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Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a
dynamical process of “inertial spontaneous symmetry breaking” that does not involve a potential. This is
dictated by the structure of the Weyl current, Kμ, and a cosmological phase during which the Universe
expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the
renormalized quantum theory is straightforward when renormalization conditions are referred back to the
VEV’s of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale
invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.
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I. INTRODUCTION

The discovery of the Higgs boson with the appearance of
a fundamental, pointlike, scalar field, unaccompanied by a
natural custodial symmetry, has led many authors in search
of new organising principles to turn to scale symmetry. In
particular, Weyl symmetry [1] in conjunction with gravity
may provide a modern context for fundamental scalar fields
and a foundational symmetry for physics [2–7]. Scale or
Weyl symmetry, like many of the flavor symmetries seen in
nature, must be broken. Often this breaking is treated
spontaneously, implemented for scale invariant potentials
via the Coleman-Weinberg (CW) mechanism of dimen-
sional transmutation [8].
In this paper we focus on the well-known Weyl current

which has been studied by many of the previous authors
listed above (e.g., see [2]). However, we emphasize that,
underlying these ideas there is a new way to break scale
symmetry that does not employ a potential. While this
mechanism is implicit in the many approaches taken to
spontaneously generating the Planck scale, it seems not to
have been codified prior to Ref. [7]. This mechanism is a
direct consequence of the structure of the Weyl scale

current. We call this inertial spontaneous scale symmetry
breaking.
By inertial spontaneous scale symmetry breaking, we

presently follow the condensed matter parlance, where
spontaneous symmetry breaking (SSB) represents the
difference between an “ordered” state from a “disordered”
one. Initially, we expect local fluctuations in fields that
break scale, e.g., nonzero ϕiðxÞ or ∂ϕiðxÞ, etc. These are
analogous to local magnetic spins in a macroscopic spin
system at high temperature and they do break scale
symmetry locally, but they do not represent an ordered
state. For that, we need an “order parameter” that evolves to
become macroscopically constant in space and time, like
the constant magnetization in the spin system as it cools to
the ground state. The order parameter must capture any and
all symmetry breaking.
In the present paper, working in a “Jordan frame,” we

identify the conservedWeyl currentKμ. We find that, in any
Weyl invariant theory this current is always a derivative of a
scalar quantity, Kμ ¼ ∂μK where K is the “kernel.”1 Owing
to this structure of the conserved Weyl current, DμKμ ¼ 0,
we are guaranteed that the system will dynamically evolve
in an expanding universe such that scale charge density will
evolve to zero, K0 → 0. This is just covariance, like the
dilution of a conserved electric charge density or a
magnetic field during general expansion.
It then follows that the kernel, K → K̄, is constant.

Essentially all short distance initial scale fluctuations are
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1This is a theorem, and it isn’t hard to see that it holds in R2 and
Weyl gravity generalizations, but the proof is beyond the scope of
our present discussion.
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stretched out to become a constant value of K ¼ K̄, and the
scale symmetry is broken. K is the order parameter of the
SSB since it intimately connects with the dynamics. At late
times we have, forN-fields,KðfϕigÞ ¼ K̄ðfϕigÞ expðσ=fÞ.
Here σ is the dilaton and K̄ðfϕigÞ is a constraint that reduces
the N fields fϕig to N − 1 fields constrained to a locus in
field space, such as the ellipse of [2].
We clearly see that K̄ is the order parameter because the

decay constant of the dilaton is precisely f ¼
ffiffiffiffiffiffiffi
2K̄

p
, in

analogy to fπ in a chiral Lagrangian, or the VEV of the
Higgs in the standard model. The constraint of constant
K̄ðfϕigÞ gurantees that the dilaton fluctuation is orthogonal
in the kinetic terms to the other N − 1 constrained fields
and neatly factorizes.
We emphasize that this is a dynamical process. Just as

steam can condense into water, a scale disordered phase can
condense into a scale ordered one. All of this is tracked in a
single frame, which begins as a Jordan frame. In this view
the Universe is a physical system that starts in one phase,
which has no scale ordering, and ends up in another in
which the scale SSB defined by K̄. This is treated in one set
of “frame variables” with a Friedman-Roberston-Walker
metric. In a sense, the approach of K → K̄ is just the
relaxation of the dilaton σ → 0, though the dilaton can only
be defined in the broken phase of the theory.
Here, we need not do the Weyl transformation along the

way and the SSBmaterializes dynamically. However, at late
times the dynamically generated K̄ can then be matched to
the scale quantities, MP, Λ, etc., in an Einstein-Hilbert
action. Once these scales are identified, then it is useful to
make a Weyl transformation, e.g., using K̄, to isolate the
dilaton. This guarantees that the dilaton factorizes and
alleviates any putative messy kinetic term mixing issues.
(in fact, this permits the dilaton to be “eaten” by a Higgs
mechanism ifwe introduceWeyl’s photon, Âμ as in Sec. II D,
allowing the Weyl photon and dilaton to decouple as very
heavy states.) There does then remain a mixing issue
amongst the remaining N − 1 constrained fields, and these
must be diagonalized to apply the low energy dynamics.
The advantage of phrasing things in terms of conserved

currents is that the results are model independent. We never
have to actually construct and solve difficult nonlinear
partial differential equations of motion to see this; this will
happen automatically, and the resulting mass scales,
including the Planck mass, are generated spontaneously,
controlled by the Weyl current. This mechanism does not
depend upon a potential, (though the particular final
vacuum state is dictated by a potential). The statements
we make are general and model independent, similar to
those of any traditional “current algebra.”
A crucial aspect of this mechanism is that quantum

theory should not break scale symmetry. We believe this is
generally possible. To understand this, it is important that
one does not conflate the procedure of regularization,
which generally introduces arbitrary mass scales, with

renormalization, which introduces counter-terms to define
the final theory and its symmetries. Though it may be
convenient, one need not deploy a regulator that is con-
sistent with the symmetries of the renormalized theory. The
nonexistence of a symmetry in the regulator does not imply
the nonexistence of the symmetry in the renormalized
theory. Furthermore, physics should not depend upon the
choice of regulator [9].
In this view, Weyl symmetry is central and all mass

scales must emerge by way of random initial conditions
governing vacuum expectation values (VEVs) of fields that
are entirely contained within the action. Essentially there
exist no fundamental mass scales, and the mass of anything
is defined only relative to field VEVs in the theory. For this
to be phenomenologically acceptable it is necessary to
explain how the spontaneous breaking of Weyl symmetry
can lead to a period of inflation followed by a reheat phase
and transition in the infrared to a theory describing the
fundamental states of matter and their interactions with an
hierarchically large difference between the Planck scale and
the electroweak breaking scale.
Remarkably, it has been shown in a simplified model

