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The study of the nucleon dissociation in a hot quantum chromodynamics (QCD) medium in a constituent
quark model with the help of Gaussian expansion method (GEM) is presented. This is the first time this
method is applied to the dissociation problem of nucleon. The temperature-dependent potentials of a three-
quark system, taking as the internal energy of the corresponding system, are obtained from the free energy
of the system based on Debye-Hückel theory. The lattice QCD results of free energy for heavy three-quark
system are employed and extended to the light three-quark system. The Schrödinger equation for nucleon is
solved with the help of GEM and the dissociation temperature of nucleon is determined according to the
temperature dependence of binding energy and radius. The dissociation temperature of nucleon we
calculate is about 1.16Tc (Tc is the deconfinement temperature).
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I. INTRODUCTION

It is generally believed that a quark-gluon plasma (QGP)
may be produced during relativistic heavy-ion collisions
[1]. Some work shows that some bound states consisting of
quarks and/or antiquarks may survive in QGP. In statistical
QCD, the thermal properties of QGP can be investigated by
studying the behavior of these bound states in a hot
medium. In 1986, Satz pointed out that the suppression
of J=ψ can be recognized as a signature of QGP formation
in relativistic heavy ion collisions [2]. In the past thirty
years, there have been numerous theoretical and exper-
imental researches focused on charmonium, and the inves-
tigation has been extended to many other bound states, such
as bottomonium and baryons.
In high temperature and density, the interaction between

quarks is screened [3] and the binding energy will decrease.
As a result, the quark bound states will start to dissociate
when the binding energy becomes low enough (and its
radius becomes large enough). In many researches [4–7],
the dissociation of quarkonium has been studied in the
Schrödinger equation formalism. In this work, we will

study the dissociation of nucleon in a hot QCD medium
with the help of Gaussian expansion method (GEM), an
efficient and powerful method in few-body system [8]. For
this purpose, a constituent quark model is employed and
extended to finite temperature by extending the interquark
potential at zero temperature to that at finite temperatures.
The method has been applied to calculate the dissoci-

ation temperature of heavy quarkonium states [9]. The
results are consistent with the ones from other work [5].
This verifies the validity and reliability of the approach. For
heavy quarkonium, the temperature dependent potential
can be extracted from the free energy of a heavy quark-
antiquark system Fqq̄ðr; TÞ which can be calculated in
lattice QCD [10,11]. The analytical form of Fqq̄ðr; TÞ is
constructed based on Debye-Hückel theory [12], and its
temperature-dependent parameters are determined by fit-
ting the lattice data. Extending the work to the dissociation
of nucleon, we need the interquark potential of nucleon
in the hot medium. Based on the free energy of a heavy
quark-antiquark system Fqq̄ðr; TÞ and the relation between
Fqq̄ðr; TÞ and Fqqqðr; TÞ [3,13,14], we obtain the free
energy of heavy three-quark system. It should be pointed
out here that the strong interaction is only related to the
degree of freedom of color and has nothing to do with the
degree of freedom of flavor. So the form of the strong
interaction between the heavy flavor quarks and the one
between the light flavor quarks is the same. Then we obtain
the interquark potential of a nucleon in hot QCD medium
from the free energy. After constructing the interquark
potential at finite temperature, we obtain the temperature
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dependence of binding energy and radius by solving the
corresponding Schrödinger equation with the help of GEM.
The dissociation temperature is the point where the binding
energy decreases to zero. In addition, we also obtain the
temperature dependence of mass at the same time, which
shows the behavior of nucleon mass below the dissociation
temperature.
This paper is organized as follows. In Sec. II, we show

the reliability of GEM on studying the dissociation problem
of quarkonium by comparing our results for dissociation
temperature with others. In Sec. III, we construct the
potential of nucleon at finite temperature and apply
GEM to solve the corresponding Schrödinger equation.
In Sec. IV, we show the results in 2-flavor QCD. Section V
contains discussions and conclusions.

II. THE RESULTS ON DISSOCIATION
TEMPERATURE OF QUARKONIUM

Before studying the dissociation of nucleon, we test the
reliability of GEM on studying dissociation problem of
quarkonium by comparing our results for dissociation
temperatures, obtained by using GEM, with the results
obtained by other methods. To compare with Satz’s results,
the potential of quarkonium at finite temperature we use is
the same as that of Satz’s work [5]. The results for
dissociation temperatures of charmonium and bottomo-
nium in Ref. [5] and our results are listed in Tables I and II
respectively, which show our results are consistent with that
in Ref. [5] (see Appendix for a detailed calculation on
dissociation temperature of quarkonium). So GEM can give
accurate results on the dissociation temperature of quarko-
nium. Giving accurate binding energy and wave function
[8] makes the GEM very suitable for studying the dis-
sociation problem of quark bound states. In the following,
we will use this method to calculate the dissociation
temperature of a nucleon.

