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A massive real scalar dark matter particle S can couple to Standard Model leptons or quarks
through a vectorlike fermionic mediator ψ, a scenario known as the vectorlike portal. Due to helicity
suppression of the annihilation cross section into a pair of Standard Model fermions, it has been shown
in previous works that radiative corrections, either at one loop or through radiation of gauge bosons,
may play a significant role both in determining the relic abundance and for indirect detection. All
previous works considered the limit of massless final state quarks or leptons. In this work, we focus on
a technical issue, which is to reliably determine the annihilation cross sections, taking into account
finite fermion masses. Following previous works in the framework of simplified supersymmetric dark
matter scenarios, and building on an analogy with Higgs decay into fermions, we address the issue of
infrared and collinear divergences that plagues the cross section by adopting an effective operator
description, which captures most of the relevant physics, and we give explicit expressions for the
annihilation cross sections. We then develop several approximations for the differential and total cross
sections, which simplify greatly their expressions and can then be used in various phenomenological
studies of similar models. Finally, we describe our method to compute the final gamma-ray spectrum,
including hadronization of the heavy fermions, and provide some illustrative spectra for specific dark
matter candidates.
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I. INTRODUCTION

Dark matter (DM) amounts to about 27% of the energy
budget of our Universe, and, yet, little is known about
its precise nature. A much studied possibility is that
dark matter is made of a weakly interacting massive
particle (WIMP). In this scenario, the observed relic
abundance ΩDMh2 ¼ 0.1186� 0.0020 [1] more or less
naturally results from chemical freeze-out of a massive
particle, provided its annihilation cross section is hσvi≃
3 × 10−26 cm3 · s−1. Many such candidates have been
proposed in the literature.
In the present paper, we study further a real scalar

particle coupled to Standard Model (SM) fermions through
a vectorlike fermion. This scenario has been dubbed the

vectorlike portal (VLP) in Ref. [2] following Ref. [3]. The
simplest realization of the VLP is given by

LDM ¼ −ðyfSψ̄fR þ H:c:Þ − 1

2
M2

SS
2 −Mψ ψ̄ψ ; ð1Þ

where S is a singlet real scalar (the DM candidate), fR is an
SUð2ÞL singlet SM fermion (lepton or quark), and ψ is a
vectorlike massive fermion. Clearly, other combinations of
SM multiplets could be considered, but this is not our
purpose here. The stability of DM is ensured by imposing a
discrete Z2 symmetry, under which both S and ψ are taken
to be odd and SM particles are taken to be even. For
simplicity and to avoid addressing flavor physics aspects, it
is assumed that S couples dominantly to a single SM flavor.
Also, in the sequel, we will assume that the possible quartic
coupling of S with the SM Higgs is small and may be
neglected. As such, Eq. (1) falls in the category of so-called
simplified DM models with a t-channel mediator; see, e.g.,
Refs. [4–7].
This model may be considered as the scalar version of a

binolike Majorana DM candidate, with which it shares
some basic properties, the first being that their s-wave
annihilation is helicity suppressed. They differ in the fact
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that annihilation of a binolike candidate is p-wave in the
chiral limit [8] while that of the real scalar S is d-wave [2,9].
However, in both cases, the helicity suppression is lifted
by radiative corrections [10,11]. As discussed in several
works, this has interesting phenomenological implications.
In the case of coupling to leptons, radiative processes,
either in the form of internal bremsstrahlung or annihilation
at one loop into, say, two gamma rays, may lead to striking
spectral features. Such spectral features are of interest for
indirect searches for WIMPs (see, e.g., Refs. [12–16] for
the Majorana case and specifically Refs. [2,9,17,18] for the
scalar case). In the case of coupling to (light) quarks,
radiative processes involving gluons on top of gammas may
be relevant at the time of thermal freeze-out, thus impacting
both the effective annihilation cross section and indirect
signatures; see, e.g., Refs. [19,20].
In previous works, annihilation of the particle S through

internal bremsstrahlung was only considered in the chiral
limit, neglecting the mass of the final state fermions. This
was motivated by simplicity but also by physics. Indeed, it
is for light leptons and quarks that radiative corrections are
more important, by lifting the helicity suppression. Also, it
is in this limit that they lead to most spectacular spectral
signatures, with a sharp gamma-ray spectral feature around
Eγ ∼mdm when bremsstrahlung is dominated by emission
from the intermediate particle,1 a process called virtual
internal bremsstrahlung (VIB) [12]. Instead, in this work,
we want to consider the possibility that S couples domi-
nantly to heavy fermions. The prime application would be
annihilation into a top-antitop pair, but we will also
consider the indirect detection signatures from annihilation
into bb̄ and τþτ−.
The detailed phenomenological analysis of a top-philic

candidate, including searches at the LHC and constraints
from direct detection searches, is the object of a separate
article [21]. In the present work, we specifically focus on
more technical aspects of determining the total cross
section, taking into account radiative corrections, as well
as the spectra into gamma rays relevant for indirect
searches. Concretely, our goal is to keep track of the
nonzero quark mass effects, the most important being that
the s-wave part of the annihilation cross section into a
quark-antiquark is helicity suppressed. The issue we will
have to face is that the total annihilation cross section is
plagued by IR divergences, associated to final state
radiation (FSR) of soft gluons or gammas. According to
the Kinoshita-Bloch-Nordsieck theorem [22,23], the full
cross section is free of IR divergence. This involves
properly taking into account radiative corrections at a
given order in the gauge coupling. For the case at hand,
this requires calculating the one-loop corrections to the

annihilation cross section SS → ff̄. Although in principle
straightforward, the calculations are involved.
In this paper, we give a calculation of the annihilation

cross section at next-to-leading order (NLO) following an
effective approach advocated in Ref. [20], which they
applied to the case of binolike DM (see also Ref. [24]
for more general cases). The expression of the cross section
is free of IR divergences and may be applied to the case of
annihilation of S in heavy quarks. The main idea behind
Ref. [20] is to consider separately the emission of FSR
and VIB gluons or gammas. The former is dominated by
emission from final state fermions, which is the source for
infrared divergences of the total cross section. Following
the Weizsäcker-Williams approximation, the amplitude for
emission of soft modes is obtained by multiplying the
leading order (LO), tree-level amplitude by a universal
factor (for fermions in the final state). For nonrelativistic
DM in an s-wave, this tree-level amplitude can be equiv-
alently obtained from an effective contact interaction,
which, in the scalar case, is given by the following five-
dimensional operator, where mq is the quark mass:

Oð5Þ
m ¼ mq

Λ2
S2q̄q: ð2Þ

Consequently, the IR divergence can be tackled by taking
into account the one-loop correction to the effective
interaction of (2). The rest, that is the emission of hard
modes, is IR safe and can be obtained by considering
the full, underlying theory. This effective approach sim-
plifies very much the calculations, while capturing the
underlying physics, i.e., with limited error compared to a
full NLO calculation [20]. The separation between soft
and hard modes is implemented by a cutoff on the energy of
the emitted gamma or gluon. This strategy has been used
for calculating NLO QCD corrections to the decay of the
Higgs [25,26]. We will follow closely the approach of
Ref. [25]. Incidentally, for the soft part, the calculations are
precisely the same as in the case of Higgs decay. They
differ for the emission of hard modes, for which we will
give complete expressions in the case of annihilating scalar
dark matter.
The manuscript is organized as follows. In Sec. II, we

provide the calculation of the annihilation cross section
of a real scalar DM particle into SM fermions through
t-channel exchange of a vectorlike fermion. We introduce
the effective approach of Ref. [20] and give explicit
expressions from the decomposition of the cross section
for soft emission, the associated one-loop corrections,
and hard emission, the latter including virtual internal
bremsstrahlung. In Sec. III, we study the differential cross
sections (with gluon and gamma emission) and implica-
tions for indirect detection, in particular for the gamma-ray
spectra. We draw our conclusions in Sec. IV. Some lengthy
expressions are relegated to Appendices A and B.

1The separation into final state radiation and VIB processes is
not clear cut because of gauge invariance. However, it becomes
manifest in an expansion into effective operators; see Sec. II.
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II. TOTAL ANNIHILATION CROSS SECTION

In this section, we first revisit the basics of the model and
the reason why internal bremsstrahlung may be relevant.
We then go on with the main steps of the calculation of the
cross section for massive final state SM fermions.

