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We provide a full realization of the electromagnetic duality at the boundary by extending the phase space
of Maxwell’s theory through the introduction of edge modes and their conjugate momenta. We show how
such extension, which follows from a boundary action, is necessary in order to have well-defined canonical
generators of the boundary magnetic symmetries. In this way, both electric and magnetic soft modes are
encoded in a boundary gauge field and its conjugate dual. This implementation of the electromagnetic
duality has striking consequences. In particular, we show first how the electric charge quantization follows
straightforwardly from the topological properties of the Uð1Þ-bundle of the boundary dual potential.
Moreover, having a well-defined canonical action of the electric and magnetic symmetry generators on the
phase space, we can compute their algebra and reveal the presence of a central charge between them. We
conclude with possible implications of these results in the quantum theory.
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I. INTRODUCTION

A fascinating property of vacuum Maxwell equations of
the electromagnetic (EM) field F is that they are left
invariant by the duality transformation F →⋆ F, where the
⋆ denotes the four-dimensional Hodge dual. In the presence
of a matter source generating an electric current, this duality
is broken in the bulk. It is nevertheless still preserved on
boundaries away from the sources. Therefore, a boundary
represents the natural place to study the full implications of
the EM duality.
The introduction of a boundary requires the specification

of boundary conditions in order for the action principle to
be well defined and the symplectic potential to be con-
served and closed. The usual story (see [1] for a recent
review) is that, as a consequence of this treatment, gauge
invariance is broken at the boundary, turning boundary
gauge transformations into symmetry transformations and
revealing new boundary scalar degrees of freedom (d.o.f.).
Asymptotically the generators of the boundary symmetry
are the soft electric charges encoded into the boundary
normal electric field. The electromagnetic duality implies
that one should be able to equip the phase space of Yang-
Mills theory not only with a notion of soft electric charge
but also with a notion of soft magnetic charge, encoded into

the boundary tangential magnetic field. Themain puzzle that
we investigate in this work, in the context of finite bounda-
ries, is the fact that the usual phase space of QED inside a
finite region does not allow for the possibility to define the
soft magnetic charge. In particular it is not possible to define
its action on the phase space variables of QED.
The resolution of this puzzle lies in a simple idea: in the

presence of the boundary the phase space of gauge theories
needs to be extended by edge modes, which are conjugated
to the soft electric charges. This extension is needed in
order to account for the proper calculation of entanglement
entropy [2,3], and it is also necessary to define the fusion
product allowing for the division of a gauge system into
subsystems [4], as well as to preserve gauge invariance in
the presence of boundaries [5–7]. Finally, the presence of
these additional boundary d.o.f. allows one to clearly
understand that boundary symmetries are not broken gauge
transformations, but true symmetries associated to gauge
invariant observables [4,8].
For completeness let us mention that the theory of edge

and soft modes has a long and rich history. For the earlier
instances of the appearance of new edge d.o.f. at the
boundary in gauge theories see [5–7,9]; their role at finite
boundaries has been recently investigated in [4,8,10]. A
new understanding of their role at null infinity has been
described in [11–13], while their dynamic at spatial infinity
has been described in [14,15].
The main point of the current paper is to show that these

additional edge modes are in fact necessary to realize EM
duality and resolve the puzzle about the soft magnetic
charges. We show that the boundary extension of the phase
space is exactly what is needed to define the dual magnetic
charge.
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This has many consequences. The first one is that it
provides a clear example of the fact that the presence of
boundary soft charges does not have to be tied up with bulk
gauge symmetries. The usual formulation of QED does not
have a bulk notion of dual gauge transformations and still it
possesses boundary magnetic charges that act on the edge
modes. This fact, which challenges one of the most com-
monly shared views about soft modes, has been sharply
demonstrated recently by Campiglia et al. [16] in the context
of a massless scalar field: They have shown that there exist
soft theorems controlled by the conservation of soft charge
even if the system possesses no gauge invariance.
The second consequence is the understanding that EM

duality is a duality between boundary charges that does not
have to be realized as a bulk duality. In fact, it is known that
if there is electric charge in the bulk the dual potential does
not exist and the possibility to have a fully duality invariant
formulation in the bulk disappears. What we show is that,
even in that context, the EM duality is still realized as a
duality between the edge modes. Since it is the edges
modes that carry information about electric and magnetic
charges, this is enough.
A third consequence, which is far more reaching, follows