III. FORMALISM

A. Constituent quark model

The constituent quark model, where multigluon degrees
of freedom are eliminated in favor of confined constituent
quarks with effective masses coming from dynamical chiral
symmetry breaking, is the simplest and most successful
QCD-inspired quark model. It has achieved a success in
describing both the hadron spectra and the hadron-hadron
interactions. In a nonrelativistic quark model, baryons are
formed by three constituent quarks, which are confined
by a confining potential and interact with each other
by residual two-body interactions [15]. The potential of
baryon can be described by a sum of the potential of
corresponding two-quark system. For the potential of two-
quark system, the study of heavy meson spectra and lattice
calculation results suggested a linear form of confining
interaction for the short-range part. Apart from the con-
fining interaction, the interaction obtained from the one-
gluon exchange was derived long ago by Rujula et al. [16].
Work in Refs. [16–19] shows these two parts can give a
good description of the baryon ground states. So we just
consider the two parts (neglecting the part given by the
Goldstone-boson exchanges) in our potential model. The
details of the model can be found in Refs. [20,21]. To
calculate the dissociation temperature of the nucleon, we
will extend this quark model from zero temperature to finite
temperature by extending the interquark potential at zero
temperature to that at finite temperature. Because we have
no idea for considering the spin-part of the interquark
potential at finite temperature, we will neglect this part in
the present work.
Thus the potential of a qq̄ system is written as

Vqq̄ðrÞ ¼ −
α

r
þ σrþ λ; ð1Þ

where α is the coupling constant, and σ is the string tension.
For Cornell potential, i.e., V ¼ − α

r þ σr, in lattice QCD,
Kaczmarek’s work [13] shows that the potential of diquark
system is about half of that of corresponding quark-
antiquark system, i.e., Vqq ¼ 1

2
Vqq̄ (obeying Casimir

scaling). Thus our Hamiltonian is written as

H ¼
X3
i¼1

�
mi þ

p2i
2mi

�
− Tcm þ

X3
1¼i<j

1

2
VðrijÞ þ Vcon; ð2Þ

VðrijÞ ¼ −
α

rij
þ σrij; ð3Þ

where mi is the constituent quark mass of the ith quark,
Vcon is a constant parameter and Tcm is the c.m. kinetic
energy. rij ¼ ri − rj is the relative motion coordinate. In
this model, the mass of light quark (u and d quark) we use is
300 MeV. For the potential, we choose two sets of

TABLE I. Dissociation temperature Td=Tc of charmonium in
Ref. [5] and our results.

Charmonium 1S 1P 2S

Ref. [5] 2.10 1.16 1.12
Our Results 2.06 1.16 1.13

TABLE II. Dissociation temperature Td=Tc of bottomonium in
Ref. [5] and our results.

Bottomonium 1S 1P 2S 2P 3S

Ref. [5] > 4.0 1.76 1.60 1.19 1.17
Our Results 5.81 1.71 1.56 1.18 1.17
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parameters listed in Table III in order to get some insight
about the sensitivity associated with the potential model.
Solving the corresponding Schrödinger equation,

HΨtotal ¼ EΨtotal; ð4Þ

with GEM, we get the mass E and the corresponding wave
function Ψtotal. We define the radius of nucleon as

R ¼ 1

3

X3
i¼1

ffiffiffiffiffiffiffiffi
hr2i i

q
ð5Þ

with

hr2i i ¼
Z

Ψ�
totalr

2
iΨtotaldτ; ð6Þ

where ri is the distance from the center of nucleon to the
i-th quark. Then we calculate the radius of nucleon by using
the obtained wave function. The resulting mass and radius
of nucleon are about 939 MeV and 0.840 fm in this two
cases, respectively, while the corresponding experimental
data are about 939 MeV and 0.841 fm. We see this model
gives a good estimate for the properties of nucleon although
the spin-dependent part of the potential is neglected. So it is
reasonable for us to use this potential model to study the
dissociation of the nucleon. Of course, we need to notice
that the spin-dependent part plays an important role in the
baryon spectrum.
The above calculation is performed at zero temperature.

