tini; tend� and with a
random amplitude an in the interval ½0; amax�. amax is a
normalization constant, which we chose to be ∝ ω2. There
is an arbitrary constant in the choice of amax, which is not of
relevance for this work, because the templates are scalable
to any desired amplitude. This constant could be calibrated

in the future to generate distance-dependant templates,
although this is beyond of the scope of this work. Also the
dependence of this amplitude with ω should be explored in
the future.
Finally, instead of using N as a parameter for the

template, we use:

fdriver ≡ N
tend − tini

; ð5Þ

which is the driver frequency, i.e., the number of triggers
per unit time introduced by the forcing. Physically, fdriver is
related to the characteristic frequency of the random
perturbations exciting modes in the PNS. Since these
perturbations are expected to be driven by convection
and SASI, its typical frequency is few hundred Hz.
In total we have the next set of 7 free parameters for the

parametrized phenomenological template: tini, tend, f0, f1s,
t2, Q, and fdriver. For a given set of parameters we solve
numerically Eq. (1) by means of the first order symplectic-
Euler method. The computed waveform has some stochas-
tic nature due to the randomness of the amplitude and time
of the instantaneous accelerations. Therefore, for a given
set of parameters one can generate different realizations,
depending on the seed used for the random number
generator. This allow us to have variability between wave-
forms corresponding to different realizations of the same
model, something that has been observed when running
numerical simulations, e.g., for simulations using different
random perturbations in the initial model (see, e.g., [33]).
All the waveforms generated for this work have a

sampling rate of 20 kHz, and have been padded with
zeroes to a total duration of 2 s (in all cases longer than the
duration of the signal) with the signal centered in the
interval. To avoid errors from the numerical integrator we
use a time-step 10 times smaller than the inverse of the
sampling rate.
An example of a waveform generated by our method

can be seen in Fig. 1. The parameters used for this example
are tini ¼ 0, tend ¼ 0.8 s, f0 ¼ 100 Hz, f1s ¼ 700 Hz,
t2 ¼ 1.25 s, Q ¼ 10, and fdriver ¼ 200 Hz. Note that the
signal (upper left panel) only has power in regions where
there are impulsive accelerations (lower left panel). Also
the features in the spectrogram (upper right) follow closely
the prescribed value for the frequency (lower right). We
note that the waveforms used in this study try to represent
the typical features observed in simulations of neutrino-
driven CCSNe. This features are observed in numerical
simulation by all groups in the community and their origin
is well understood (g-modes in the protoneutron star).
These features are not expected to disappear in future, more
detailed, numerical simulations, although the parameter
space of possible values for the waveform may change in
the future. A difference with respect to other works on the
detection of CCSNe GWS is that they make direct use
of the waveforms from numerical simulations, while our
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approach allows us to choose a relatively wide parameter
space that is able to encompass the results from future
numerical simulations. There is also room for improvement
for the parametrized templates and we aim at making a
more comprehensive comparison between these templates
and numerical waveforms, however this is out of the scope
of this work.

C. Parameter space and template bank

The range of possible values for the 7 free parameters
defining the waveforms can be obtained by comparing with
the spectrograms of the numerical simulations discussed in
Sec. II A. The range of values that we propose here are
based on a simple inspection of the work by [15,16,
18–20,25], with certain room such that we can accommo-
date any of these models inside our parameter space. The
parameters f0, f2s, and t2 are based in the inspection of the
frequency evolution of the predominant feature in the
spectrogram. fdriver is set to the typical values of SASI
and convective motions frequency, as we argue above. The
duration of the signal is based on the minimal and maximal
duration of all waveforms from nonrotating progenitors
(fast rotating progenitors can have a longer duration [34]).
Finally, the parameterQ controls the width of the feature in

the spectrogram. Numerical simulations show a wide
variety of widths for these features. While some simula-
tions show relatively narrow features (e.g., [15]), which
would correspond toQ ∼ 10, in other cases the signal in the
spectrogram is very broad (e.g., [18]), corresponding to
(Q ∼ 1). Note that Q is limited to values larger than 1=2,
otherwise the oscillations become overdamped. Table I
shows the parameter space explored in this work.

FIG. 1. Example of a realisation of a phenomenological template. We plot the strain (upper left), the corresponding spectrogram (upper
right), the coefficient of the impulsive acceleration (lower left), and the frequency of the harmonic oscillator overplotted to the
spectrogram (lower right).

TABLE I. Parameter space of the phenomenological templates.
The second and third columns indicate the range (maximum and
minimum, respectively) for each parameter. The fourth shows the
value used to generate the template bank in this work. Note that
not all combinations are possible since t1s > tini has to be
fulfilled.

