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We conjecture infrared emergent N = 4 supersymmetry for a class of three-dimensional A/ = 2 U(1)
gauge theories coupled with a single chiral multiplet. One example is the case where the U(1) gauge group
has the Chern-Simons level — % and the chiral multiplet has gauge charge +1. Other examples are related to
this example either by known dualities or rescaling the Abelian gauge field. We give three independent
pieces of evidence for the conjecture: (i) exact match between the central charges of the U(1) R-symmetry
current and the U(1) topological symmetry current, (i) semiclassical construction of the N = 4 stress-
tensor multiplet, and (iii) an IR duality between a direct product of the two copies of the 3D theory, on the
one hand, and an A/ = 4 theory obtained by gauging the diagonal SU(2) flavor symmetry of the T[SU(2)]
theory, on the other. The duality in (iii) follows from geometrical aspects of the 3D-3D correspondence.
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I. INTRODUCTION

Symmetry has long been a fundamental guiding princi-
ple in theoretical physics. One of the most successful
examples for this is the celebrated supersymmetry [1-3], a
spacetime symmetry exchanging bosons and fermions.

Supersymmetry is traditionally regarded as a high-
energy symmetry in the ultra-violet (UV). There is a
different attractive possibility where supersymmetry is
emergent in the infra-red (IR)—one starts with a theory
with no supersymmetry in the UV, which flows to an IR
fixed point with emergent supersymmetry. Such a possibil-
ity has actively been studied recently in condensed matter
literature [4-8], and could even be realized experimentally.

One of the virtues of supersymmetry is that it places
stringent constraints on the possible physics. Supersym-
metry, however, in itself is not enough for analyzing and
better understanding renormalization group (RG) flow with
emergent supersymmetry. This is because supersymmetry
emerges only in the IR, and is not present in the UV theory
which is the starting point of the analysis. The situation is
better if we start with a supersymmetric theory in the UV,
and if the theory has emergent supersymmetry enhancement
in the IR: we then can use the powerful tools from super-
symmetry to study the emergence of supersymmetry in itself.

In this Letter we propose examples of such supersym-
metry enhancement along the RG flow, where a class of
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theories in three spacetime dimensions with manifest
N =2 extended supersymmetry has enhanced N =4
supersymmetry in the IR.

The theory we discuss is rather simple: an Abelian
Chern-Simons (CS) matter theory coupled to a single
chiral multiplet. In fact, as we will discuss below there
are some indications that our examples could be “mini-
mal” such examples. That such a simple theory admits
supersymmetry enhancement is a surprise, and we hope
that a through understanding of these examples will
provide valuable insights into the emergence/enhancement
of supersymmetry in general. We will below provide
three independent pieces of evidence for this proposal,
by taking advantage of several cutting-edge techniques
and results for three-dimensional A/ = 2 supersymmetry,
including supersymmetric localization and the 3D-3D
correspondence.

II. PROPOSAL FOR N =4 SUPERSYMMETRY

ENHANCEMENT

Let us consider a 3D N = 2 Abelian CS matter theory
coupled with a single N' = 2 chiral multiplet

T o= (aU(1) vector multiplet with the CS level k coupled
with a chiral multiplet ® of charge Q). (1)

For consistency of the theory [9-11] we assume the
quantization condition of the bare CS level k:

2
keZ+%. (2)
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The main result of this Letter is to propose the following
supersymmetry enhancement in the IR:

Tk:_%.Q:] has emergent N/ = 4 supersymmetry in the IR.‘

(3)

In the following, we shall substantiate this claim by
providing three pieces of evidence.

ITII. PROPERTIES OF THE IR SCFT

Let us begin by summarizing some properties of
the theory 7;__3/50-; at the IR fixed point, which
requires only N = 2 supersymmetry manifest in the UV
Lagrangian.

We assume that there is no additional emergent Abelian
flavor symmetry in the IR. Then, the superconformal U(1)
R-charge at the IR fixed point can be determined by
F-maximization [12] and the result is

(U(1); of ®) = 5. 4)

The IR SCFT does not seem to have any gauge invariant
1/2 BPS chiral primary operator (CPO). As we will see
later in Table I, we can list local operator spectrum of the
theory in the semiclassical limit and do not find any CPO.
The same will likely be the case at the IR fixed point, unless
we assume the unlikely possibility of an emergent CPO in
the deep IR. The absence of CPO implies the empty
vacuum moduli space for the IR SCFT.