A. Leading order annihilation cross section

We consider the amplitudes depicted by the Feynman
diagrams in Fig. 1. The annihilation cross section of
nonrelativistic DM particles is then

σvqq̄ ¼
y4fNc

4πM3
S

m2
qðM2

S −m2
qÞ3=2

ðM2
S þM2

ψ −m2
qÞ2

þOðm2
qv2; v4Þ; ð3Þ

where v is their relative velocity and Nc is the number of
colors. The helicity suppression (∼m2

q) of the s-wave part of
the cross section stems from the fact that, from Eq. (1),
the S coupling to SM fermions is chiral while the quark-
antiquark pair must have zero total helicity; matching the
two requires a chirality flip.2 Incidentally, the s-wave part
of the cross section can be derived from the low-energy
effective interaction in Eq. (2) with

mq

Λ2
→

1

2

y2fmq

M2
S þM2

ψ −m2
q

ð4Þ

or, in other words,

Oð5Þ
m ¼ 1

2

y2fmq

M2
S þM2

ψ −m2
q
S2q̄q ð5Þ

as in Fig. 1. We keep the quark mass in the denominator but
assume that the DM particles interact at rest.
Awell-known consequence of the above is that the cross

sections relevant for thermal freeze-out and for indirect
detection will differ in general. In particular, in the chiral
limit, mq ≪ MS, the LO cross section is suppressed if
v ≪ 1. This suppression may, however, be alleviated by
taking into account radiative corrections [10,11].

B. First look at internal bremsstrahlung

We will focus in this section on QCD corrections (i.e.
emission of gluons). Provided CFαs → Q2α where CF ¼
4=3 and Q is the SM fermion electric charge, (most of) our
results can be applied to radiation of a gamma instead of a
gluon. Now, a pair of S in an s-wave can annihilate into a
pair of gluons at one loop or through internal bremsstrah-
lung, a three-body process shown in Fig. 2. Although
suppressed by powers of αs or phase space, these radiative
processes may play an important role, both for indirect
detection and for setting the relic abundance [19,20].
Annihilation into two gluons has been studied in details
in Refs. [17,18], and this for an arbitrary quark mass. Here,
we focus on internal bremsstrahlung, taking into account
quark mass effects.
The relevant amplitudes are depicted in Figs. 2(a)

to 2(c). We will refer loosely to Figs. 2(a) and 2(b)
as FSR and to Fig. 2(c) as VIB, respectively. Then,
taking the S particles to be at rest, the amplitude for
Sðk1ÞSðk2Þ → qðp1Þq̄ðp2ÞgðkÞ associated to the VIB
diagram is given by

MVIB ¼ gsy2fūðp1ÞtafPL½2ðM2
S þM2

ψ −m2
qÞϵ�

− ϵ� · ðp1 þ p2Þ=k�
þmq½ϵ� · ðp1 − p2Þ þ ϵ�=k�gvðp2ÞD1D2; ð6Þ

where

Di ¼
i

ðpi − KÞ2 −M2
ψ

ð7Þ

and K ¼ k1 ¼ k2 ≡ ðMS; 0Þ. In this expression, ϵ� is a
shorthand for the polarization vector ϵ�ðkÞ and ta are the
representation matrices for the fundamental of SUð3Þ.

FIG. 1. Amplitudes for the two-body process SS → qq̄ and resulting effective interaction (r ¼ M2
ψ=M2

S and z ¼ m2
q=M2

S).

2The power of 3=2 of the phase-space factor ð1 −m2
q=M2

SÞ3=2
reveals that the final state quark-antiquark pair is in a p-wave near
threshold. The reason is the same as for Higgs decay into a
fermion-antifermion pair; see, e.g., Ref. [25]. The scalar DM pair
in an s-wave corresponds to a JPC ¼ 0þþ initial state. As the
parity of the final state quark-antiquark pair is P ¼ −ð−Þl (the
minus factor is intrinsic parity), they must be in a p-wave. By
the same token, they must have total spin S ¼ 1 to make a J ¼ 0
state. Since C ¼ ð−Þlþs, the final state is indeed 0þþ. A similar
argument holds for s-wave annihilation of a pair of Majorana
DM [20]. The difference is that the initial state is instead in a
JPC ¼ 0−þ, equivalent to a pseudoscalar particle. Another, but
related, difference is that the cross section for scalar DM is d-
wave suppressed in the chiral limit mq → 0, while it is p-wave in
the Majorana case [2,9].
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The FSR amplitudes in Figs. 2(a) and 2(b) read
altogether

MFSR ¼ gsy2fūðp1Þtaf2mqϵ
� · ðp1D1kD2 − p2D2kD1Þ

þmq=ϵ�=kðD1kD2 þD1D2kÞ
þ 2PL=ϵ�½M2

S −M2
ψ þm2

q

− K · ðp1 þ p2Þ�D1D2gvðp2Þ; ð8Þ

where

Dik ¼
i

ðpi − kÞ2 −m2
q
: ð9Þ

The last term in Eq. (8) is perhaps surprising, as one could
have expected the combination of propagators D1D2 to
arise only from the VIB amplitude; see Eq. (6). Concretely,
this term comes from the combination

D1þD2¼−½2M2
ψ −2M2

S−2m2
qþ2K ·ðp1þp2Þ�D1D2;

ð10Þ

together with D−1
ik ¼ 2ipi · k. Actually, this term (which,

incidentally, does not vanish in the limit mq → 0) is gauge
dependent and somust compensate terms fromEq. (6) (notice
that this implies that our distinction between FSR and VIB is
not clear cut). The total amplitude MIB ¼ εμM

μ
IB reads

MIB ¼ gsy2fūðp1ÞtafPL½ðp1 þ p2Þ · =ϵ� − ϵ� · ðp1 þ p2Þ=k�D1D2

þmq½ϵ� · ðp1ð2D1k þD1ÞD2 − p2ð2D2k þD2ÞD1Þ þ =ϵ�=kðD1D2k þD2D1k þD1D2Þ�gvðp2Þ: ð11Þ

Using

D1 −D2 ¼ −2iD1D2K · ðp1 − p2Þ; ð12Þ

one verifies that the total amplitude is gauge invariant,
kμM

μ
IB ¼ 0.

To gain further insight, it may be instructive to look at
Eq. (11) from an effective interaction perspective. To do so,
we consider an expansion of Eq. (11) in r−1 ¼ ðMS=Mψ Þ2
assuming Mψ ≫ MS. Keeping only the dominant contri-
butions, we get the following three terms, each of which is
gauge invariant:

MIB≈ −
2gsy2f
r

mq

M2
S
ūðp1Þtavðp2ÞI eik: þ ð13Þ

−
gsy2f
r

mq

M2
S
ūðp1Þta=ϵ�=kðD1k þD2kÞvðp2Þ þ ð14Þ

þgsy2f
r2

1

M4
S
ūðp1ÞtaPL½ðp1þp2Þ ·k=ϵ�−ϵ� ·ðp1þp2Þ=k�vðp2Þ:

ð15Þ

The first two terms are ∝ mq. While they cannot be written
in terms of local effective operators, they have a simple
structure. The first term contains the familiar Weizsäcker-
Williams eikonal factor

Ieik: ¼
ϵ� · p1

k · p1

−
ϵ� · p2

k · p2

;

which multiplies the LO amplitude for SS → qq̄ and
captures the IR divergences of the total annihilation cross
section. The second term is IR finite, and its numerator has
the structure of a dipole interaction,

ODI ∼ q̄RσμνFμνqR; ð16Þ

with Fμν ¼ taFa;μν and σμν ¼ i½γμ; γν�=2. Due to cancella-
tions between contributions from both MVIB and MFSR
amplitudes, it can be seen that this term comes entirely
from the MFSR amplitude in Eq. (8). Both contributions
involve a chirality flip, ∝ mq, like the leading order s-wave
annihilation amplitude. These contributions are collectively
depicted by the diagrams (a) and (b) in Fig. 3, and we refer
to them as FSR amplitudes. Finally, the third term in

(a) (b) (c)

FIG. 2. Amplitudes contributing to the three-body process SS → qq̄g. In the body of the text, we refer loosely to FSR for 2(a) and 2(b)
and to VIB for 2(c).
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Eq. (13) is local and can be derived from the following
dimension-8 operator [see diagram (c) in Fig. 3],

