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We consider photon signals arising from the annihilation or decay of low-mass (sub-GeV) dark matter
which couples dominantly to quarks. In this scenario, the branching fractions to the various kinematically
accessible hadronic final states can largely be determined from chiral perturbation theory. Several of these
final states yield striking spectral features in the sub-GeV photon spectrum. New experiments, such as
e-ASTROGAM and AMEGO, are in development to improve sensitivity in this energy range, and we
discuss their potential sensitivity to this class of models.
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I. INTRODUCTION

There has been much recent interest in dark matter models
in which the candidate particle has a mass ≲OðGeVÞ.
Avariety of theoretical models have been developed in which
such a candidate can have aweak coupling to StandardModel
particles and can obtain a relic density consistent with
observational limits (see, e.g., [1–6]).Moreover, the sensitivity
of direct detection experiments tends to be suppressed at such
small masses, allowing these models to escape stringent
experimental constraints. As such, a variety of experiments
have been proposed to improve sensitivity to this class of
models. In particular, a variety of astrophysical observatories,
including e-ASTROGAM [7] and AMEGO [8], are being
developed to fill in the current “MeV gap” in experimental
sensitivity to photons, and these instruments will be well
positioned to probe the annihilation or decay of sub-GeV dark
matter.
It has recently been pointed out that, if sub-GeV dark

matter couples predominantly to quarks, then the indirect
detection signatures are particularly striking [9–14]. This is
because there are few kinematically accessible particles
when the center-of-mass energy of the annihilation or
decay process is

ffiffiffi
s

p ≲OðGeVÞ, and those particles tend
to yield fairly striking photon signatures. In [9,10], the caseffiffiffi
s

p
< 2mπ� was considered. In this case, the dominant two-

body final states are γγ, γπ0 and π0π0; the particular final
state is determined by the quantum numbers of the initial
state, and the final photon spectra are particularly simple.
If

ffiffiffi
s

p
> 2mπ� , then there are typically multiple final states

for any choice of the initial state quantum numbers, and

three-body final states are also important. But the branching
fractions and kinematic distributions of the final state
particles can be estimated using chiral perturbation theory
(see, e.g., [13,15]). In this work, we will derive the photon
spectra which arise in general for dark matter annihilation
or decay to light mesons, assuming

ffiffiffi
s

p ≲ 1 GeV.
Our main assumption will be that primary electroweak

interactions are negligible; the primary products of dark
matter annihilation or decay will consist only of light
mesons, with photons produced only by meson decay. For
this purpose, we will find that the most important final
states are those containing an η, which decays to γγ with
∼40% branching fraction. We will limit ourselves to final
states with at most three mesons. We will assume that dark
matter couples to light quarks, and will find that the
available final states can be classified by the quantum
numbers of the initial state. We will determine the branch-
ing fractions and spectra of all relevant final states using
chiral perturbation theory, and will assess the sensitivity of
current and upcoming instruments.
The plan of this paper is as follows. In Sec. II, we will

describe the application of chiral perturbation theory to
sub-GeV dark matter. In Sec. III, we will describe the
photon spectra arising from meson decay. In Sec. IV, we
will present our results, and we conclude in Sec. V.

II. APPLYING CHIRAL PERTURBATION
THEORY TO THE INTERACTIONS

OF SUB-GEV DARK MATTER

We consider the scenario in which low-mass dark matter
annihilates or decays via a C- and P-conserving contact
interaction with light quarks (u, d, s). We assumeffiffiffi
s

p
< 1 GeV, and we assume that interactions which scale

as αEM or GF are negligible (i.e., the dominant primary
interaction is QCD). As a result of these assumptions, we
will find these selection rules:
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(i) The charge conjugation (C) and parity (P) trans-
formation properties of the initial state and final state
must be the same, since C and P are conserved
by QCD.

(ii) The final state must have strangeness equal to zero,
since QCD also conserves strangeness.

Subject to these selection rules, the only mesons which
we will be interested in are π0ðmπ0 ∼ 135 MeVÞ, π�ðmπ� ∼
140 MeVÞ and ηðmη ∼ 548 MeVÞ. Since kaons must
appear in pairs to conserve strangeness, they can only be
produced if

ffiffiffi
s

p
is very close to 1 GeV. ρ�, ρ0 can also be

produced in conjunction with pions, but only ifffiffiffi
s

p ≳ 0.91 GeV. Although there are some regions of
parameter space where these particles can be relevant, they
are kinematically inaccessible in most of the parameter
space we consider, so we will ignore them.
The decay of π� generally produces muons and neu-

trinos, with only a small contribution to the photon
spectrum. The mesons most relevant to the photon spec-
trum are π0, which decays to γγ with a ∼99% branching
fraction, and η, which decays to γγ with a ∼39% branching
fraction. Note that η also decays to 3π0 with a ∼33%
branching fraction, and to πþπ−π0 with a ∼23% branching
fraction. As a result, a single annihilation or decay process
can produce a relatively large number of neutral pions.
Although this results in a larger number of secondary
photons, their energy spectrum is much more complicated.
Moreover, the astrophysical gamma ray backgrounds tend
to grow rapidly at lower energy; since the photons arising
from π0 decay tend to be much less energetic than those
arising from η decay, they will compete against a much
larger background. As such, we will focus only on the
photons arising from η decay. If

ffiffiffi
s

p
< 1 GeV, then the

only kinematically allowed final states including at least
one η are π0η, π0π0η and πþπ−η.
Since the relevant mesons are all pseudo-Nambu-