Using the UV Lagrangian description with manifest
N =2 supersymmetry, the stress-energy tensor central
charge C7 [13] can be evaluated exactly [15]

CT(Tk:—%,Q:I) - ﬁ g 5v/5 425
Cr(a free chiral ®) 25 P
~0.992549. (5)

Note that the central charge is even smaller than that of a
free chiral theory.

Suppose the N/ = 4 SUSY enhancement really happens,
as our conjecture claims. Since 3D A = 4 theories with
Lagrangian description have nontrivial vacuum moduli
space, it then follows that the IR NV =4 SCFT does not
allow any UV Lagrangian description with manifest N = 4
supersymmetry. The IR SCFT is therefore a strong candi-
date for the minimal 3D A/ = 4 SCFT which does not allow
for UV Lagragian with manifest ' = 4 supersymmetry,
where minimal here refers to the smallest nonzero values
for the central charge Cy. The situation is analogous to the
4d case [16,17]. In 4d N = 2, the Argyres-Douglas theory
[18] turns out to be the minimal SCFT [19] which allow UV
Lagrangian description only with ' = 1 supersymmetry.
See also recently found examples of SUSY enhancements
in 4d [20-23] and 3D [24,25].

A. Evidence 1: C;, =C;

Let us next come to the first evidence for our conjecture.
The global symmetries of the theory manifest in the UV
Lagrangian are the ' =2 R-symmetry U(1), as well as
the topological symmetry U(1),,,, wWhere the conserved

current for the latter is given by

top?

Jltlop & €;prW e (ayA/) - a/)Av)’ (6)

with A, being the dynamical gauge field. These global
symmetries are expected to be enhanced to an emergent
SO(4); R-symmetry in the IR so that

4. of SO(4)g has charges {(£1,0), (0,£1)}
under U(1)g x U(1),qp- (7)

The Weyl-group symmetry of the emergent SO(4)
R-symmetry contains an emergent Z, symmetry exchang-
ing the two global symmetries U(1),,, and U(1)g. The
conjecture (3) therefore predicts equalities between the
correlation functions for the conserved current Ji,, and
those for J%. We can in particular consider the case of the
two-point functions of the currents, which are determined
up to overall constants C Tp and C;,, known as the central

charges [14]:

Uy (1) 50(0) = €5, 22
VR0 = €5, 2,
() = 8, =275 (8)

The central charges C Jop and Cj, can be computed using

supersymmetric localization [15,26], and we indeed find
their match:

o

2 5vV/5+ 25
<8—#>20248137. (9)
VA

R = C]lop :E

This is highly nontrivial evidence for conjecture (iii).

B. Evidence 2: N =4 stress-energy tensor multiplet

As other evidence, we construct the A/ = 4 stress-energy
tensor multiplet semiclassically.

Decomposition of N = 4 stress-energy tensor multiplet
into N =2 multiplets: The N =4 supercharges are
decomposed as

{0} ={Qn=2} U{Or}. (10)

where Q\r_, are the N' = 2 supercharges manifest in the
UV Lagrangian, while Qg denote the supercharges emer-
gent in the IR. Q_, s are charged under U(1), symmetry

while Qg s are charged under U(1),,, symmetry. In terms
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of multiplets of the N =2 superconformal subalgebra
(containing Qx—, as supercharges), the N =4 stress-
energy tensor multiplet consists of

‘Conserved current multiplet, AyA,[j=0]3=%, for U(1 )mp‘

Or - 1]=0 .

A=3)2

charge +1

top

O, |Stress-energy tensor multiplet, A; A, [j = 1]57%].

