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We conjecture infrared emergent N ¼ 4 supersymmetry for a class of three-dimensional N ¼ 2 U(1)
gauge theories coupled with a single chiral multiplet. One example is the case where the U(1) gauge group
has the Chern-Simons level − 3

2
and the chiral multiplet has gauge chargeþ1. Other examples are related to

this example either by known dualities or rescaling the Abelian gauge field. We give three independent
pieces of evidence for the conjecture: (i) exact match between the central charges of the U(1) R-symmetry
current and the U(1) topological symmetry current, (ii) semiclassical construction of the N ¼ 4 stress-
tensor multiplet, and (iii) an IR duality between a direct product of the two copies of the 3D theory, on the
one hand, and an N ¼ 4 theory obtained by gauging the diagonal SU(2) flavor symmetry of the T½SUð2Þ�
theory, on the other. The duality in (iii) follows from geometrical aspects of the 3D–3D correspondence.

DOI: 10.1103/PhysRevD.98.121701

I. INTRODUCTION

Symmetry has long been a fundamental guiding princi-
ple in theoretical physics. One of the most successful
examples for this is the celebrated supersymmetry [1–3], a
spacetime symmetry exchanging bosons and fermions.
Supersymmetry is traditionally regarded as a high-

energy symmetry in the ultra-violet (UV). There is a
different attractive possibility where supersymmetry is
emergent in the infra-red (IR)—one starts with a theory
with no supersymmetry in the UV, which flows to an IR
fixed point with emergent supersymmetry. Such a possibil-
ity has actively been studied recently in condensed matter
literature [4–8], and could even be realized experimentally.
One of the virtues of supersymmetry is that it places

stringent constraints on the possible physics. Supersym-
metry, however, in itself is not enough for analyzing and
better understanding renormalization group (RG) flow with
emergent supersymmetry. This is because supersymmetry
emerges only in the IR, and is not present in the UV theory
which is the starting point of the analysis. The situation is
better if we start with a supersymmetric theory in the UV,
and if the theory has emergent supersymmetry enhancement
in the IR: we then can use the powerful tools from super-
symmetry to study the emergence of supersymmetry in itself.
In this Letter we propose examples of such supersym-

metry enhancement along the RG flow, where a class of

theories in three spacetime dimensions with manifest
N ¼ 2 extended supersymmetry has enhanced N ¼ 4
supersymmetry in the IR.
The theory we discuss is rather simple: an Abelian

Chern-Simons (CS) matter theory coupled to a single
chiral multiplet. In fact, as we will discuss below there
are some indications that our examples could be “mini-
mal” such examples. That such a simple theory admits
supersymmetry enhancement is a surprise, and we hope
that a through understanding of these examples will
provide valuable insights into the emergence/enhancement
of supersymmetry in general. We will below provide
three independent pieces of evidence for this proposal,
by taking advantage of several cutting-edge techniques
and results for three-dimensional N ¼ 2 supersymmetry,
including supersymmetric localization and the 3D–3D
correspondence.

II. PROPOSAL FOR N = 4 SUPERSYMMETRY
ENHANCEMENT

Let us consider a 3D N ¼ 2 Abelian CS matter theory
coupled with a single N ¼ 2 chiral multiplet

T k;Q ≔ ða Uð1Þ vector multiplet with the CS level k coupled

with a chiral multipletΦ of chargeQÞ: ð1Þ

For consistency of the theory [9–11] we assume the
quantization condition of the bare CS level k:

k ∈ ZþQ2

2
: ð2Þ
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The main result of this Letter is to propose the following
supersymmetry enhancement in the IR:

T k¼−3
2
;Q¼1 has emergent N ¼ 4 supersymmetry in the IR:

ð3Þ
In the following, we shall substantiate this claim by
providing three pieces of evidence.

III. PROPERTIES OF THE IR SCFT

Let us begin by summarizing some properties of
the theory T k¼−3=2;Q¼1 at the IR fixed point, which
requires only N ¼ 2 supersymmetry manifest in the UV
Lagrangian.
We assume that there is no additional emergent Abelian

flavor symmetry in the IR. Then, the superconformal U(1)
R-charge at the IR fixed point can be determined by
F-maximization [12] and the result is

ðUð1ÞR of ΦÞ ¼ 1

3
: ð4Þ

The IR SCFT does not seem to have any gauge invariant
1=2 BPS chiral primary operator (CPO). As we will see
later in Table I, we can list local operator spectrum of the
theory in the semiclassical limit and do not find any CPO.
The samewill likely be the case at the IR fixed point, unless
we assume the unlikely possibility of an emergent CPO in
the deep IR. The absence of CPO implies the empty
vacuum moduli space for the IR SCFT.
Using the UV Lagrangian description with manifest