Oð8Þ
VIB ¼ S2∂μðq̄RγνFμνqRÞ; ð17Þ

already introduced in Refs. [27,28]. This term comes from
both theMVIB andMFSR amplitudes, but we call it VIB for
short, as it reduces to it in the chiral limit mq=MS → 0.
Incidentally, as it has no helicity suppression, it may be
the dominant contribution to SS annihilation if mq ≪ MS.
In the limit Mψ ≫ MS, the situation is clear and simple.
Concretely, one could use the amplitude of Eq. (13) to
compute the annihilation cross section. The first term leads
to IR divergences, but these can be tamed in the usual way,
as we will see below. However, here we would like to be
more general, first because the large Mψ=MS expansion
spoils the spectral feature of VIB, which is most prominent
when Mψ and MS are almost degenerate, and second
because we have in mind candidates that could annihilate
into heavy quarks, in particular the top, so that neglecting
mq may not be a good approximation.
Anticipating on the results of the next sections, these

considerations are illustrated in Fig. 4, where we depict the
typical gluon or gamma-ray spectrum (at the partonic level)
ωdN=dω as function of χ ¼ ω=MS for a DM candidate
with a strong VIB feature, thus for almost degenerate
masses Mψ ≳MS, but also a substantial contribution from
FSR. The full spectrum, obtained from the amplitudes of
Fig. 2, is shown as the solid (blue) line. The VIB feature is
the peak near ω≲MS. Emission of soft bosons, corre-
sponding to the Weizsäcker-Williams approximation, is
shown as a dotted (yellow) line. As expected, it captures the
behavior of the full spectrum at low energies ω ≪ MS.
The two other curves correspond to spectra obtained by
using the amplitudes of the effective theory. The dashed
(green) curve is obtained from the amplitudes of Figs. 3(a)
and 3(b). Compared to the Weizsäcker-Williams approxi-
mation, it includes the emission of hard photons or gluons.
The spectrum has a sharp edge feature, which is characteristic
of FSR [29]. Finally, the dot-dashed (red) curve encompasses
all the effective amplitudes of Eqs. (13)–(15). While the
Weizsäcker-Williams approximation reproduces well the
emission of soft gluons or gammas, the effective operator

inEq. (17), corresponding to the amplitudeofEq. (15), fails to
fully reproduce the VIB spectral feature.

C. Radiative corrections

For the purpose of probing DM through indirect detec-
tion, we aim at determining the spectrum of quark and
gluons emitted when DM annihilates through internal
bremsstrahlung, dσvqq̄g=dω, where ω is the gluon energy.
The integrated cross section is also relevant for determining
the relic abundance of the DM particle [19]. However,
for finite quark mass, its expression suffers from IR and
collinear divergences. The recipe to address these diver-
gences is standard and involves computing not only the
three-body process but also the one-loop corrections to
the two-body annihilation. Then, the Kinoshita-Lee-
Nauenberg theorem (or Bloch-Nordsieck for QED) states
that, order by order in the gauge couplings, IR divergences

(a) (b) (c)

FIG. 3. Diagrammatic representation of the amplitudes in Eq. (13). We refer to the first two amplitudes, (a) and (b), as FSR, while
(c) corresponds to VIB.

FIG. 4. In this figure, ω is the gamma or gluon energy, and
χ ¼ ω=Ms. It illustrates the behavior of the full differential
spectrum at partonic level (blue, solid) compared to the one
with only soft emission, following the Weizsäcker-Williams
approximation (13) (yellow, dotted), together with hard emission
(14) (green, dashed) and finally adding the effective VIB
contribution of Eq. (15) (red, dot-dashed). Specifically, this
figure is for MS¼2TeV, r¼1.22, and mq¼mtop¼173.5GeV,
values for which both the VIB feature and the departure from
predictions based on the effective operator of Eq. (15) are clearly
visible. The normalization is arbitrary.
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from phase-space integration, which in our case are OðαsÞ,
are canceled by those from loop corrections. Thus, in
principle, we should compute the one-loop corrections
depicted in Fig. 5. While such calculations have been
performed for minimal supersymmetric candidates (see,
e.g., Ref. [30]), it is another matter to do so for a simplified
model. Instead, inspired by the strategy of Ref. [20], we
will separate the problem into the emission of soft and
hard gluons. For emission of soft gluons, we will use the
effective interaction of Eq. (5) to control and cancel the IR
divergences that affect the cross section for soft modes,
while keeping as much as possible the full, UV complete
amplitudes to capture the VIB spectral features. This
strategy rests on the fact that, while they differ in the
regime of emission of hard gluons or gammas, both the full
theory and the effective interaction of Eq. (5) have precisely
the same behavior in the IR and in particular lead to the
same IR divergent behavior. We will control the matching
between these two regimes using a cutoff on the energy of
the emitted gluon,ω0. The total NLO cross section will take
the form

σvNLO ¼ σvLO þ Δσvjeffsoftðω0Þ þ Δσvjfullhardðω0Þ; ð18Þ

where σvLO ≡ σvqq̄. Both Δσvjsoft and Δσvjhard depend on
the matching energy ω0, but their sum does not. In this
expression,

Δσvjeffsoftðω0Þ≡ Δσ̃vjeffsoftðω0; λÞ þ Δσvjeff1−loopðλÞ; ð19Þ

where λ is a fictitious mass of the gluon, introduced to
regularize the cross section obtained by integrating over
soft modes. The tilde on σ̃ is there to mean that this cross
section is unphysical, as it diverges for λ → 0. As usual, the
λ dependence requires taking into account one-loop cor-
rections to the LO cross section, which are computed using
the effective theory. The λ dependence will cancel in the
sum of the two contributions. Clearly, the main advantage
of this down-to-earth approach is that we will only need to
calculate the one-loop corrections depicted in Fig. 6 to

cancel infrared divergences. Incidentally, as this coupling
has precisely the same structure as the Higgs coupling
to SM fermions, much of the underlying physics is the
same as that discussed in Refs. [25,26]. What is specific to
the DM scenario is the emission of gluons by the vectorlike
mediator.

1. Soft gluon emission

We first consider the annihilation into a pair of massive
SM quarks with the emission of a soft gluon. By this, we
mean a real gluon with energy ω ¼ jk⃗j ≤ ω0, where ω0

is a cutoff energy, which we take to be small compared
to the other characteristic mass scale in the theory,
ω0 ≪ fMS;Mψ ; mqg, but larger than ΛQCD. In that limit,
we describe the emission of a soft gluon using the
Weizsäcker-Williams approximation,

Majeffsoft ¼ −gsy2f
mq

M2
SΔ

ūðp1Þtavðp2Þ
�
ϵ� · p1

k · p1

−
ϵ� · p2

k · p2

�
:

ð20Þ

This differs from the first term in Eq. (13) by the factor
1=Δ with Δ ¼ 1þM2

ψ=M2
S −m2

q=M2
S ≡ 1þ r − z, which

stems from neglecting the soft gluon 4-momentum in the
propagator of the mediator.
Integrating over phase space for final state fermions, we

get the following differential cross section, valid for
emission of a soft gluon of energy ω,

dσvqq̄g
dχ

����eff
soft

¼ y4fNc

4πΔ2M2
S

αSCF

π

×

(
ð2 − zÞð1 − zÞz

χ
log

χ þ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 4μ

p
χ − β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 4μ

p þ

− 2ð1 − zÞz2 β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 4μ

p
ð1 − β2Þχ2 þ 4β2μ

)
; ð21Þ

FIG. 5. Full set of one-loop corrections to SS annihilation into qq̄.
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where CF ¼ 4=3 and χ ¼ ω=MS. This expression involves
the velocity of the final state quarks in the rest frame of the
qq̄ system (see, e.g., Ref. [31]),

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ − zþ μ

1 − χ þ μ

s
ω; λ → 0
�����! β0 ¼

ffiffiffiffiffiffiffiffiffiffi
1 − z

p ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
q

M2
S

s
:

ð22Þ

To regulate the IR divergence that will arise when integrat-
ing Eq. (21) over the gluon energy, we have introduced a
fictitious mass λ ≪ ω0 for the soft gluon, which appears
through μ ¼ λ2=4M2

S.
Keeping only the leading terms in the limit λ → 0, the

integrated cross section for emission of a soft gluon in the
energy range λ ≤ ω ≤ ω0 is given by

Δσ̃vjeffsoft ¼ σvqq̄
αsCF

π

��
1þ β20
2β0

log
1þ β0
1 − β0

− 1

�
log

4ω2
0

λ2
þ 1þ β20

β0

�
Li2

�
1 − β0
1þ β0

�
þ log

1þ β0
2β0

log
1þ β0
1 − β0

þ

−
1

4
log2

�
1þ β0
1 − β0

�
−
π2

6

	
þ 1

β0
log

1þ β0
1 − β0



: ð23Þ

By construction, this cross section is proportional to the leading order cross section σvqq̄, which corresponds here to the s-
wave part of Eq. (3). This expression can be compared (and agrees) with that of Ref. [25] for decay of the Higgs, with which
it shares the IR divergence term ∝ logðω2

0=λ
2Þ.