Goldstone bosons (pNGBs) of chiral symmetry breaking,
their interactions with dark matter can be described using
chiral perturbation theory, in which the dark matter is
treated as a spurion whose interactions break flavor
symmetry. This spurion is set equal to the dark sector
operator which couples to quark bilinears in the funda-
mental Lagrangian. For the case of dark matter decay, the
spurion will be the dark matter field, whereas for the case of
dark matter annihilation, the spurion will be the appropriate
dark matter bilinear, weighted by an energy scale associ-
ated with the energy scale of dark sector interactions. In the
chiral Lagrangian, this spurion then couples to the octet of
pNGBs, and the form of this interaction is determined by
the Lorentz, parity, and flavor transformation properties of
the quark bilinears to which the spurion couples in the
fundamental Lagrangian. In the Standard Model, one
already introduces scalar, pseudoscalar, vector, and axial-
vector spurions in order to describe quark masses and
electroweak interactions. As a result, one can use data to

determine the coefficients of the operators coupling these
spurions to the meson octet, order by order in the chiral
Lagrangian. We will thus only consider the cases in which
dark matter couples to scalar, pseudoscalar, vector, or axial-
vector quark currents, and the corresponding spurions will
be denoted as s, p, vμ and aμ, respectively.
We will work to lowest order in the chiral Lagrangian;

this will be a good approximation for our purposes,
especially if the momenta of the final state particles are
small. The effective Lagrangian is thus given by

L ¼ F2

4
Tr½ðDμUDμU† þ χU† þUχ†�; ð1Þ

where

U≡ exp½ι
ffiffiffi
2

p
Φ=F�;

Φ≡

0
BBB@

π0ffiffi
2

p þ η8ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ η8ffiffi
6

p K0

K− K̄0 − 2η8ffiffi
6

p

1
CCCA;

χ ¼ 2Bðsþ ιpÞ;
DμU ¼ ∂μ − ιðvμ þ aμÞU þ ιUðvμ − aμÞ: ð2Þ

The field η8 appearing above is a linear combination of
the physical η and η0, with η8 ¼ η cos θP þ η0 sin θP, and
θP ∼ 11.5° (cos θP ∼ 0.98). Henceforth, for simplicity, we
will simply equate η8 with the physical η. As expected, the
constants F and B are determined from data; F ∼ Fπ ∼
92 MeV is the pion decay constant, and B ¼
m2

π=ðmu þmdÞ þOðm2Þ. Henceforth, we will take
mπ0 ∼mπ� ¼ mπ, as this approximation will only have a
non-negligible effect very near the threshold for π�
production.
The chirality-violating real-valued spurions are given by

s ¼

0
BB@

mu þ αuS
X̄X
Λ2 0 0

0 md þ αdS
X̄X
Λ2 0

0 0 ms þ αsS
X̄X
Λ2

1
CCA;

p ¼

0
BB@

αuP
ιX̄γ5X
Λ2 0 0

0 αdP
ιX̄γ5X
Λ2 0

0 0 αsP
ιX̄γ5X
Λ2

1
CCA;

vμ ¼

0
BB@

αuV
X̄γμX
Λ2 0 0

0 αdV
X̄γμX
Λ2 0

0 0 αsV
X̄γμX
Λ2

1
CCA;

aμ ¼

0
BB@

αuA
X̄γμγ5X

Λ2 0 0

0 αdA
X̄γμγ5X

Λ2 0

0 0 αsA
X̄γμγ5X

Λ2

1
CCA; ð3Þ
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where, for simplicity, we have considered the case of dark
matter annihilation. If dark matter instead decays, the dark
matter bilinear would be replaced by a single dark matter
field. The dimensionless coefficients are equal to the
coefficients of the operator coupling the dark matter
bilinear to the appropriate quark current in the fundamental
Lagrangian.
We can now expand this Lagrangian, in order to

determine the coefficients of the operators which couple
dark matter to the light mesons. Keeping only the terms
which couple the spurions to at most three mesons, we find