from the fact that one can now compute, in the extended
phase space, the commutator algebra of electric and
magnetic charges. Remarkably, one finds that this algebra
possess a nontrivial central charge. In other words, the
magnetic and electric soft charges do not commute with
each other. This fact has far reaching consequences we
believe. With hindsight, this noncommutativity of electric
and magnetic charges, which goes beyond the Dirac
quantization condition, has been hinted before in several
instances but never revealed explicitly. It is related to a
recent analysis of Strominger et al. [17] that relates the cusp
anomaly to a current algebra inside the asymptotic phase
space of QED. It is also present in the work of Witten [18],
which has shown that nontrivial bundle summations are
necessary to insure that the compact QED partition function
transforms as a modular form under S-duality. Finally the
closest work in spirit to our results is the work of Freed
et al. [19] that shows that the proper understanding of
Wilson lines and ‘t Hooft operators in QED on manifold
with torsion leads to the presence of a nontrivial Heisenberg
algebra between electric and magnetic charges.
The strategy applied here for the study of boundary d.o.f.

in Maxwell’s theory follows closely the analysis done in
[20] of first order four-dimensional gravity. There the
presence of a background distributional curvature at the
boundary was shown to yield a central charge in the algebra
of symmetry charges associated to tangent diffeomor-
phisms. Our work is also related to the recent result
[21,22] in string theory, where it was shown that the edge
modes present in the compact boson not only double the
dimension of the space on which the effective field theory
live [23] but also render it noncommutative.

II. THE ELECTROMAGNETISM PHASE SPACE

Let us consider a four-dimensional manifold M with
cylinder topologyM ¼ I × Σ, where I is a time interval and
Σ a spacelike hypersurface. The Lorentzian metric on M
can be written as g ¼ −dt2 þ 3g, and we can choose local
coordinates xi, i ¼ 1, 2, 3 on an open subsetU ⊆ Σ and let t
denote the time coordinate. We are interested in the case
where Σ contains a boundary ∂Σ, so that ∂M¼Σþ∪Σ−∪Δ
where Σ� are the initial and final slices and Δ ¼ R × ∂Σ is
the timelike component of the boundary. In the following,
the spacelike bulk region Σ is assumed to have the topology
of a ball and ∂Σ the one of a 2-sphere S2. The standard EM
action is given by

SEM ¼ 1

2e2

Z
M
F ∧⋆ F þ

Z
M
A ∧⋆ J; ð1Þ

where A is the EM potential, i.e., a Uð1Þ-valued one-form
connection, F ¼ dA is its curvature and ⋆ denotes the four-
dimensional Hodge dual, while J denotes the matter
current. We assume in the following that the pullback of
J on the boundary ∂M vanishes and we do not need to
specify which matter Lagrangian we are using for our
analysis. From the variation of the action we can read off
the Maxwell’s equations

d ⋆ F ¼ e2 ⋆ J ð2Þ
and the presymplectic potential for the Maxwell’s fields

ΘðδÞ ¼ 1

e2

Z
Σ
δA ∧⋆ F: ð3Þ

The presymplectic form for the EM field reads

Ω ¼ 1

e2

Z
Σ
δA ∧⋆ dδA: ð4Þ

The total symplectic potential also contains the matter
symplectic potential Ωm. From this we see that the EM
phase space is parametrized by the vector potential Ai on Σ
and its conjugate momentum which is the pullback of ⋆ F
on the spacelike slice. For a constant time surface this is
simply the electric field

Ei ≡ ∂iAt − ∂tAi; ð5Þ

with Poisson brackets

fAiðxÞ; EjðyÞg ¼ −e2δjiδ3ðx − yÞ: ð6Þ

III. ELECTRIC CHARGES

From the presymplectic form (4) we can read the
Hamiltonian generator QEðαÞ of gauge transformations
acting on A,
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δαA ¼ −dα; ð7Þ

from its canonical properties. This generator can be
decomposed into a “soft” part QE

S ðαÞ and a “hard”
componentQE

HðαÞ, namelyQEðαÞ ¼ QE
S ðαÞ þQE

HðαÞ with

Ωðδα; δÞ ¼ δQE
S ðαÞ; Ωmðδα; δÞ ¼ δQE

HðαÞ: ð8Þ

These components are given by the Hamiltonian electric
charge

QE
S ðαÞ ¼

1

e2

Z
Σ
dα ∧⋆ F ¼ −

1

e2

Z
Σ
∂iαEid3x;