2. Virtual one-loop corrections

Physical cross sections should be free of IR divergences as λ → 0. To obtain a IR finite result, we need take into account
the contributions of OðαsÞ virtual one-loop corrections to the leading order cross section into qq̄. This stems from the
interference term between LO and the one-loop corrections

jMtree þM1−loopj2 ¼ jMtreej2 þ 2ReðM�
treeM1−loopÞ þOðα2sÞ:

At one loop, the IR divergent contributions come from the vertex correction and final state fermion wave-function
corrections, depicted by the diagrams of Fig. 6.
Using dimensional regularization inD ¼ 4 − 2ϵ, the virtual correction to the effective vertex is given by (see Ref. [25] for

comparison)

ReMjeff1-loop ¼ Mtree
αsCF

2π

�
2

�
1

ϵ
− log

m2
q

μ2

�
−
1þ β20
2β0

log
1þ β0
1 − β0

log
m2

q

λ2
þ 1þ β20

β0

�
Li2

�
1 − β0
1þ β0

�

þ log
1þ β0
2β0

log
1þ β0
1 − β0

−
1

4
log2

1þ β0
1 − β0

þ π2

3



þ 1 − β20

β0
log

1þ β0
1 − β0

þ 3

	
; ð24Þ

which is both UV and IR divergent.3

According to the Lehmann-Symanzik-Zimmermann reduction formula [32], we must also take into account the OðαsÞ
correction from the one-shell wave function of the final state quark and antiquark, with4

ðZ2 − 1ÞMtree ¼ δ2Mtree ¼ Mtree
αsCF

2π

�
−
1

2

�
1

ϵ
− log

m2
q

μ2

�
þ log

m2
q

λ2
− 2

	
: ð25Þ

3The LO amplitude Mtree is real, so we only need the real part of M1-loop; see also Ref. [25]. As both amplitudes are ∝ jyfj2, this is
true regardless of the phase of the Yukawa coupling.

4The relevance of wave-function renormalization may also be understood as follows. Both the one-loop correction to the effective
vertex and the final state fermion wave-function correction (i.e., Z2) are infrared divergent to OðαsÞ. To the same order, their infrared
divergences are canceled by taking the infrared divergences of FSR from radiation amplitudes. A detail analysis reveals (see, e.g., the
lecture notes by D. Ross [33]) that the IR divergence from the correction to the vertex is canceled by the interference term, that is
emission from distinct legs, while the one from the Z2 factor is canceled by the square of each FSR amplitude, corresponding to emission
from same legs.
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Thus, the one-loop unsubstracted correction to annihilation into a quark-antiquark pair is

ReðM1-loopÞ ¼ Mtree
αsCF

2π

�
3

2

�
1

ϵ
− log

m2
q

μ2

�
−
�
1þ β20
2β0

log
1þ β0
1 − β0

− 1

�
log

m2
q

λ2

þ 1þ β20
β0

�
Li2

�
1 − β0
1þ β0

�
þ log

1þ β0
2β0

log
1þ β0
1 − β0

−
1

4
log2

1þ β0
1 − β0

þ π2

3



þ 1 − β20

β0
log

1þ β0
1 − β0

þ 1

	
: ð26Þ

Comparing the second term of this expression to the first term in Eq. (23), we see that, adding the OðαsÞ one-loop
corrections to the tree-level cross section to the cross section for emission of soft gluons, the dependence on the fictitious
gluon mass [i.e., the terms in logðλ2Þ] disappears [25], leaving only the dependence on the cutoff on the energy of the
emitted gluon ∝ logðω2

0Þ.
The resulting expression has still a UV divergence, which must be appropriately canceled. The renormalization

prescription used in Ref. [20] is the same as the one advocated in Ref. [25] in the case of QCD corrections to Higgs decay
into quarks. In this case, since the current quark mass stems from Yukawa coupling to the Higgs, the counterterm is that for
quark mass renormalization,

δmq

mq
¼ −

CFαs
2π

�
3

2

�
1

ϵ
− log

m2
q

μ2

�
þ 2

	
: ð27Þ

This term clearly cancels the UV divergent part of Eq. (26), but any other prescription would only differ from this choice by
a constant term. Which choice one makes does not matter. Indeed, for fixed particle masses, the only free parameter in the
annihilation cross section [meaning here at OðαsÞ] is the Yukawa coupling yf. Its value is fixed by matching to the cosmic
relic abundance. All other parameters being kept fixed, a different renormalization prescription just amounts to fixing yf to a
(slightly) distinct value. For definiteness, here we use the same prescription of Ref. [20] to renormalize our effective theory.5

Doing so, we get the one-loop correction to the LO cross section

Δσvjeff1-loop ¼ σvqq̄
αsCF

π

�
−
�
1þ β20
2β0

log
1þ β0
1 − β0

− 1

�
log

m2
q

λ2
þ 1þ β20

β0

�
Li2

�
1 − β0
1þ β0

�

þ log
1þ β0
2β0

log
1þ β0
1 − β0

−
1

4
log2

1þ β0
1 − β0

þ π2

3



þ 1 − β20

β0
log

1þ β0
1 − β0

�
− 1

	
: ð28Þ

Adding this contribution to Eq. (23) gives Δσvjeffsoft, which depends on the cutoff energy ω0 but not on λ, i.e.,

Δσvjeffsoft ¼ Δσ̃vjeffsoft þ Δσvjeff1-loop ¼ σvqq̄
αsCF

π

��
1 −

1þ β20
2β0

log
1þ β0
1 − β0

�
log

m2
q

ω2
0

þ…

�	
; ð29Þ

where the dots correspond to terms that are Oðω0
0Þ.

FIG. 6. One-loop corrections to the effective coupling SS → qq̄ relevant for canceling IR divergences (see Sec. II C 2).

5The correspondence with the problem of QCD corrections to SM Higgs decay into quarks rests on the use of an effective vertex. In
principle, a procedure we could follow is to match our effective theory with the more complete theory at the scale(s) at which one
integrates out the heavy degree(s) of freedom. For instance, the one-loop corrections include the box diagram depicted in Fig. 5, which
has a better UV behavior than in the effective theory. With the mass of vectorlike quarkM2

ψ acting as a cutoff, divergent terms 1=ϵ could
actually correspond to ∝ logðM2

ψ=M2
SÞ contributions (see, e.g., Ref. [32]). Using the matching procedure would only introduce minor

corrections (at least compared to the major impact of taking into account bremsstrahlung). See Ref. [20] for further considerations on
errors from using the effective approach.
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3. Hard gluon emission

It remains to determine the spectrum of hard gluons and their contribution to the total NLO cross section. For this, we use
the full theory, including the effects of the vectorlike particle, from the amplitudes of Fig. 2. Since we will put a cutoff on the
energy of the gluon, no gluon mass term is required. The calculations, although cumbersome, are straightforward. The
differential cross section can be written as

dσvqq̄g
dχ

����
full

¼ y4fNc

4πM2
S

αsCF

π

�ð2 − zÞð1 − zÞz
Δ2χ

log
1þ β

1 − β
þ−

2ð1 − zÞz2
Δ2

β

ð1 − β2Þ
1

χ
þ S0ðχÞ



: ð30Þ

In this expression, we have separated the terms that are divergent in the limit χ ¼ ω=MS → 0 from those that are regular; the
latter are collectively expressed as the function S0ðχÞ, the expression of which is extraordinarily long and not particularly
illuminating; its full expression is given for the sake of reference in Appendix A. It contains in particular contributions that
reduce to the known expression of virtual internal bremsstrahlung in the limit of massless quarks; see Eq. (B3). For finite
quark masses, it also includes hard emission from final state quarks and interference terms between the latter and VIB.
Integrating Eq. (30) over ω ≥ ω0, we get

Δσvjfullhard ¼ σvqq̄
αsCF

π

�
−
�
1 −

1þ β20
2β0

log
1þ β0
1 − β0

�
log

β40M
2
S

ω2
0

þ 2

�
log

1 − β20
4

þ 1þ β20
2β0

log
1þ β0
1 − β0

þ 1

�

þ 1þ β20
β0

�
2Li2

�
1 − β0
1þ β0

�
þ 2Li2

�
−
1 − β0
1þ β0

�
−
π2

6
þ 2 log

1þ β0
2β0

log
1þ β0
1 − β0

�	

þ NC

4π2
CF

αsy4f
M2

S

Z
β2
0

0

dχS0ðχÞ: ð31Þ

The first term in this expression involves the cutoff energy ω0. Adding Δσvjfullhard to the soft contribution gives a result that is
independent of ω0. Our final expression for the cross section for s-wave annihilation is then

σvNLO ¼ σvLO þ Δσvjeffsoftðω0Þ þ Δσvjfullhardðω0Þ

¼ σvqq̄

�
1þ αsCF

π

��
1 −

1þ β20
2β0

log
1þ β0
1 − β0

�
log

1 − β20
4β40

þ 1þ β20
β0

�
4Li2

�
1 − β0
1þ β0

�
þ 2Li2

�
−
1 − β0
1þ β0

�
þ 4 log

1þ β0
2β0

log
1þ β0
1 − β0

−
1

2
log2

1þ β0
1 − β0

�

þ 2 log
1 − β20

4
þ 3

β0
log

1þ β0
1 − β0

þ 1

2

	

þ αSCF

4π2
y4fNc

M2
S
dχS0ðχÞ; ð32Þ

which is one of our main results.