At high temperature, the interaction between quarks is
screened. To study the dissociation of the nucleon, the
quark model must be extended from zero temperature to
finite temperature.

B. Wave function

In our work, GEM is used to solve the Schrödinger
equation. In expressing three-quark wave functions, three
sets of Jacobi coordinates (Fig. 1), called channels, are
introduced. The Jacobi coordinates in each channel
cðc ¼ 1; 2; 3Þ are defined as

rc ¼ xj − xk; ð7Þ

Rc ¼ xi −
mjxj þmkxk
mj þmk

; ð8Þ

where xi is the coordinate of the ith quark and ði; j; kÞ are
given by Table IV.
The total wave function is described as a sum of

amplitudes of three rearrangement channels (c ¼ 1–3)

ΨJM
total ¼

X
c;α

Cc;αΨ
ðcÞ
JM;αðrc;RcÞ; ð9Þ

where the index α represents ðs; S; l; L; I; n; NÞ. Here s is
the spin of the ði; jÞ quark pair, S is the total spin, l and L
are the orbital angular momentum for the coordinate r and
R, respectively, and I is the total orbital angular momen-
tum. The wave function for channel c is given by

ΨðcÞ
JM;αðrc;RcÞ ¼ ϕc ⊗ ½XðcÞ

S;s ⊗ ΦðcÞ
l;L;I�JM ⊗ HðcÞ

T;t; ð10Þ

where ϕc, XS;s,Φl;L;I , andHT;t are the color wave function,
the spin wave function, the orbital wave function, and the
isospin wave function. One can refer [22] for derails. The

orbital wave function ΦðcÞ
l;L;I is expanded in terms of the

Gaussian basis functions written in Jacobi coordinates rc
and Rc:

ΦðcÞ
l;L;I ¼ ½ϕðcÞ

l ðrcÞψ ðcÞ
L ðRcÞ�I; ð11Þ

ϕðcÞ
lm ðrcÞ ¼ Nnlrlce−νnr

2
cYlmðr̂cÞ; ð12Þ

ψ ðcÞ
LMðRcÞ ¼ NNLRL

c e−λNR
2
cYLMðR̂cÞ; ð13Þ

with the range parameters, νn and λN , chosen as

νn ¼ 1=r2n; rn ¼ r1an−1ðn ¼ 1;…; nmaxÞ; ð14Þ

λN ¼ 1=R2
N; RN ¼ R1AN−1ðN ¼ 1;…; NmaxÞ: ð15Þ

TABLE III. Parameters in the potential model.

α
ffiffiffi
σ

p
[GeV] Vcon [GeV]

Set I π
12

0.219 −0.649
Set II π

11
0.217 −0.633

FIG. 1. Three sets of Jacobi coordinates for three-body
system [8].

TABLE IV. The quark assignments ði; j; kÞ for the Jacobi
channels.

Channel i j k

1 1 2 3
2 2 3 1
3 3 1 2
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In Eqs. (12) and (13), NnlðNNLÞ denotes the normalization
constant of the Gaussian basis. The coefficients Cc;α of the
variational wave function, Eq. (9), are determined by
Rayleight-Ritz variational principle. In this calculation,
we set the width of the range parameters and the number
of basis functions large enough to ensure the reliability of
the calculation.

C. Potential model at finite temperature

To calculate the dissociation temperature of nucleon, we
need the interquark potential of nucleon in a hot medium.
However, this potential is not yet well understood so far.
Only for very small distances or very high temperatures one
can calculate it perturbatively [3]. On the other hand, the
free energy can be calculated in lattice QCD [10,11]. In a
general case, the potential we need is different from the free
energy and it is located between the following two limits
[23]. One is the limit of rapid dissociation compared to the
timescale of the heat exchange with the medium. In this
case the nucleon has no time to exchange heat with the hot
medium, and the interquark potential is just the internal
energy, i.e., V ¼ F þ sT with s being the entropy density
s ¼ −∂F=∂T. The other is the limit of slow dissociation,
the nucleon has enough time to exchange heat with the hot
medium, and the potential is the free energy V ¼ F. Noting
the difference between internal energy and free energy lies
in the contribution of entropy, the two limits are easy to
understand. Because of having not known the realistic
potential, one generally only consider the two limits. One
can describe the collisional processes by a fireball model
[24–26]. After the collision, the temperature of fireball is
very high at a very short time in the beginning and
deconfinement of hadron occurs at the same time. Then
the temperature of fireball decreases until the phase
transition temperature and the matter in fireball undergoes
the phase transition from the deconfinement phase to the
hadron phase, called hadronization. So we believe that the
process of deconfinement can be considered as an adiabatic
process. According to this argument, the choice using the
internal energy as the potential is more reasonable. The
studies about the dissociation of quarkonium support this
argument [5,27]. For example, in Ref. [27], the authors
calculate the in-medium charmonium properties in the two
limits and the results show using the internal energy as the
interquark potential tends to better reproduce current date
on transverse momentum spectra at both SPS (the Super
Proton Synchrotron) and RHIC (Relativistic Heavy Ion
Collider). So in our work, we will use the internal energy as
the interquark potential.
The interquark potential of nucleon at zero temperature

