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We study the production of bremsstrahlung photons in relativistic nucleonþ nucleon collisions by
introducing a deceleration time of electromagnetic currents. It is found that the bremsstrahlung photon
spectrum at low energy does not depend on the deceleration time, but solely on the amount of reduced
electromagnetic current in collision. On the other hand, the photon spectrum becomes soft with increasing
deceleration time. We also find that the bremsstrahlung photon spectrum in pþ n collisions is quite
different from that in pþ p collisions at low energy.
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I. INTRODUCTION

Relativistic heavy-ion collisions are presently the unique
way to produce extremely hot and dense nuclear matter in
the laboratory and to study the properties of such matter.
There are several kinds of probe particles through which
one can investigate the properties, and the electromagnetic
probe is one of them. The electromagnetic probe is
distinguished from other particles in a couple of respects.
First of all, it has no color charge and interacts only through
electromagnetic coupling that is much weaker than strong
coupling, so it gets out of the nuclear matter without any
further interactions after it is produced. Second, it is
continuously produced from initial hard scattering until
after freeze-out in relativistic heavy-ion collisions.
Photons produced in relativistic heavy-ion collisions are

classified into three groups according to production stage.
The first group of photons is produced through initial hard
scattering, which can be obtained by rescaling the photon
spectrum in nucleonþ nucleon collisions with the number
of binary collisions. Then, the produced nuclear matter
emits thermal photons both in quark-gluon plasma and in
the hadron gas phase. The third group of photons is
produced through the electromagnetic decay of hadrons
mostly after the freeze-out. The first two groups of photons
are called “direct photons,” and the last group are called
“indirect photons.”
Nucleonþ nucleon collisions serve as reference experi-

ments to study the nuclear matter produced in heavy-ion
collisions, because the latter are hardly able to produce
sizable matter, unless the collision happens near Large
Hadron Collider (LHC) energies. For example, when direct

photons in a pþ p collision are subtracted from those in
a heavy-ion collision with the number of binary collisions
multiplied, the leftovers are interpreted as thermal photons
[1]. In this respect, studying photon production in
nucleonþ nucleon collisions is the first step toward study-
ing the nuclear matter produced in relativistic heavy-ion
collisions.
In the microscopic view, direct photons are produced

in nucleonþ nucleon collisions through the scattering
of quarks and antiquarks composing the nucleons, for
example, qþ q̄ → gþ γ, qðq̄Þ þ g → qðq̄Þ þ γ, and so on.
These elementary scattering cross sections are convoluted
with parton distribution functions of nucleons. However,
this perturbative quantum chromodynamics (pQCD)
approach with the factorization formula is reliable only
for large-energy momentum transfer—in other words, for
the production of high-energy photons.
Another source of direct photons is the bremsstrahlung,

which is the electromagnetic radiation from decele-
rated charged particles. Brems means “to brake” from
the German word bremsen, and strahlung means “radia-
tion.” Microscopically, the bremsstrahlung photon is pro-
duced through the parton scatterings: qþ q̄ → qþ q̄þ γ
or qþ qðgÞ → qþ qðgÞ þ γ or q̄þq̄ðgÞ→ q̄þq̄ðgÞþγ.
However, if the energy of the emitted photon is low, it
looks like N þ N → N þ N þ γ in low-energy collisions
or N þ N → X þ X0 þ γ in high-energy collisions, where
X and X0 represent wounded nucleons which still carry
electromagnetic currents in the beam direction.
If the collision energy is extremely large, two nucleons

pass through each other, and the stopping or deceleration
of electromagnetic currents can be reduced to a one-
dimensional problem. Since the nucleon is not a pointlike
particle but a composite particle, and abundant particles are*taesoo.song@theo.physik.uni-giessen.de
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produced in high-energy collisions, this stopping should be
described by a smooth function of time. In this Letter, we
model the production of low-energy bremsstrahlung photons
in relativistic nucleonþ nucleon collisions, introducing a
finite stopping time of electromagnetic currents.
We first describe in Sec. II the stopping of charged

particles from the simplest case to more sophisticated ones
step by step, and we take into account the structure of the
nucleon in Sec. III. After that, the stopping or deceleration
of charged particles takes place by collisions in Sec. IV, and
the results are applied to relativistic nucleonþ nucleon
collisions in Sec. V. Finally, a summary is given in Sec. VI,
and several useful Fourier transformations are presented in
the Appendix.

II. STOPPING OF CHARGED PARTICLES

A. No stopping

The momentum distribution of radiated photons from
decelerated charged particles is expressed as [2–4]

ω
dN
d3k

¼ 1

2ð2πÞ3
X
λ

jjðω;kÞ · ϵλðω;kÞj2; ð1Þ

where ω and k are the photon energy and momentum,
jðω;kÞ is the electromagnetic current, and ϵλðω;kÞ is the
polarization vector of emitted photons, with λ being the
polarization state.
As a warm-up, we consider a particle with electric charge

Q and velocity v without stopping or deceleration. The
electromagnetic current is then given by

jðt; rÞ ¼ Qvδðz − vtÞδðxÞδðyÞez; ð2Þ
where ez is the unit vector in the z direction. The position of
the charged particle Fourier-transformed,

jðt;kÞ ¼
Z

d3rjðt; rÞeir·k ¼ Qveikzvtez; ð3Þ

and t-transformed into ω, is

Z
dtjðt;kÞe−iωt ¼ Qv

Z
dteiðkzv−ωÞtez

¼ 2πQvδðkzv − ωÞez: ð4Þ

Substituting Eq. (4) into Eq. (1), the spectrum of radiated
photons is given by

ω
dN
d3k

¼ 1

4π

X
λ

fQvϵλzδðkzv − ωÞg2

¼ 1

4π

X
λ

fQvϵλzδ½ωðv cos θ − 1Þ�g2; ð5Þ

where we use the Coulomb gauge (ϵ0 ¼ 0) and θ is the
angle of k with respect to ez. Since a charged particle in

nature always has a nonvanishing mass, it cannot reach the
speed of light (v < 1). Therefore,

ω
dN
d3k

¼ 0: ð6Þ

Now, we deal with the stopping of a charged particle from
the simplest case to more sophisticated ones step by step.