involving two scalar fields that this structure is possible
[2,3,7]. The model has a scale invariant scalar potential and
nonminimal coupling of the scalar fields to the Ricci scalar.
When the fields develop VEVs the Planck scale is
generated spontaneously in the Brans-Dicke manner. For
a wide range of the nonminimal couplings and scalar
interactions, there is an initial period of “slow-roll”
inflation that can give acceptable values for the slow-roll
parameters. This is followed by a “reheat” phase and a flow
of the field VEVs to an infrared fixed point at which the
ratio of the scalar field VEVs are determined by the
dimensionless couplings of the theory. Thus it is possible
to arrange an hierarchically large ratio for the VEVs and,
interpreting the second scalar as modelling the standard
model Higgs boson, this large ratio corresponds to the ratio
between the Planck scale and the electroweak scale.
In Sec. II, we discuss the mechanism of inertial sponta-

neous symmetry breaking and conservation of the Weyl
current in a toy model, and general N-scalar models. As it
does not involve a potential the mechanism opens a new
pathway to generating spontaneous scale symmetry break-
ing and the associated spontaneous breaking of other
symmetries. As such it may be useful for novel aspects
of model building. We also discuss a general feature of this
mechanism, the origin of the dilaton and its intimate
relationship to the current, We also briefly consider, as
an aside, locally Weyl invariant models in which the dilaton
will be eaten by a “Weyl photon,” Âμ, to give it mass,
i.e., the inertial symmetry breaking thus becomes a Weyl
symmetry Higgs mechanism, and the dilaton disappears
from low energy physics [10].
In Sec. III, we discuss how Weyl invariance is main-

tained at the quantum level and thus preserves the inertial
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spontaneous symmetry breaking mechanism. As a result
the logarithmic corrections that normally break the scale
invariance now automatically depend only on physically
relevant ratios of field VEVs which preserve the underlying
Weyl invariance of the theory. We compare this procedure
to previous proposals for scale invariant regularization that
require an arbitrary choice of regulator, a function of the
scalar fields.
Finally, in Sec. IV, we present a summary of our results

and the conclusions to be drawn.

II. INERTIAL SPONTANEOUS
SYMMETRY BREAKING

A. A toy example

Consider a real scalar field theory action together with
Einstein gravity and a cosmological constant [our metric
signature convention is ð1;−1;−1;−1Þ]:

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
gμν∂μσ∂νσ − Λþ 1

2
M2

PR

�
: ð1Þ

This action provides a caricature of the cosmological world
we live in.
We imagine an initial, ultra-high-temperature phase

in which the massless scalar σ has the dominant energy
density, ρσ ∝ T4. Consider a Friedman-Robertson-Walker
(FRW) metric:

gμν ¼ ½1;−a2ðtÞ;−a2ðtÞ;−a2ðtÞ� H ¼ _a
a
: ð2Þ

In this theory, the Universe initially expands in a FRW
phase, with the temperature red-shifting as T ∼ 1=aðtÞ, and
the scale factor growing as aðtÞ ∼ ffiffi

t
p

. Eventually the σ
thermal energy becomes smaller than the cosmological
constant, ρσ < Λ, and we then enter a de Sitter phase with

exponential growth, aðtÞ ∼ et
ffiffiffiffiffiffiffiffiffiffiffi
Λ=3M2

P

p
. We can model the

thermal phase as a preinflationary era, and the cosmological
constant then represents a potential energy that drives
inflation. In any case, the intuition that allows us to readily
understand how this works is well honed.
Now consider a different action:

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
gμν∂μϕ∂νϕ −

λ

4
ϕ4 −

α

12
ϕ2R

�
: ð3Þ

This action is scale invariant, having no cosmological
constant or Planck scale.
These two theories are classically equivalent, provided

α < 1. This equivalence follows fromaWeyl transformation.
However, from our accumulated experience in infla-

tionary cosmology, we understand the dynamics of
Eq. (1) so well, then how could we directly understand
the dynamics of the Weyl equivalent Eq. (3) without

performing a Weyl transformation into Eq. (1)? What
happens in the pure evolutionary dynamics intrinsic to
Eq. (3) that produces the physical mass scales ofMP and Λ,
as well as all other scales in nature?
At first, this doesn’t look too hard. Indeed, if ϕ starts out

in some very high-temperature phase, where the energy
density is large compared to λϕ4 then we expect the scale
factor will increase in a scale invariant way, aðtÞ ∼ t. This
follows by intuiting that the Hubble constant satisfies
H2 ∼ T4=ϕ2, where the ϕ2 factor in the denominator
replaces M2

P. In thermal equilibrium we expect ϕ2 ∼ T2

and thus H ¼ _a
a ∼ T ∼ 1

t. Therefore, aðtÞ ∼ t.
As the Universe cools, we expect ϕðxÞ to settle into some

spatially constant VEV hϕi. However, our intuition from
conventional Einstein M2

PR gravity tells us that this VEV
will slow-roll in the potential, with hϕi eventually becom-
ing zero. In Eq. (3), this would then imply a vanishingMP,
and the details of the solution become less clear. It is
plausible that the increasing strength of gravity will
increase the Hubble damping, and halt the relaxation of
hϕi, perhaps leading to a nonzero cosmological constant
λhϕi4. If true, this would then match the cosmological
constant case of Eq. (1), and it would imply a spontaneous
breaking of scale symmetry. We could resort to a numerical
solution, but how can we see what happens in a simple and
intuitive way, without having to puzzle over the solutions of
coupled nonlinear differential equations?
Indeed, from Eq. (3), we can directly obtain the Einstein

equation:

1

6
αϕ2Gαβ ¼

�
3 − α

3

�
∂αϕ∂βϕ − gαβ

�
3 − 2α

6

�
∂μϕ∂μϕ

þ 1

3
αðgαβϕD2ϕ − ϕDβDαϕÞ þ gαβVðϕÞ: ð4Þ

The trace of the Einstein equation becomes:

−
1

6
αϕ2R ¼ ðα − 1Þ∂μϕ∂μϕþ αϕD2ϕþ 4VðϕÞ: ð5Þ

We also have the Klein-Gordon (KG) equation for ϕ:

0 ¼ ϕD2ϕþ ϕ
δ

δϕ
VðϕÞ þ 1

6
αϕ2R: ð6Þ

We can combine the KG equation, Eq. (6), and trace
equation, Eq. (5), to eliminate the αϕ2R term, and obtain:

0 ¼ ð1 − αÞϕD2ϕþ ð1 − αÞ∂μϕ∂μϕ

þ ϕ
δ

δϕ
VðϕÞ − 4VðϕÞ: ð7Þ

This can be written as a current divergence equation:

DμKμ ¼ 4VðϕÞ − ϕ
∂
∂ϕVðϕÞ: ð8Þ
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where

Kμ ¼ ð1 − αÞϕ∂μϕ ð9Þ

is the “Weyl current.” For the scale invariant potential,
VðϕÞ ∝ ϕ4, the rhs of Eq. (8) vanishes and theKμ current is
then covariantly conserved:

DμKμ ¼ 0: ð10Þ

We see that this is an “on-shell” conservation law, i.e., it
assumes that the gravity satisfies Eq. (4). This is the global
Weyl current and it can be derived by a Noether variation of
the action under a Weyl transformation.
Note that the Weyl current, Kμ, is the derivative of a

scalar, Kμ ¼ ∂μK, where:

K ¼ 1

2
ð1 − αÞϕ2: ð11Þ

We refer to K as the “kernel.” Using the conserved
K-current with its kernel, we can easily understand the
dynamics of this theory.
The form of the conservation law is DμKμ ¼ D2K ¼ 0,

and this holds in any frame. If we take ϕ to be functions of
time t only, and consider a Friedman-Robertson-Walker
universe (gμν ¼ ½1;−a2ðtÞ;−a2ðtÞ;−a2ðtÞ�) the current
conservation equation implies:

K̈ þ 3

�
_a
a

�
_K ¼ 0: ð12Þ

This can be readily solved to give:

KðtÞ ¼ c1 þ c2

Z
t

t0

dt0

a3ðt0Þ ; ð13Þ

where c1;2 are constants. Therefore, in an expanding
universe, K will evolve to a constant value, K → K̄.
In the single scalar case, as K → K̄ constant, the initial

Jordan frame theory flows to an effective final Einstein-
Hilbert theory with parameters Λ ¼ λK̄2

ð1−αÞ2, M
2
P ¼ − αK̄

3ð1−αÞ,

f2 ¼ 2K̄ (dilaton decay constant, see II.B) [7]. The
equivalence between the theories is achieved dynamically,
without having performed a Weyl transformation, and it
follows from the Weyl current algebra, and does not rely
upon the solutions of complicated nonlinear differential
equations of motion.
This is robust. If we consider a set of N scalars, fϕjg,

with action given by2:

S¼
Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2

XN
i

∂μϕi∂μϕi−WðfϕjgÞ−
1

12
FðfϕjgÞR

�
:

ð14Þ

where we maintain scale invariance [i.e., FðfϕkgÞ and
WðfϕkgÞ transform, respectively, as F → e2ϵF and W →
e4ϵW under global Weyl transformations, as defined below
in Eq. (20)]. The conserved Noether current kernel then
generalizes to

K ¼ 1

2

��XN
i¼1

ϕ2
i

�
− FðfϕkgÞ

�
: ð15Þ

In particular, with FðfϕjgÞ ¼
P

N
i αiϕ

2
i the kernel takes the

form [7]:

K ¼ 1

2

XN
i¼1

ð1 − αiÞϕ2
i : ð16Þ

In this case the N scalar fields will evolve such that
their values will ultimately be constrained to lie on the
N-dimensional locus by Eq. (15) with K → K̄, in particular
an ellipsoid in the special case of Eq. (16).
Here we are “launching” the theory in an effective Jordan

frame, with arbitrary initial values of the fields and their
time derivatives fϕi; _ϕjg. The initial expansion will be
scale invariant, aðtÞ ∼ t, but as K → K̄, the Planck scale
becomes dynamically established, and we enter an effective
Einstein frame where all mass scales are ∝

ffiffiffiffi
K̄

p
, and the

expansion becomes de Sitter, aðtÞ ∼ exp
ffiffiffiffi
K̄

p
tÞ.

In a two-scalar model discussed in Ref. [7], we have
checked numerically that the initial rate of approach to the
ellipsoid is rapid and thereafter the fields precisely track the
ellipsoid corresponding to constant K̄. This is true for a
wide range of initial conditions and readily allows for an
inflationary period to commence. SinceK has dimension of
ðmassÞ2, a constant vacuum value of K implies a sponta-
neous breaking of the scale symmetry in the theory
has occurred. Note that this phase does not employ a
potential but is driven solely by the initial conditions, andK
is the order parameter of inertial spontaneous symmetry
breaking.
In multi–scalar theories the flow K → K̄ does not fix the

relative values of the scalar field VEVs, which initially end
up at some random point on the locus (e.g., ellipse). It is
here that the potential becomes important. In the infrared
(IR), the fields constrained to the locus, flow towards an IR
fixed point in which the ratios of the field VEVs are
determined by the potential terms alone [7]. For the case
that the potential has a flat direction, the vacuum energy
vanishes at the minimum, corresponding to vanishing
cosmological constant. The IR fixed point is then the
intersection of the potential’s flat direction with the locus.

2It is straightforward to extend this effective Lagrangian to
matter and gauge fields [2,10,12].
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The ratios of the VEV’s is then determined by the scalar
potential couplings, but constrained by the requirement the
fields lie on the N-dimensonal ellipsoid.
For the case that the potential is positive definite, the IR

fixed point corresponds to an eternally inflating de Sitter
solution in which the ratio of the field VEV’s is determined
by the scalar potential couplings together with the cou-
plings, αi, of the scalars to the Ricci scalar.

B. General discussion

Inertial spontaneous symmetry breaking can be respon-
sible for triggering the spontaneous breaking of symmetry
in all sectors of the theory. As such it opens new possi-
bilities for model building.
In summary,we found that the expansionof theUniverse in

a preinflationary phase drives the current charge density, K0,
to zero. The global Weyl current,Kμ, is always the derivative
of a scalar,Kμ ¼ ∂μK, and in particularK0 ¼ ∂0K, whereK
is the kernel. Hence, as theKμ current density is diluted away,
K0 → 0, the kernel K therefore evolves as K → K̄ constant.
In aWeyl invariant theory, this implies that scale symmetry is
broken, and the Planck mass is generated dynamically.
K plays the role of the symmetry breaking order

parameter. While a potential may then be needed to
engineer the final vacuum, and determine the ratios of
individual fields hϕii, it plays no direct role in the inertial
Weyl symmetry breaking phenomenon.
With a little thought, one might have guessed the structure

of the order parameter K. Consider a set of N scalar fields
fϕig. If the fields are nonminimally coupled to gravity as
ð−1=12ÞPiαiϕ

2
i RðgÞ, then if any of the ϕi should develop a

VEV, we would expect scale breaking, and a nonzero K.
Hence, we expect that the order parameter takes the form,
K ∼ c

P
iϕ

2
i . However, if any ϕi has αi ¼ 1, then we can

remove it from the action by a local Weyl transformation,
absorbing it into the metric. We therefore expect K ¼
c0
P

ið1 − αiÞϕ2
i . Indeed, we found that Kμ ¼ ∂μK, with

c0 ¼ 1=2, combining both the trace of the Einstein and
KG equations, or by the Noether variation of the Jordan
frame theory under a Weyl transformation, thus confirming
our guess.