QE
HðαÞ ¼

Z
Σ
α ⋆ J ¼

Z
Σ
αJtd3x: ð9Þ

By means of the Poisson bracket (6), we can immediately
check that (9) generates gauge transformations,

δαAi ¼
�
AiðxÞ;

1

e2

Z
Σ
∂iαðyÞEiðyÞd3y

�
¼ −∂iα;

δαEi ¼ 0: ð10Þ

It is important in this derivation that the derivative terms act
on α and not on Ei, in order for the charge to be
differentiable even in the presence of a boundary (the
importance of this fact is clearly explained in [7]). It is also
important to appreciate that the splitting between soft and
hard charges is not canonical; it depends on the chosen time
slice, with the exception of global charge associated with a
constant α. As times goes by, hard charges get distilled into
soft charges, while the total charge is unchanged for
transformations that leave the boundary of Σ fixed. This
can be easily seen if one uses Maxwell’s equation (2). One
gets that the total charge is evaluated by a boundary integral

QEðαÞ ¼̂ 1

e2

Z
S2
α ⋆ F; ð11Þ

where the hatted equality refers to the on-shell evaluation.
From this it is clear that the total charge depends only on
the boundary value of α. In particular, the total charge
vanishes if α vanishes on S2. This means that trans-

formations (7) are gauge transformations when α¼S20 while
they are only symmetry transformations when α does not
vanish on S2. From the Poisson bracket (6), it is immediate
to see that

fQEðαÞ; QEðβÞg ¼ 0: ð12Þ

QEðαÞ denotes the generators of an electric boundary
symmetry and it is attached to a particular boundary sphere
S2. The usual interpretation is then that the presence of a
boundary simply breaks gauge invariance. And that the

transformations with a nonvanishing parameter on the
boundary are now symmetries of the system.
As understood recently [4], this interpretation is not

satisfactory because it omits to include in the phase space
the Goldstone modes that are conjugate to the symmetry
transformation. The proper interpretation instead is as
follows: The presence of a boundary ∂Σ ¼ S2 in a gauge
theory does not break gauge invariance. Instead it requires
the extension of the phase space at the classical level and
Hilbert space at the quantum level by new d.o.f. These new
d.o.f. form a boundary canonical pair ðφ; πÞ that lives on S2.
φ is the edge mode and π is its canonical momentum.
In practice, this means that the symplectic potential is
given by

Θext ¼
1

e2

Z
Σ
δA ∧⋆ F þ

Z
S2
δφπ: ð13Þ

These edge modes are physical d.o.f. that form a
canonical pair located at the boundary of the physical
region. They represent nonlocal d.o.f. that are revealed by
boundaries or nontrivial topology (see [24] for an enlight-
ening and elementary account of this phenomenon). In this
extended phase space we can identify a generator of gauge
transformation ðA;φ; πÞ → ðAþ dε;φ − ε; πÞ that contains
a bulk component and a boundary component. It is
explicitly given by

GðεÞ ¼ 1

e2

Z
Σ
dε ∧⋆ F þ

Z
Σ
ε ⋆ J −

Z
S2
επ ð14Þ

and it satisfies the on-shell condition GðεÞ¼̂ 0. The bulk

component of this equation is the Gauss law dð⋆ FÞ¼Σ e2 ⋆
J in QED and the boundary component identifies the
momenta π in terms of the bulk fields,

⋆ F¼S2e2π; ð15Þ

where the symbol ¼S2 means that the equality is taken as an
equality of forms pulled back on S2 by the sphere
embedding1 {S2∶S2 → Σ. In coordinates this simply means

that π¼S2 ffiffiffi
h

p
Er is the densitized radial electric field where h

is the metric on S2 and the boundary is assumed to be at
r ¼ cst. The boundary Gauss law implies that the edge
mode momentum π is entirely determined by the boundary
value of the bulk field.2 Moreover the bulk dynamic implies
the conservation of the boundary current: dπ ¼ 0. There
exists also a boundary symmetry generator that leaves the

1In other words it means that {�
S2
ð⋆ FÞ ¼ e2π.