B. Instant stopping

In the simplest case, a particle with the constant velocity
v and the electric chargeQ instantly stops at ðt; rÞ ¼ ð0; 0Þ.
The current is described by

jðt; rÞ ¼ Qvδðz − vtÞδðxÞδðyÞθð−tÞez; ð7Þ

which is the same as Eq. (2) except for the step function
θð−tÞ. Carrying out Fourier transformations,

jðt;kÞ ¼
Z

d3rjðt; rÞeir·k ¼ Qvθð−tÞeikzvtez; ð8Þ

and then

Z
dtjðt;kÞe−iωt ¼ Qv

Z
dtθð−tÞeiðkzv−ωÞtez

¼ Qv

�
πδðω − kzvÞ þ

i
ω − kzv

�
ez ð9Þ

by using Eq. (A5) and the relation

θð−tÞ ¼ 1

2
f1 − sgnðtÞg; ð10Þ

where sgnðtÞ is the signum function. Dropping off the delta
function in Eq. (9), the spectrum of emitted photons is
given by

ω
dN
d3k

¼ 1

2ð2πÞ3
X
λ

�
Qvϵλz

ω − kzv

�
2

; ð11Þ

which is in covariant form [5,6]

ω
dN
d3k

¼ 1

2ð2πÞ3
X
λ

Q2

�
p · ϵλ

p · k

�
2

; ð12Þ

where p is the four-momentum of the charged particle.
Now, we turn to the polarization vector of the photon.

Suppose the photon momentum and a polarization vector
are expressed, respectively, as
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k⃗ ¼ ð 0; 0; k Þ;
ϵ⃗1 ¼ ð cosφ; sinφ; 0 Þ; ð13Þ

where φ is the polarization angle. Rotating k⃗ by an angle θ
around the y axis and then by an angle ϕ around the z axis,
we get

k⃗0 ¼

0
B@
cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

1
CA
0
B@

cosθ 0 sinθ

0 1 0

− sinθ 0 cosθ

1
CA
0
B@
0

0

k

1
CA

¼

0
B@
k sinθ cosϕ

k sinθ sinϕ

kcosθ

1
CA;

ϵ⃗10 ¼

0
B@
cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

1
CA
0
B@

cosθ 0 sinθ

0 1 0

− sinθ 0 cosθ

1
CA
0
B@
cosφ

sinφ

0

1
CA

¼

0
B@

cosθ cosϕcosφ− sinϕsinφ

cosθ sinϕcosφþ cosϕsinφ

− sinθ cosφ

1
CA: ð14Þ

Since ϵ1 · ez ¼ − sin θ cosφ, the average of ðϵ1 · ezÞ2 in
Eq. (11) over φ turns to

1

2π

Z
2π

0

dφðϵ1 · ezÞ2 ¼
1

2
sin2θ; ð15Þ

and

1

2π

X
λ¼1;2

Z
2π

0

dφðϵλ · ezÞ2 ¼ sin2θ; ð16Þ

because ϵ2 has the same contribution as ϵ1. The same result
is obtained by using the relation

X
λ¼1;2

ϵλi ϵ
λ�
j ¼ δij − k̂ik̂j; ð17Þ

where k̂i ¼ ki=jkj. Therefore, at midrapidity (sin θ ¼ 1),

dN
d2kTdy

����
y¼0

¼ 1

2ð2πÞ3
�
Qv
ω

�
2

; ð18Þ

where
P

λðϵλ · ezÞ2 is substituted with 1, as will be applied
throughout this Letter.

C. Smooth stopping

Next, we deal with smooth stopping by using a hyper-
bolic tangent function instead of a step function in Eq. (7):

jðt; rÞ ¼ Qvδðz − vtÞδðxÞδðyÞ 1 − tanhðatÞ
2

ez; ð19Þ

where for simplicity we assume that the particle keeps its
initial velocity but the electric charge evaporates with time
and a controls evaporation time.
The electromagnetic current is modified by Fourier

transformations into

jðt;kÞ ¼ Qv
1 − tanhðatÞ

2
eikzvtez; ð20Þ

and

Z
dtjðt;kÞe−iωt ¼ Qv

Z
dt

1 − tanhðatÞ
2

eiðkzv−ωÞtez

¼ Qv
�
πδðω − kzvÞ

þ πi
2a

csch

�
πðω − kzvÞ

2a

��
ez ð21Þ

by using Eq. (A9). Ignoring the unphysical pole at
ω ¼ kzv,

ω
dN
d3k

����
y¼0

¼ 1

2ð2πÞ3
�
πQv
2a

�
2

csch2
�
πω

2a

�
: ð22Þ

We can find that Eq. (22) converges into Eq. (18) in the
limit of a → ∞, because

lim
x→0

cschx ¼ 1

x
: ð23Þ

The upper panel of Fig. 1 shows the normalized
electromagnetic current as a function of rescaled time.
Since we use a hyperbolic tangent function, the deceler-
ation of charged particles starts very early. However, we can
define the effective stopping time as 2=a, during which
electromagnetic current decreases from 88% to 12%.
We show in the lower panel the photon spectra at

midrapidity for various stopping times of a proton whose
initial energy is 100 GeV. α ¼ e2=ð4πÞ is taken to be
1=137. Though the proton is not a pointlike particle, its
detailed structure is ignored for simplicity. The figure
clearly shows that as the stopping time increases, the
photon spectrum becomes soft. One interesting point is
that the photon spectrum at very low frequencies does not
depend on the stopping time. We will explain the reason for
this in the following section.