C. Factorization of the dilaton

We’ve seen the result that K → K̄ constant as the
Universe expands implies that N − 1 fields fϕ0

ig will
ultimately satisfy a constraint, such as in Eq. (16),
K̄ ¼ ð1=2ÞPið1 − αiÞϕ02

i . Here the constrained fields,
fϕ0

ig, lie on an ellipsoid in field space, but the constraint
could be more general as in Eq. (15) with FðfϕigÞ, and the
ellipsoid could be a more general locus in field space.
In any case, there remains one field unconstrained that

becomes the dilaton. This is intimately related to the Kμ

current. Let us perform a Weyl field redefinition on the N
original fields,

ϕi ¼ expðσ=fÞϕi
0 gμν ¼ expð−2σ=fÞg0μν: ð17Þ

We thus find the Weyl invariant action becomes

Sðϕ; gÞ ¼ Sðϕ0; g0Þ

þ
Z ffiffiffiffiffiffiffi

−g0
p

ð∂μK̄ðϕ0Þ∂μðσ=fÞ þ K̄ðϕ0Þð∂σ=fÞ2Þ
ð18Þ

Now using the constraint that K̄ constant, and integrating
by parts, we have

Sðϕ; gÞ ¼ Sðϕi
0; g0Þ þ 1

2

Z ffiffiffiffiffiffiffi
−g0

p
ð∂σÞ2: ð19Þ

Here we identify f2 ¼ 2K̄ so the dilaton is canonically
normalized. From this we see that the dilaton, σ, describes a
dilation of the ellipse, and fluctuates in field space
orthogonally to the N − 1 fϕ0

ig fields. The dilaton decou-
ples in the action from everything except gravity (this holds
true for fermions and gauge bosons as well; decoupling
implies that there are no direct couplings in the action to
other fields).
This result is elegantly simple. There is no messy kinetic

term mixing problem of the dilaton with the remaining ϕ0
fields, as some authors have alluded to. Indeed, there is
nontrivial mixing amongst the ϕ0 that are subject to the
constraint, but the dilaton is neatly factorized and does not
mix with these other fields kinetically.
We further see that the current written in the uncon-

strained fields is equivalent to one written in the constrained
fields by: Kμ ¼ ∂μKðϕÞ ¼ ∂μðKðϕ0Þe2σ=fÞ. Hence in the
broken phase (Einstein frame) limit Kðϕ0Þ → K̄ constant,
Kμ → 2K̄∂μσ=f ¼ f∂μσ. where f ¼

ffiffiffiffiffiffiffi
2K̄

p
. This is as we

expect for a Nambu-Goldstone boson, e.g., the axial current
of the pion takes the analogous form fπ∂μπ. This implies
that K̄ is the order parameter of Weyl spontaneous
symmetry breaking.
Why is this formulation important? Results following

from the “current algebra” of Weyl invariant theories are
general statements that are true, independent of the specific
structure of the Lagrangian. The particular structure of Kμ

and K is independent of the form of any scale invariant
potential, but the detailed structure of K does depend upon
the choice of the nonminimal couplings, e.g., FðϕiÞ in
Eq. (15) (and also any higher derivative gravitational terms
can modify the simple forms we just discussed). The
behavior of the current algebra will remain intact, since
Kμ ¼ ∂μK is conserved, but the constraint defined by K̄
could become a more general locus such as a hyperbola,
etc., (such effects result from the renormalization group
[7]). The survival of the general feature of inertial breaking
with a stable goundstate, e.g., a stableMPlanck, requires that
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the quantum theory does not break Weyl symmetry through
loops, as we discuss in Sec. III.

D. Local vs. global Weyl invariance:
Eating the dilaton

Our main discussion is based upon globally Weyl
invariant theories. However, we include the present section
to indicate how it may be possible to promote these to
locally Weyl invariant theories by introduction of Weyl’s
gauge field, i.e., “Weyl’s photon.” It is interesting that
inertial symmetry breaking now becomes a Higgs mecha-
nism, since the Weyl photon will “eat” the massless dilaton
and thus remove it from the low energy spectrum, where it
becomes the longitudinal degree of freedom of a massive
Weyl photon. Hence, in this case the issue of long range
fifth force limits becomes moot. The present section is
classical, but it would be of interest to develop the full
quantum (renormalization group) behavior of Weyl’s
photon.
Weyl’s original idea was that, since coordinates are

merely numbers invented by humans to account for events
in spacetime, they should not carry length scale [1]. Rather,
the concept of length should be relegated to the (covariant)
metric, and (contravariant) coordinate differentials are scale
free. Therefore, under a local Weyl scale transformation we
would have:

gμνðxÞ → e−2ϵðxÞgμνðxÞ gμνðxÞ → e2ϵðxÞgμνðxÞffiffiffiffiffiffi
−g

p
→ e−4ϵðxÞ

ffiffiffiffiffiffi
−g

p
ϕðxÞ → eϵðxÞϕðxÞ ð20Þ

Weyl transformations are distinct from coordinate diffeo-
morphisms that define scale transformations on coordi-
nates, as δxμ ¼ ϵðxÞxμ, which we discuss below. The global
Weyl symmetry corresponds as usual to ϵ ¼ (constant in
spacetime).
It is straightforward to construct a list of local Weyl

invariants:

ϕ2ðxÞgμνðxÞ; ϕ−2ðxÞgμνðxÞ; ffiffiffiffiffiffi
−g

p ðxÞϕ4ðxÞ;
Rðϕ2gμνÞ ¼ ϕ−2RðgμνÞ þ 6ϕ−3Dμð∂μϕÞffiffiffiffiffiffi

−g
p

ϕ4Rðϕ2gμνÞ ¼
ffiffiffiffiffiffi
−g

p ðϕ2RðgμνÞ þ 6ϕDμð∂μϕÞÞ
… ð21Þ

Note that the computation of Rðϕ2gμνÞ above requires that
any Christoffel symbols used in the definition of R be
evaluated in the metric ϕ2gμν. Using these identities we can
construct an action that is locally Weyl invariant:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

12
ϕ4Rðϕ2gÞ − λ

4
ϕ4

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂μϕ −

1

12
ϕ2RðgÞ − λ

4
ϕ4

�
ð22Þ

where we substituted the relationship of Eq. (21) and
integrated by parts using the divergence rule DμVμ ¼ffiffiffiffiffiffi−gp −1∂μð ffiffiffiffiffiffi−gp

VμÞ. Here we obtain the famous locally
Weyl invariant theory in which the nonminimal coupling of
scalars to gravity is fixed by the coefficient 1=12, needed to
canonically normalize the ϕ kinetic term. This is a special
and somewhat degenerate theory, since we can revert to the
metric ĝμν ¼ ϕ2gμν and ϕ disappears from the action. The
theory has a vanishing Weyl current [11].
We note that covariant gauge fields, such as the electro-

magnetic vector potential, Aμ, do not transform under the
local Weyl transformation, since they are associated with
derivatives ∂μ − ieAμ which, like coordinates, do not
transform. The electromagnetic fields that have the usual
engineering scale ∼ðmassÞ2, E⃗ and B⃗, are contained in the
field strength with one covariant and one contravariant
index, Fμ

ν, e.g., E⃗i ¼ F0
i .