Parameter Minimum Maximum Test value

tini [s] 0 0.25 0
tend [s] 0.2 1.0 0.5
f0 [Hz] 100 600 100
f1s [Hz] 400 2000 1100
t2 [s] >tend ∞ 0.66
Q 1 10 10
fdriver [Hz] 100 600 600
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Given that this work is a proof-of-concept of the methods
proposed, we use a single test value within the parameter
space (see Table I), and we created a template bank
containing 100 different realisations of this parameter
set. This value is representative of a typical CCSNe
waveform and in similar, e.g., to model M15 in [15].
Therefore, the templates used in this work do not cover the
all possible CCSNe scenarios and serve just as an example.
A deeper analysis covering the whole range of possible
CCSNe scenarios will be developed elsewhere.

III. THE METHOD

In this paper we use simulated data having the spectral
behavior of the advanced detectors LIGO and Virgo [35],
with a standard Gaussian noise assumption. We inject on
these data the randomly generated waveforms described in
the previous section. The SNR is defined as the square sum
of the ratio of the reconstructed waveform in the frequency
domain ðh̃þ; h̃×Þ and the amplitude spectral density SkðfÞ
of each detector k:

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

k

Z
h̃2þ þ h̃2×
SkðfÞ

df

s

ð6Þ

Our method is essentially a two procedure steps:
(i) the data preprocessing derived in part from the

software pipeline coherent wave burst (cWB) [36],
which prepares time-frequency images of the inter-
ferometer data;

(ii) a convolutional neural network (CNN), which pro-
vides the classification of images in the noise or
noiseþ signal classes;

A. Data preprocessing

The first step of the analysis is a preprocess based on the
initial part of the pipeline coherent wave burst (cWB) of
burst search.
cWB is the GW transient signal algorithm in use by the

LIGO and Virgo collaborations that made the first alert of
the GW150914 signal [37]. It is an algorithm to measure
energy excesses over the detector noise in the time-
frequency domain and combining these excesses coher-
ently among the various detectors. This is performed
introducing a maximum likelihood approach to define
the ratio among the probability of having a signal in the
data over the probability of only noise. The algorithm is
unbiased in the sense that does not depend on expected
waveform, making it open to a wide class of transient
signals. The algorithm has been recently improved by
implementing a new method of estimation of event param-
eters, which considers assumptions on the polarization state
(circular, linear, elliptical, etc…) [38,39].
cWB looks for power excesses in the time-frequency

domain using Wilsond-Daubechies-Meyer wavelet trans-
form [40], which allows a better characterization of spectral

features with respect to the Fourier transform. The discrete
wavelet transform are performed at different resolutions
(wavelet levels), each one is an independent and complete
representation of the original data. The likelihood approach
allows us to combine different time-frequency levels,
having a unique wavelet representation adapted to the
characteristic of the signals.
In our method, the preprocess is based on the wavelet

transform applied towhitened data, since the time-frequency
contains both the signal and the detector noise. cWB extracts
from the network data a list of triggers above a defined
threshold [41].
While in [42] the time-frequency likelihood is used as

input of a neural network for the identification of binary
systems, here we apply a different approach more suited for
CNN: a fixed time-frequency level, i.e., the one which splits
the available frequency band in 64 pixels, while the time
size is fixed to 256 pixels.
The frequency upper limit is set to 1024 Hz as we did in

[41], and the 256 pixels correspond to a time window of 2 s.
If the signal is too short in time to reach the number of 256,
the pipeline includes adjacent pixels to image borders on
left and right. The extension on the left is randomly chosen
in a uniform distribution between zero and the number of
missing pixels, while the right one is the complement to the
total number.
In practice, starting from the time domain data of the

two LIGOs and one Virgo interferometer, we produce
three time-frequency sets of images, one for each detector.
Because the gravitational-wave signal must be present in at
least two detectors we developed a technique to visually
enhance the coincidences among all the interferometers of
the network. The method consists in using primary colours
for the spectrograms of each detector: red (R) for LIGO-
Hanford, green (G) for LIGO—Livingston and blue (B) for
Virgo (see Fig. 2). Then, the three single-colored spectro-
gram are stacked together to give as output an RGB image
(see Fig. 3). The RGB spectrogram is a compact repre-
sentation of the data to make evident the cross correlation
between different detectors. This is an efficient way to
prepare our data for the image recognition task that we will
perform with our convolutional neural network.

B. The convolutional neural network

Machine learning has become in recent years a corner-
stone for many fields of science and it has been adopted
more and more as a valuable asset [43]. It has attracted
much interest due to significant theoretical progress and
due to the increased availability of large amounts of
computing power (GPUs) and easy to use software imple-
mentations of standard machine learning techniques.
CNN are designed to deal with spatially localized data,

such as those found in images [44]. The network archi-
tectures of the CNN can be complex and include operations
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that go beyond those performed by the individual neurons
of the networks. These extensions have allowed CNNs to
become the state-of-the-art solution to several categories of
problems, most notably photographic image classification
[45–47].
Our aim is to provide a clear evidence that the machine

learning technique, in particular neural network, can be
more efficient to the respect of other approaches to extract
GW CCSNe signals, embedded in the detector noise and
emitted in the far universe.