D. Discussion

The expression of Eq. (32) is free of infrared divergences
and thus is a priori useful to determine the relic abundance
of S particles and its indirect signatures. It is, however,
too complex to be practical. Furthermore, and despite its
complexity, it still has some limitations. First, the expression
in Eq. (32) diverges close to threshold for quark-antiquark
pair production. Second, due to collinear divergences, it is
pathological in the opposite limit,mq ≪ MS, or β0 → 1. The
same problems arise in the calculation of QCD corrections to
the hadronic decay of the Higgs and the way to solve them is
essentially the same. In this section, we first briefly discuss
what we should do in principle for dark matter annihilation,
and then we explain what we do in practice (see also
Ref. [20] for a similar discussion). By the same token, we

discuss in this section approximations that can be used to
take into account the relevant aspects of radiative corrections
to the DMmodel without resorting to the full complexities of
the OðαsÞ cross section.
We first dispose of the problem posed by the divergent

behavior of the NLO cross section close to threshold
for fermion-antifermion production. For MS ≳mq, corre-

sponding to β0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

q=M2
S

q
→ 0, the annihilation

cross section behaves as

σvNLOjMS≳mq
≈ σvLO

�
1þ αsCF

π

�
π2

2β0
− 1

�	
: ð33Þ

The Oðαs) terms arise from expanding near zero velocity
β0 → 0 the two Spence functions in Eq. (32). As shown in
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Ref. [25], this singular behavior is spurious, as the cross
section should be in a p-wave quark-antiquark final state,
∝ β30. It can be traced entirely to the virtual correction to the
effective vertex in Fig. 6 or, in other words, from Eq. (28).
Physically, it signals the tendency to form a bound state, so
in principle, one should sum an infinite number of diagrams
or, below threshold, take into account a possible quarko-
nium bound state [34]. We consider this to be beyond our
scope. Now, for bb̄ (or τþτ−), the mass of the dark matter
and its charged partners is too small to provide a viable DM
scenario; i.e., we are always far from threshold. A case of
potential interest is a top-philic scenario, with annihilation
of DM into top-antitop pairs (gg) above (respectively,
below) threshold [21]. As the threshold for top-antitop
corresponds to a very specific and narrow region of the
parameter space, we may take the LO annihilation cross
section as a proxy for the true cross section, σvqq̄ð1þ KÞ,
with a K-factor that we estimate empirically (see Ref. [21]).
The cross section is also pathological in the opposite

limit MS ≫ mq or β0 → 1. In particular, the part that is
proportional to σvLO receives a large negative logarithmic
contribution [25,26],

σvNLO≈σvqq̄

�
1þαsCF

π

�
9

4
−
3

2
log

�
4M2

S

m2
q

�	

þ… ð34Þ

The dots represent the terms that are regular for small
z ¼ m2

q=M2
S. Importantly, they reduce to the cross section

for the pure VIB process in the limit z → 0, see Eq. (B3), a
regime in which σvqq̄ → 0 so, a priori, the new logarithmic
term is harmless for most of the parameter space. If not, one
must in principle resum large logarithmic contributions to
the cross section. A simple recipe to address this is to notice
that, as in the case of the Higgs decay, the leading log term

in Eq. (34) is precisely the one-loopOðαsÞ correction to the
quark mass operator [20]. A convenient way to have a
regularized expression for the NLO cross section is thus to
subtract from Eq. (32) the logarithmically divergent term in
Eq. (32) and replace in the expression for σvqq̄ the quark
mass parameter mq by the running mass [25]

mq → m̄ðMSÞ ¼ mq

�
logðm2

q=Λ2Þ
logðM2

S=Λ2Þ
� 4

b0 ð35Þ

with b0 ¼ 11 − 2=3nf the leading order function with nf
the number of quarks lighter than the scale 2MS and
αsðQ2Þ ¼ 4π=ðb0 logðQ2=Λ2ÞÞ.6
Now that we have a complete and reliable description of

the NLO effects, we go on discussing controllable approx-
imations that can be made to obtain simple and practical
expressions for the annihilation cross section with FSR
and VIB. In Fig. 7(a), we show (solid lines) the full, NLO
total cross section [i.e., the expression in Eq. (32), modulo
the caveats discussed above] as a function of the DM mass
MS for three benchmark values of the mass ratio r ¼
ðMψ=MSÞ2 ¼ f1.0; 22; 42g and for z ¼ ðmt=MSÞ2 with mt

the top quark mass. Concretely, what we show is the ratio

σvNLO=σv
ð0Þ
VIB where σvð0ÞVIB is the VIB cross section in the

limit of zero quark mass, Eq. (B3). Clearly, at large DM

mass MS ≫ mq, σvNLO → σvð0ÞVIB. For lower DM masses,

[GeV]

Full

VIB

(a)

[GeV]

First,

Second,

First,

Second,

(b)

FIG. 7. Left panel: Ratio σvNLO=σv
ð0Þ
VIB as function of the DM massMS for three characteristic values of r ¼ M2

ψ=M2
S. The curves are

shown for mq ¼ mt, the top quark mass. The dotted lines corresponds to σvqq̄. By definition, the horizontal dashed line corresponds to
the VIB cross section in the massless limit, σvð0ÞVIB. Right panel: Relative errorsΔ due to the use of the approximate expression of Eq. (36)
(first) or Eq. (37) (second).

6More precisely, the proposed recipe is to replace the factor
m2

q in Eq. (3) by mq → m̄ðMSÞ. Indeed, expanding m̄2ðMSÞ to

leading order in αs gives m̄2ðMSÞ ≈m2
q

�
1 − 3

2
CF
π αs log

�
M2

S

m2
q

��
,

which reproduces the term that diverges as mq → 0. The running
mass is of course regular as mq → 0.
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the cross section is dominated by the chirally suppressed
component ∝ σvqq̄. For increasing r ¼ ðMψ=MSÞ2, the
VIB contribution is relatively suppressed, as it scales like
σvVIB ∝ r−4 while σvqq̄ ∝ r−2; see Eq. (13). The crossover
between the two regimes may be read from Fig. 7(a),
where the dotted lines correspond to the leading order σvqq̄
cross section. The crossing of σvqq̄ and the VIB cross

section occurs roughly forMS=mq ≈ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=0.21CFαs

p
with

mq ≡mt in the figure and the factor 0.21≡ 7=2 − π2=6;
see Eq. (B4).
The main lesson is that the NLO cross section σvNLO is

reasonably approximated by the following simple expres-
sion, in which the leading two-body cross section σvqq̄ is
added to the VIB cross section in the massless limit,

σvNLO ≈ σvqq̄ þ σvð0ÞVIB: ð36Þ

Doing so, the relative error (i.e., the K-factor from QCD
corrections) is Oð20%Þ; see Fig. 7(b), If necessary, an even
better approximation, good to within a few percent [see
solid lines in Fig. 7(b)], is obtained by replacing σvqq̄ with
the NLO expression in the effective theory, see Eq. (B5), or

σvNLO ≈ σvNLOqq̄ þ σvð0ÞVIB: ð37Þ

This is little surprise, as our NLO calculation is built upon
the effective operator in Eq. (2), which should lead to the
dominant contribution to the cross section when VIB
emission may be neglected. Our calculations show that
interference terms play little role, even when VIB is
relevant. More difficult to assess is the error made by
using the effective theory instead of the full one-loop
amplitudes depicted in Fig. 5, but it should not be more
than a few percent, based on the experienced gained in the
case of Majorana dark matter [20]. In Ref. [21], we have
used the approximation of Eq. (36), which is easy to
implement in numerical codes for DM abundance calcu-
lations, like MICROMEGAS [35], just adding the massless
three-body process associated to VIB, as in Eq. (B4), when
it is relevant.