(11)

Here A,A,[j > 1579,
component is a conformal primary with spin j, U(1)
R-charge r and conformal dimension A = j + 1. We here
follow the notation in [27] with rescaling jour = 3 jneirs
Four = 3 Ftheir- Both of the conserved current multiplet and
the stress-energy tensor multiplet are expected to exist at
the IR fix point assuming no dynamical breaking of the

N =2 supersymmetry and U(1),,, symmetry. We only

is a short-multiplet whose bottom

top
need to show the existence of an A, A [j = 3]3="; , multiplet
at the IR fixed point in order to show the emergent N = 4
supersymmetry.

Semiclassical analysis on local operator spectrum: The
local operator spectrum at semiclassical limit is summarized
in Table 1. In the table, |¢) denotes a 1/2 BPS holomorphic
bare monopole operator with flux ¢ € Z. Through a radial
quantization, local operators of the 3D theory are mapped to
states on S2. The bare monopole operator corresponds to a
1/2 BPS semiclassical configuration with

Az dAU(])gﬂuge = 277.'q (12)

Upon the semiclassical configuration, we can excite bosonic
and fermionic oscillators, (af,b") and (a',b",¢"), which
come from following harmonic expansion (see, e.g., [28])

TABLE 1. Semiclassical local operators of the theory
T t——3/2,0-1- For nonzero g, we only list operators which
correspond to excited states on BPS monopole configuration
and skip their conjugates. We use the F-maximization result in (4)
for the IR U(1), charge.

UDguee UDg Uy (i j3)
a},,(j €9+ Zx) + } 0 (j.m)
bi(j €19+ Z5) = -3 0 (j.m)
al,jedt+z,)  H1 -3 0 (j.m)
bl €5t +Z50) 7 :o0 Gm
G +1 -2 0 (41 )
|Q>2 7 —% - 37" gl q 0,0)

o

J
¢ = Z Z (Cl;mYij + bijqjm)’

jzlql m==j

J
Y= Z Z (&;mqum () + b/'mqum)

j2lgl+3m==J

g4

+ D gt Calgtims

m=5~|q|

(13)

where the functions Y are scalar monopole harmonics while
A, B and C are spinor monopole harmonics under a proper
normalization. In particular, the function C corresponds to
zero-modes of the Dirac operator on S coupled to the
monopole background (12). The bare monopole state is
annihilated by all the annihilation operators

~

(ajma bjms ajmﬁ bjmv é‘q\—%,m) : |CI> =0. (14)

The bare monopole has R-charge |;i| which is due to the

zero-point shift from |¢| fermionic zero-modes C. The U(1)

gauge charge for the bare monopole come from two

_ldl
2

classical Chern-Simons term with level — %

First, note that all gauge invariant operators have integer-
valued U(1) R-charges. The U(1) R-symmetry is a sub-
group of the non-Abelian SO(4) R-symmetry and its charge
should be properly quantized (half-integers).

Second, there is no gauge-invariant 1/2 BPS CPO in the
semiclassical analysis. Bare monopole operator |g # 0) is
not gauge-invariant and it needs to be dressed by matter
fields by acting creation operators. Creation operators,
except ¢' when |g| = 1, have nonzero spin in the presence
of monopole background and the excited gauge-invariant
operators are not CPOs. For |g| = 1, the gauge charge of
bare monopole can not be cancelled solely by ¢' and the
excited gauge-invariant operators are not CPOs.

Superconformal index analysis: The 3D superconformal
index [29,30] is defined as

contributions, from zero-modes and —%q from the

T(u;x) = Tr(=1) x> 3uf. (15)
Here u is the fugacity for the topological U(1),,, symmetry.
The trace is taken over local operators, or states on S2, of
the theory. Contributions of most local operators are
cancelled by its Q-transformed fermionic operator and
only 1/4 BPS operators saturating the bound