D. Stepwise stopping

Now, we describe the smooth stopping by discretizing
the process. As with the first trial, we assume that a charged
particle changes its velocity from vi to vf at ðt; zÞ ¼ ð0; 0Þ.
Then the electromagnetic current is expressed as

LOW-ENERGY BREMSSTRAHLUNG PHOTON IN … PHYS. REV. D 98, 116007 (2018)

116007-3



jðt; rÞ ¼ QvðtÞδðz − vðtÞtÞδðxÞδðyÞez; ð24Þ
where vðtÞ ¼ viθð−tÞ þ vfθðtÞ. After Fourier transforma-
tions, the current turns to

jðt;kÞ ¼
Z

d3rjðt; rÞeir·k ¼ QvðtÞeikzvðtÞtez; ð25Þ
andZ

dtjðt;kÞe−iωt ¼ Q

�
vi

Z
dtθð−tÞeiðkzvi−ωÞt

þ vf

Z
dtθðtÞeiðkzvf−ωÞt

�
ez

¼ Q

�
ivi

ω − kzvi
−

ivf
ω − kzvf

�
ez; ð26Þ

where we have removed insignificant delta functions and
will do so from here on. We can find that Eq. (26) is
equivalent to Eq. (9) in the case of vf ¼ 0.
Now, we suppose the charged particle is decelerated in

two steps—that is, the velocity changes from vi to vm at
t ¼ −T=2, and then to vf at t ¼ T=2:

vðtÞ¼ viθð−t−T=2ÞþvmrectTðtÞþvfθðt−T=2Þ; ð27Þ

with rectTðtÞ being the box function defined in Eq. (A6),
and the position of charged particle is

zðtÞ ¼
Z

dtvðtÞ ¼ vmt for jtj ≤ T=2;

¼ vmT=2þ vfðt − T=2Þ for t > T=2;

¼ −vmT=2þ viðtþ T=2Þ for t < −T=2: ð28Þ

Carrying out Fourier transformations,

jðt;kÞ ¼
Z

d3rjðt; rÞeir·k ¼ QvðtÞeikzzðtÞez; ð29Þ

and
Z

dtjðt;kÞe−iωt

¼ Qvieiðω−kzvmÞT=2
Z

dt0θð−t0Þeiðkzvi−ωÞt0ez

þQvm

Z
dtrectTðtÞeiðkzvm−ωÞtez

þQvfeiðkzvm−ωÞT=2
Z

dt00θðt00Þeiðkzvf−ωÞt00ez; ð30Þ

where t0 ¼ tþ T=2 and t00 ¼ t − T=2. By using Eq. (A5),

jðω;kÞ ¼ iQ

��
vi

ω − kzvi
−

vm
ω − kzvm

�
eiðω−kzvmÞT=2

þ
�

vm
ω − kzvm

−
vf

ω − kzvf

�
e−iðω−kzvmÞT=2

�
ez:

ð31Þ

If the intermediate time interval T is extremely short,
Eq. (31) returns to Eq. (26):

lim
T→0

jðω;kÞ ¼ iQ

�
vi

ω − kzvi
−

vf
ω − kzvf

�
ez: ð32Þ

We can interpret Eq. (31) as follows: The first and second
terms represent the first and second photon emissions at
t ¼ −T=2 and t ¼ T=2, respectively, and the two expo-
nential functions show their phases. Therefore, Eq. (31) can
be generalized to N-photon emissions [7]:

jðw;kÞ ¼ iQ
XN
i¼1

�
vi−

w − kzvi−
−

viþ
w − kzviþ

�
e−iϕi1ez; ð33Þ

where vi− and viþ are, respectively, the velocities of
charged particles before and after the ith photon emission,
with a ϕi1 phase difference between the first and the ith
photons, which is given by

(a)

(b)

FIG. 1. (a) Normalized electromagnetic current as a function of
rescaled time. (b) Photon spectra at midrapidity for various
stopping times of the proton, whose initial energy is 100 GeV.
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ϕ11 ¼ 0; ð34Þ

ϕi1 ¼
Xi−1
j¼1

ðω − kzvjþÞΔtjþ1
j

¼
Xi−1
j¼1

ωð1 − vjþ cos θÞΔtjþ1
j ; ð35Þ

with Δtjþ1
j being the time interval between the jth and the

(jþ 1)th photon emissions. If the photon energy ω is small
enough, we may ignore the phase differences in Eq. (33),
and the electromagnetic current turns out to be

lim
ω→0

jðω;kÞ ¼ iQ
XN
i¼1

�
vi−

ω − kzvi−
−

viþ
ω − kzviþ

�
ez

¼ iQ

�
vi

ω − kzvi
−

vf
ω − kzvf

�
ez; ð36Þ

which is equivalent to Eq. (26). It explains why the photon
spectrum near ω ¼ 0 does not change for various stopping
times in Fig. 1(b). Low-energy photons cannot provide the
information of short timescales.
Now, we apply the stepwise method to the previous

section, where a charged particle moves with a constant
velocity but electric charge evaporates with time.
Supposing the electric charge changes from Qi to Qf at
t ¼ 0, the electromagnetic current is given by

jðt; rÞ ¼ QðtÞvδðz − vtÞδðxÞδðyÞez; ð37Þ
where

QðtÞ ¼ Qiθð−tÞ þQfθðtÞ; ð38Þ
and after Fourier transformations it turns to

jðω;kÞ ¼
Z

dtd3rjðt; rÞeiðk·r−ωtÞ

¼ i
ðQi −QfÞv
ω − kzv

ez: ð39Þ

Next, suppose the particle changes its electric charge from
Qi toQm at t ¼ −T=2, and then fromQm toQf at t ¼ T=2:

QðtÞ ¼ Qiθð−t − T=2Þ þQmrectTðtÞ þQfθðt − T=2Þ:
ð40Þ

Then, the Fourier-transformed current is given by

jðω;kÞ ¼
Z

dtd3rjðt; rÞeiðk·r−ωtÞ

¼ iv

�
Qi −Qm

ω − kzv
e−iðkzv−ωÞT=2

þQm −Qf

ω − kzv
eiðkzv−ωÞT=2

�
ez: ð41Þ

Compared to Eq. (39), this is nothing but the summation of
two currents with phase terms. Therefore, we can general-
ize it to N-photon emissions as before:

jðω;kÞ ¼ iv
XN
i¼1

Qi− −Qiþ
ω − kzv

e−iϕi1ez; ð42Þ

where Qi− and Qiþ are, respectively, particle charges
before and after the ith photon emission with a ϕi1 phase
difference between the first and the ith photons, which is
given by

ϕ11 ¼ 0; ð43Þ

ϕi1 ¼
Xi−1
j¼1

ðω − kzvÞΔtjþ1
j

¼
Xi−1
j¼1

ωð1 − v cos θÞΔtjþ1
j ; ð44Þ

with Δtjþ1
j being the time interval between the jth photon

emission and the (jþ 1)th photon emission. We point out
that at midrapidity (cos θ ¼ 0), Eqs. (33) and (42) are
expressed in unified form:

jðω;kÞ ¼ i
XN
i¼1

ji− − jiþ
ω

e−iϕi1ez; ð45Þ

where ji− ≡Qi−vi− and jiþ ≡Qiþviþ are, respectively, the
electromagnetic currents before and after the ith photon
emission with the phase difference

ϕ11 ¼ 0; ϕi1 ¼
Xi−1
j¼1

ωΔtjþ1
j : ð46Þ

In other words, bremsstrahlung photons from a decelerated
charged particle and those from a particle whose electric

FIG. 2. Photon spectra at midrapidity from proton stopping
with an initial energy of 100 GeV between analytic solution in
Eq. (22) and the results from the stepwise method.
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charge evaporates are indistinguishable at midrapidity, if
the particle velocity and the evaporation speed are the same.
Figure 2 compares photon spectra at midrapidity from

proton stopping with an initial energy of 100 GeV between
the analytic solution in Eq. (22) and the results from the
stepwise method. We can see that the stepwise method
reproduces the analytic solution.

III. CONSIDERATION OF NUCLEON
STRUCTURE

The proton is not a pointlike particle but a composite
particle made up of at least three valence quarks. In this
section, we substitute the proton with three valence quarks
which are randomly distributed in a sphere with radius R.
Since the photon spectra from charge evaporation and from
deceleration are the same at midrapidity, we take the former
case for simplicity. The electromagnetic current from three
comoving valence quarks is given by

jðt; rÞ ¼
X
i¼1∼3

Qivδðz − vtÞδðx − xiÞδðy − yiÞ

×
1 − tanhðatÞ

2
ez; ð47Þ

where Qi is the electric charge of valence quark i, and
zi ¼ 0 at t ¼ 0 is assumed from the Lorentz contraction in
ultrarelativistic collisions. We also assume that xi and yi do
not change with time, even after collision. The current is
transformed in momentum space as follows:

jðt;kÞ ¼
Z

d3rjðt; rÞeir·k

¼
X
i¼1∼3

Qiv
1 − tanhðatÞ

2
eiðkxxiþkyyiþkzvtÞez ð48Þ

and

jðω;kÞ ¼
Z

dtjðk; tÞe−iωt

¼ i
πv
2a

csch

�
πðω − kzvÞ

2a

�X
i¼1–3

QieiðkxxiþkyyiÞez:

ð49Þ
Therefore, we can find the relation

ω
dN
d3k

����
with structure

¼ ω
dN
d3k

����
pointlike

×

����
X
i¼1–3

qieiðkxxiþkyyiÞ
����
2

; ð50Þ

where qi ¼ Qi=ð
P

j¼1–3QjÞ. Rotating the coordinate sys-
tem such that ðkx; kyÞ → ðkT; 0Þ, the correction factor is
simplified into