III. DIFFERENTIAL CROSS SECTIONS AND
GAMMA-RAY SPECTRA

A. Differential cross sections

The total annihilation cross section is not only relevant
for determining the relic abundance; it also sets the scale
for indirect searches. But for the latter purpose, we need a
handle on the differential cross sections, both in gamma
rays and in gluons, so as to build their spectra,

dN
dω

¼ 1

σ

dσ
dω

;

where here ω stands for the energy of the emitted gamma or
gluon and σ is the total annihilation cross section into this
channel. This is a priori straightforward, but in practice,
things are more complicated, as to assess the indirect
signature from DM annihilation, say into gamma rays,
what we need is to take into account both the contribution
of the gamma ray produced directly by the annihilation
process (i.e., prompt photons or gluons produced at the
partonic level) and those that will emerge from the process of
fragmentation into hadrons from both the final state quark-
antiquark and the gluon from bremsstrahlung. This requires
resorting to Monte Carlo simulation tools, like PYTHIA [36].
The way we handle this is discussed in the next section.
Here, we focus on the differential cross section at the
partonic level and on the possible simplifications one may
use to get approximate results. Equation (30) is in principle
all we need to determine the spectrum of prompt gluons or
gammas. Its expression is, however, not very convenient, as
it involves all the terms given in Appendix A. In practice, we
may rely on rather simple approximations. The first is to
replace the full expression of Eq. (30) by

dσ
dω

≈
dσFSR
dω

����
mq≠0

þ dσð0ÞVIB

dω
: ð38Þ

In this expression, the first term is the differential cross
section for emission of a gamma or gluon using the effective
theory, that is the amplitudes in Figs. 3(a) and 3(b). Basically,
this contribution is equivalent to the process of Higgs decay
studied in, e.g., Ref. [25]. The second term is the differential
cross section for VIB calculated from the amplitude of

Fig. 2(c), where the superscript in σð0ÞVIB refers to the cross
section in the limit of a massless quark; see Eq. (B2) in
Appendix B. The rationale is that VIB is mostly relevant in
the limit mq ≪ MS (and provided the mediator is not much
heavier than the DM particle). Less obvious is that this
expression works pretty well for intermediate regimes. This
is illustrated in Fig. 8 where, for the specific choice of
MS ¼ 2 TeV, Mψ ¼ 2.4 TeV, and mq ¼ mt, we show the
differential cross section for prompt gamma-ray emission
based on the full calculation (solid black line) compared
to the one obtained from the expression in Eq. (38) (dotted
blue line). The two curves are clearly very close to each
other. We should emphasize that to get a better matching we
have shifted the energy ω in the differential cross section
for the VIB contribution to ωþm2

q=MS, so as to take into
account the finite quark mass effect on the end point of the
gamma-ray spectrum. Modulo this, the correspondence
between the two expressions is surprisingly good. This
simple decomposition into FSR plus VIB suggests a further
approximation, which is to express FSR in terms of the LO
two-body annihilation cross section time a factor that takes
into account the emission of a gamma ray or gluon by the
final state quarks,

RADIATIVE CORRECTIONS TO VECTORLIKE PORTAL … PHYS. REV. D 98, 115029 (2018)

115029-11



dσFSR
dω

≈σvqq̄

�
αQ2

π

��
F ðωÞ log

�
4MSðMS−ωÞ

m2
q

�
−
2MS

ω



:

ð39Þ

In this expression, the factor F is the standard splitting
function for emission of gamma by a final state fermion,

F ðωÞ ¼ M2
S þ ðM2

S − ωÞ2
MS

1

ω
: ð40Þ

In case of emission of a gluon, one must of course replace
the factor αQ2 by αsCF in Eq. (39). The splitting function
captures the collinear divergences that arise in the
limit mq ≪ ω ∼MS, hence for hard emission [29].
Integrating over ω down to a cutoff energy ω0 leads to
the characteristic Sudakov double logarithmic divergence
∝ logðm2

q=M2
SÞ logðm2

q=ω2
0Þ which one can read in the

expression of Eq. (31). We have checked explicitly that
the expression of dσFSR=dω reduces to the expression
of Eq. (39) in the limit mq ≪ ω ∼MS. Doing so, we have
also obtained, on top of the universal Sudakov term, the
last term in Eq. (39). This nonuniversal term is a priori
subdominant in the limit mq ≪ ω ∼MS, but keeping it
gives a good matching to the exact result over broader
range of energies. This is shown in Fig. 8 where the
dashed red line correspond to the differential cross
section obtained by summing the contribution from
Eq. (39) to VIB (in the massless limit). The matching
is not as good as in the previous approximation, Eq. (38),

but for practical applications, it is much simpler and also
more physically transparent. It also paves the way to the
determination of the final gamma-ray spectrum from
hadronization.

B. Gamma-ray spectra

Our final goal is to obtain the gamma-ray spectrum from
annihilation of a S dark matter candidate, taking into
account FSR and VIB emission both of gluons and
gammas. One obvious way to proceed is to implement
directly our differential three-body process into PYTHIA,
by first building a Monte Carlo distribution using, e.g.,
CALCHEP [37], which then can be hadronized using
PYTHIA. This is the strategy we have used in the past
for the case of coupling of the vectorlike portal to light
quarks [19], in which case we could altogether neglect the
quark mass and also the two-body annihilation process.
Clearly, this strategy also applies to heavy quarks in the
limit mq ≪ MS → 0, provided the mediator is not much
heavier than the DM candidate; see Fig. 7(a). In general,
however, the fermion mass and the associated FSR may not
be neglected. The problem is that infrared and collinear
singularities associated to FSR lead to sharp peaks in the
Monte Carlo distribution, which, for numerical conver-
gence purposes, require to introduce a cutoff on the energy
and a priori on the emission angle of the emitted gluon
or gamma to obtain a reliable numerical output. Doing so
for each DM candidate is cumbersome and CPU time
consuming. Now, as discussed at length in the previous
sections, the total cross section(s) can be decomposed into
soft and hard gluon or gamma emission. So, the next idea is
to implement separately soft and hard emissions. The latter
is free of infrared and collinear divergences and so can be
reliably calculated using first CALCHEP to simulate the
three-body process and then PYTHIA for hadronization. One
still has to deal with divergences from soft emission. This,
however, is a radiative correction to a two-body process that
can be handled directly by PYTHIA, which has built-in
simulation of FSR emission, including splitting of gluons,
through Sudakov factors [36].
The separation between soft and hard modes, however,

amounts to considering noninclusive cross sections, which
typically have Sudakov double logarithm divergences. So,
a question is where to put the cutoff between soft and hard
modes. Indeed, Eq. (29) has a Sudakov double logarithm
∝ logðm2

q=M2
SÞ logðm2

q=ω2
0Þ typical of noninclusive cross

sections and which can be traced to the behavior of the
differential cross section in the regime of collinear emis-
sion, so we should avoid taking the cutoff at low energies
where the log diverges. Instead, we take it such that the
FSR and VIB match smoothly. This is depicted in Fig. 9,
where for concreteness we show the spectrum of gamma
rays (at the partonic level) for a candidate with a strong VIB
feature. The blue, solid line is the spectrum obtained using
the full theory, and the red, dashed line is the one from final

FIG. 8. Gamma-ray spectra (partonic level) from an MS ¼
2 TeV DM candidate annihilating into top-antitop using different
approximations. The vectorlike mediator has a mass
Mψ ¼ 2.4 TeV. The spectra has been normalized to the LO
two-body cross section. The black solid line corresponds to the
full expression. The blue dotted one corresponds to the approxi-
mation of Eq. (38), and the dashed red line corresponds to the
approximation of Eq. (39). The spectra have been convolved with
a Gaussian window function with resolution of 10%.
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state radiation using the two-body effective theory. The
cutoff ωc that separates high- and low-energy emission may
be chosen as the energy where the differential cross section
in the effective theory departs from the one in the full
theory.
Once ωc is determined, we can generate hard events