2In the gravity context, the analog of the boundary Gauss law
is given by the simplicity constraint, relating as well the value of
the boundary d.o.f. to the pullback of the bulk phase space
momentum [20].
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bulk variable A fixed and transforms the boundary variables
in the following manner: ðφ; πÞ → ðφþ α; πÞ. This sym-
metry generator is simply given by

QEðαÞ ≔
Z
S2
απ: ð16Þ

On the other hand, the edge mode φ is a new physical d.o.f.
[4] that is revealed by the presence of the boundary, and it
represents the parameter conjugate to this symmetry trans-
formation, i.e., the analog of the Goldstone mode [1]. Its
presence allows us to define on the boundary a gauge
invariant field

a∶¼S2Aþ dφ: ð17Þ

It is important to realize that one can choose appropriate
boundary conditions and give appropriate dynamics to the
edge modes, in order to ensure that not only the global
charge but also the soft charges are conserved in time. This
is established in [25] (see also [26] for a study of edge
dynamics in gauge theories using the path integral).

IV. MAGNETIC CHARGES

It turns out that the electric symmetry generated by
QEðαÞwhich measures the boundary electric field is not the
only symmetry associated with the presence of a boundary.
There is also a corresponding magnetic symmetry gener-
ated by QMðα̃Þ which probes the boundary magnetic field
(see [27,28] for a previous analysis of magnetic charges in
the context of the soft photon theorem and its relation to
large gauge transformations at null infinity). Since in
electromagnetism we do not allow for the presence of
magnetic monopoles, we expect the magnetic charge
QMðα̃Þ to be entirely soft and given by

QM
S ðα̃Þ¼̂

1

2π

Z
Σ
dα̃ ∧ F: ð18Þ

This doubling of the boundary symmetry group is a very
important element of Maxwell theory, which is also
happening in non-Abelian Yang-Mills theory, as well as
in gravity, as the twistor formulation [29] or the Ashtekar
formulation [30] of the theory can reveal. This is the
phenomenon that we want to investigate further. This
doubling of the charge algebra is puzzling at first sight
since QE naively appeared as the boundary generator
associated with gauge transformations. It turns out that
there is no notion of magnetic gauge transformation
available in electrodynamics that acts on the bulk phase
space variables ðA;EÞ, and therefore no notion of boundary
dual gauge symmetry, if one keeps the electromagnetic
phase space unextended. This is a subtle point related to the
fact that the charge QM

S ðα̃Þ is not differentiable; i.e.,

δQM
S ðα̃Þ ¼ −

1

2π

Z
S2
dα̃ ∧ δA ð19Þ

depends on the boundary value of δA and, as such, it cannot
be used as a canonical generator of transformations, since
this boundary value does not possess, in the unextended
phase space, a canonical conjugate. As it is shown in
Sec. VII, the expression (18) is indeed not the right form of
the magnetic charge derived from a well-defined canonical
analysis.
The purpose of our work is to investigate these puzzles. In

particular, we want to understand the following: What
boundary symmetry group do these magnetic charges
represent? And what is their commutation relations with
the electric charges? And eventually what is their dynamics?
The experience from the electric case clearly suggests

that one also needs to have an extra canonical pair ðφ̃; π̃Þ
representing the magnetic soft modes. The magnetic
version of the Gauss law then possesses a bulk and
boundary components

dF ¼ 0;
1

2π
F¼S2 π̃ : ð20Þ

These two equations are similar to their electric counter-
part. However, there are two key differences: First, the
magnetic analog of the Gauss law is the Bianchi identity;
i.e., it is a constraint which is identically satisfied, instead
of being an equation of motion (EOM); second, the soft
mode momentum is not any arbitrary 2-form but one
derived from a boundary connection. In other words, we
have that π̃ ¼ da, where a is the boundary gauge field
introduced in (17).
This extension can explain the possibility to have a

magnetic soft symmetry even if it does not correspond to
any gauge invariance. As we are about to see, it also allows
us to introduce a conjugate variable to the boundary value
of the gauge field. The challenge is then to understand how
these magnetic soft modes enter the extended electric phase
space and what the action is of the electric charge on the
magnetic soft modes. We now show that in fact the
electrically extended phase space already carries enough
information to include the magnetic soft charges.