N ¼ 2 supersymmetry, the stress-energy tensor central
charge CT [13] can be evaluated exactly [15]

CTðT k¼−3
2
;Q¼1Þ

CTða free chiral ΦÞ ¼
8

25

�
8 −

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffi
5

pp
π

�

≃ 0.992549: ð5Þ
Note that the central charge is even smaller than that of a
free chiral theory.
Suppose the N ¼ 4 SUSY enhancement really happens,

as our conjecture claims. Since 3D N ¼ 4 theories with
Lagrangian description have nontrivial vacuum moduli
space, it then follows that the IR N ¼ 4 SCFT does not
allow any UV Lagrangian description with manifestN ¼ 4
supersymmetry. The IR SCFT is therefore a strong candi-
date for the minimal 3DN ¼ 4 SCFTwhich does not allow
for UV Lagragian with manifest N ¼ 4 supersymmetry,
where minimal here refers to the smallest nonzero values
for the central charge CT . The situation is analogous to the
4d case [16,17]. In 4d N ¼ 2, the Argyres-Douglas theory
[18] turns out to be the minimal SCFT [19] which allow UV
Lagrangian description only with N ¼ 1 supersymmetry.
See also recently found examples of SUSY enhancements
in 4d [20–23] and 3D [24,25].

A. Evidence 1: CJR =CJtop

Let us next come to the first evidence for our conjecture.
The global symmetries of the theory manifest in the UV

Lagrangian are the N ¼ 2 R-symmetry Uð1ÞR as well as
the topological symmetry Uð1Þtop, where the conserved
current for the latter is given by

Jμtop ∝ ϵμνρFνρ ¼ ϵμνρð∂νAρ − ∂ρAνÞ; ð6Þ
with Aμ being the dynamical gauge field. These global
symmetries are expected to be enhanced to an emergent
SOð4ÞR R-symmetry in the IR so that

4vec of SOð4ÞR has charges fð�1; 0Þ; ð0;�1Þg
under Uð1ÞR × Uð1Þtop: ð7Þ

The Weyl-group symmetry of the emergent SO(4)
R-symmetry contains an emergent Z2 symmetry exchang-
ing the two global symmetries Uð1Þtop and Uð1ÞR. The
conjecture (3) therefore predicts equalities between the
correlation functions for the conserved current Jμtop and
those for JμR. We can in particular consider the case of the
two-point functions of the currents, which are determined
up to overall constants CJtop and CJR , known as the central
charges [14]:

hJμtopðxÞJνtopð0Þi ¼ CJtop

IμνðxÞ
jxj4 ;

hJμRðxÞJνRð0Þi ¼ CJR

IμνðxÞ
jxj4 ;

IμνðxÞ ≔ δμν − 2
xμxν
x2

: ð8Þ

The central charges CJtop and CJR can be computed using
supersymmetric localization [15,26], and we indeed find
their match:

CJR ¼ CJtop ¼
2

25

�
8 −

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffi
5

pp
π

�
≃ 0.248137: ð9Þ

This is highly nontrivial evidence for conjecture (iii).

B. Evidence 2: N = 4 stress-energy tensor multiplet

As other evidence, we construct theN ¼ 4 stress-energy
tensor multiplet semiclassically.
Decomposition of N ¼ 4 stress-energy tensor multiplet

into N ¼ 2 multiplets: The N ¼ 4 supercharges are
decomposed as

fQg ¼ fQN¼2g ∪ fQIRg; ð10Þ
where QN¼2 are the N ¼ 2 supercharges manifest in the
UV Lagrangian, while QIR denote the supercharges emer-
gent in the IR. QN¼2 s are charged under Uð1ÞR symmetry
while QIR s are charged under Uð1Þtop symmetry. In terms
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of multiplets of the N ¼ 2 superconformal subalgebra
(containing QN¼2 as supercharges), the N ¼ 4 stress-
energy tensor multiplet consists of

Conserved current multiplet; A2Ā2½j¼ 0�r¼0
Δ¼1; for Uð1Þtop

⟶
QIR Two A1Ā1

�
j¼ 1

2

�
r¼0

Δ¼3=2
with Uð1Þtop charge �1

⟶
QIR Stress-energy tensor multiplet; A1Ā1½j¼ 1�r¼0

Δ¼2 :