L ¼ F2BTr
�
s −

1

F2
ðsΦ2Þ þ

ffiffiffi
2

p

F
ðpΦÞ −

ffiffiffi
2

p

3F3
ðpΦ3Þ

�
þ ιTr½vμðð∂μΦÞΦ −Φð∂μΦÞÞ�

þ
ffiffiffi
2

p
FTr

�
ð∂μaμÞ

�
Φ −

Φ3

3F2

��

−
ffiffiffi
2

p

F
Tr½aμΦð∂μΦÞΦ� þ � � � : ð4Þ

We immediately see that, at this order in the chiral
Lagrangian, there are contact interactions which couple s
to two-body L ¼ 0 states and couple vi to two-body L ¼ 1
states. But the contact interactions couple p and a0 to three-
body L ¼ 0 states, and couple ai to three-body L ¼ 1

states. But p and aμ can also couple directly to π0 and η,
allowing dark matter to annihilate through a mediator in the
s-channel. In the case of dark matter decay, we would
instead find mixing between dark matter and either π0 or η,
and this mixing can be constrained by data. But this
coupling of dark matter to a single meson will vanish if
the coefficients are flavor universal.
A few other features are apparent from the Lagrangian in

Eq. (4). The contact interactions between dark matter and
the final states we consider are actually independent of the
dark matter coupling to strange quarks. We can see this by
noting that all of the terms in Eq. (4) involve a single trace;
thus, if a trace involves more than one insertion of Φ,
then αsS;P;A;V can only appear along with Φ3i and Φj3.
These terms are only relevant if the final state has more
than one η or kaon, and these states are not kinematically
accessible. To study contact interactions, we may thus
truncate Φ to the upper left 2 × 2 block, which we denote
as Φ̃¼ðη= ffiffiffi

6
p Þσ0þðπ0= ffiffiffi

2
p Þσ3þπþσþþπ−σ−. Note, how-

ever, that a dark matter coupling to strange quarks does
permit dark matter to annihilate to a three-body final state
via an intermediate η in the s-channel.
As each spurion is a diagonal 3 × 3 matrix, it will be

convenient to parametrize the flavor structure of spurions
by expressing them as a linear combination of M1¼
diagð1;1;1Þ, M2¼diagð1;−1;0Þ, M3¼diagð−1;−1;2Þ. In
particular, spurions proportional to M1 and M3 will have
the same contact interactions, but the spurion proportional

toM3 will also couple to mesons through an intermediate η,
while the spurion proportional toM1 will have only contact
interactions. A spurion proportional toM2 will have contact
interactions with mesons, as well as a coupling through an
intermediate π0.
Φ̃ is a linear combination of an isospin singlet (η) and an

isospin triplet (π�, π0), and the isospin of the final state is
determined by the isospin of the spurion associated with the
initial state. In particular, if the spurion describing the initial
state is proportional to M1 or M3, then the final state has
I ¼ 0, whereas if the spurion is proportional toM2, then the
final state has I ¼ 1, I3 ¼ 0 (I is the isospin quantum
number). It is straightforward to determine which final
states can be produced by various choices of spurions using
the transformation properties of various particles under C,
P and I. Note that a ππ pair with I3 ¼ 0 transforms as
C∶ ð−1ÞL, P∶ ð−1ÞL, where L is the angular momentum
of the two-body state (e.g., see [16]). Symmetry of the
wave function under particle interchange then requires
I ¼ Lmod 2. We summarize the connection between vari-
ous spurions and the relevant possible final states in Table I.
Note that, at lowest order in the chiral Lagrangian, the vi

spurion couples only to the πþπ− state, whose decays yield
few secondary photons. (The two-body final state must
have JPC ¼ 1−−, and must thus be a ππ-state with
I ¼ L ¼ 1; such a state has no π0π0 contribution.) Final
states involving π0 or η arise only at higher order in the
momentum expansion, and will have a small branching
fraction. As such, we will henceforth ignore the case in
which dark matter couples to vector quark currents.
Similarly, there are several spurions which only couple
to ππ or πππ final states, and we ignore them as well.
We are left with only the spurions sM2 , pM1;M3 and

aM1;M3

0 . The spurion sM2 can only produce the final state
π0η, as this is the only two-body 0þþ final state with I ¼ 1,
I3 ¼ 0. On the other hand the spurions pM1;M3 and aM1;M3

0

can each produce two three-body final states: π0π0η and
πþπ−η. The branching fractions to these states (2=3 and
1=3, respectively) are determined by the fact that the two
outgoing pions must be in an I ¼ 0 state. But in any case,

TABLE I. For each choice of spurion (s, p, vμ, aμ) and flavor
structure (M1, M2, M3), we list the JPC quantum numbers of the
initial state, the possible final states, and the average number of
primary η and π0 particles produced per annihilation/decay event.
For final states with more than one pion, we indicate the total
isospin of the pion state. We include only spurions which couple
to final states including an η.