V. ELECTROMAGNETIC DUALITY
AND CHARGE QUANTIZATION

In order to understand these issues, let us assume that
there are no matter currents inside Σ. In this case, we can
use the fact that vacuum Maxwell equations are preserved
by the duality between the electric and the magnetic fields.
This duality can be conveniently expressed by the demand
that there exists a dual vector potential Ã, with curvature
F̃ ¼ dÃ and such that
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F̃ ¼ 2π

e2
⋆ F: ð21Þ

In terms of the dual potential, the vacuum Maxwell
equations read

dF̃ ¼ 0; ð22Þ

d ⋆ F̃ ¼ 0: ð23Þ

What is remarkable about this duality is the fact that
demanding its validity on the boundary sphere implies the
quantization of charge. In fact,

q ≔
1

e2

Z
S2
⋆ F ¼ 1

2π

Z
S2
F̃ ∈ Z: ð24Þ

The result that q is an integer follows from the fact that the
last integral measures the Chern class of the dual bundle
associated with Ã. The presence of charges hence means
that the dual bundle is nontrivial. We can show this with a
simple example.
In the presence of a source term, Eq. (22) above becomes

dF̃ ¼ 2π ⋆ J ð25Þ

and, thus, the dual curvature F̃ is not exact; namely its
integral over certain 2-spheres is nonzero. Let us consider
the case where the unit 2-sphere S2 contains a pointlike
electric charge q at the origin f0g. In order to have
nonsingular solutions, we remove the origin so that our
bulk becomes Σnf0g. In this case, the Maxwell Eq. (25)
implies

1

2π

Z
S2
F̃ ¼ q: ð26Þ

Therefore, a pointlike electric charge plays the role of a
monopole for the dual potential. A solution to the previous
equation is given by

F̃ ¼ q
4π

sin θdθ ∧ dϕ: ð27Þ

As pointed out above, the condition (26) implies that F̃,
while closed on Σnq, cannot be exact everywhere there.
This means that the dual potential Ã cannot be globally
defined there. We have two possibilities. We can consider
the region N ¼ Σnfz − axis ≤ 0g and the dual potential

ÃN ¼ q
4π

ð1 − cos θÞdϕ; ð28Þ

or the region S ¼ Σnfz − axis ≥ 0g and

ÃS ¼ −
q
4π

ð1þ cos θÞdϕ: ð29Þ

The two expressions for the dual potential do not agree in
N ∩ S ¼ Σnfz − axisg. The transition function α̃NS in the
overlap such that

ÃN ¼ ÃS þ dα̃NS ð30Þ

is given by

α̃NS ¼
q
2π

ϕ: ð31Þ

The fact that α̃NS is not a single-valued function onN ∩ S is
a reflection of the fact that the overlap region is not simply
connected. Despite the transition function α̃NS not being
single valued, it is possible to construct a complex line
bundle over S2 if the analog of the Dirac quantization
condition is satisfied, namely if

q ∈ N: ð32Þ

This quantization condition reflects the nontriviality of the
dual Uð1Þ-bundle, as a consequence of the nontriviality of
the second homology group H2ðΣnq;ZÞ. Therefore, while
we can chose the trivial Uð1Þ-bundle for the vector
potential A, EM duality implies that for the dual potential
this is not possible and the corresponding bundle is
nontrivial.
We stress that, while a similar topological explanation of

magnetic charge quantization is well known in the literature
(see, e.g., [31]), our derivation of the quantization of the
electric charge resulting from (24) does not require the
introduction of a magnetic monopole. It simply follows
from a dual description of Maxwell theory in the more
general case of a singular dual gauge parameter, as further
justified by our canonical analysis of magnetic charges in
Sec. VII.

VI. RESOLUTION AND BOUNDARY ACTION

In order to understand the canonical meaning of the
magnetic charge QMðα̃Þ, we need to express its trans-
formation on the phase space variables. This is subtle since,
on the one hand, we expect the magnetic charge to be a
boundary transformation of the dual potential Ã → Ãþ dα̃,
but, on the other hand, we also have that both ⋆ F and A are
invariant under dual gauge transformations. In order to
analyze this we need to express the electromagnetic duality
at the canonical level in the presence of boundaries.
In the presence of boundaries, the action (1) is not