ð11Þ

Here A1Ā1½j ≥ 1
2
�r¼0
Δ¼jþ1 is a short-multiplet whose bottom

component is a conformal primary with spin j, U(1)
R-charge r and conformal dimension Δ ¼ jþ 1. We here
follow the notation in [27] with rescaling jour ¼ 1

2
jtheir,

rour ¼ 1
2
rtheir. Both of the conserved current multiplet and

the stress-energy tensor multiplet are expected to exist at
the IR fix point assuming no dynamical breaking of the
N ¼ 2 supersymmetry and Uð1Þtop symmetry. We only
need to show the existence of an A1Ā1½j ¼ 1

2
�r¼0
Δ¼3=2 multiplet

at the IR fixed point in order to show the emergent N ¼ 4
supersymmetry.
Semiclassical analysis on local operator spectrum: The

local operator spectrum at semiclassical limit is summarized
in Table I. In the table, jqi denotes a 1=2 BPS holomorphic
bare monopole operator with flux q ∈ Z. Through a radial
quantization, local operators of the 3D theory are mapped to
states on S2. The bare monopole operator corresponds to a
1=2 BPS semiclassical configuration with

Z
S2
dAUð1Þgauge ¼ 2πq: ð12Þ

Upon the semiclassical configuration, we can excite bosonic
and fermionic oscillators, ða†;b†Þ and ðâ†;b̂†; ĉ†Þ, which
come from following harmonic expansion (see, e.g., [28])

ϕ ¼
X
j≥jqj

Xj

m¼−j
ða†jmY�

qjm þ bjmYqjmÞ;

ψ ¼
X

j≥jqjþ1
2

Xj

m¼−j
ðâ†jmAqjmðΩ2Þ þ b̂jmBqjmÞ

þ
Xjqj−1

2

m¼1
2
−jqj

ĉjqj−1
2
;mCq;jqj−1

2
;m; ð13Þ

where the functions Y are scalar monopole harmonics while
A, B and C are spinor monopole harmonics under a proper
normalization. In particular, the function C corresponds to
zero-modes of the Dirac operator on S2 coupled to the
monopole background (12). The bare monopole state is
annihilated by all the annihilation operators

ðajm; bjm; âjm; b̂jm; ĉjqj−1
2
;mÞ · jqi ¼ 0: ð14Þ

The bare monopole has R-charge jqj
3
which is due to the

zero-point shift from jqj fermionic zero-modes C. The U(1)
gauge charge for the bare monopole come from two

contributions, − jqj
2

from zero-modes and − 3
2
q from the

classical Chern-Simons term with level − 3
2
.

First, note that all gauge invariant operators have integer-
valued U(1) R-charges. The U(1) R-symmetry is a sub-
group of the non-Abelian SO(4) R-symmetry and its charge
should be properly quantized (half-integers).
Second, there is no gauge-invariant 1=2 BPS CPO in the

semiclassical analysis. Bare monopole operator jq ≠ 0i is
not gauge-invariant and it needs to be dressed by matter
fields by acting creation operators. Creation operators,
except ĉ† when jqj ¼ 1, have nonzero spin in the presence
of monopole background and the excited gauge-invariant
operators are not CPOs. For jqj ¼ 1, the gauge charge of
bare monopole can not be cancelled solely by ĉ† and the
excited gauge-invariant operators are not CPOs.
Superconformal index analysis: The 3D superconformal

index [29,30] is defined as

Iðu; xÞ ≔ Trð−1Þrxr
2
þj3uF: ð15Þ

Here u is the fugacity for the topological Uð1Þtop symmetry.
The trace is taken over local operators, or states on S2, of
the theory. Contributions of most local operators are
cancelled by its Q-transformed fermionic operator and
only 1=4 BPS operators saturating the bound

Δ ≥ rþ j3: ð16Þ

could contribute to the index. The index for 3D N ¼ 2
theories can be computed using supersymmetric localiza-
tion techniques [30,31]. For the theory T k¼−3=2;Q¼1, the
index contains a power x3=2:

TABLE I. Semiclassical local operators of the theory
T k¼−3=2;Q¼1. For nonzero q, we only list operators which
correspond to excited states on BPS monopole configuration
and skip their conjugates. We use the F-maximization result in (4)
for the IR Uð1ÞR charge.