Spurion JPC Available states No. η No. π0

sM2 0þþ π0η 1 1

pM1;M3 , aM1;M3

0
0−þ ηðπþπ−; π0π0ÞI¼0 1 2=3
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the branching fractions are not really relevant to our
analysis, as we are only focusing on photons arising from
the decay of the η.
Although we have obtained these results from consid-

erations of symmetry, we can of course verify, by calculat-
ing explicitly in the chiral Lagrangian, that only the
spurions sM2 , pM1;M3 and aM1;M3

0 can produce two- or
three-body final states containing an η. But it is possible
that one of the final states allowed by symmetry is
nevertheless not produced at this order in the chiral
Lagrangian, due to an accidental cancellation. Indeed, it
turns out that, at this order in the chiral Lagrangian, there is
no contact interaction coupling the spurions aM1;M3

0 to the
ηππ final state, as the result of an accidental cancellation.
But unlike the spurions ðp; a0ÞM1 , the spurions ðp; a0ÞM3

can also couple to an intermediate η in the s-channel. Thus,
although the spurion aM3

0 does not produce an ηππ final
state through a contact interaction, it does produce this final
state through a diagram with an intermediate off-shell η.
However, this interaction also vanishes for the spurion aM1

0 .
For the aM1

0 spurion, although the ηππ final state is allowed
by symmetry, it is not produced at this order in the chiral
Lagrangian. One can verify that for all other spurions, every
relevant final state allowed by symmetry is produced at
this order.

III. PHOTON SPECTRA

Given a particular choice of Lorentz and flavor structure
for the dark matter coupling to quarks, it is straightforward
to determine the resulting secondary photon spectrum.
Since the secondary photons arise from the process
η → γγ, the resulting photon spectrum is simply related
to energy spectrum of the parent η.

A. η injection spectra

If dark matter annihilation or decay, with center-of-mass
energy

ffiffiffi
s

p
, produces a π0η final state, then the energy

spectrum of the outgoing η is given by

dNη

dEη
¼ δ

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

η þ
s
4

�
1 −

m2
η þm2

π

s

�
2

−
m2

ηm2
π

s

s 1
CA

× Θð ffiffiffi
s

p
−mη −mπÞ: ð5Þ

If dark matter annihilation or decay produces a ππη final
state, then the energy spectrum of the η can be determined
by integrating the squared matrix element over the three-
body phase space, which can be expressed in terms of the
energies of any two of the three final state particles. In
particular, we have

dΦ3 ¼
s

128π3
dx1dx2f;

f ¼ Θ

0
B@2 − x1 − x2 −

2ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sx21
4

−m2
1

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx22
4

−m2
2

r �2s 1
CA;

× Θ

0
B@x1 þ x2 þ

2ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sx21
4

−m2
1

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx22
4

−m2
2

r �2s
− 2

1
CA; ð6Þ

where xi ≡ 2Ei=
ffiffiffi
s

p
,
P

3
i¼1 xi ¼ 2. Note that, if the final

state is π0π0η, then the phase space integral has an addi-
tional 1=2 combinatoric factor. We will take i ¼ 1 to denote
the η, and i ¼ 2, 3 to denote the two pions (either πþπ− or
π0π0). Then we find

dN
dx1

¼
R
dx2jMj2fR

dx1dx2jMj2f : ð7Þ

Note that the combinatoric factor cancels in this expression.
In general, the energy spectrum of a meson which is part of
a three-body final state depends on the energy dependence
of the matrix element. But one can verify from the chiral
Lagrangian that, for the spurions we consider here, the

matrix element is independent of xi. But one can also see
this entirely from considerations of symmetry. The spurions
which can produce an ηππ final state have JPC ¼ 0−þ and
I ¼ 0. Isospin conservation thus requires the ππ two-body
state to have vanishing total isospin, and symmetry of the
wave function then requires the ππ two-body state to have
JPC ¼ Lþþ

π , where Lπ ¼ 0mod 2 is the orbital angular
momentum of the ππ state. Angular momentum conserva-
tion then requires Lη ¼ Lπ , where Lη is the orbital
angular momentum of the ηðππÞ state. As a result, the
matrix element can only have a nontrivial dependence on
the xi if there are at least four derivatives (Lη ¼ Lπ ¼ 2),
and no such terms can arise at this order in the chiral
Lagrangian.
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We thus find

dN
dx1

¼
R
dx2fR

dx1dx2f
: ð8Þ

The injection spectrum for η is a single bump, which
vanishes at the kinematic end points

xmin ¼
2mηffiffiffi

s
p ;

xmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

η

s
þ
�
1 −

m2
η þ 4m2

π

s

�
2

−
16m2

ηm2
π

s2

s
: ð9Þ

xmin corresponds to the limit in which the η is produced
with no boost, and the two pions are produced back to back,
while xmax corresponds to the limit in which both pions
move with the same boost, in the opposite direction to the η.

B. Secondary photon spectrum

Given the injection spectrum of the parent η, the
secondary photon spectrum is given by [17]

dNγ

dEγ
¼ 2

Z
∞

mηffiffi
s

p ð2Eγmη
þmη

2EγÞ
dx1

�
dNη

dx1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx21=4Þ −m2

η

q �
: ð10Þ

A few points about the photon spectrum are immediately
apparent [17]. This spectrum is log-symmetric about the
energy scale E� ¼ mη=2, and has a global maximum at
Eγ ¼ E�. Moreover, the photon spectrum is nonincreasing
as Eγ either increases or decreases away from E�.
If dark matter decay or annihilation produces a π0η, then

the η is monoenergetic with an energy determined by
ffiffiffi
s

p
;