differentiable unless we either restrict the variation to
satisfy δA¼Δ0 or we impose that ⋆ F¼Δ0. If we impose
the former condition, we cannot define the canonical
variation of QMðα̃Þ, since it depends on the value of A
along the boundary, while the latter condition implies that
QEðαÞ is superselected to vanish. In both case we cannot
compute the commutator.
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We thus need to add a boundary action in order to render
the action differentiable under less stringent conditions. We
see in a moment that the introduction of a boundary term in
the EM action leads to an extended phase space in strict
relationship with (13); i.e., capturing exactly the new d.o.f.
encoded by the edge mode φ and its canonical momentum
π introduced in Sec. III.
Motivated by the electromagnetic duality, we introduce a

boundary gauge field ã, living on Δ, and consider the
extended action3

S0EM ¼ 1

2e2

Z
M
F ∧⋆ F þ

Z
M
A ∧⋆ J −

1

2π

Z
Δ
A ∧ dã:

ð33Þ

The variation of this action under A imposes the same
bulk EOM: d ⋆ F ¼ e2 ⋆ J. It also imposes a boundary
equation which identifies the value of the boundary electric
field with the dual curvature

⋆ F¼Δ e2

2π
dã; ð34Þ

where the subscript Δ means that the equality is valid for
forms which are pulled back on the boundary.
This condition, which follows from the variation of the

boundary value of A, says that the dual curvature is
proportional to the soft momenta π ¼ 1

2π dã, in perfect
analogy with (20). It also means that the potential ã
entering the boundary action is, up to a dual gauge
transformation, equal to the boundary value of the dual
potential: ã ¼ Ãþ dφ̃. Importantly, it does not require the
dual potential Ã to exist in the bulk, but it is enough that it
exists on the boundary Δ only. This is satisfactory since we
have seen that the dual potential can only be defined away
from the location of electric charges. The boundary EOM
(34) also means that

d ⋆ FðAÞ¼Δ0; ð35Þ

which follows from the bulk EOM provided the component
of the current Jr normal toΔ vanishes on the boundary, i.e.,
provided that no charge is crossing the boundary.
Finally, variation of the boundary dual potential yields

the boundary EOM

dA¼Δ0: ð36Þ

VII. SYMMETRY AND CANONICAL STRUCTURE

The symplectic form associated with the action S0 is
given by

Ω0 ¼ 1

e2

Z
Σ
δA ∧⋆ δF þ 1

2π

Z
S2
δa ∧ δã; ð37Þ

where we have introduced the boundary field a¼ΔAþ dφ
[see Eq. (17)], which includes the electric soft mode. The
inclusion of this new boundary scalar fields relating the
bulk and the boundary gauge potentials is crucial to obtain
a well-defined boundary phase space structure, allowing us
to derive nonvanishing soft magnetic charges, as shown in a
moment. The last term in (37) is similar to a Chern-Simons
symplectic term for a pair of Uð1Þ connection. Therefore
the presence of the boundary term yields the boundary
Poisson bracket

faiðxÞ; ãjðyÞg ¼ 2πεijδ
2ðx − yÞ: ð38Þ

This shows that in addition to the electric soft pair
ðφ; π ¼ dãÞ, the dual connection ã is the variable conjugated
to the boundary gauge potential A pulled back on S2. This is
the variable needed in order to be able to define the action of
the magnetic charge on the phase space. In this formulation,
the gauge transformation acts as δεðA; a; ãÞ ¼ ðdε;−dε; 0Þ,
while the electric symmetry is acting only on the electric
boundary fields ΔαðA; a; ãÞ ¼ ð0; dα; 0Þ. The magnetic
symmetry is also acting only on the boundary fields as
Δ̃α̃ðA; a; ãÞ ¼ ð0; 0; dα̃Þ. All these symmetries have now
canonical generators

Ωðδε; δÞ ¼ δGðεÞ; ð39Þ

ΩðΔα; δÞ ¼ δQEðαÞ; ð40Þ

ΩðΔ̃α̃; δÞ ¼ δQMðα̃Þ: ð41Þ

The Gauss law and the electric symmetry generators are the
same as before, namely

GðεÞ ¼ 1

e2

Z
Σ
dε ∧⋆ F þ 1

2π

Z
S2
dε ∧ ã ¼̂ 0; ð42Þ

QEðαÞ ¼ 1

2π

Z
S2
dα ∧ ã; ð43Þ

while the magnetic charge is given by the following
expression:

QMðα̃Þ ≔ 1

2π

Z
S2
dα̃ ∧ a: ð44Þ

The important thing to observe about the expression (44)
is that, unlike the electric charge case, we no longer need α̃

3The boundary term in (33) has been previously considered in
[32] as a coupling term for the 2þ 1 gauge field restricted to the
boundary, once the bulk theory is reexpressed in terms of the dual
gauge field.
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to be a well-defined scalar on S2; we only need its exterior
derivative to be well defined on S2. More generally, the
magnetic charge depends only on a closed one-form ω̃ ¼
dα̃ which is locally but not globally exact. In particular, we
can consider the case where α̃ introduces a branch cut so
that dα̃ admits poles on the boundary 2-sphere. For
instance, given the spherical coordinates ðθ;ϕÞ on the
sphere, the form dα̃ ¼ dϕ introduces a singularity at the
north and south poles. The presence of these singularities is
tied up to the fact that the dual bundle is in general
nontrivial in the presence of electric charge, as we saw in
Sec. V. The location of these singularities represents the
possibility of dual electric monopoles. Despite the singu-
larity of the gauge parameter, the magnetic charge is still
well defined. In this more general case, the surface S2 is no
longer compact but contains circle boundaries around the
poles. Therefore, when there is a finite set of poles fpg, we
can rewrite the magnetic charge as

QMðα̃Þ ¼ −
1

2π

Z
S2nfpg

α̃F þ 1

2π

X
p

I
p
α̃a: ð45Þ

This shows clearly how the form of the well-defined
magnetic charge (44) is not equivalent to the guess (18)
once we allow for the more general case of the dual gauge
parameter to have singularities. In particular, the boundary
EOM (36) does not imply the vanishing of the magnetic
charge (44), but it simply allows us to rewrite the charge as
a circle integral around the singularities. We are going to
elucidate the physical implications of allowing for this
more general set of gauge parameters in the next section.
Let us first point out that another way to reveal the

duality symmetry of the extended phase space is to write
the symplectic form (37) as

Ω0 ¼ 1

2π

Z
Σ
δA ∧ δF̃ þ 1

2π

Z
S2
δa ∧ δã

¼ 1

2π

Z
Σ
δF ∧ δÃþ 1

2π

Z
S2
δa ∧ δðã − ÃÞ

¼ e2

ð2πÞ2
Z
Σ
δÃ ∧⋆ δF̃ þ

Z
S2
δπ̃δφ̃;

where we have used in the first line that �F ¼ F̃, then
integrated by part and used in the last equality that π̃ ¼
1
2π da while ã − Ã ¼ dφ̃. This expression for the symplectic
form shows that, under the duality transformation, the
canonically conjugate bulk variables are the dual potential
and dual electric field ðÃ;⋆ F̃Þ, with the charge e replaced
by the dual charge 2π=e. The boundary phase space is also
parametrized by the dual variables, represented by the
magnetic edge mode and its conjugate momentum. This
represents the exact dual of the extended phase space (13)
introduced in Sec. II.

VIII. CHARGES ALGEBRA

Like their electric version, the magnetic charges
commute

fQMðα̃Þ; QMðβ̃Þg ¼ 0: ð46Þ

However, one of the main consequences of allowing for
the dual monopole singularities for the dual gauge trans-
formations generated by the magnetic charges is the
appearance of a central charge in the algebra of the mixed
sector of EM, as shown in a moment. And second, the
magnetic transformation generated by QMðα̃Þ naturally
appears in the dual formulation of QED in the presence
of electric charges.
Let us now derive another striking implication of the EM

duality, in addition to the electric charge quantization
obtained in Sec. V, by computing the algebra between
electric and magnetic charges. We saw above that, in order
to fully accommodate the EM duality at the boundary, we
need to extend the phase space. This allowed us to write the
canonical generators of the electric and magnetic symmetry
as the boundary integrals (43) and (44). We can thus use the
boundary Poisson bracket (38), derived from the extended
symplectic form (37), to compute their algebra. An imme-
diate calculation yields

fQMðα̃Þ; QEðαÞg ¼ 1

2π

Z
S2
dα̃ ∧ dα

¼ −
1

2π

X
p

I
p
αdα̃: ð47Þ

This shows that the boundary symmetry algebra of electro-
magnetism possesses a central charge.4

The appearance of a central charge on circle boundaries
around the poles is natural once we notice that the boundary
term in the symplectic form (37) corresponds to the one of a
Uð1Þ ×Uð1Þ Chern-Simons theory, and this is well known
to lead to a Uð1Þ ×Uð1Þ Kac-Moody algebra on a circle
when one considers observables associated to global
symmetry transformations [34].