Uð1Þgauge Uð1ÞR Uð1Þtop ðj; j3Þ
a†jmðj ∈ jqj

2
þ Z≥0Þ þ1 1

3
0 ðj; mÞ

b†jmðj ∈ jqj
2
þ Z≥0Þ −1 − 1

3
0 ðj; mÞ

â†jmðj ∈ jqjþ1
2

þ Z≥0Þ þ1 − 2
3

0 ðj; mÞ
b̂†jmðj ∈ jqjþ1

2
þ Z≥0Þ −1 2

3
0 ðj; mÞ

ĉ†jqj−1
2
;m

þ1 − 2
3

0 ðjqj−1
2

; mÞ
jqi − jqj

2
− 3q

2
jqj
3

q (0,0)
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IT −3=2;1ðu; xÞ ¼
X
e∈Z

IΔðe; e; xÞue;

¼ 1 − x −
�
uþ 1

u

�
x
3
2 − 2x2 þ � � � ; ð17Þ

where the IΔðm; e; xÞ is so-called tetrahedron index [30]

X
e∈Z

IΔðm; e; xÞue ¼
Y∞
r¼0

1 − xr−
m
2
þ1u−1

1 − xr−
m
2u

: ð18Þ

Among all 3D N ¼ 2 superconformal multiplets classified
in [27], only the following two types of multiplets
contributes a term −x3=2 to the index

A1Ā1

�
j ¼ 1

2

�
r¼0

Δ¼3
2

and LB̄1½j ¼ 0�r¼3
Δ¼3: ð19Þ

The bottom component of LB̄1 corresponds to a CPO with
R-charge r. The CPO contributes ð−1Þrxr=2 to the index. In
the descendant QN¼2 · ðA1Ā1½j ¼ 1

2
�r¼0
Δ¼3=2Þ, there is an

operator with Δ ¼ 2, r ¼ 1 and j ¼ 1 which contributes
ð−x3=2Þ to the index. As seen in the above semiclassical
analysis, there seems to be no CPO in the IR fixed point.
This means the term −ðuþ 1

uÞx3=2 in the index should come
from two A1Ā1½j ¼ 1

2
�r¼0
Δ¼3=2 multiplets with Uð1Þtop charge

�1. This is compatible with the existence of the N ¼ 4
stress-energy tensor multiplet (11) in the IR SCFT.

C. Evidence 3: A duality between (T − 3=2;1)⊗2

and T[SU(2)]=SU(2)diag3

The third evidence for our conjecture comes from a
duality derived from the 3D–3D correspondence [32–35],
where a twisted compactification of 6D A1 (2,0) theory on a
3-manifold M generates an associated 3D N ¼ 2 SCFT.
When the 3-manifoldM has a torus boundary, the resulting
SCFT depends not only on M but also on the choice of
primitive boundary cycle A ∈ H1ð∂M;ZÞ ¼ Z ⊕ Z. We
denote the 3D SCFT by

T½M;A�: ð20Þ
The theory have Uð1ÞA symmetry associated the chosen
boundary 1-cycle A. For a given 3-manifold, there could be
several topological representations and they give different
UV descriptions which flow to the same IR fixed point. As
a concrete example relevant to our purpose, let us consider
a 3-manifold called “figure-eight knot complement”

M ¼ ðfigure-eight knot complement in S3Þ: ð21Þ
The manifold has a torus boundary and there is a canonical
basis choice, μ (merdian) and λ (longitude), for H1ð∂M;ZÞ

H1ð∂M;ZÞ ¼ Z ⊕ Z ¼ hμ; λi: ð22Þ

There are two well-known representations of this
3-manifold. One is using an ideal triangulation with two
tetrahedra and the corresponding UV description TDGG½M�
is given as follows [33]

TDGG½M;A¼ μ�
¼ ða Uð1Þ vector multiplet with vanishing CS level coupled

with two chiral multipletsΦ1 andΦ2 of charge þ1Þ:
ð23Þ

The Lagrangian of the theory is given as follows in terms of
superfields

LTDGG½M;A¼μ� ¼
Z

d4θðΦ†
1e

V−VμΦ1 þΦ†
2e

VΦ2Þ

þ 1

4π

Z
d2θ

�
3ΣVμ

V −
3

2
ΣVμ

Vμ

�
þ ðc:cÞ:

ð24Þ

Here V is the dynamical vector multiplet superfield for the
Uð1Þ gauge symmetry and ΣV is its dual linear multiplet
ΣV ¼ D̄αDαV. Vμ is the background vector multiplet
coupled to the Uð1Þμ flavor symmetry. Then, the theory
TDGG½M;A� with A ¼ λ is simply obtained by gauging the
Uð1Þμ symmetry of the above theory [33].