The driving idea is to identify a set of N features in the
data chunks, which are the outcomes of the CCSNe 3D
simulations. This set of information is used to train a CNN
that, thanks to its architecture, can proceed mostly in an
automatic way in the learning process.
In this architecture the neuron acts as an image filter and

its weight can be thought as a specific pattern. For example,
patterns might include different orientation of edges or
small patches of color. If the local region of the input
matches that pattern, then the single neuron is activated.
The input is scanned to look for the set of signal features
and the process output is another image indicating where
that pattern can be located.

1. The CNN architecture

The model definition, the training and the validation
phases have been developed in the TFlearn [48] and
Keras frameworks [49], both based on the TensorFlow
backend [50].
The network is designed as simple as possible while still

having enough variables for the optimisation [51]. In Fig. 4,
we sketch the block diagram of the CNN. The images are
inputs of the following sequence blocks: ZeroPadding,
Convolutional, Rectified Linear Unit (ReLU), MaxPooling,
Dropout.
The zero padding ensures that the size of the following

convolutional output is still a power of two. Every convolu-
tional layer in the network has the same kernel size (3 × 3)
and number of filters (8).

FIG. 3. From the top; the spectrogram of LIGO Hanford is red,
then that of LIGO Livingston is green and Virgo is blue. At the
bottom: the RGB image obtained by stacking the previous three
spectrograms. In this case, the signal is present just in Hanford
and Livingston so that the combined signal at the bottom is in
yellow.

FIG. 2. The mechanism of additive color synthesis. LIGO
Hanford is assigned to red, LIGO Livingston to green and Virgo
to blue. A triple coincidence will appear in white, while a double
coincidence in yellow, magenta or cyan, depending on which
couple of detectors is involved.

FIG. 4. Sketch of the architecture of our model.
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Every convolutional unit has a Rectified Linear Unit—
ReLU, i.e., an activation function defined as:

ReLUðxÞ ¼ maxð0; xÞ
After the ReLu nonlinearity, a Max pooling [52] is

performed.Max pooling is a downsampling process, which
halves the image dimensionality, it reduces the computa-
tional cost by decreasing the number of parameters to learn
and provides local translation invariance to the internal
representation. After the pooling, the minimum possible
contraction to 2 × 2 implies that the feature map area is
shrunk by a factor of four and this operation returns the
maximum output within a square neighbourhood.
The final step of every block is a soft dropout aimed to

regularize the model and avoid overfitting.
Then, the whole process is repeated six times, then the

flattened layer reshapes all the previous neurons in a one-
dimensional vector.
This operation erases the information about topology,

generally marking the boundary between the convolutional
and fully connected part of the model. After the flattening
layer, we set a fully connected layer with only two output
neurons, one for each class, noise and signal+noise. Those
neurons have a softmax activation function, in order to
obtain class probabilities as the final output of our classifier.
The softmax activation function is defined as:

softmaxðzÞi ¼
ezi

P
je

zj
ð7Þ

where the indices i and j run from 0 to n and the z array is
the output of the n neurons in the preceding layer.

2. The learning phase and validation

The output of the softmax layer is the probability p,
while q≡ f0; 1g is the true image class. The learning phase
is performed by a gradient descending algorithm of the loss
function [43] toward lower values. To optimise our network
we used the class of adaptive learning rate algorithms
known as Adaptive-moments (Adam), because of its robust-
ness and fast convergence.
In a first phase the CNN has to be trained to classify in

the right class the images containing the signal. Artificial
neural networks have a huge number of internal parameters
to adapt during the learning phase. In general, the more
parameters involved the more expressive the network is.
More expressive power means a better ability to perform a
given task, but also means longer and more difficult
training, as well as higher computing resources needed.
With the architecture described before we have a total of
3210 partially correlated trainable parameters; this number
is enough to represent the knowledge required to success-
fully perform our classification task.
For the training phase we split the data in two different

chunks: the train and the test set. The model is trained only

using the information from the first set, while the second
one is never involved in this process. We feed the model
with the train set while the test one is used to probe its
generalization capabilities, i.e., it is effectively learning
general features in our finite data set. The check of the
learning process is done periodically to gain confidence on
the classification efficiency performed on a completely new
and independent set of data. Then, the information about
this evaluation will be immediately discarded, without
using them for the training: in this way, every successive
evaluation will be like the first evaluation of a never-seen-
before data set. The training phase stops when the gradient
of the loss function is approaching zero within our arbitrary
chosen interval of 10−4.
The curriculum learning starts the training from higher

values of the cost function (easier classification) and
progressively decreases (harder classification). The train-
ing set is built using just images where we have signal-to-
noise-ratio (SNR) higher than 4 in two detectors at least
and we use different data set with decreasing SNR of the
network: 40, 35, 30, 25, 20, 25, 20, 15, 12, 10, 8 and, for
each of this value, we compute the CNN efficiency, ηCNN,
defined as