A>r+j;. (16)
could contribute to the index. The index for 3D N =2
theories can be computed using supersymmetric localiza-
tion techniques [30,31]. For the theory 7 ;__3/, o—, the

index contains a power x>/2:
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ITW'ux ZIAeex
eeZ
I\ 5
=1-x- (u+—>xi—2x2+~~-, (17)
u

where the Z, (m, e; x) is so-called tetrahedron index [30]

r——+1 —1

ZIAmex :Hl = (18)

eeZ

Among all 3D N = 2 superconformal multiplets classified
in [27], only the following two types of multiplets
contributes a term —x>/? to the index

o .7 _
AA, {] = 2] , and LB,[j = 0]2;33- (19)
A=

The bottom component of LB, corresponds to a CPO with
R-charge r. The CPO contributes (—1)"x"/? to the index. In
the descendant Qy—; - (AA[j = 3|55 ,), there is an
operator with A =2, r =1 and j = 1 which contributes
(=x*?) to the index. As seen in the above semiclassical
analysis, there seems to be no CPO in the IR fixed point.
This means the term —(u + 1)x3/% in the index should come
from two A;A,[j = 3]5=% , multiplets with U(1),,, charge
+1. This is compatible with the existence of the N =4
stress-energy tensor multiplet (11) in the IR SCFT.

C. Evidence 3: A duality between (7 _3, ;)®*
and T[SU(2)]/SU(2)%2

The third evidence for our conjecture comes from a
duality derived from the 3D-3D correspondence [32-35],
where a twisted compactification of 6D A; (2,0) theory on a
3-manifold M generates an associated 3D N =2 SCFT.
When the 3-manifold M has a torus boundary, the resulting
SCFT depends not only on M but also on the choice of
primitive boundary cycle A € H(OM,Z) =7 & Z. We
denote the 3D SCFT by

T[M; Al. (20)

The theory have U(1), symmetry associated the chosen
boundary 1-cycle A. For a given 3-manifold, there could be
several topological representations and they give different
UV descriptions which flow to the same IR fixed point. As
a concrete example relevant to our purpose, let us consider
a 3-manifold called “figure-eight knot complement”

M = (figure-eight knot complement in $%). (21)

The manifold has a torus boundary and there is a canonical
basis choice, u (merdian) and 4 (longitude), for H,(OM, Z)
H{(OM, Z)

—Z®Z= (). (22)

There are two well-known representations of this
3-manifold. One is using an ideal triangulation with two
tetrahedra and the corresponding UV description 7P5[M]
is given as follows [33]
TDGG [ M, A= ,U]
= (aU(1) vector multiplet with vanishing CS level coupled
with two chiral multiplets ®; and @, of charge + 1).
(23)

The Lagrangian of the theory is given as follows in terms of
superfields

1 3
+E/J29(32V#V—Ezvﬂvﬂ) + (c.c).

(24)

Here V is the dynamical vector multiplet superfield for the
U(1) gauge symmetry and Xy is its dual linear multiplet
y = D*D,V. V, is the background vector multiplet
coupled to the U(1), flavor symmetry. Then, the theory
TPSG[M, A] with A = J is simply obtained by gauging the
U(1), symmetry of the above theory [33].

ACTDGG[M,A:/” = /d49(q)TeV_Wq)1 + CI);eV(I)Z)

1 3
+ E/ 420 (32Wv -3y W+ 22in>
+ (c.c). (25)

Here we renamed V,, to W and the vector multiplet W' is
now dynamical. The U(1), symmetry in the theory
corresponds to the U(1),,, symmetry for the U(1) gauge

symmetry. Finally, by redefining the dynamical superfield
WtoV-W,

ﬁTDGG[M.A:/I]

:/d40(q)'i‘ew(bl +(I);€V®2)

1 3 3

+ (c.c), 20
we see that
TDGG[M,A — /1] = Tk:§ 0=1 ® IZ—ICZ—%.Q:1
(ka_, )®2. (27)
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Here, 7| ® 7, means a decoupled product of two theories
T, and 7 5. In the second line, we used the triality, which
we will explain later in (36). The other representation of the
3-manifold is

M = (once-punctured torus bundle over S!

0 1
with monodromy S7°3 = ( . 3) € SL(2, Z))

(28)

The 1-cycle around puncture corresponds to the longitude
cycle, 1. Base on the representation, an alternative UV
description TTY[M] is proposed in [32]:

TY[M;A =
T[SU(2)]
~su@)
:= (gauging SU(2)%22 of T[SU(2)] with CS level 3).
(29)

Since the two theories arise from the same 3-manifold, we
expect following IR duality between two UV descriptions
(TPSS[M;A = Ain (27)) = (T™Y[M;A =]in (29)).  (30)
The duality was checked by superconformal index in
Ref. [36]. The T[SU(2)] theory [37] is a theory living
on a S-duality wall in 4d N' = 4 8u(2) maximally super-
symmetric Yang-Mills theory, and is a 3D N =4 U(1),
gauge theory coupled to two hyper multiplets of charge +1.
The theory has manifest U(1),, x SU(2) flavor sym-
metry which are argued to be enhanced to (SU(2) x
SU(2)y)/Z, symmetry at the IR fixed point from the self-
mirror-dual property of theory.