LTDGG½M;A¼λ� ¼
Z

d4θðΦ†
1e

V−WΦ1 þΦ†
2e

VΦ2Þ

þ 1

4π

Z
d2θ

�
3ΣWV −

3

2
ΣWW þ 2ΣWVλ

�

þ ðc:cÞ: ð25Þ
Here we renamed Vμ to W and the vector multiplet W is
now dynamical. The Uð1Þλ symmetry in the theory
corresponds to the Uð1Þtop symmetry for the Uð1Þ gauge
symmetry. Finally, by redefining the dynamical superfield
W to V −W,

LTDGG½M;A¼λ�

¼
Z

d4θðΦ†
1e

WΦ1 þΦ†
2e

VΦ2Þ

þ 1

4π

Z
d2θ

�
3

2
ΣVV −

3

2
ΣWW þ 2ðΣV − ΣWÞVλ

�

þ ðc:cÞ; ð26Þ

we see that

TDGG½M;A ¼ λ� ¼ T k¼3
2
;Q¼1 ⊗ T k¼−3

2
;Q¼1

¼ ðT k¼−3
2
;Q¼1Þ⊗2: ð27Þ
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Here, T 1 ⊗ T 2 means a decoupled product of two theories
T 1 and T 2. In the second line, we used the triality, which
we will explain later in (36). The other representation of the
3-manifold is

M ¼
�
once-punctured torus bundle over S1

with monodromy ST3 ¼
�

0 1

−1 −3

�
∈ SLð2;ZÞ

�
:

ð28Þ
The 1-cycle around puncture corresponds to the longitude
cycle, λ. Base on the representation, an alternative UV
description TTY½M� is proposed in [32]:

TTY½M;A ¼ λ�

¼ T½SUð2Þ�
SUð2Þdiag3

≔ ðgauging SUð2Þdiag of T½SUð2Þ� with CS level 3Þ:
ð29Þ

Since the two theories arise from the same 3-manifold, we
expect following IR duality between two UV descriptions

ðTDGG½M;A¼ λ�in ð27ÞÞ¼ ðTTY½M;A¼ λ�in ð29ÞÞ: ð30Þ

The duality was checked by superconformal index in
Ref. [36]. The T½SUð2Þ� theory [37] is a theory living
on a S-duality wall in 4d N ¼ 4 suð2Þ maximally super-
symmetric Yang-Mills theory, and is a 3D N ¼ 4 Uð1Þ0
gauge theory coupled to two hyper multiplets of chargeþ1.
The theory has manifest Uð1Þtop × SUð2ÞH flavor sym-
metry which are argued to be enhanced to ðSUð2ÞC ×
SUð2ÞHÞ=Z2 symmetry at the IR fixed point from the self-
mirror-dual property of theory.
In the description of TTY½M�, we further deform the IR

fixed point by gauging its diagonal subgroup SUð2Þdiag
with CS level þ3 [38]. In the gauging, we introduce an
N ¼ 4 suð2Þ vector multiplet and add the following
superpotential interaction [40],

δW ¼ −
3

4π
Tr½Φ2� þ Tr½ðμC þ μHÞΦ�;

⇝
π

3
Tr½ðμC þ μHÞ2�: ð31Þ

Here, Φ is the adjoint chiral field in N ¼ 4 vector
multiplet, and μH and μC are holomorphic moment maps
associated to the SUð2ÞH and SUð2ÞC flavor symmetries in
the T½SUð2Þ� theory respectively. In the second line, we
integrated out the massive adjoint chiral multiplet.
Such a gauging generically breaks the N ¼ 4 super-

symmetry toN ¼ 3. This is reflected in the breaking of the
Cartan part of the R-symmetry, from Uð1ÞV × Uð1ÞA to

Uð1ÞV . Here, Uð1ÞV is the diagonal U(1)-subgroup of
Uð1Þ × Uð1Þ ⊂ SUð2Þ × SUð2Þ ¼ SOð4ÞR while Uð1ÞA is
the antidiagonal subgroup. The Uð1ÞV is actually the
Uð1ÞR-symmetry of the N ¼ 2 subalgebra. ðμH; μCÞ have
charges ðþ1;þ1Þ under Uð1ÞV ¼ Uð1ÞR while ðþ1;−1Þ
under Uð1ÞA. Thus, the superpotential (31) indeed does
seem to break the Uð1ÞA symmetry.
However, in our case we can appeal to the following

properties of the moment map of T½SUð2Þ� theory [37]