we will denote the boost of the η by γη ¼ Eη=mη, with

βη ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1=γηÞ2

q
. From Eq. (10), we see that the photon

spectrum is uniform between the limits ðmη=2Þ½γηð1 − βηÞ�
and ðmη=2Þ½γηð1þ βηÞ�, and vanishes outside these limits.
On the other hand, if a three-body final state is produced,

then the photon spectrum will be peaked at ðmη=2Þ and will
fall off monotonically in either direction until it vanishes at
the limits ðmη=2Þ½γηð1� βηÞ�, where γη is the maximum
boost factor for the η which is kinematically allowed.
Following the results in [17], we see that the fact that
dNη=dx1 vanishes as x1 → 2mη=

ffiffiffi
s

p
implies that the

maximum in the photon spectrum at Eγ ¼ mη=2 is a
smooth peak. For illustration, we plot in Fig. 1 the photon
spectrum arising from the decay process η → γγ for a ηππ
final state with

ffiffiffi
s

p ¼ 850 MeV.

IV. SENSITIVITY

We will consider the sensitivity to dark matter annihila-
tion/decay which can be provided by experiments which are
sensitive to Oð10–1000Þ MeV gamma rays. Following [9],
we consider constraints arising from diffuse emission in the
Galactic halo, and from emission from one particular dwarf
(Draco). One can also consider limits from the Galactic
Center, and these have been considered in a related context
in [12]. However, there is great systematic uncertainty
regarding astrophysical foregrounds/backgrounds from the
direction of the Galactic Center. As a result, we do not
consider this target in this work.
Since we are considering experiments which are still in

the design phase, we will make no serious attempt to
optimize our analysis strategy. Instead, we will simply
choose some reasonable cuts which will give us a good
estimate for the sensitivity which can be obtained. We will
consider, as a benchmark, an experiment with an exposure
of 3000 cm2 yr and a fractional 1 − σ energy resolution of
ϵ ¼ 0.3 throughout the entire range of interest. We will also
assume an angular resolution of ≲1° throughout the energy
range of interest. The smallest target we will consider here
is Draco, with an angular size of 1.3°, and we assume that
the angular resolution is smaller than this size.
The differential photon flux arising from dark matter

annihilation or decay can be written as

d2Φann;dec

dΩdEγ
¼ Ξann;dec

4πmX
J̄ann;dec

dNγ

dEγ
; ð11Þ

where

Ξann ¼ hσAvi
2mX

;Ξdec ¼ Γ; ð12Þ

and J̄ann;dec is the average J-factor of the target for either
annihilation or decay (we assume that the dark matter
particle is its own antiparticle). We consider diffuse
emission in the region jbj > 20°, where b is the latitude
in Galactic coordinates. In this region, we will take the
averaged J-factors to be given by [18]

0 200 400 600 800 1000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E (MeV)

dN
/d

E
(1

/M
eV

)

FIG. 1. The photon spectrum dNγ=dEγ arising from the decay
process η → γγ, as a function of Eγ , assuming a final state ηππ
with

ffiffiffi
s

p ¼ 850 MeV. The integral of the spectrum is normalized
to 2.
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J̄anndif ¼ 3.5 × 1021 GeV2 cm−5 sr−1;

J̄decdif ¼ 1.5 × 1022 GeVcm−2 sr−1: ð13Þ

For Draco, we will take the averaged J-factors to be [19]

J̄annDraco ¼ 6.94 × 1021 GeV2 cm−5 sr−1;

J̄decDraco ¼ 5.77 × 1021 GeV cm−2 sr−1; ð14Þ

with uncertainties estimated at ∼60% [19]. The isotropic
flux observed by COMPTEL (0.8–30 MeV) and EGRET
(30 MeV–1 GeV) [20] can be well fit [9] to the function

d2Φiso

dΩdEobs
¼ 2.74 × 10−3

�
Eobs

MeV

�
−2.0

cm−2 s−1 sr−1 MeV−1:

ð15Þ

We will assume that the energy spectrum actually
reported by the experiment is given by

dNγ

dEobs
¼

Z
∞

0

dEγ
dNγ

dEγ
RϵðEobs; EγÞ; ð16Þ

where

RϵðEobs; EγÞ ¼
1ffiffiffiffiffiffi

2π
p

ϵEγ

exp

�
−
ðEobs − EγÞ2

2ϵ2E2
γ

�
ð17Þ

is a smearing function which accounts for the fractional
energy resolution ϵ of the instrument.
If we denote by Iexp the exposure of the instrument, and

by ΔΩ the solid angle viewed, then the number of events
due to dark matter annihilation or decay expected to be
observed within the energy window E− ≤ Eobs ≤ Eþ is
given by

NS ¼
Ξann;dec

4πmX
J̄ann;decðIexpΔΩÞ

Z
Eþ

E−

dEobs
dNγ

dEobs
; ð18Þ

while the number of expected events actually observed
(based on the fit to COMPTEL and EGRET) is given by