We can construct a covariant derivative of a scalar field
under local Weyl transformations by introducing the “Weyl
photon,” Ãμ, as

D̃μϕ ¼ ∂μϕ − Ãμϕ ð23Þ
where ϕðxÞ → eϵðxÞϕðxÞ and ÃμðxÞ → ÃμðxÞ þ ∂μϵðxÞ
(note the major difference from electrodynamics in the
absence of a factor of i in the coefficient of Ãμ: QED gauges
phase, while the Weyl photon gauges scale). Armed with
this we can construct another local Weyl invariant:ffiffiffiffiffiffi

−g
p

gμνD̃μϕðxÞD̃νϕðxÞ: ð24Þ
This is a locally Weyl invariant kinetic term.3

We can combine this with the previous invariants to
define an action in which the Weyl symmetry is local, yet
the nonminimal coupling of scalars to R is arbitrary:

S ¼
Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
ð1 − αÞgμνD̃μϕD̃νϕ

−
λ

4
ϕ4 −

α

12
ϕ4Rðϕ2gÞ

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ −

α

12
ϕ2RðgÞ − λ

4
ϕ4

−
1

2
ð1 − αÞðÃμ∂μðϕ2Þ − ÃμÃμϕ

2Þ
�
: ð25Þ

3Here, there is a subtlety, as we must define the derivative of
any conformal field as a commutator: ½Dμ;Φ� ¼ ∂μΦ − Aμ½W;Φ�
where ½W;ϕ� ¼ wϕ and w is the conformal charge of Φ. Hence
w ¼ 1 for ϕ. We also require w ¼ −2 for gμν, w ¼ þ2 for gμν,
w ¼ −4 for det−g, etc. Note that ½Dμ; gρσ � ¼ Dμgρσ þ 2Ãμgρσ ¼
Ãμgρσ since Dμgρσ ¼ 0. This insures the invariance of the action
with the Weyl covariant derivative under integration by parts.
Note that we can alternatively define a restricted “pure gauge
theory” with Aμ ¼ ∂μ lnðχÞ, where χ is any massless scalar field.
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Now, we want to pass to the Weyl broken phase. We
write

ϕðxÞ → f expðσðxÞ=fÞ
gμνðxÞ → expð−2σðxÞ=fÞgμνðxÞ ð26Þ

Note we do not at this stage do a gauge transformation,
Aμ → Aμ þ ∂μσðxÞ=f. We obtain

S ¼
Z ffiffiffiffiffiffi

−g
p �

ð1 − αÞ 1
2
gμυ∂μσ∂νσ − ð1 − αÞgμυAμf∂νσ

þ 1

2
ð1 − αÞgμυAμAνf2 −

1

12
αf2R

�
: ð27Þ

Note that the Weyl transformation cancelled the original
1
2
αgμυ∂μϕ∂νϕ piece since it was local. What is left is a

perfect square;

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
f2ð1 − αÞgμυðAμ − ∂μσ=fÞ2 −

1

12
αf2R

�

¼
Z ffiffiffiffiffiffi

−g
p �

1

2
f2ð1 − αÞgμυBμBν −

1

12
αf2R

�
; ð28Þ

where we redefine Bμ ¼ Aμ − ∂μσ=f which is a massive

spin one field of mass m ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − αÞp

. The dilaton has
been eaten by the Weyl photon to become its longitudinal
mode, and the massless dilaton has thus disappeared from
the spectrum of the theory.
We can always have a kinetic term for Aμ with

Fμν ¼ −½Dμ; Dν� ¼ ∂μAν − ∂νAμ ¼ ∂μBν − ∂νBμ ð29Þ

and

S¼
Z ffiffiffiffiffiffi

−g
p �

−
1

4
FμνFμνþ1

2
m2gμυBμBν−

1

12
αf2R

�
ð30Þ

The equation of motion for Bμ is

∂μFμν ¼ D2Bν − ∂νðDμBμÞ ¼ m2Bν ð31Þ

This is mathematically analogous to a superconductor or
the standard model Higgs mechanism. A gas of Bμ will
freeze out and redshift away like matter once the temper-
ature redshifts below m. It is also interesting to note that if
we have N ϕi fields, the inertial symmetry breaking will
yield the N − 1 ϕ0

i fields and the dilaton which is again
eaten to become the longitudinal component of Bμ, but we
then find that the gauge field Bμ decouples from the ϕ0

i. It
also has even charge conjugation and presumably decou-
ples from fermions and gauge fields as well, and it cannot
decay to a pair of gravitons (this is a variation on Yang’s
theorem which forbids decay of a vector meson to a photon

pair). Therefore, relic Bμ fields are stable and could
constitute a dark matter candidate if they are not inflated
away.
From the action of Eq. (25), we see that the Weyl current

is easily obtained:

Kμ ¼ −
1ffiffiffiffiffiffi−gp δS

δÃμ
¼ ð1 − αÞðϕ∂μϕ − Ãμϕ

2Þ

¼ ð1 − αÞϕD̃μϕ: ð32Þ

This still has the general form Kμ ¼ DμK, where Dμ is a
covariant Weyl derivative.
By setting Ãμ ¼ 0 we obtain a globally invariant theory,

and this current becomes the conserved Noether current for
the global Weyl invariant theory:

Kμ ¼ ð1 − αÞϕ∂μϕ: ð33Þ

III. QUANTUM SCALE INVARIANCE
AND REGULARIZATION

Up to now, our discussion has been confined to the
classical action. For the scenario of inertial spontaneously
broken scale symmetry to work, and lead to a stable Planck
mass, it is essential the that Weyl current be identically
conserved at the quantum level [5]:

DμKμ ¼ 0: ð34Þ

In what follows, we will refer to nonzero contributions
coming from loops to the rhs of Eq. (34) as “Weyl
anomalies.” The trace anomalies of the scale current
determined by diffeomorphisms are identical to those in
K for the scalar sector of the theory.
Scale andWeyl symmetry of a theory appears ab initio to

be broken by quantum loops. Loop divergences are subtle,
however, and are often confused with physics. Here we
adopt an operating principle that has been espoused by W.
Bardeen [9]: The allowed symmetries of a renormalized
quantum field heory are determined by anomalies, (or
absence thereof). Quantum loop divergences are essentially
unphysical artefacts of the method of calculation.
Weyl or scale symmetry is permitted if the renormalized

theory has no Weyl anomalies. Since trace anomalies come
from triangle diagrams they are necessarily associated with
dimension-4 operators. Hence there is no Weyl anomaly in
the standard model of the form H†H where the Higgs mass
is m2H†H. Thus there are no Weyl anomalies associated
with quadratic or quartic divergences in quantum field
theory in four dimensions. Another way of saying this is
that divergent terms and counter terms are not separately
measurable, only the renormalized mass is physical. In a
variation of the standard model with no gravity, no grand
unification and no Landau poles in the far UV the Higgs
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mass would be technically natural with no hierarchy
problem.

A. The origin of Weyl anomalies

Our problem of maintaining Weyl symmetry requires
that we build a theory that has no anomaly in Kμ. To
understand this problem, and its solution, we turn to the
CW potential. In computing CW potentials for massless
scalar fields we encounter an infrared divergence that must
be regularized [8,13]. To do so we often introduce explicit
“external” mass scales into the theory by hand. These are
mass scales that are not part of the defining action of the
theory, and essentially define the RG trajectories of
coupling constants. These externally injected mass scales
lead directly to the Weyl anomaly.
We can see this in Eq. (3.7) of CW [8] where, to

renormalize the quartic scalar coupling constant, λ, in an
effective potential at one-loop level,WðϕÞ, they introduce a
mass scale M. Once one injects M into the theory, one has
broken scale and Weyl symmetry, and the effective poten-
tial in the large ϕ

M limit then takes the form

WðϕÞ ¼ β1
4!

ϕ4 ln

�
ϕ

M

�
ð35Þ

Here, β1 is the one-loop renormalization group coefficient,
dλðμÞ=dμ ¼ β1. The manifestation of this is seen in the
trace of the improved stress tensor [13], and in the
divergence of the Kμ current:

∂μKμ ¼ 4WðϕÞ − ϕ
δ

δϕ
WðϕÞ ¼ −

β1
4!

ϕ4 ð36Þ

Of course, there is nothing wrong with the CW potential, or
with this procedure, if one is only treating the effective
potential as a subsector of the larger theory. If, however,
Weyl symmetry is to be maintained as an exact invariance
of the world, then M must be replaced by an internal mass
scale that is part of action, i.e.,M must then be the VEVof a
field, χ, or some combination of the fields, appearing in the
extended action. We would then have the Coleman-
Weinberg potential:

Wðϕ; χÞ ¼ β1
4!

ϕ4 ln

�
ϕ

χ

�
ð37Þ

and, because we now have no external mass scales, the
current divergence vanishes:

∂μKμ ¼ 4Wðϕ; χÞ − ϕ
δWðϕ; χÞ

δϕ
− χ

δWðϕ; χÞ
δχ

¼ 0: ð38Þ

This defines the basic idea for maintaining scale symmetry
in the quantum theory. It simply implements the notion that
there are no fundamental mass scales, and masses are

determined only as dimensionless ratios involving VEV’s
of scalar fields. In the next section, we illustrate this
through a calculation of the one-loop correction to the
scalar potential arising from the quartic scalar interaction.
Of course, there will be further gravitational corrections but
their calculation lies beyond the scope of this paper.

B. Weyl invariant Coleman-Weinberg calculation

How might we derive such a result as in Eq. (37) from
first principles? We do so via a computation of a Coleman-
Weinberg (CW) effective potential. It is important to realize
that CW effective potentials themselves must have the full
symmetry of the underlying theory. The symmetry is then
broken spontaneously by the minimum of the potential.
In fact it is straightforward to show that the usual

regularization procedure applied to the Weyl invariant
theory of Eq. (14) does have a Weyl invariant form. For
the simple two-scalar case, N ¼ 2, with fields ϕ ¼ ϕ1 and
χ ¼ ϕ2, it reduces to that of Eq. (37) when the ratio of
VEV’s is small, but the general form is applicable for
arbitrary values of the ratio.

1. The two-scalar action

The case, N ¼ 2, is the simplest model with “realistic”
phenomenological properties. For reasonable parameter
choices and initial conditions it can have an initial infla-
tionary period followed by a “reheat” phase and subsequent
evolution to an IR stable fixed point in which the ratio of
the field VEVs is determined by the fudamental couplings
of the theory. We will illustrate the regularization procedure
applied to this model (in the limit of neglecting graviton
loops) but we emphasize that the procedure immediately
generalizes to the case with arbitrary N and indeed to the
inclusion of fundamental fermions and vectors.
We start with the action given in Eq. (14) with N ¼ 2.

The Weyl invariance of the theory is spontaneously broken
by the VEVs of the fields giving a massless Goldstone
boson, the dilaton, σ. It was shown in [10] that the dilaton
decouples and so, of the two initial scalar degrees of
freedom, only one interacting one remains. To see how this
happens in practice, we change variables to

ϕi ¼ e−σ=fϕ̂i gμν ¼ e2σ=fĝμν; ð39Þ

where ϕ̂i are constrained to lie on the ellipse given by

2K̄ ¼
XN
i¼1

ð1 − αiÞϕ̂2
i ¼ f2; ð40Þ

where f2 is a constant. It is important to note that f is
invariant under scale transformations as the dilaton depend-
ence of the original fields has been factored out.
To illustrate the regularization procedure it is sufficient to

calculate the CW potential resulting from the λ
4!
ϕ4
1 term in

the potential. We first reparametrize the fields by
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ϕ̂1 ¼
fffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α1
p sin θ; ϕ̂2 ¼

fffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p cos θ: ð41Þ

After scaling out the dilaton, the relevant terms of Eq. (14)
become

S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
1

2
f2
�

cos2θ
ð1 − α1Þ

þ sin2θ
ð1 − α2Þ

�
∂μθ∂μθ

−
λ

4
f4

sin4θ
ð1 − α1Þ2

�
: ð42Þ

Performing the further redefinition Θ ¼ FðθÞ, where

FðθÞ ¼
Z

θ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ0

ð1 − α1Þ
þ sin2 θ0

ð1 − α2Þ

s
dθ0; ð43Þ

the action becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
1

2
f2∂μΘ∂μΘ −

λ

4!
f4

sin4F−1ðΘÞ
ð1 − α1Þ2

�
: ð44Þ

For the case when θ is small, the action approximates the
simpler form,

S ≈
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
1

2
∂μΦ∂μΦ −

λ

4!
Φ4

�
; ð45Þ

where Φ ¼ fΘ and Θ ≈ θffiffiffiffiffiffiffiffi
1−α1

p .