has been discussed above and its parameters have been
determined by fitting the properties of nucleon. To deter-
mine the dissociation temperature of nucleon, we need its
potential at finite temperature, i.e., Vqqqðr; TÞ (the index q
represents u or d quark). There is not screening effect for

the constant term of potential, i.e., Vcon in Eq. (2). So we
only need to consider the screening effect on the Cornell
potential term, i.e., the third term of the right side in Eq. (2).
As mentioned above, we assume that the interquark
potential is just the internal energy

Vqqqðr; TÞ ¼ Uqqqðr; TÞ
¼ Fqqqðr; TÞ þ sT; ð16Þ

where s is the entropy density s ¼ −∂Fqqq=∂T. In
Refs. [10,14,28], Kaczmarek’s works show that the singlet
free energy of the heavy three-quark systems (F1

qqq) are
well described by the sum of the antitriplet free energy of
corresponding three diquark systems (F3̄

qq) plus self-energy
contributions of the three quarks at high temperature in
2-flavor QCD. It is expressed as

F1
qqqðR; TÞ ≃

X
i<j

F3̄
qqðRij; TÞ − 3FqðTÞ; ð17Þ

where the self-energy FqðTÞ ¼ 1
2
F3̄
qqð∞; TÞ and R repre-

sents ðR12;R13;R23Þ. In Ref. [13], Kaczmarek’s work
suggests a simple relation between the free energy of the
antitriplet qq state and that of the singlet qq̄ state

F1
qq̄ðr; TÞ ≃ 2ðF3̄

qqðr; TÞ − FqðTÞÞ: ð18Þ

The analytical form of F1
qq̄ðr; TÞ can be obtained based on

studies of screening in Debye-Hückel theory. It is written
as [3]

F1
qq̄ðr; TÞ ¼ −

α

r
½e−μr þ μr� þ σ

μ

�
Γð1=4Þ

23=2Γð3=4Þ

−
ffiffiffiffiffi
μr

p
23=4Γð3=4ÞK1=4½ðμrÞ2 þ κðμrÞ4�

�
; ð19Þ

where the screening mass μ and the parameter κ are
temperature-dependent, and K1=4½x� is the modified
Bessel function. We can determine the T-dependent μ
and κ by fitting F1

qq̄ðr; TÞ to the lattice results obtained
in 2-flavor QCD [11]. At r ¼ ∞, the free energy F1

qq̄ðTÞ is
written as

F1
qq̄ðTÞ ¼

σ

μðTÞ
Γð1=4Þ

23=2Γð3=4Þ − αμðTÞ: ð20Þ

Thus, the form of μðTÞ is given as function of F1
qq̄ðTÞ

μðTÞ ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F1
qq̄ðTÞ2 þ 4σα Γð1=4Þ

23=2Γð3=4Þ

q
− F1

qq̄ðTÞ
i

2α
: ð21Þ

To determine the temperature dependence of μ, we fit this
FðTÞ to the lattice data for r ¼ ∞. Once we have the
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temperature dependence of μðTÞ, we fit Eq. (19) to the
lattice data to obtain κðTÞ. It should be pointed out that
Kaczmarek’s work gets Tc ¼ 202 MeV in 2-flavor
QCD [11]. The fitted results for the temperature depend-
ence of μðTÞ and κðTÞ are shown in Figs. 2 and 3,
respectively. In Fig. 4, we also show our fit curves (solid
lines) together with the lattice results. We can see that our
form of the free energy F1

qq̄ðr; TÞ fits the lattice data quite
well for all r and in a broad range of temperatures from
0.8Tc to 2Tc in the two cases.
Combining Eq. (17) with Eq. (18), we get a relation

between the singlet free energy of the heavy three-quark
system and the singlet free energy of qq̄