Tr½μ2H� ¼ Tr½μ2C� ¼ 0; ð32Þ
so that the superpotential simplifies as

δW ¼ 2π

3
Tr½μCμH�; ð33Þ

and hence enjoys the Uð1ÞV × Uð1ÞA symmetry. Actually
the superpotential deformation preserves full SOð4ÞR
symmetry and N ¼ 4 supersymmetry [41].
We have established that the two theories in (30) make

manifest different amounts of supersymmetry:

TDGG½M� has manifest N ¼ 2 supersymmetry;

TTY½M� has manifest N ¼ 4 supersymmetry: ð34Þ
Under a mild assumption that the manifest supersymme-
tries are not broken along the RG flow, the duality (30)
implies that

both theories haveN ¼ 4 supersymmetry in the IR; ð35Þ
namely, that the theory ðT k¼−3

2
;Q¼1Þ⊗2, and hence

T k¼−3
2
;Q¼1 in itself [42], has emergent N ¼ 4 SUSY in

the IR. This is very strong evidence for the conjecture
in (iii).

D. MORE EXAMPLES WITH N = 4 SUSY
ENHANCEMENT

The 3D theory considered here allows infinitely many
dual gauge theory descriptions (modulo topological sec-
tors) which are also expected to have enhanced SUSY in the
IR. For example, following gauge theories are all equiv-
alent as a 3D field theory on R3, where the topological
sector is invisible.

T k¼−3
2
p2;Q¼p with p ∈ Z≠0;

T k¼3
2
p2;Q¼p with p ∈ Z≠0;

T k¼0;Q¼p with p ∈ 2Z≠0: ð36Þ
The dualities among the three classes of gauge theories for
p ¼ 1 above are studied in [24]. The theories for general p
can be obtained by rescaling the U(1) gauge field Aμ by
pAμ. The rescaling does not affect the spectrum of local
operators modulo rescaling of (electric charge m, magnetic
charge e) to ð1pm; peÞ due to the change of Dirac
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quantization. The rescaling does not break any (0-form)
symmetry including supersymmetry but breaks some
1-form symmetries [44].
Further, the theory has a realization in the context of

3D–3D correspondence, where the 3-manifold in question
is a closed hyperbolic 3-manifold whose hyperbolic vol-
ume is ImðLi2ðeiπ

3 ÞÞ ¼ 1.01494 [45]. From infinitely many
Dehn surgery representations of the 3-manifold, we have
infinitely many dual descriptions of the Abelian gauge
theory [46].

ACKNOWLEDGMENTS

We would like to thank Victor Mikhaylov for collabora-
tion in a related project [15], from which this project
emerged as an enhancement. We also thank Kimyeong
Lee, Piljin Yi, Sangmin Lee, Sungjay Lee, Jaemo Park, Seok
Kim, Jaewon Song, Prarit Agarwal, Kazuya Yonekura, and
Zohar Komargodski for useful comments. The work of D. G.
was supported by the Samsung Science and Technology
Foundation under Project No. SSTBA1402-08. The work of
M.Y. was supported by JSPS Grant No. 17KK0087.

[1] J.-L. Gervais and B. Sakita, Field theory interpretation
of supergauges in dual models, Nucl. Phys. B34, 632
(1971).

[2] Yu. A. Golfand and E. P. Likhtman, Extension of the algebra
of Poincare group generators and violation of p invariance,
Pis’ma Zh. Eksp. Teor. Fiz. 13, 452 (1971) [JETP Lett. 13,
323 (1971)].

[3] J. Wess and B. Zumino, Supergauge transformations in
four-dimensions, Nucl. Phys. B70, 39 (1974).

[4] S.-S. Lee, Emergence of supersymmetry at a critical point of
a lattice model, Phys. Rev. B 76, 075103 (2007).

[5] Y. Yu and K. Yang, Simulating Wess-Zumino Supersym-
metry Model in Optical Lattices, Phys. Rev. Lett. 105,
150605 (2010).

[6] P. Ponte and S.-S. Lee, Emergence of supersymmetry
on the surface of three dimensional topological insulators,
New J. Phys. 16, 013044 (2014).

[7] T. Grover, D. N. Sheng, and A. Vishwanath, Emergent
space-time supersymmetry at the boundary of a topological
phase, Science 344, 280 (2014).

[8] N. Zerf, C.-H. Lin, and J. Maciejko, Superconducting
quantum criticality of topological surface states at three
loops, Phys. Rev. B 94, 205106 (2016).