ηCNN ¼ correctly classified signals
all the signals at the input of CNN

ð8Þ

and the CNN false alarm rate (FARCNN), defined as:

FARCNN ¼ misclassified noise
all classified events

ð9Þ

The class encode q of noise and signal+noise assumes
just the value 0 or 1, while the output of the classifier is
instead the real number p, the probability of the image to
include a signal. Thus, to separate the two classes, we have
to define the threshold θCNN. The choice is the result of a
trade off between the false positive and the false negative
classification. The main constraint is to minimize the signal

FIG. 5. Distribution of the classifier output for noise (red line)
and signalþ noise (light blue line) in the case of SNR ¼ 8.
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dismissal, even if this implies to include some noise in the
form of false positives.
In Fig. 5, we show an example of class classification

histograms of the noise and signalþ noise in the case
SNR ¼ 12. By choosing a threshold of 0.5 in the predicted
probability to be in the signal class (see Fig. 5), we obtain
the results shown in Fig. 6, where for SNRs between 8 and
15 the efficiency is higher that 80%, for SNR higher than
20 is 1 and the false alarm is confined in the range 3%
and 4%.

IV. RESULTS

In order to qualify the method, we compare its efficiency
to the complete cWB procedure. The efficiency for each
procedure is defined as the ratio of the number of events
passing the procedure thresholds and the number of
injected events. We simulate the background noise which
is equivalent to six years of observation of advanced
detectors, applying the usual time-shift procedure of the
gravitational data analysis [36]. Then, we inject a subset of
waveforms whose parameters are listed in Table I. Since
cWB’s performances change in function of the SNR, in
order to have compared number of events for each SNR
value, we inject more signal at lower SNR. For each SNR
we build a set of 10000 time-frequency images and we
combine them randomly with the same amount of noise
images. The six years of observation time is accordingly
reduced to the image selection.
The comparison between our method and the complete

cWB approach is done through the cross correlation
statistics, cccWB, [41]. In particular, the postproduction
thresholds are set as reported in [41], relaxing just cccWB to
the value 0.6, since we were not dealing with real noise. We
compute the efficiency curves of cWB and our method for
every SNR as function of the false alarm rate. In Fig. 7 we

show just the case of SNR ¼ 12 and SNR ¼ 40 and we
note that the efficiency of our method is better than that of
complete cWB. The same results are obtained for all SNRs.
In Fig. 8, we plot the efficiency versus the signal to noise

ratio of the network for the complete cWB and our method
at the false alarm rate of about 7 × 10−5 Hz. Again, we note
that our method has improved efficiency with respect
to cWB.
In the same figure, we show also the ratio between

the input events of the CNN and the total injected events
in function of SNR, as listed in Table II. This curve
sets the maximum efficiency that our method can achieve.
The missing events depend on the cWB postproduction

FIG. 7. Efficiency vs false alarm for cWB (continuous line) and
our method (dashed line) in the three cases SNR ¼ 12 (blue
triangles), SNR ¼ 20 (pink squares), and SNR ¼ 40 (brown
circles).

FIG. 8. Efficiency vs SNR in the case of complete cWB
(continuous) and our method (dashed) for all SNRs. We report
also the curve that shows the ratio between the input events of the
CNN and the total injected events in function of SNR (brown).
This curve sets the maximum efficiency that our method can
achieve.

FIG. 6. ηCNN (Eq. (8) for different SNRs (blue line) computed
during the validation process at threshold θCNN ¼ 0.5. The red
line is the false alarm probability [FARCNN Eq. (8)] associated to
the various SNRs computed at the same threshold. The used data
set is based on 20000 signals and noise events for each SNR, half
used for training and half for validation.
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threshold, so that whole improvement is achievable by a
better tuning of the cWB inputs.

V. CONCLUSIONS

We have presented a nonlinear method based on con-
volutional neural network algorithm to extract CCSN

signals embedded in Gaussian noise with spectral behavior
of Advanced LIGO and Virgo detectors. We compared the
efficiency of the method for different signal to noise ratio
to that of the algorithm used by the LIGO-Virgo collab-
orations to detect gravitational wave transient signals. The
results show that our method has an higher efficiency and
we conclude that using this new approach we can detect
core collapse supernovae taking advantages of the peculiar
features of the signal.
In the future, we plan to qualify the method using real

detector data which are affected even by non-Gaussian
noise.
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