����
X
i¼1–3

qieiðkxxiþkyyiÞ
����
2

¼
X

i;j¼1–3

qiqjeikTðxi−xjÞ

¼
X

i;j¼1–3

qiqj cosfkTðxi − xjÞg; ð51Þ

where sine term in the last equation vanishes. In the limit
kT → 0, the correction factor turns to unity:

lim
kT→0

����
X
i¼1–3

qieiðkxxiþkyyiÞ
����
2

¼
X

i;j¼1–3

qiqj ¼ 1: ð52Þ

This means again that a photon with a very small frequency
does not provide the information of the detailed structure of
a charged particle. We can calculate the expectation value
of the cosine function in the case xi ≠ xj as follows:

hcosfkTðxi − xjÞgijxi≠xj
¼ 1

ð4=3πR3Þ2
Z

dVidVj

× fcosðkTxiÞ cosðkTxjÞ þ sinðkTxiÞ sinðkTxjÞg

¼ 1

ð2=3R3Þ2
�Z

R

0

drir2i

Z
1

−1
d cos θi cosðkTri cos θiÞ

�
2

¼ 9

ðkTRÞ6
f−kTR cosðkTRÞ þ sinðkTRÞg2; ð53Þ

where θi is the angle between kT and ri, and finally����
X
i¼1–3

qieiðkxxiþkyyiÞ
����
2

¼
X
i¼1–3

q2i þ
9

ðkTRÞ6
f−kTR cosðkTRÞ þ sinðkTRÞg2

×
X
i≠j

qiqj: ð54Þ

Figure 3 shows the correction factors for proton structure
as a function of the transverse momentum of the photon
with the proton radius R taken to be 1 fm. In order to get an
insight, we use three different combinations of quarks (uud,
uuduū, uuddd̄) for the proton. The magenta line shows
Eq. (53), which starts with 1.0 at kT ¼ 0 GeV and then
almost vanishes before kT ¼ 1 GeV. It explains the behav-
ior of correction factors in Fig. 3. For example, supposing
that the proton is composed of uuduū, the correction factor
at small kT �

2

3
þ 2

3
−
1

3
þ 2

3
−
2

3

�
2

¼ 1; ð55Þ

and at large kT

�
2

3

�
2

þ
�
2

3

�
2

þ
�
−
1

3

�
2

þ
�
2

3

�
2

þ
�
−
2

3

�
2

¼ 17

9
; ð56Þ
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which means that the individual quark is not seen at small
kT but is seen at large kT . In other words, the coherent
photon smoothly changes into an incoherent photon as
photon energy increases. However, if only valence quarks
are considered (uud), there is no difference between
coherent and incoherent photons, because the correction
factor

�
2

3
þ 2

3
−
1

3

�
2

¼ 1 ð57Þ

at small kT is equivalent to

�
2

3

�
2

þ
�
2

3

�
2

þ
�
−
1

3

�
2

¼ 1 ð58Þ

at large kT . We may consider the proton as the combination
of uuduū or uuddd̄, taking uū or dd̄ for the sea-quark pair.
In this case, however, the sea quark and sea antiquark are
not located independently in the nucleon but are strongly
correlated in space, so that their effect will appear at much
larger photon energy.

IV. STOPPING IN COLLISION

In this section, we describe the stopping of two particles
in collision. For simplicity, two particles move in opposite
directions with the same velocity and electric charges, Q1

and Q2, and evaporate with time:

jðt; rÞ ¼ vδðyÞ 1 − tanhðatÞ
2

fQ1δðx − b=2Þδðz − vtÞ
−Q2δðxþ b=2Þδðzþ vtÞgez; ð59Þ

where b is the impact parameter [8]. Taking Fourier
transformations,

jðt;kÞ ¼
Z

d3rjðt; rÞeir·k ¼ v
1 − tanhðatÞ

2

× fQ1eiðkzvtþkxb=2Þ −Q2e−iðkzvtþkxb=2Þgez; ð60Þ

and

jðω;kÞ ¼
Z

dtjðt;kÞe−iωt

¼ i
πv
2a

�
Q1csch

�
πðω − kzvÞ

2a

�
eikxb=2

−Q2csch

�
πðωþ kzvÞ

2a

�
e−ikxb=2

�
ez: ð61Þ

The only difference in Eq. (61) from Eq. (21) is two phase
terms, which is ascribed to the separation of two currents in
the x direction. It is straightforward to prove that the photon
spectrum from the evaporation of two electric charges is
identical to that from the deceleration of two charged
particles at midrapidity as shown in the previous section.
By using Eq. (61), the photon spectrum at midrapidity
(kz ¼ 0) from the collision turns out to be

dN
d2kTdy

����
y¼0

¼ 1

2ð2πÞ3
X
λ

jjðω;kÞ · ϵλðω;kÞj2

¼ 1

16π

�
v
2a

�
2

csch2
�
πω

2a

��
ðQ1 −Q2Þ2

þ 4Q1Q2sin2
�
kxb
2

��
: ð62Þ

Equation (62) applied to pþ n collisions (Q1 ¼ e,Q2 ¼ 0)
is

dN
d2kTdy

����
y¼0

¼ 1

16π

�
j
2a

�
2

csch2
�
πω

2a

�
; ð63Þ

and applied to pþ p collisions (Q1 ¼ Q2 ¼ e) is

dN
d2kTdy

����
y¼0

¼ 1

4π

�
j
2a

�
2

csch2
�
πω

2a

�
sin2

�
kxb
2

�
; ð64Þ

where j ¼ Qivi. We note that if the impact parameter b ¼ 0
in a pþ p collision, the photon spectrum vanishes at
midrapidity, though this hardly happens in reality. If electric
charges do not completely stop, which is usual in high-
energy collisions, the electromagnetic currents j in Eqs. (63)
and (64) are substituted for by Δj ¼ Qivi −Qfvf, the
change of electromagnetic current.
Equation (62) can be applied to heavy-ion collisions,

assuming that the nucleus is a pointlike particle [8]. In this
case, Q1 and Q2 are the electric charges of the participants
of the projectile and target nuclei, respectively, and b is the