NO ¼ 8.6 × 104
�
MeV
E−

−
MeV
Eþ

� ðIexpΔΩÞ
cm2 yr sr

: ð19Þ

A. Bounds from diffuse emission

Sensitivity to diffuse emission from dark matter annihi-
lation or decay is largely controlled by systematic uncer-
tainties in the astrophysical background. We will adopt the
following criterion for estimating the sensitivity of a given
instrument to diffuse emission: a model can be excluded if,
within any energy bin of size set by the energy resolution
[Eþ − E− ¼ ϵðEþ þ E−Þ], NS > αNO, where α is a

constant set by the systematic uncertainty of the back-
ground. For example, a conservative bound would arise
from setting α ∼ 1, and would be appropriate if one had
little confidence in any background model; in this case, a
model could only be excluded if there was an energy bin in
which the estimated number of dark matter events exceeds
the entire number of observed events (including statistical
uncertainty). If one were confident that the background
were smooth, then α would instead be determined by small
fluctuations which could be accommodated by the uncer-
tainty in the fit to the observed flux. For relatively large
spectral features, this uncertainty would yield α ∼ 0.15
[9,12], but would decrease to ∼0.02 for narrow fea-
tures [12].
This analysis then yields the following constraint:

Ξann;dec

s−1
J̄ann;decdif

GeV cm−2 sr−1
≤ αð3.4 × 10−5Þ

�
2ϵ

1 − ϵ2

�

×

�
E0

mX

Z
E0ð1þϵÞ

E0ð1−ϵÞ
dEobs

dNγ

dEobs

�
−1
;

ð20Þ

where E0 is the center of the energy bin. For a two-body
final state, each meson produces a secondary photon
spectrum which is constant over some energy range. In
this case, E0 should be chosen so that the upper edge of the
energy bin [E0ð1þ ϵÞ] lies at the highest energy such that
the secondary photon spectrum is nonvanishing. For a
three-body final state, one should choose E0 ¼ mη=2.
Note that the sensitivity of an experiment to diffuse

emission is determined by the signal-to-background ratio,
and is thus independent of the exposure and angular
resolution. Near threshold, when the spectral features are
sharp, sensitivity will scale as ϵ−1. But as

ffiffiffi
s

p
increases and

the spectral features become large compared to the bin size,
the dependence on ϵ disappears. In particular, at this level,
future experiments would give no improvement over
current bounds from the EGRET flux measurement.
But it is important to note that the exposure and angular

resolution of future experiments can indirectly affect
sensitivity to diffuse emission. We have assumed an
isotropic flux equal to that observed by COMPTEL and
EGRET. But if a future experiment is able to resolve a
significant number of point sources which can then be
subtracted from the isotropic background, the remaining
background may be significantly smaller. Since sensitivity
to diffuse emission is determined by the signal-to-back-
ground ratio, any reduction in the normalization of the
observed isotropic flux (assuming the same spectral shape),
will improve sensitivity by the same factor.
Note also that we have not included any uncertainty in

the J-factor. But since NS scales linearly with J̄, any
deviation of the actual J-factor from our estimate will
simply rescale our bound by the same factor.

JASON KUMAR PHYS. REV. D 98, 116009 (2018)

116009-6



B. Bounds from dSphs

Sensitivity to emission from a dwarf spheroidal galaxy,
on the other hand, is largely controlled by statistical
uncertainties. In this case, the observed isotropic flux
can be treated as an estimate for the background in a
search for emission from the dwarf (a more accurate
estimate can be made for any particular dSph by measuring
the flux from the direction of the dSph, but slightly off-axis
[21–25]). This background includes all emission from dark
matter annihilation or decay outside the dwarf but along the
line of sight, as well as emission from astrophysical
processes. Given an estimate for the expected background,
and a measurement of the number of photons seen from the
direction of a dSph, one can determine if any particular
model is consistent with the data to any particular statistical
confidence level. We will adopt the following criterion for
estimating the sensitivity of a given instrument to emission
from a dSph: if the number of events observed from the
dSph in some energy range is equal to the expected number
of background events (NO), then a model can be ruled at
confidence level n − σ if NS > n

ffiffiffiffiffiffiffi
NO

p
, where NS is the

expected number of signal events in the same energy range.
We can express this constraint as

Ξann;dec

s−1
J̄ann;decDraco

GeV cm−2 sr−1
≤ nð1.2 × 10−7Þ

�
mX

MeV

�

×

�
2ϵ

1 − ϵ2
MeV
E0

�
1=2

×

�Z
E0ð1þϵÞ

E0ð1−ϵÞ
dEobs

dNγ

dEobs

�
−1

×
�

IexpΔΩ
cm2 yr sr

�
−1=2

; ð21Þ

where E0 is again the center of the energy bin. Here, we see
that sensitivity scales with ðIexpΔΩÞ1=2.