[9] A. J. Niemi and G.W. Semenoff, Axial Anomaly Induced
Fermion Fractionization and Effective Gauge Theory Ac-
tions in Odd Dimensional Space-Times, Phys. Rev. Lett. 51,
2077 (1983).

[10] A. N. Redlich, Gauge Noninvariance and Parity Violation of
Three-Dimensional Fermions, Phys. Rev. Lett. 52, 18
(1984).

[11] A. N. Redlich, Parity violation and gauge noninvariance
of the effective gauge field action in three-dimensions,
Phys. Rev. D 29, 2366 (1984).

[12] D. L. Jafferis, The exact superconformal R-symmetry
extremizes Z, J. High Energy Phys. 05 (2012) 159.

[13] This is defined from the two-point function of the stress-
energy tensor [14], see (8) for similar quantities for con-
served currents.

[14] H. Osborn and A. C. Petkou, Implications of conformal
invariance in field theories for general dimensions,
Ann. Phys. (N.Y.) 231, 311 (1994).

[15] D. Gang, V. Mikhaylov, and M. Yamazaki (to be published).

[16] K. Maruyoshi and J. Song, Enhancement of Supersymmetry
via Renormalization Group Flow and the Superconformal
Index, Phys. Rev. Lett. 118, 151602 (2017).

[17] K. Maruyoshi and J. Song, N ¼ 1 deformations and RG
flows of N ¼ 2 SCFTs, J. High Energy Phys. 02 (2017)
075.

[18] P. C. Argyres and M. R. Douglas, New phenomena in SU(3)
supersymmetric gauge theory, Nucl. Phys. B448, 93 (1995).

[19] P. Liendo, I. Ramirez, and J. Seo, Stress-tensor OPE in
N ¼ 2 superconformal theories, J. High Energy Phys. 02
(2016) 019.

[20] P. Agarwal, K. Maruyoshi, and J. Song, N ¼ 1 deforma-
tions and RG flows ofN ¼ 2 SCFTs, part II: Non-principal
deformations, J. High Energy Phys. 12 (2016) 103; 04
(2017) 113(A).

[21] P. Agarwal, A. Sciarappa, and J. Song, N ¼ 1 Lagrangians
for generalized Argyres-Douglas theories, J. High Energy
Phys. 10 (2017) 211.

[22] S. Benvenuti and S. Giacomelli, Lagrangians for general-
ized Argyres-Douglas theories, J. High Energy Phys. 10
(2017) 106.

[23] P. Agarwal, K. Maruyoshi, and J. Song, A “Lagrangian” for
the E7 superconformal theory, J. High Energy Phys. 05
(2018) 193.

[24] D. Gaiotto, Z. Komargodski, and J. Wu, Curious aspects of
three-dimensional N ¼ 1 SCFTs, J. High Energy Phys. 08
(2018) 004.

[25] F. Benini and S. Benvenuti,N ¼ 1QED in 2þ 1 dimensions:
Dualities and enhanced symmetries, arXiv:1804.05707.

[26] C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski,
and N. Seiberg, Contact terms, unitarity, and F-maximization
in three-dimensional superconformal theories, J. High Energy
Phys. 10 (2012) 053.

[27] C. Cordova, T. T. Dumitrescu, and K. Intriligator, Multiplets
of superconformal symmetry in diverse dimensions, arXiv:
1612.00809.

[28] S. M. Chester, L. V. Iliesiu, M. Mezei, and S. S. Pufu,
Monopole operators inUð1Þ Chern-Simons-Matter theories,
arXiv:1710.00654.

[29] J. Bhattacharya, S. Bhattacharyya, S. Minwalla, and S. Raju,
Indices for superconformal field theories in 3, 5 and 6
dimensions, J. High Energy Phys. 02 (2008) 064.

DONGMIN GANG and MASAHITO YAMAZAKI PHYS. REV. D 98, 121701 (2018)