In the description of TTY[M], we further deform the IR
fixed point by gauging its diagonal subgroup SU(2)%ae
with CS level +3 [38]. In the gauging, we introduce an
N =4 3u(2) vector multiplet and add the following
superpotential interaction [40],

3
oW = = TY[®?] + Trl(uc + )]

(31)

Here, ® is the adjoint chiral field in A =4 vector
multiplet, and uy and u. are holomorphic moment maps
associated to the SU(2), and SU(2). flavor symmetries in
the T[SU(2)] theory respectively. In the second line, we
integrated out the massive adjoint chiral multiplet.

Such a gauging generically breaks the N = 4 super-
symmetry to A/ = 3. This is reflected in the breaking of the
Cartan part of the R-symmetry, from U(1), x U(1), to

- gTr[(uc + py ).

U(1)y. Here, U(1), is the diagonal U(1)-subgroup of
U(1) x U(1) € SU(2) x SU(2) = SO(4), while U(1), is
the antidiagonal subgroup. The U(1), is actually the
U(1)g-symmetry of the N' = 2 subalgebra. (ug, i) have
charges (+1,+1) under U(1), = U(1); while (+1,-1)
under U(1),. Thus, the superpotential (31) indeed does
seem to break the U(1), symmetry.

However, in our case we can appeal to the following
properties of the moment map of 7[SU(2)| theory [37]

Trlu] = Trluz] = 0. (32)
so that the superpotential simplifies as
2n
5W:?Tr[ﬂcﬂH]’ (33)

and hence enjoys the U(1),, x U(1), symmetry. Actually
the superpotential deformation preserves full SO(4)g
symmetry and A" = 4 supersymmetry [41].

We have established that the two theories in (30) make
manifest different amounts of supersymmetry:

TPSG[M] has manifest N' = 2 supersymmetry,

T™[M] has manifest ' = 4 supersymmetry. (34)
Under a mild assumption that the manifest supersymme-
tries are not broken along the RG flow, the duality (30)
implies that

both theories have N = 4 supersymmetry in the IR, (35)

namely, that the theory (7 k:_%,Q:1)®2, and hence
T k=-3.0=1 in itself [42], has emergent N' =4 SUSY in

the IR. This is very strong evidence for the conjecture
in (iii).

D. MORE EXAMPLES WITH N =4 SUSY
ENHANCEMENT

The 3D theory considered here allows infinitely many
dual gauge theory descriptions (modulo topological sec-
tors) which are also expected to have enhanced SUSY in the
IR. For example, following gauge theories are all equiv-
alent as a 3D field theory on R3, where the topological
sector is invisible.

Tk:%pZ,Q:p with pE Z#O?
Tk:(),Q:p with P S 2Z¢0 (36)

The dualities among the three classes of gauge theories for
p = 1 above are studied in [24]. The theories for general p
can be obtained by rescaling the U(1) gauge field A, by
pA,. The rescaling does not affect the spectrum of local

operators modulo rescaling of (electric charge m, magnetic

charge e) to (ém,pe) due to the change of Dirac

121701-5



DONGMIN GANG and MASAHITO YAMAZAKI

PHYS. REV. D 98, 121701 (2018)

quantization. The rescaling does not break any (0-form)
symmetry including supersymmetry but breaks some
1-form symmetries [44].

Further, the theory has a realization in the context of
3D-3D correspondence, where the 3-manifold in question
is a closed hyperbolic 3-manifold whose hyperbolic vol-
ume is Im(Li,(e)) = 1.01494 [45]. From infinitely many
Dehn surgery representations of the 3-manifold, we have
infinitely many dual descriptions of the Abelian gauge
theory [46].
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