C. Results

In Fig. 2, we present lower bounds on the lifetime of
decaying dark matter, for the case of either a π0η (blue) final
state, arising from a scalar interaction (sM2), or a ππη (red)
final state, arising from a spurion which is either pseudo-
scalar (pM1;M3) or the timelike component of an axial vector
(aM3

0 ). Solid lines denote conservative bounds on (α ¼ 1)
diffuse photon emission, and dashed lines denote 2σ-
bounds on photon emission from Draco. For the case in
which dark matter annihilates, we present similar upper
bounds on the annihilation cross section in Fig. 3. In this
figure, we also present recent bounds from Planck [26]
(dotted black) on feffhσAvi=mX, where we have chosen
feff ∼ 0.4 as a rough approximation over the energy range
and final states of interest [27]. Note that Planck bounds on
decaying dark matter only provide a lower bound on the

lifetime of ∼Oð1024 sÞ, which does not appear in Fig. 2.
For simplicity, in both figures we plot on the horizontal axis
the center-of-mass energy (

ffiffiffi
s

p
) of the process. This is equal

to the dark matter mass in Fig. 2, and equal to twice the
dark matter mass in Fig. 3. Since we have only included the
photons arising directly from η decay, we will have missed
a small number of photons arising from π0 decay which are
energetic enough to overlap the energy bins we consider;
our bounds are thus conservative.
Although we have chosen specifications for an instru-

ment which would roughly match the design of
e-ASTROGAM, we have noted that the sensitivity to
diffuse emission is largely independent of the exposure
and angular resolution. As such, these conservative bounds
on diffuse emission represent actual bounds which one can
place on dark matter models using data from EGRET.
Moreover, the sensitivity scales directly with the diffuse
J-factor, and inversely with the magnitude of the back-
ground. If there are new estimates of the J-factor, or if point
source measurements lead to a reduction of the diffuse
background flux, then these limits can be rescaled
appropriately.

FIG. 2. We plot lower bounds on the dark matter lifetime for the
case in which the final state is π0η (blue) or ππη (red). We plot
conservative limits on diffuse emission (solid) and 2σ-limits on
emission from Draco (dashed).

FIG. 3. We plot upper bounds on the dark matter annihilation
cross section for the case in which the final state is π0η (blue) or
ππη (red). We plot conservative limits on diffuse emission (solid)
and 2σ-limits on emission from Draco (dashed). We also plot
bounds arising from Planck data [26] (black dotted).
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The sensitivity from dSphs, on the other hand, scales
directly with the J-factor, but only with the background to
the −1=2 power. Moreover, the sensitivity from dSphs
scales as the square root of the exposure. Unfortunately
there is no dSph analysis available from EGRET, but for
any future experiment with any exposure, the estimated
sensitivity can be derived from these results by an appro-
priate rescaling. In fact, the estimated sensitivity for the
benchmark case we consider is slightly worse than current
bounds from Planck. However, if the J-factor for Draco is a
little larger than the estimate we have used, then indirect
detection could be competitive with current Planck bounds.
Moreover, a stacked analysis of many dSphs would surely
increase the sensitivity of indirect detection methods.
We note here that, in the case where dark matter

annihilates through a scalar interaction to a π0η final state,
the annihilation cross section is p-wave suppressed. In this
case, the astrophysical factor associated with dark matter
annihilation is not the standard J-factor associated with
velocity-independent dark matter annihilation, but instead
depends on the dark matter velocity distribution [28–31]. A
determination of the effective J-factor for Draco in the case
of p-wave suppressed dark matter annihilation is beyond
the scope of this work; instead, the associated velocity
suppression is absorbed into the quantity hσAvi, which
implicitly includes a convolution of the annihilation cross
section with dark matter velocity distributions in Draco. In
this case, the bound from Planck cannot be directly applied,
since the typically velocity of dark matter particles in the
early Universe was far different that in the current epoch.
In the case of either dark matter decay or dark matter

annihilation, the sensitivity arising from a search for
emission from Draco exceeds the sensitivity of a search
for diffuse emission. But this improvement is more pro-
nounced for the case of dark matter annihilation, as in this
case the photon signal scales as the square of the dark
matter density in the dwarf. Similarly, bounds from Planck
are the most constraining for the case of dark matter
annihilation; this improvement is driven by the fact that
the annihilation rate scales as the square of the density,
which was much larger at the time of recombination than in
the present epoch.
By comparison, we can consider the prospects for a

search for dark matter decay or annihilation in the Galactic
Center, which we define by the range jbj < 5°, jlj < 30°.
In this region of the sky, the observed flux is about a factor
of 20 larger than the observed diffuse flux at
Oð100–1000 MeVÞ [12]. The average J-factor for decay
for the Galactic Center is a factor of 3–4 larger than for the
Galactic halo at high latitudes [18]. As a result, the
sensitivity of an instrument to dark matter decay in the
GC would be worse than from diffuse emission due to
decay throughout the halo. On the other hand, the average
J-factor for annihilation for the GC is about a factor of 30
larger than for the Galactic halo at high latitudes [18],

assuming a Navarro-Frenk-White profile. Thus, there is
little to be gained in searching the GC for dark matter
annihilation or decay, in a conservative analysis. Note,
however, that in a related context, the authors of [12] found
much better prospects for studying emission from sub-GeV
dark matter annihilation in the GC. We believe that this
discrepancy is largely due to the fact that we have assumed
a conservative analysis, in which a model can only be
excluded if the expected number of signal events exceeds
the observed number of events. More optimistic assump-
tions about one’s ability to understand the backgrounds
from the GC were made in [12].