FIG. 3. Correction factors for proton structure as a function of
the transverse momentum of photons for different combinations
of quarks (uud, uuduū, uuddd̄). The proton radius R is taken to
be 1 fm, and the magenta line shows Eq. (53).
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mean transverse distance between the participants of the
projectile nucleus and those of the target nucleus.
Equation (61) is reexpressed in terms of the valence

quark, substituting Q1 and Q2 into
P

jQjeik·rj as in
Eq. (49):

jðω;kT; kz ¼ 0Þ

¼ i
πv
2a

csch

�
πω

2a

�

×
X
i

ðQ1ieikT ·ðr1iþb=2Þ −Q2ieikT ·ðr2i−b=2ÞÞez; ð65Þ

where Q1iðQ2iÞ and r1iðr2iÞ are, respectively, the electric
charge and the transverse position from the center of
nucleon 1(2) of quark i, which composes nucleon 1(2).
Following the previous section, it is straightforward to
calculate the photon spectrum:

dN
d2kTdy

����
y¼0

¼ 1

16π

�
v
2a

�
2

csch2
�
πω

2a

�

×

�X
i;j

Q1iQ1j cosfkTðx1i−x1jÞg

þ
X
i;j

Q2iQ2j cosfkTðx2i−x2jÞg

−2
X
i;j

Q1iQ2j cosfkTðx1i−x2jþbcosϕÞg
�
;

ð66Þ

where the coordinate system is rotated such that kT is
parallel to ex and ϕ is the angle between b and kT .
Assuming that quarks are randomly distributed in nucleons
whose radius is R,

dN
d2kTdy

����
y¼0

¼ 1

16π

�
v
2a

�
2

csch2
�
πω

2a

�

×

�X
i

ðQ2
1i þQ2

2iÞ

þ 9

ðkTRÞ6
f−kTR cosðkTRÞ þ sinðkTRÞg2

×

�X
i≠j

ðQ1iQ1j þQ2iQ2jÞ

− 2 cosðkTb cosϕÞ
X
ij

Q1iQ2j

��
; ð67Þ

which converges to Eq. (62) in the limit R → 0.
In the picture of pQCD, only one parton in the nucleon

interacts with one parton from the other nucleon. However,
if a valence quark gets out of the nucleon by scattering, the
remaining two valence quarks cannot proceed without

interaction, because they are not color singlet any more.
They should somehow be involved in the scattering.
Though the stopping or deceleration of three valence
quarks might be different from each other, we can simply
take their average.
We note that Eq. (67) can be applied to nucleus-nucleus

collision with Q1iðQ2iÞ and R being the electric charges of
nucleon i in nucleus 1(2) and the nucleus radius, respec-
tively, if all nucleons are participants. In the case of
incomplete stopping, vQ1iðvQ2iÞ is replaced byΔj1iðΔj2iÞ.

V. RELATIVISTIC n+n COLLISIONS

If the collision energy is low, nucleonþ nucleon scatter-
ing is elastic or excitation, such as N þ N → N þ Δ.
However, when the collision energy is extremely large,
two colliding nucleons pass through each other, and only
part of the energy and electromagnetic current are released,
which produces both charged and neutral particles. Since
wounded nucleons go straight even after collision and each
nucleon has a finite size, we can approximate the process as
one-dimensional stopping or the deceleration of electro-
magnetic currents, as in the previous section.
For two reasons, it is hard to know how much electro-

magnetic current is stopped in high-energy nucleon-
nucleon collisions. First, it is experimentally challenging
to measure particles in very large rapidity regions. Second,
the charge stopping is not well defined in the collision of
equal-charged particles such as pþ p collisions, since the
total electromagnetic current of the system is zero.
We use the PYTHIA event generator to solve the first

problem [9]. The upper panel of Fig. 4 shows the electric
charge distribution as a function of γzβz ¼ βz=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2z

p
in

pþ n collisions at
ffiffiffi
s

p ¼ 200 GeV from the PYTHIA
event generator, where protons move in the þz direction
and neutrons in the opposite. Electromagnetic current
after the collision is 0.85 e on average, and we thus take
Δj ¼ −0.15e. The middle panel shows bremsstrahlung
photon spectra for different stopping times in pþ n
collisions by using Eqs. (63) and (67), assuming a pointlike
particle or a group of valence quarks for the nucleon. We
note that the impact parameter in the two equations does
not affect the spectrum in pþ n collisions, since Q2 ¼ 0.
In both cases, the photon spectrum becomes soft with
increasing stopping or deceleration time, while the spec-
trum at low ω does not change, which is consistent with
Fig. 2. We can see that the photon spectrum is larger at high
ω in the case of three valence quarks compared to that for a
pointlike nucleon. If the neutron is a pointlike particle, it
cannot emit photons, while three valence quarks of it (udd)
can emit photons in spite of interference, which is com-
pletely destructive at low ω but becomes incoherent at high
ω, as shown in Fig. 3. That is the reason for the enhance-
ment of photon spectra at highω in the case of three valence
quarks.
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In pþ p collisions, total electromagnetic current van-
ishes. Furthermore, it is not clear whether a charged particle
produced in the collision is originated from the target
proton or from the projectile proton. We assume that the
same amount of electromagnetic current is stopped in pþn
and pþ p collisions. The lower panel of Fig. 4 shows
the photon spectra at midrapidity in pþ p collisions atffiffiffi
s