2. The CW potential

Here we demonstrate the derivation of the Weyl invariant
CW potential for the case ϕ1

ϕ2
≪ 1, starting with the action of

Eq. (45). Adding a classical source term, −JΦ, to the
Lagrangian induces a shift in the Φ field:

Φ ¼ Φc þ ℏ1=2Φ̂; ð46Þ

where Φ̂ is the small fluctuation about the classical
minimum. Thus the potential has the form

WðΦÞ ¼ λ

4!
Φ4

c þ ℏ
λ

4
Φ2

cΦ̂2 þ � � � ; ð47Þ

where the linear term cancels due to the classical source
term. Treating the quadratic term in Φ̂ as an interaction the
one-loop potential with Φ̂ the propagating field is given by

Weff ¼ Ωþ i
Z

d4k
ð2πÞ4

X∞
n¼1

1

2n

� 1
2
λΦ2

c

k2 þ iε

�n

¼ Ωþ 1

2

Z
d4k
ð2πÞ4 ln

�
1þ λΦ2

c

2k2

�

¼ Ωþ λΛ2

128π2
Φ2

c −
λ2Φ4

c

256π2
ln

�1
2
λΦ2

c þ Λ2

1
2
λΦ2

c

�

þ Λ4

64π2
ln

�1
2
λΦ2

c þ Λ2

Λ2

�
; ð48Þ

where

Ω ¼ λ

4!
Φ4

c −
1

2
BΦ2

c −
λ

4!
CΦ4

c: ð49Þ

Note that, at the intermediate stage, the UV divergences are
regulated by introducing a cut-off,Λ2, when performing the
k2 integration. Thus, in the Λ → ∞ limit, we have the CW
result:

Weff ¼ Ωþ λΛ2

64π2
Φ2

c þ
λ2Φ4

c

256π2

�
ln
λΦ2

c

2Λ2
−
1

2

�
: ð50Þ

Following CW, the renormalization conditions are

d2Weff

dΦ2
c

����
Φc¼0

¼0;
d4Weff

dΦ4
c

����
Φc¼M

¼ λ; ZjΦc¼M¼1: ð51Þ

Here, CW renormalizes at an “external” mass scale, M, to
avoid the IR singularity. Implementing these conditions4

determines the counter terms and gives the final CW result:

W ¼ λ

4!
Φ4

c þ
λ2Φ4

c

256π2

�
ln

Φ2
c

M2
−
25

6

�
: ð52Þ

In terms of the original fields Φ ¼ fΘ, Θ ≈ θffiffiffiffiffiffiffiffi
1−α1

p and

θ ≈ ϕ̂1=ϕ̂2, the potential is given by

W ≈
λ

4!
ϕ̂4
1 þ

λ2ϕ̂4
1

256π2

�
ln

�
Cϕ̂2

1c

ϕ̂2
2c

�
−
25

6

�
; ð53Þ

where C ¼ f2

M2
1

1−α2
is a constant invariant under scale

changes. This is the Weyl invariant CW potential written
in terms of the variables ðϕ̂1; ϕ̂2Þ which are constrained by
Eq. (41). In addition there is a dilaton, σ, with an isolated
kinetic term. By performing a Weyl transformation that is
the inverse of Eq. (39), we can relax the constraint Eq. (41)
and obtain

4There is no wave-function renormalization at one-loop order.
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W ≈
λ

4!
ϕ4
1 þ

λ2ϕ4
1

256π2

�
ln

�
Cϕ2

1c

ϕ2
2c

�
−
25

6

�
: ð54Þ

which is Weyl invariant, and the fields ðϕ1;ϕ2Þ ¼
expð−σ=fÞðϕ̂1; ϕ̂2Þ are independent variables.
The reason Weyl invariance has been preserved is

because the inertial spontaneous symmetry breaking has
introduced the mass scale, f, that compensates for the
appearance of the renormalization scale M under the log,
leaving the logarithmic terms invariant. Note that the usual
renormalization group equations still apply as a change in
the renormalization scale M [a change in C in Eq. (53)] is
compensated by a change in the couplings and wave
function factors in the usual way.

3. Scale invariant regularization

The standard regularization described above clearly
preserves Weyl invariance even away from the small ϕ1

ϕ2

limit because, on dimensional grounds, the spontaneous
scale breaking factor, f, always compensates for the
renormalization scale factor to give an overall constant
under the log, together with a function of the scale invariant
field Θ ¼ fΦ.
Expanding Eq. (42) beyond leading order leads to

higher-order terms in θ but these nonrenormalizable terms
are small. The reason is that Planck scale is predominantly
due to the VEVof ϕ2 whereas the VEVof ϕ1, which models
the SM Higgs, is at the electroweak scale so that the
nonrenormalizable terms are Planck suppressed. In order to
generate the hierarchy in the VEV’s at the IR fixed point, it
is necessary that the only large coupling is λ while the other
couplings associated with the other scale invariant quartic
interactions are hierarchically small and can be neglected
when calculating the radiative corrections.
Of course, there will be further terms when the gravi-

tational interactions are included. Gravitational corrections
require the addition of the Weyl tensor, W2, and R2 terms,
which are induced by matter loops and have logarithmically
running coefficients. An analysis of the full renormalization
group equations appears in [14]. While the Weyl tensor
term is locally invariant, the R2 term is only globally
invariant. Hence we expect to maintain a conserved current,
K0

μ, however the current will be modified by the addition of
a new term, K0

μ ¼ Kμ þ c0∂μR=f20 in the notation of [14].
We expect that this is a small correction to the above
scenario of a fixed ellipse, but may have some phenom-
enological implications that will be pursued elsewhere.
Another potentially challenging consequence of the

gravitational corrections is that the λi become locked to
the αi by the renormalization group. This may necessitate
some large fine-tunings to maintain a small cosmological
constant and/or flat potentials. We feel that this requires a
more sophisticated fundamental analysis since the RG
equations computed in flat geometries amount ot a “gauge

choice” for theWeyl symmetry and do not admit analysis of
the Weyl transformation.
Finally, it is possible to maintain the local Weyl

symmetry without choosing special values of the αi, but
rather by introducing the Weyl vector potential. When this
is done, the dilaton is “eaten” to become the longitudinal
part of a massive Weyl vector potential. The relationship of
this to gravitational corrections and our general framework
is unexplored.