(with CALCHEP and then PYTHIA for hadronization) using
the full theory on one hand and soft events coming from qq̄
with FSR events (using PYTHIA only) on the other hand.
Using the theoretical expression for the differential cross
section in the full theory, it is easy to generate (using
CALCHEP) gluons or gammas with an energy larger than
the cutoff ωc. However, within PYTHIA8, we did not find a

simple way to extract partonic-level events with gluons or
photons with energy ω < ωc. Instead, we first generated
with PYTHIA8 the complete gamma-ray spectrum from the
two-body process, including FSR. Next, we simulated with
CALCHEP the distribution of hard gluons and gammas
events with ω > ωc using the analytical cross section for
the two-body process with FSR. After hadronization of
this part with PYTHIA8, we subtracted the resulting
gamma-ray spectrum from the one obtained in the first
step, to get only the soft part of the gamma-ray spectrum.
Finally, we added back the hard part from the full theory,
which includes VIB effects, to get the final gamma-ray
spectrum. As S annihilation proceeds through several
final states (qq̄þ γ þ g, γγ, gg), the total photon spec-
trum, dNtot

γ =dEγ , is finally given by the sum of the photon

spectrum originating from each final state (dNtt̄þγþg
γ =dEγ ,

dNγγ
γ =dEγ , and dNgg

γ =dEγ, respectively), weighted with
their respective branching ratios. To distinguish prompt
emission gluons and gammas of energy ω, we use Eγ for
the energy of the gamma rays in the final spectrum. The
normalization is with respect to the total full inclusive
annihilation cross section.
We may now consider, for the sake of illustration,

different SM fermionic final states for which the fermion
mass may be a relevant parameter. Concretely, we consider
the τþτ− as well as the bb̄ (Fig. 10) and tt̄ (Fig. 11)
channels. We show spectra for fixed ðmq=MSÞ2 ≡ z ratios,
z ¼ 0.12, r ¼ 1.22, adjusting both the dark matter massMS
and mediator mass Mψ . Each spectrum is generated
following the procedure depicted above, with a specific
cutoff separating the emission of soft and hard gluons or
gammas. We have included for completeness the contri-
bution from annihilation at one loop into two gluons and

FIG. 10. Gamma-ray spectrum from annihilation in a τþτ− (left) or bb̄ (right) model. In the left panel, the dotted (purple) line is the
total spectrum from gamma-ray bremsstrahlung together with τþτ− hadronization, and the dot-dashed (red) curve is the one-loop
gamma-ray line. We have assumed that the resolution on the gamma-ray energy is Gaussian distributed with a relative error of 10%.
The solid (blue) line is the total spectrum. The right panel is for annihilation into bb̄. In this case, bremsstrahlung includes radiation
of a gluon, and the dot-dashed (light blue) line is from the hadronization of the one-loop gluon line. These show that the one-loop
monochromatic emission is negligible and that the feature at high gamma-ray energies is entirely due to the virtual internal
bremsstrahlung contributions.

FIG. 9. Left panel: Differential cross section of gluons in the
full theory and the r → ∞ one. The hatched red and blue are,
respectively, the soft and hard contributions. Note that the crossed
region is counted twice but the additional contribution is
subtracted; see the text.
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into γγ, assuming a gamma-ray detector with resolution
ΔEγ=Eγ ¼ 10%. The parameters of the DM model are
chosen so as to illustrate the possible presence of a feature
in the final gamma-ray spectrum, not taking into account
other possible constraints (relic abundance, direct, indirect,
and collider constraints). In that respect, most relevant are
the two plots of Fig. 11 with coupling of DM to the top
quark, which corresponds to actual DM candidates. The
phenomenology of such DM candidates is discussed in
details in Ref. [21].

IV. SUMMARY AND CONCLUSIONS

We have studied further radiative corrections to a simple
DM scenario, in the form of a real scalar particle annihilat-
ing into SM fermions through a heavy vectorlike fermion.
This topic has been already covered in several phenom-
enological studies [2,9,17–19] that focused on coupling to
light quarks or leptons. Of particular relevance in this
regime is the helicity suppression of the two-body anni-
hilation cross section, akin to p-wave suppression of
Majorana dark matter annihilating into SM chiral fermions
[8,10,11]. This implies in particular that radiative correc-
tions, in the form of one-loop annihilation into two photons
(or gluons) and so-called virtual internal bremsstrahlung,
may play a significant role both in determining the relic
abundance and for indirect searches. Due to infrared and
collinear divergences that affect bremsstrahlung of mass-
less gauge bosons, the extension of these results to heavy
quarks (or annihilation into a τþτ− pair) poses some
technical problems, which we have tried to overcome in
the present work. The motivation was manifold, but the
main aim was to try to test simple approximations that
could be then applied for phenomenological studies, in
particular to the case of top-philic coupling, a topic of much
interest, in particular from the perspective of simplified DM
searches at the LHC. Such study has been the object of a
separate publication [21] (see also Refs. [38–41]). Here, we
focused on technical aspects of the calculations. In par-
ticular, following a proposal of Ref. [20], we have adapted

an effective approach suited for emission of soft gamma or
gluons and that circumvent several unnecessary steps in the
regularization of infrared divergences. From an effective
approach perspective, much of the calculations map to the

FIG. 11. Characteristic gamma-ray spectrum from annihilation into tt̄. The meaning of the various curves are the same as in Fig. 10.

(a)

(b)

FIG. 12. Both panels: the DM candidates within the solid
(red) lines in the plane ðMS;Mψ=MS − 1Þ have an abundance
that matches the cosmological observations [21]. The contours
in panel (a) give the relative error between the tree-level
annihilation cross section σvqq̄ and its full expression at
NLO, jσvNLO − σvqq̄j=σvNLO. Panel (b) gives instead

jσvNLO − σvqq̄ − σvð0ÞVIBj=σvNLO. See the text.
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equivalent problem of radiative corrections to Higgs decay
into SM fermions [25,26]. This approach, which is quite
systematic, albeit pedestrian, has, we believe, also a
pedagogical value. In particular, it illustrates in a simple
framework how the cancellation of infrared and collinear
divergence takes place in the calculation of a total cross
section, in agreement with standard quantum field theory
theorems. At the end of the day, our main results include
a full, explicit but unpractical expression for the total
annihilation cross section for S DM into SM fermions at
NLO in αs (or α). Building on this full calculation, we have
studied several simple approximations, both to the total and
differential cross sections. The take-home lesson is that the
simple approximations discussed in the bulk of this article
are well suited for phenomenological studies, as discussed
in details for the case of coupling to the top quark [21]. As
an invitation to Ref. [21], we briefly discuss here the impact
of radiative corrections on the relic abundance for such top-
philic scenario. In Figs. 12, the solid (red) lines border, in
the ðMS;Mψ=MS − 1Þ plane, delimitate the DM candidates
of which the abundance matches the cosmological obser-
vations. As the model has only three parameters, to each
candidate between the two solid (red) line corresponds a
viable candidate and thus a specific value of its Yukawa
coupling. In the left panel, Fig. 12(a), we report the
absolute difference between the tree-level or leading order
annihilation cross section σvqq̄ and the full expression we
have obtained taking into account radiative corrections
(NLO) or 1 − σvqq̄=σvNLO. Clearly, radiative corrections
begin to be substantial for mq=MS ¼ mtop=1 TeV ≈ 0.2.
One also sees that radiative corrections are substantial
for large values of MS and relatively degenerate values of
Mψ . This reflects the fact that the radiative processes
become more and more dominated by VIB emission in
this regime, as already emphasized and explained
in several places in the literature, both for Majorana
[12–16] and scalar DM [2,9,17,18]. We refer the reader to

Sec. II D, where one can also find the origin of specific
features, for more details. For instance, the narrow funnel
region seen in Fig. 12(a) for large MS corresponds to
parameters for which the NLO corrections change sign.
One sees from Fig. 7(a) that QCD correction is negative
in the regime for which the two-body cross section is
dominant, leading to a decrease of the total annihilation
cross section, while as Mψ=MS increases, VIB becomes
eventually dominant over σvqq̄. In Fig. 12(b), we show the
improvement we obtain taking into account only VIB

in the massless limit, namely 1 − ðσvqq̄ þ σvð0ÞVIBÞ=σvNLO.
Using instead Eq. (39) would have given an error that is
less than 10% over the whole ðMS;Mψ=MS − 1Þ plane.
This illustrates, for the specific problem of determining
the abundance, both the relevance of radiative corrections
and the benefit of using approximate expressions, key
results of the present work.7 Further aspects, like the
impact of bremsstrahlung for indirect detection, are
discussed extensively in Ref. [21], to which we refer
for further details.
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APPENDIX A: S0ðχ Þ FUNCTION