p ¼ 200 GeV, assuming pointlike nucleons or two
groups of three valence quarks. Considering the inelastic
scattering cross section of 42 mb, the impact parameter for
minimum-bias events is about 0.8 fm on average. As in
pþ n collisions, the spectrum of bremsstrahlung becomes
soft with increasing stopping or deceleration time, while
the spectrum at lowω does not change. Since the proton has
the same contribution whether it is a pointlike particle or a
group of three valence quarks, as shown in Fig. 3, two
different pictures bring about similar photon spectra except
for the fluctuations, which are ascribed to the interference
of photons from the target and projectile protons. The
fluctuations are more prominent in the case of pointlike
protons.
Here we point out that the spectrum of bremsstrahlung

photon at low energy in pþ p collisions is not identical
to that in pþ n collisions. In the limit ω → 0, Eq. (67)
turns to

lim
ω→0

dN
d2kTdy

����
y¼0

¼ 1

16π3
ðΔvÞ2
ω2

�
ðQ1 −Q2Þ2

þ w2Q1Q2b2cos2ϕ

−
1

5
w2R2

�
ðQ1 −Q2Þ2 −

X
i

ðQ2
1i þQ2

2iÞ
��

; ð68Þ

where Δv ¼ Δj=Q and R ¼ 0 for the collision of point-
like nucleons. It diverges in pþ n collisions (Q1 ¼ e,
Q2 ¼ 0), while it has a finite value in pþ p collisions
(Q1 ¼ e, Q2 ¼ e):

lim
ω→0

dN
d2kTdy

����
y¼0

¼ αðΔvÞ2
4π2

�
b2

2
þ 2

5
R2

�
; ð69Þ

where the ensemble average hcos2 ϕi ¼ 1=2 is taken. The
divergence disappears in pþ p collisions, because two
divergences from each proton stopping cancel each other.
However, if the stopping of electromagnetic currents is
not symmetric in pþ p collisions, the bremsstrahlung
photon spectrum diverges at ω ¼ 0.
Because of the differences in low-energy photons, it is

not right to scale photon spectrum in pþ p collisions by
the total number of binary collisions to extract nuclear
matter effect in heavy-ion collisions, but the number of
binary collisions should be separated into the number of

pþ p collisions, that of pþ n collisions, and that of nþ n
collisions and scaled respectively.
The impact parameter in Eqs. (62) and (67) does not

necessarily mean the geometric impact parameter but an

(a)

(b)

(c)

FIG. 4. (a) Electric charge distribution as a function of γzβz ¼
βz=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2z

p
in pþ n collisions at

ffiffiffi
s

p ¼ 200 GeV from the
PYTHIA event generator, and photon spectra for different
stopping times in (b) pþ n and (c) pþ p collisions at the same
collision energy, assuming a pointlike particle or a group of
valence quarks for the nucleon.
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effective distance between stopped charges of two colliding
protons. Since it will be smaller than the geometric impact
parameter, we try not only with 0.8 fm but also with smaller
values in the upper panel of Fig. 5. The figure shows that
the photon spectrum is not sensitive to the separation
distance, especially in the case of three valence quarks,
where little differences are seen only below ω ¼ 0.5 GeV.
The lower panel shows the experimental data on direct

photons in pþ p collisions at
ffiffiffi
s

p ¼ 200 GeV from the
PHENIX Collaboration [10,11], which are compared with
pQCD calculations to the leading order for qþ q̄ → gþ γ
and qðq̄Þ þ g → qðq̄Þ þ γ [12] with the CTEQ parton
distribution function [13]. The scale of parton distribution
function is set at photon energy, and the K factor, which
takes into account higher-order corrections, is taken to be 2.
We can see that the pQCD calculations reproduce the
experimental data down to ω ¼ 3–4 GeV and then deviate

from them at lower photon energy. Since the calculations
are not reliable at low photon energy, they are shown only
down to ω ¼ 1.3 GeV in the figure.
We also show the bremsstrahlung photons for b ¼ 0.8 fm

and 0, 0.2, and 0.4 fm=c of the stopping time in Eq. (67).
Though the comparison with the experimental data cannot
say something definite, it seems that the deceleration of
electromagnetic current in pþ p collisions does not take
place instantly but takes a time longer than 0.2 fm=c.
Naively thinking, the deceleration time would be the

duration when two nucleons pass through each other.
Considering Lorentz contraction, it is only a couple of
hundredths of fm/c. However, rich interactions are still left
after that—for example, string fragmentation, particle pro-
duction, and so on. Though the deceleration of electromag-
netic currents in pþ p collisions may not follow the pattern
of Fig. 1, it would be possible to estimate the deceleration
time from the bremsstrahlung photon spectrum.

VI. SUMMARY

Relativistic heavy-ion collisions produce hot, dense
nuclear matter. The photon is a clear probe for the
properties of nuclear matter, because it hardly interacts
after production. Since photons are produced from the
initial stage to the final one in heavy-ion collisions, they
need to be classified according to when they are produced.
At first, nucleons composing nuclei lose considerable

energy and momentum through their primary collisions,
which bring about the radiation of photons. In the micro-
scopic picture, photons are produced through the scattering
of partons in nucleons. The collision of heavy nuclei
produces extremely hot nuclear matter, and the matter
cools down by emitting thermal photons. Finally, the matter
freezes out as noninteracting hadrons, which produce
photons through electromagnetic decay. The photons,
excluding the last case are called “direct photons.”
Nucleonþ nucleon collision is a reference experi-

ment to extract nuclear matter effects from heavy-ion
collisions, because it hardly produces sizeable matter.
Since nucleonþ nucleon collisions do not produce thermal
photons, all photons excluding those from electromagnetic
decay are direct photons, which are produced mostly in the
initial stage of collisions. The production of direct photons
can be described by parton interactions in pQCD combined
with the parton distribution function, if the photon energy is
large enough. However, pQCD does not work for low-
energy photons.
In this Letter, we have studied the production of

bremsstrahlung photons in relativistic nucleonþ nucleon
collisions, which is not restricted to high-energy photons
but is applicable also to low-energy ones. Since the nucleon
is not an elementary particle but a composite particle with
structure, the stopping of electromagnetic current is mod-
eled by a hyperbolic tangent function with a parameter
for stopping time. We also approximate the collisions to