121701-6

https://doi.org/10.1016/0550-3213(71)90351-8
https://doi.org/10.1016/0550-3213(71)90351-8
https://doi.org/10.1016/0550-3213(74)90355-1
https://doi.org/10.1103/PhysRevB.76.075103
https://doi.org/10.1103/PhysRevLett.105.150605
https://doi.org/10.1103/PhysRevLett.105.150605
https://doi.org/10.1088/1367-2630/16/1/013044
https://doi.org/10.1126/science.1248253
https://doi.org/10.1103/PhysRevB.94.205106
https://doi.org/10.1103/PhysRevLett.51.2077
https://doi.org/10.1103/PhysRevLett.51.2077
https://doi.org/10.1103/PhysRevLett.52.18
https://doi.org/10.1103/PhysRevLett.52.18
https://doi.org/10.1103/PhysRevD.29.2366
https://doi.org/10.1007/JHEP05(2012)159
https://doi.org/10.1006/aphy.1994.1045
https://doi.org/10.1103/PhysRevLett.118.151602
https://doi.org/10.1007/JHEP02(2017)075
https://doi.org/10.1007/JHEP02(2017)075
https://doi.org/10.1016/0550-3213(95)00281-V
https://doi.org/10.1007/JHEP02(2016)019
https://doi.org/10.1007/JHEP02(2016)019
https://doi.org/10.1007/JHEP12(2016)103
https://doi.org/10.1007/JHEP04(2017)113
https://doi.org/10.1007/JHEP04(2017)113
https://doi.org/10.1007/JHEP10(2017)211
https://doi.org/10.1007/JHEP10(2017)211
https://doi.org/10.1007/JHEP10(2017)106
https://doi.org/10.1007/JHEP10(2017)106
https://doi.org/10.1007/JHEP05(2018)193
https://doi.org/10.1007/JHEP05(2018)193
https://doi.org/10.1007/JHEP08(2018)004
https://doi.org/10.1007/JHEP08(2018)004
http://arXiv.org/abs/1804.05707
https://doi.org/10.1007/JHEP10(2012)053
https://doi.org/10.1007/JHEP10(2012)053
http://arXiv.org/abs/1612.00809
http://arXiv.org/abs/1612.00809
http://arXiv.org/abs/1710.00654
https://doi.org/10.1088/1126-6708/2008/02/064


[30] T. Dimofte, D. Gaiotto, and S. Gukov, 3-Manifolds
and 3d Indices, Adv. Theor. Math. Phys. 17, 975 (2013).

[31] S. Kim, The complete superconformal index for N ¼ 6

Chern-Simons theory, Nucl. Phys. B821, 241 (2009);
Erratum, Nucl. Phys. 864, 884(E) (2012).

[32] Y. Terashima and M. Yamazaki, SL(2,R) Chern-Simons,
Liouville, and Gauge theory on duality walls, J. High
Energy Phys. 08 (2011) 135.

[33] T. Dimofte, D. Gaiotto, and S. Gukov, Gauge theories
labelled by three-manifolds, Commun. Math. Phys. 325,
367 (2014).

[34] S. Lee and M. Yamazaki, 3d Chern-Simons theory from
M5-branes, J. High Energy Phys. 12 (2013) 035.

[35] C. Cordova and D. L. Jafferis, Complex Chern-Simons from
M5-branes on the squashed three-sphere, J. High Energy
Phys. 11 (2017) 119.

[36] D. Gang, E. Koh, S. Lee, and J. Park, Superconformal index
and 3d-3d correspondence for mapping cylinder/torus,
J. High Energy Phys. 01 (2014) 063.

[37] D. Gaiotto and E. Witten, S-Duality of boundary conditions
in N ¼ 4 super Yang-Mills theory, Adv. Theor. Math. Phys.
13, 721 (2009).

[38] Such a diagonal gauging can also be applied to gener-
alized T½SUðNÞ� theories and the gravity duals of the
resulting non-Lagrangian 3d N ¼ 4 theories are studied in
Ref. [39].

[39] B. Assel and A. Tomasiello, Holographic duals of 3d S-fold
CFTs, J. High Energy Phys. 06 (2018) 019.

[40] D. Gaiotto and X. Yin, Notes on superconformal Chern-
Simons-Matter theories, J. High Energy Phys. 08 (2007)
056.

[41] Note that the superpotential deformation share the same
group theoretical structure under theN ¼ 4 superconformal
algebra with the usual N ¼ 4 supersymmetry preserving
superpotential term Tr½ϕ1Φϕ2�. Here Φ is an adjoint chiral
multiplet in N ¼ 4 vector multiplet and two chiral multip-
lets ðϕ1;ϕ2Þ in (fundamental, antifundamental) form a
fundamental hypermultiplet. In the comparision, Φ corre-
sponds to μC and ϕ1ϕ2 corresponds to μH .

[42] Suppose that the product SCFT T ⊗ T , where T is an
N ≥ 2 SCFT, has N ≥ 3 SUSY. N ¼ 3 stress-energy
tensor multiplet contains anN ¼ 2 A1Ā1½j ¼ 1
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