The function S0ðχÞ consists of a combination of several
polynomials PiðχÞ,

S0ðχÞ ¼
−1
2Δ2

�
P1ðχÞ

βðΔ − χÞ2 þ
P2ðχÞ

ΔβðΔ − χÞ þ
β

1 − β2

�
1

Δ3
ðβ2P3ðχÞ þ P4ðχÞÞ þ P5ðχÞ

�

þ 1

Δ2 − 2Δþ ð1 − β2Þχ2
�
β

Δ
P6ðχÞ þ

1

Δβ
P7ðχÞ þ

1

Δ3

β

1 − β2
ðβ4P8ðχÞ þ P9ðχÞ þ β2P10ðχÞÞ

�

þ log
1þ β

1 − β

�
P11ðχÞ
Δ

þ P12ðχÞ
Δ − 2χ

þ P13ðχÞ
�
þ log

Δ − ð1 − βÞχ
Δ − ð1þ βÞχ

�
Δ2

ðΔ − χÞ3 P14ðχÞ þ
P15ðχÞ
Δ

þ P16ðχÞ
Δ2

1

Δ − 2χ
þ P17ðχÞ

Δ2

1

Δ − χ
þ P18ðχÞ

Δ
1

ðΔ − χÞ2
�	

; ðA1Þ

where we have used the shorthand Δ≡ 1þ r − z for the factor originating from the propagator of the mediator field ψ .
The Pi themselves are polynomials in χ:

7The residual errors at low massMS < 300 GeV are due to bound state formation effects. In that region, the simplest cure is to use the
tree-level cross section; see the discussion in Sec. II D.
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P1ðχÞ ¼ 2ðr3 þ rð1 − zÞ2 þ 2ð1 − zÞ3 þ 2r2zÞχ − 4ðr2 þ ð1 − zÞ2Þχ2
P2ðχÞ ¼ 2Δð5 − 4rþ 3r2 − 6zþ z2Þχ − 4ð3 − rþ 4r2 − 4zþ z2Þχ2 þ 8rχ3

P3ðχÞ ¼ 6Δ2zð2r − ΔÞχ þ 4Δzð2r − ΔÞχ2 − 16zð2r − ΔÞχ3
P4ðχÞ ¼ 4ðr2 − 2rð2 − zÞ − 5ð1 − zÞ2ÞΔ2z − 2ð3r − 11ð1 − zÞÞΔ2zχ − 20Δzð2r − ΔÞχ2 þ 16zð2r − ΔÞχ3
P5ðχÞ ¼ 16ð1 − zÞz
P6ðχÞ ¼ −2Δð1 − zÞðð1þ rÞ2 þ 2rz − z2Þχ þ 2ðrð2þ rÞ þ ð1 − zÞ2ÞΔχ2 þ 4ð3 − 3rþ 2r2 − 2ð2 − rÞzþ z2Þχ3 − 8rχ4

P7ðχÞ ¼ −2Δð4r3 þ 2rð1 − zÞ2 − r2ð1þ zÞ þ ð1 − zÞ2ð7 − 3zÞÞχ þ 2Δðrð−6þ 13rÞ
þ ð1 − zÞð13 − 5zÞÞχ2 − 4ð3rþ 6r2 − 2ð2þ rÞzþ z2Þχ3 þ 8rχ4

P8ðχÞ ¼ 6Δ2zð2r − ΔÞχ3 þ 4Δzð2r − ΔÞχ4 − 16zð2r − ΔÞχ5
P9ðχÞ ¼ 4Δ4zð−r2 þ ð1 − zÞ2 þ 2rzÞ þ 4Δ3zð3r2 − 7ð1 − zÞ2 − rð4þ zÞÞχ þ 4ðr2 þ rð8 − 6zÞ þ 7ð1 − zÞ2ÞΔ2zχ2

− 2ð25r − 17ð1 − zÞÞΔ2zχ3 þ 52Δzð2r − ΔÞχ4 − 16zð2r − ΔÞχ5
P10ðχÞ ¼ −4Δ3zðr2 − ð1 − zÞ2 − rzÞχ þ 4Δ2zð3r2 − 3ð1 − zÞ2 − 2rzÞχ2 þ 4Δ2ð1þ 3r − zÞzχ3 − 56Δzð2r − ΔÞχ4

þ 32zð2r − ΔÞχ5
P11ðχÞ ¼ 3 − rð1þ ð3 − rÞrÞ − zþ rð8þ rÞz − ð5þ 9rÞz2 þ 3z3 − 2Δð2r − ΔÞχ
P12ðχÞ ¼ −19 − rð15 − ð3 − rÞrÞ þ 29zþ ð4 − rÞrz − ð7 − 9rÞz2 − 3z3 þ ð4ð13þ rð2þ rÞÞ − 2ð19þ rÞz − 6z2Þχ

− 4ð7þ r − zÞχ2
P13ðχÞ ¼ 4ð4 − zð2þ zÞÞ − 4ð4 − zÞχ
P14ðχÞ ¼ −r3 − rð1 − zÞ2 − 2ð1 − zÞ3 − 2r2zþ 2ðr2 þ ð1 − zÞ2Þχ
P15ðχÞ ¼ 3 − rð1þ ð3 − rÞrÞ − zþ rð8þ rÞz − ð5þ 9rÞz2 þ 3z3 − 2Δð2r − ΔÞχ
P16ðχÞ ¼ −Δ2ð7r2 − r2ð5þ 17zÞ þ rð−15þ ð34 − 21zÞzÞ − ð1 − zÞð3 − zð8 − 11zÞÞÞ

þ 2Δð2ð1þ rÞð4 − 3rÞð1 − 3rÞ − ð3 − 5ð12 − 5rÞrÞz − 2ð11þ 21rÞz2 þ 17z3Þχ
− 4ð21r3 þ r2ð7 − 25zÞ þ ð1 − zÞ2ð13þ 9zÞ − rð1 − zÞð1 − 13zÞÞχ2 þ 16ð1þ 6r2 þ rð3 − 4zÞ − z2Þχ3 − 32rχ4

P17ðχÞ ¼ Δ2ð4r3 − 13r2z − ð1 − zÞð4 − 3ð1 − zÞzÞ − 2rð4 − zð5 − 2zÞÞÞ
− 2Δð2ð1 − rÞð1þ rÞð2 − 5rÞ − ð2 − 3ð9 − 5rÞrÞz − ð10þ 19rÞz2 þ 8z3Þχ
þ 4ð11r3 þ r2ð5 − 14zÞ þ ð1 − zÞ2ð7þ 4zÞ þ rð1þ ð4 − 5zÞzÞÞχ2 − 8ð1þ 6r2 þ rð3 − 4zÞ − z2Þχ3 þ 16rχ4

P18ðχÞ ¼ Δ3

�
1 − rð4 − 7rÞ − 4r2ð1þ rÞ

Δ
þ 2zþ 4rz − 3z2

�
þ 2Δð−5Δ2ð1þ zÞ

þ rð13þ 8r − 5r2 − 13ð1 − rÞzÞÞχ þ 2ð11r3 þ r2ð5 − 13zÞ þ ð1 − zÞ2ð7þ 5zÞ
þ rð1þ ð6 − 7zÞzÞÞχ2 þ 4ð1þ 6r2 þ rð3 − 4zÞ − z2Þχ3 þ 9rχ4: ðA2Þ

APPENDIX B: USEFUL LIMITING BEHAVIORS

In the limit z ¼ m2
q=M2

S → 0, the complex expressions of A reduce to

S0ðχÞjz¼0 ¼
1 − χ

ðΔ − 2χÞðΔ − χÞ3
�ðΔ − χÞ

Δ
χðΔ2 − 2Δχ þ 2χ2ÞþΔ

2
ðΔ − 2χÞ2 logΔ − 2χ

Δ

�
: ðB1Þ

For annihilation in an s-wave, the LO cross section vanishes σvqq̄jz¼0 ¼ 0, so all the complications induced by IR
divergences drop, and one recovers the known expressions for VIB for massless fermions,
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dσð0ÞVIB

dω
¼ Ncy4f
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and
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In the limit r → 1,

σvð0ÞVIB →
Ncy4f
8πM2

S

αSCF

π

�
7

2
−
π2

3

�
: ðB4Þ

In the opposite limit, r ¼ Mψ=MS ≫ 1, VIB may be neglected. With a factor of σvqq̄ instead of the tree-level decay rate
of the Higgs, we recover the expression of Ref. [25] (see erratum of Ref. [25]),

σvNLOqq̄ ¼ σvqq̄
CFαS
π

�
Aðβ0Þ
β0

þ 3þ 34β20 − 13β40
16β30

log
1þ β0
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8β20
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; ðB5Þ

where

Aðβ0Þ ¼ ð1þ β20Þ
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