(a)

(b)

FIG. 5. (a) Spectra of bremsstrahlung photons at midrapidity in
pþ p collisions at

ffiffiffi
s

p ¼ 200 GeV for the stopping time of
0.2 fm=c and a couple of separation distances. (b) Spectra for
b ¼ 0.8 fm and a couple of stopping times in comparison with
the experimental data on direct photons from the PHENIX
Collaboration [10,11], along with pQCD calculations.
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one-dimensional stopping of electromagnetic currents,
because two nucleons pass through each other in high-
energy collisions. In general, it is hard to measure the
amount of stopped electromagnetic current in collisions,
because the entire range of rapidity should be covered by
detectors. Therefore, we use the PYTHIA event generator
and have found that about 15% of initial electromagnetic
current stops in pþ n collisions at

ffiffiffi
s

p ¼ 200 GeV. The
same amount of stopping is assumed in pþ p collisions.
We have found that the bremsstrahlung photon spectrum

at low energy does not depend on stopping or deceleration
time, but only on the amount of stopped electromagnetic
current, because low-energy photons cannot provide the
information of a short timescale. Beyond this energy range,
however, the spectrum becomes soft with increasing stop-
ping time.
We have also studied the effect of nucleon structure by

substituting three comoving valence quarks for a pointlike
nucleon. In pþ n collisions, the substitution enhances the
photon spectrum at large energy, because neutrons cannot
emit photons, while three valence quarks composing the
neutron can emit photons, and each photon becomes
incoherent as photon energy increases. In pþ p collisions,
bremsstrahlung photons can be emitted from both the
projectile and target protons, and interference could be
destructive or constructive. For example, if the impact
parameter in pþ p collision vanishes, the interference is
completely destructive, and no bremsstrahlung photon is
produced. In the picture of comoving valence quarks,
however, the fluctuations of the bremsstrahlung photon
spectrum caused by the interference reduce, and the photon
does not vanish even at b ¼ 0.
The photon spectrum in pþ n collisions and that in

pþ p collisions are quite different from each other at
low energy, and we suggest that the photon spectrum in
pþ p collisions should not be rescaled simply by the
number of binary collisions in heavy-ion collisions, when
the nuclear matter effect is studied, but by the number of
binary pþ p collisions, that of pþ n collisions, and that
of nþ n collisions counted separately.
Comparing the bremsstrahlung photon spectrum with the

experimental data on direct photons from the PHENIX
Collaboration, it seems that the stopping of electromagnetic
current in relativistic pþ p collisions does not take place
instantly but takes a time, which is longer than the over-
lapping time of two nucleons, because there are additional
processes, such as particle production.
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APPENDIX: FOURIER TRANSFORMATIONS

In this Appendix, we show the Fourier transformation of
basic functions.

1. Signum function

The signum function is defined as

sgnðtÞ ¼ 1ðt ≥ 0Þ;
¼ −1ðt < 0Þ: ðA1Þ

It can be expressed as

sgnðtÞ ¼ lim
a→0þ

fe−atθðtÞ − eatθð−tÞg; ðA2Þ

where θðtÞ is the step function, and the Fourier trans-
formation of the signum function is derived as given below:

Fw½sgnðtÞ� ¼ lim
a→0þ

�Z
∞

0

e−ate−iwtdt −
Z

0

−∞
eate−iwtdt

�

¼ lim
a→0þ

�
1

aþ iw
−

1

a − iw

�
¼ 2

iw
: ðA3Þ

2. Step function

The step function is expressed by using the signum
function

θðtÞ ¼ 1

2
f1þ sgnðtÞg; ðA4Þ

and after Fourier transformation,

Fw½θðtÞ� ¼
1

2
fFw½1� þ Fw½sgnðtÞ�g ¼ πδðwÞ þ 1

iw
: ðA5Þ

3. Box function

Supposing the box function is centered at t ¼ 0 with the
width T:

rectTðtÞ ¼ 1; if jtj ≤ T=2;

rectTðtÞ ¼ 0; if jtj > 0; ðA6Þ
then the Fourier transformation is carried out as follows:

Z
rectTðtÞe−iwtdt ¼

Z
T=2

−T=2
e−iwtdt ¼ i

w
ðe−iwT=2 − eiwT=2Þ

¼ 2 sinðwT=2Þ
w

: ðA7Þ
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4. Hyperbolic tangent

The Fourier transformation of the hyperbolic tangent is given by

Fw½tanhðtÞ� ¼ −iπcsch
�
πw
2

�
; ðA8Þ

from which

Fw½tanhðatÞ� ¼
Z

dt tanhðatÞe−wt ¼ 1

a

Z
dðatÞ tanhðatÞe−w

aat ¼ −i
π

a
csch

�
πw
2a

�
: ðA9Þ

Eq. (A3) is easily proved from Eq. (A9) as follows:

Fw½sgnðtÞ� ¼ lim
a→∞

Fw½tanhðatÞ� ¼ lim
a→∞

π

ai
csch

�
πw
2a

�
¼ lim

a→∞

π

ai
2

expðπw
2aÞ − expð− πw

2aÞ
¼ 2

iw
: ðA10Þ
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