F1
qqqðR; TÞ ≃

X
i<j

1

2
F1
qq̄ðRij; TÞ: ð22Þ

In Kaczmarek’s works, these conclusions are obtained in the
case of the heavy quark system. In our work, we extend these
conclusions to the light quark system. To obtain the binding
energy of nucleon, we define an effective potential as

ṼqqqðR; TÞ ¼ VqqqðR; TÞ − Vqqqð∞; TÞ: ð23Þ

Combining Eqs. (16), (22), (23), we get a relation between
the effective potential and the singlet free energies of qq̄

ṼqqqðR;TÞ¼
X
i<j

1

2

�
F̃1
qq̄ðRij;TÞ−T

∂F̃1
qq̄ðRij;TÞ
∂T

�
ð24Þ

with

F̃1
qq̄ðRij; TÞ ¼ F1

qq̄ðRij; TÞ − F1
qq̄ð∞; TÞ: ð25Þ

Replacing the potential term,
P

3
1¼i<j

1
2
VðrijÞ þ Vcon, in

Eq. (2) with this effective potential ṼqqqðR; TÞ and deleting
themass term, we get a newHamiltonian for nucleon at finite
temperature written as

Hnew ¼
X3
i¼1

p2i
2mi

− Tcm þ ṼqqqðR; TÞ: ð26Þ

The relevant Schrödinger equation now becomes

HnewΨJM
total ¼ ϵðTÞΨJM

total; ð27Þ

11, 0.217GeV

12, 0.219GeV

0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T Tc

µ

FIG. 2. Results for μðTÞ in 2-flavor QCD.
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0.3

0.4

0.5
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0.7
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FIG. 3. Results for κðTÞ in 2-flavor QCD.

1.98

1.5
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1.002
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0.81

T/Tc

0 1 2 3 4

1

0

1

2

R

F
q

q
1

0.81

0.9

0.96

1.

1.02

1.07

1.16

1.36

1.65

1.98

T/Tc

0 1 2 3 4

1

0

1

2

R

F
q

q
1

FIG. 4. Fits to the lattice results for free energy F1
qq̄ in 2-flavor

QCD: the upper figure shows the result for the case: α ¼ π
11
(data

from [11]), and the lower figure shows the result for another case:
α ¼ π

12
(data from [5]).
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where

ϵðTÞ ¼ M − 3mq − Vqqqð∞; TÞ: ð28Þ

Solving this Schrödinger equation, we obtain the binding
energyΔEðTÞð¼ −ϵðTÞÞ and the corresponding wave func-
tion at temperature T. Once we have the wave function, we
can calculate the T-dependent radius according to Eq. (5).
Replacing the potential term,

P
3
1¼i<j

1
2
VðrijÞ, in Eq. (2) with

the potential VqqqðR; TÞ in Eq. (16), we obtain the temper-
ature dependence of nucleon mass in the same way.

IV. NUMERICAL RESULTS

In Fig. 5, we show the binding energies behavior for the
nucleon in the two cases mentioned above. We can see the
two lines have similar behavior. When the binding energy
vanishes, the nucleon no longer exists, so that ΔEðTÞ ¼ 0
determines the dissociation temperature. From Fig. 5, we
get the dissociation temperatures in the two cases are about
1.16Tc and 1.17Tc, respectively. In Fig. 6, we show the
corresponding nucleon radii. The nucleon radius approach
infinity near the dissociation temperature. The dissociation
temperature determined from Fig. 6 is consistent with that
determined from Fig. 5. It is seen that the divergence of the
radii defines quite well the different dissociation points in
the two cases. There are slight differences between the
results of the two cases. The resulting dissociation temper-
ature just changes one percent while the parameter α
changes about ten percent, which means that the result
is insensitive to the parameters of our potential model. If
there is no significant change on parameter α, the resulting
dissociation temperature has no significant change.
Figure 7 shows the resulting mass behavior for the nucleon.
With the temperature increasing from 0.9Tc to the disso-
ciation temperature, the nucleon mass increases before Tc
and then decreases. The result is in agreement with that of
Refs. [29,30]. From Figs. 5 and 6, we can see that when

temperature increases from 0.9Tc to Tc, the binding energy
increases and the radii decreases, which means the nucleon
becomes more stable, and after Tc, the behavior of radii and
binding energies means the nucleon tends to melt.