IX. QUANTUM IMPLICATIONS

The EM duality involves a doubling of the boundary
symmetry, but the presence of this central charge implies
that at the quantum level we cannot select a vacuum state

4A paper [33] appeared recently, which also proposed a
nontrivial algebra between soft electric and magnetic charges.
The approach there still relies on the early premise that boundary
symmetry is broken gauge. It therefore necessitates a non-
Lagrangian formulation with an extra duality constraint which
implements by hand the EM duality in the bulk. As we already
mentioned, the bulk duality is not satisfied if charges are present,
while the boundary duality survives.
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invariant under both symmetries: If we select the magnetic
vacuum, then an infinite tower of electric edge modes arises
and vice versa. In either case, we end up with a series of
inequivalent EM vacua parametrized by the Goldstone soft
boson of this spontaneously broken EM duality symmetry.
The nontrivial commutation relation between electric and
magnetic charge shows that in effect the electric soft mode
conjugated to the electric soft charge can be understood as
the dual magnetic charge.
In QED, and in the regime where one can define the S-

matrix, it is customary to set all the asymptotic soft
magnetic charges to 0. This follows from the fact that it
is impossible to create nontrivial asymptotic soft magnetic
charges from classical sources that have compact support
[35]. This leads to the belief that magnetic charges cannot
be excited. Here we see that in fact this is simply an artifact
of the restriction to classical configuration. Our derivation
shows that we do not need magnetic monopoles in order to
produce a state with nontrivial magnetic soft charge; we
need superposition. Since electric and magnetic charges are
conjugated in some ways a state diagonalizing the soft
magnetic charge would simply correspond to a super-
position of electric sectors and it is therefore a purely
quantum phenomenon.5

It is important to appreciate that the possibility of having
quantum superposition of electric charges resulting in an
effective magnetic charge is a nonperturbative effect that
relies on the relationship F̃ ¼ 2π

e2 ⋆ F. In the perturbative
limit e → 0 the duality is lost and the QED field effectively
becomes a noncompact gauge field. There is a system in
two dimensions which is similar to the four-dimensional
QED. It is the compact massless boson φ ∼ φþ R. For this
system the duality relation is dφ̃ ¼ 2πα0

R2 � dφ (with α0

encoding a length scale) and the two-dimensional analog
of the electric charge is played by the radius of compacti-
fication. It has recently been shown that the zero mode of

the compact boson and its dual are noncommuting [21,22],
a phenomenon which is a precursor to the non-Abelian
charge algebra we just found. What this suggests is then
that the theory of QED in which the duality of charge is
implemented is in fact a theory of compact QED, with the
charge playing the role of the radius of compactification. It
is expected that, on the lattice, compact QED is confining
[36,37], due to monopole condensation that allows for the
transition between an electric vacuum with QM ¼ 0 to a
confining vacuum with QE ¼ 0. Therefore, this suggests
that the phenomena we just described can for the first time
allow us to define a compact QED theory in the continuum
and open up the study of monopole condensation outside of
the lattice regularization.
Finally, we hope our study sheds new light on the nature

of the soft modes. It is now well established [9,12,13] that
the QED vacuum state is degenerate under the action of the
electric symmetry charges (43). The conjugate variable
controls the creation of soft photon modes, as we saw in
Sec. III, and it can be understood in terms of wave function
dressing operators for outgoing particles in the S-matrix
elements of QED, in order to have IR finite scattering
amplitudes [13]. Our results connect this dressing with soft
magnetic charges. It becomes therefore of crucial impor-
tance to propose experimental detection of the soft modes
entering the dressing. One way is to focus on the measure
of electromagnetic memory of the vacuum state, encoded in
the different gauges of the potential field as soft photon
clouds generated in scattering processes cross the boun-
dary, through the phases of test particles in the Aharonov-
Bohm effect. A suggestion along these lines was, for
instance, made in [38,39].
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