4. Scale invariant dimensional regularization

Of course, regularization should not depend on the
method used to control the intermediate divergences. Up
to now we have used a momentum space cut-off but it is
straightforward to use dimensional regularization. In this
case one first continues the theory to d-dimensions and
introduces an external mass scale, μ, to relate the four-
dimensional dimensionless couplings to the dimension-full
ones in d-dimensions. For the two-scalar theory discussed
above, dimensional regularization leads straightforwardly
to the form of Eq. (53) with M replaced by μ. In this case
the quartic and quadratic terms are automatically absent.
The dependence on the mass parameter, μ, needed to
continue away from four dimensions, will always appear
in the scale invariant ratio μ=f giving Eq. (53) as before.

5. Relation to previous regularization proposals

Scale invariant dimensional regularization that differs
from the one just described has been considered by several
authors [5,6]. The method generally adopted to maintain
scale invariance in radiative order replaces μ by a function
of the scalar fields, μ → μðϕiÞ, with the appropriate scaling
behavior. In this case the d-dimensional tree-level potential
Ṽ has the form

Ṽðϕ; χÞ≡ μðϕ; χÞ4−dVðϕ; χÞ: ð55Þ

As a result, the tree-level potential introduced in Eq. (55)
has additional interactions of the form

W̃ðϕ;χÞ−Wðϕ;χÞ¼ ð4−dÞWðϕ;χÞ lnμðϕ;χÞþOð4−dÞ2:
ð56Þ

Although these interactions vanish in four dimensions,
they give a finite correction to Weff at one-loop order
because the underlying divergence in four dimensions
cancels the 4 − d factor in the additional term in
Eq. (56). Thus, due to the additional interaction terms in
Eq. (56) that depend on the choice of μðϕ; χÞ, the scale
invariant d-dimensional theory is not the same as that
defined purely in four dimensions. As a result the final
regulated theory in 4-dimensional has additional terms that
depend on the precise choice of the regulator μðϕ; χÞ. For
the two-scalar case with potential given by Eq. (55) and the
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choice μðϕ; χÞ ¼ χ the additional term at one-loop is of the
form ϕ6=χ2. While this is still scale invariant it means the
resulting four-dimensional potential is different from that
obtained by the regularization procedure discussed above.
The origin of this discrepancy is that the requirement that
scale invariance be preserved in d-dimensions rather than
regularization ambiguity requires such additional terms and
defines a different theory.
In summary, we have shown that the standard regulari-

zation procedure preserves scale invariance. It does not
involve the introduction of an arbitrary regularization
function and, although it involves nonrenormalizable inter-
actions, these are well defined. Of course, it is possible to
add additional nonpolynomial terms to the theory while
preserving scale invariance but we see no reason to do so.

IV. SUMMARY AND CONCLUSIONS

We have discussed how inflation and Planck scale
generation can emerge from a dynamics associated with
global Weyl symmetry and its current, Kμ. In the preinfla-
tionary universe, the Weyl current density, K0, is driven to
zero by general expansion. However, Kμ has a kernel
structure, i.e., Kμ ¼ ∂μK and, as K0 → 0, the kernel
evolves as K → K̄, constant. This resulting constant K̄,
that does not depend on the scalar potential, is the order
parameter of the Weyl symmetry breaking; indeed, K̄
directly defines the Planck mass.
In N-multiscalar-field theories, K has the general form

K ¼ − 1
2
ðFðfϕjgÞ −

P
N
i¼1 ϕ

2
i for nonminimal coupling

−ð1=12ÞFðfϕjgÞR. The fields become constrained to the
manifold K → K̄ðfϕjgÞ. In detail we have studied
FðfϕjgÞ ¼ 1

2

P
N
i¼1 αiϕ

2
i . This defines an ellipsoidal con-

straint on the scalar field VEVs. An inflationary slow-roll
period is then associated with the field VEVs migrating
along the ellipse. Up to this point, the fate of scale
symmetry is entirely controlled by the inertial symmetry
breaking, K → K̄ðfϕjgÞ. A potential ultimately sculpts the
ensuing slow roll on the manifold to the IR, and defines the
ultimate vacuum (together with any quantum effects that
may distort the K ellipse [7]) This fixes the relative value of
the scalar field VEVs through quartic terms only. There is a
harmless massless dilaton associated with the dynamical
symmetry breaking which represents dilations of the
ellipsoid. We emphasize that with more general choices
of FðfϕjgÞ, the constraint manifold can become a more
general manifold in the field space, and it would be of
interest to explore the possibilities in this case.
AnyWeyl symmetrybreaking effect at the quantum level is

intolerable and will show up as a nonzero divergence in the
Kμ current. We showed how, due to the decoupling of the
dilaton, these quantum effects actually preserve the Weyl

symmetry using the normal momentum space cutoff or
dimensional regularization schemes. The potential scale
dependence introduced by the “external” mass scale needed
to regulate the logarithmic divergences is cancelled by the
scale invariant order parameter responsible for spontaneous
breaking of the Weyl symmetry. It would be of interest to
study the local Wetyl invariant theories that involve theWeyl
photon, as in Sec. II C, in great detail. This provides an
example of an inertial Higgs mechanism, and the dilaton is
eaten and completely removed from the lowenergy spectrum.
A strong motivation for considering such Weyl invariant

theories is to provide a solution to the hierarchy problem of
the standard model. In the absence of gravity or very
massive states associated with the Landau pole of the
standard model or of an extension of the standard model
such as grand or string unification, the standard model is
natural in the sense that the quadratic divergence found in
radiative corrections to the Higgs mass is unphysical and is
cancelled by the mass counter term. Requiring scale
invariance ensures that the Higgs is massless but, of course,
some mechanism to spontaneously break the scale sym-
metry is needed.
If gravity is included via the Weyl invariant extension

discussedhere, then the standardmodelplusgravity is natural
in the sense just discussed. Of course, it is still necessary that
there be nomassive states strongly coupled to the Higgs with
masses much larger than the electroweak scale. Moreover,
the scale symmetry is now automatically spontaneously
broken by the inertial mechanism. To obtain the hierarchy
between the Planck scale and the electroweak breaking scale
it is necessary to have hierarchically large ratios of the
dimensionless couplings of the scalar potential. In the
absence of gravitational radiative corrections, these ratios
are only multiplicatively changed by radiative corrections
and thus are natural. This may be seen from the underlying
shift symmetry of the Weyl invariant Higgs potential.
This shift symmetry is broken by the Higgs coupling to

the Ricci scalar. To determine whether the hierarchy is
ultimately preserved requires a calculation of the gravita-
tional radiative corrections which is beyond the scope of the
present paper. In a Weyl invariant variation of the standard
model with no gravity, no grand unification and no Landau
poles in the far UV the Higgs mass is technically natural
with no hierarchy problem.
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