V. DISCUSSION AND CONCLUSIONS

The free energy of quark-antiquark system we construct
based on Debye-Hückel theory fits the lattice data quite well
for all r from 0.8Tc to 2Tc. According to Kaczmarek’s
works, we can get a relation between the singlet free
energy of heavy qqq system F1

qqq and the singlet free
energy of heavy qq̄ system F1

qq̄, written as F1
qqqðR; TÞ≃P

i<j
1
2
F1
qq̄ðRij; TÞ. In our model, the nucleon mass incre-

ases as temperature increases from 0.9Tc to Tc, but after the
point Tc it decreases. The behavior of binding energy is
similar to the mass. On the contrary, the corresponding
radius decreases as the temperature increases from 0.9Tc to
Tc, which means the nucleon is becoming more stable, andFIG. 5. T-dependence of binding energy in 2-flavor QCD.

FIG. 6. T-dependence of radii in 2-flavor QCD.

FIG. 7. T-dependence of mass in 2-flavor QCD.
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after the point Tc the radius increases up to infinity near the
dissociation temperature, which means the nucleon tend to
melt. The dissociation temperatures of nucleon in 2-flavor
QCD in our calculation are about 1.16Tc for α ¼ π

11
and

1.17Tc for α ¼ π
12
. The result is insensitive to the model’s

parameters. Our result show that the deconfinement of
nucleon occurs after Tc.
It should be pointed out that in our present work, we

neglect the spin-dependent part in our potential model,
which may have some effect on the resulting dissociation
temperature of nucleon. The reason why we ignore the
contribution of the spin-dependent part in this paper is that
it is difficult for us to consider the screening effect on the
potential of nucleon in a hot medium when we take the
spin-dependent part into account. In addition, the colli-
sional processes can be described by a Fireball model,
where the nucleon is not simply captured by a real potential
we used in our work. For the fireball, its volume is finite
and the baryon density is not vanishing in fact. However,
the case we consider is only that the volume is infinite and
the baryon density is vanishing. So there are some effects,
arising from finite volume, magnetic field, finite baryon
density and so on, contributing to baryon dissociation. It
is undoubted that such work deserves our progressive
consideration.
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APPENDIX: THE CALCULATION ON
DISSOCIATION TEMPERATURE

OF QUARKONIUM

We have given our results for dissociation temperature of
quarkonium in Sec. II. Here we present the calculation in
detail. For the quarkonium, the potential we use is the
Cornell potential. The Hamiltonian for quarkonium is
written as

H ¼ p2

2μ12
þ Vqq̄ðrÞ; ðA1Þ

where p ¼ p2 − p1 and μ12 is the reduced mass. The
parameters taken from Ref. [5] are: mc ¼ 1.25 GeV,

ffiffiffi
σ

p ¼ 0.445 GeV, α ¼ π=12, and mb ¼ 4.65 GeV. Then
we can construct the corresponding free energy at finite
temperature based on Debye-Hückel theory as having done
above. For simplicity, we neglect the term κðμrÞ4 in
Eq. (19). This is reasonable because we can see κ is close
to zero from 0.8Tc to 2Tc. We can obtain the T-dependent
parameter μðTÞ by fitting Eq. (19) to lattice data. According
to the potential model mentioned above, we can obtain the
potential of quarkonium at finite temperature. Then, the
relevant Schrödinger equation is written as

�
−

1

2μ12
∇2 þ Vqq̄ðr; TÞ − Vqq̄ð∞; TÞ

�
ψ iðr; TÞ

¼ ϵiðTÞψ iðr; TÞ; ðA2Þ

where the index i represents a quarkonium state and
ΔEiðTÞð¼ −ϵiðTÞÞ is the responding binding energy at
temperature T. According to Ref. [8], we expand the total
wave function in terms of a set of basis functions as

ψ lm ¼
Xnmax

n¼1

cnϕnlm; ðA3Þ

with

ϕnlmðrÞ ¼ ϕnlðrÞYlmðr̂Þ; ðA4Þ

ϕnlðrÞ ¼ Nnlrle−vnr
2

; ðA5Þ

where Nnl is the normalization constant. The Rayleight-
Ritz variational principle leads to a generalized matrix
eigenvalue problem

Xnmax

n0¼1

ðHnn0 − ENnn0 Þcn0l ¼ 0: ðA6Þ

Therefore, we can obtain the eigenvalues and the corre-
sponding wave functions of both ground state and excited
states. We define the root mean square (RMS) radii of
quarkonium as:

ffiffiffiffiffiffiffiffi
hrii

p
¼

�Z
ψ�
i r

2ψ idτ

�
1=2

: ðA7Þ

Then we can use the resulting wave function to calculate
the temperature-dependent radii.
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