D. Constraints from the LHC and direct detection

If dark matter couples to light quarks, then one might
hope to constrain these scenarios using LHC mono-
anything searches for processes such as pp → XX þ jet
[32,33]. But if dark matter decays to light mesons with a
lifetime of ≳1026 s, then the couplings would be so small
that LHC searches are completely unconstraining. If dark
matter instead annihilates to light mesons, then LHC
searches could become relevant, but they are nevertheless
challenging. For sub-GeV dark matter, there is no real
reason to expect the contact approximation to be valid at
OðTeVÞ energies; if the mass of the mediating particle is
significantly smaller than the LHC energy range, then LHC
mono-anything constraints become very model dependent,
and can easily be evaded. The reason is that, for a fixed
value of α=Λ2, a smaller mediator mass scale corresponds
to a smaller coupling. But if the LHC energy scale is much
larger than the mediator mass scale, then the LHC mono-
anything production rate becomes largely independent of
the mediator mass. But the reduced coupling then yields an
overall suppression of the LHC production cross section.
For example, if a dark matter bilinear coupling to light
quarks is represented by a p1 spurion, then one would need
α1P=Λ2 ∼ ðOð100Þ GeVÞ−2 in order for the annihilation
cross section to be Oð10−2Þ pb, which is the approximate
limit obtained from Planck data. One could consider a
specific example of such a model in which dark matter
coupled to quarks through the exchange of a new pseu-
doscalar particle with mass ∼OðGeVÞ and α ∼ 10−4. Such a
model is not constrained by current LHC searches [33],
since the mono-anything production cross section would be
several orders of magnitude below current sensitivity.
Direct detection experiments, such as CRESST [34],

are now probing the mass range we consider here. If a dark
matter bilinear interacts with quarks through a pseudo-
scalar interaction, then the dark-matter-nucleon scattering
cross section is v4-suppressed and spin dependent, and
CRESSTwould be unlikely to see a signal. If a dark matter
blinear instead couples through a scalar interaction, then
dark matter can also have velocity-independent spin-
independent scattering with nuclei. But since dark matter
annihilation through a scalar interaction is p-wave
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suppressed, one needs α2S=Λ2 ∼ ðOð1–10Þ GeVÞ−2 in
order for the annihilation cross section to be
Oð10−2Þ pb. For such models, the dark-matter-proton
scattering cross section would be much larger than a
picobarn. However, for the scalar interaction generated by
spurion s2, dark matter interactions are maximally isospin
violating [35–37], which would suppress the naive sensi-
tivity of CRESST to these models. Such models could also
be probed by the effect of scattering on CMB [38,39], but
current bounds are not constraining. If dark matter couples
to light quarks, then new nucleon-nucleon forces can be
induced by one-loop diagrams with dark matter running in
the loop, and these forces can be probed by meson
spectroscopy and neutron scattering experiments [40].
But current bounds again do not constrain models of
interest for us. A detailed study of the direct detection
prospects for these models for current and upcoming
direct detection experiments would be very interesting,
but is beyond the scope of this work.

V. CONCLUSIONS

We have considered the indirect detection of sub-GeV
dark matter annihilation or decay. If dark matter couples to
quarks, then the hadronic final states and branching fractions
are largely determined by symmetry and kinematics, and can
be derived in chiral perturbation theory. In particular, striking
photon signals can be produced by the process η → γγ.
Especially for the case of dark matter decay, the current
lower bounds which can be obtained from EGRET data
already exceed those obtained from Planck by orders of
magnitude. Future data from an experiment such as
e-ASTROGAM, looking at dwarf spheroidal galaxies, can
provide an even greater improvement.

In this work, we have utilized chiral perturbation theory
at the lowest order, and have focused on the photons arising
directly from the decay process η → γγ, since the signal is
well understood and the background is small. But dark
matter annihilation or decay in this energy range generally
produces a larger number of pions, especially after includ-
ing η decay, but the kinematics are more difficult. More
generally, for slightly larger energies, a much wider range
of final states is accessible and becomes relevant for
indirect detection. But as increasing interest is shown in
sub-GeV dark matter, it would be interesting to perform a
more comprehensive study of the hadronic final states
which can be produced.
In a similar vein, it is worth noting that if sub-GeV dark

matter couples primarily to light quarks, then it can
potentially be produced at proton beam fixed-target or
beam-dump experiments such as NA62 [41] or SeaQuest
[42], proposed experiments such as SHiP [43], or related
proposed experiments such as FASER [44]. In particular,
one might hope that dark matter could be produced in the
rare decays of heavier mesons. But to determine the
available signals at such experiments, a more detailed
study beyond lowest order in chiral perturbation theory
would be necessary.
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