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We present a model based on the SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX gauge symmetry that relates the mass
hierarchy of the fermions with the solution to the strong CP problem through the Uð1ÞPQ Peccei-Quinn
symmetry. This last symmetry arises accidentally with the imposition of a discrete Z9 symmetry, which
also secludes the different scales in the double seesaw mechanism taking place in the neutrino sector. The
symmetry breakdown is performed by three scalar triplets plus a scalar singlet hosting an axion field, whose
particle excitation can be a component of dark matter. We show a mechanism where a small effective
vacuum expectation value is generated for a scalar triplet which is supposed to have a bare mass above the
energy scale where the SUð3ÞL ⊗ Uð1ÞX symmetry is broken. Combined with the energy scale in which
the Uð1ÞPQ is broken, such a mechanism gives rise to a natural hierarchy to the fermions. Beyond the
Standard Model particle content, the model predicts an invisible axion, a, three GeV neutrinos, NiL, plus
several new particles at the TeV scale which are: five vector bosons, U�, V0, V0†, and Z0; one up-type U,
and two down-type Da quarks; and at least a CP-even, H1, plus non-Hermitian neutral, ϕ0, ϕ0†, scalar
bosons. The model may be tested by looking for the possible production of such particles at the LHC.
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I. INTRODUCTION

Despite the great experimental success, the Standard
Model (SM) of particle physics leaves unanswered many
pressing questions. Some of them are of crucial importance
for our understanding of the Universe, such as the mecha-
nism behind neutrino masses, the solution to the strong CP
problem, and the essence of dark matter. Other open
questions, although sometimes treated with less interest,
are very intriguing from a theoretical viewpoint and are
worth exploring. For example, the reason why there is a
strong mass hierarchy among the different fermion families
and why the number of families in nature turns out to be
exactly three. A common feature that connects these
problems is the fact that they all seem to call for physics
beyond the SM.

In this paper we present a model based on the SUð3ÞC ⊗
SUð3ÞL ⊗ Uð1ÞX symmetry that belongs to the known
class of 3-3-1 models for which the number of fermion
generations is not arbitrary but follows from the require-
ment that all gauge anomalies must cancel [1–6]. Our
construction is motivated by two interrelated issues. The
first is the strong mass hierarchy among the fermions,
including the even larger mass gap to the neutrinos. We
explain this last aspect with the double seesaw mechanism
[7–9]. The second issue is the strongCP problem which we
solve through the Peccei-Quinn (PQ) mechanism [10–12],
resulting in an invisible axion that can play a role of dark
matter [13–16].1
In our construction, the fermion mass hierarchies and

the Uð1ÞPQ Peccei-Quinn symmetry will arise, in the latter
case accidentally, from the 3-3-1 gauge structure and an
additional Z9 symmetry. Some of the mass hierarchies
will reflect the hierarchy among the different scales in the
spontaneous breaking of the gauge group. More specifi-
cally, the generation of fermion masses in our model is
such that both up-type and down-type quarks present
natural mass hierarchies between their third and first two
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1Alternative ways of implementing a PQ symmetry in 3-3-1
models can be found in Refs. [17–19].
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generations. In order to obtain charged lepton masses in
agreement with experimental data, the model requires
much less suppressed Yukawa couplings than those in
the SM. Finally, when it comes to neutrino masses, the
double seesaw mechanism is easily implemented after
extending the fermion content of Refs. [1–4] by including
singlet neutrino fields.
The spontaneous symmetry breaking is realized by three

scalar triplets of SUð3ÞL plus a scalar singlet getting a
vacuum expectation value (vev). We develop a scheme in
which one of the scalar triplets is assumed to have a bare
mass above the scale w where the SUð3ÞL ⊗ Uð1ÞX is
broken to SUð2ÞL ⊗ Uð1ÞY , so that it can be integrated out
leading to a low energy effective 3-3-1 model with two
scalar triplets. We show that, along with the vev of the
scalar singlet breaking theUð1ÞPQ symmetry, this furnishes
a consistent hierarchical fermion mass spectrum.
In addition to the Standard Model particle content, the

model predicts five vector bosons: a singly charged U�; a
neutral non-Hermitian pair V0, V0†; and a real Z0. The
masses of these vector bosons are expected to be at the TeV
scale, according to our scheme for generating hierarchical
masses to the fermions. Such scheme also leads to the
specific prediction for the mass difference of the squared
masses of the V0 and U� as being essentially equal to the
W� vector boson squared mass, i.e., M2

V −M2
U ≃M2

W .
Besides the Higgs boson with mass mh ≈ 125 GeV, the
scalar particle spectrum up to the TeV scale is composed by
a light axion—the pseudo-Nambu-Goldstone boson of the
Uð1ÞPQ symmetry broken at a very high energy scale
around 1010 GeV—plus a CP-even and a non-Hermitian
neutral fields,H1 and ϕ0, both with masses around the TeV
scale. The remaining scalars, among which there are two
charged fields, have masses well above the TeV scale and
outside of the direct LHC reach.
The question of finding an explanation to the hierarchy

of fermion masses in a different version of the 3-3-1 model
with a minimal scalar sector was first treated in [20]. Our
novel contribution to this quest is to demonstrate that the
scales required to generate hierarchical fermion masses
can be identified in a nontrivial way with those breaking
the SUð3ÞL ⊗ Uð1ÞX and Uð1ÞPQ symmetries in our
3-3-1 model.
Other recent studies have also tackled the question of

fermion mass hierarchy in 3-3-1 models [21–26], but from

another perspective. In such works, the observed mass
hierarchies follow from the imposition of different discrete
flavor symmetries alongside several new scalar fields. In
our case, however, we keep the scalar sector as minimal as
possible by adding only one scalar singlet and, in addition
to a discrete symmetry, our model features an accidental
Uð1ÞPQ symmetry.
We organize this work as follows. In the next section we

specify the model through its field representation content,
the main aspects of the symmetry breaking, and the gauge
bosons mass spectrum. We present in Sec. III the mecha-
nism for generating hierarchical fermion masses in the
model, including the double seesaw mechanism for the
neutrinos, and comment on the suppression of lepton flavor
violating processes. The mass spectrum of the scalars
predicted by the model is presented in detail in Sec. IV.
Section V is devoted to an analysis of flavor changing
neutral currents. We finish with our conclusions in Sec. VI.

II. THE FIELD CONTENT

Different versions of 3-3-1 models can be defined
through the electric charge operator

Q ¼ T3 þ βT8 þ X; ð1Þ

where T3 and T8 are the diagonal SUð3ÞL generators, and X
is the quantum number associated with the Abelian
symmetry Uð1ÞX. The parameter β characterizes the
embedding of the hypercharge operator Y ¼ βT8 þ X,
which commutes with the SUð2ÞL generators, within
SUð3ÞL ⊗ Uð1ÞX. In this work, we consider a version
with β ¼ −1=

ffiffiffi
3

p
[1–4], adding right-handed neutrino

singlet fields to its minimal fermion content required to
cancel the gauge anomalies. Contrary to the cases defined
by β ¼ � ffiffiffi

3
p

, the current version does not contain fields
with exotic electric charges and does not suffer from
nonperturbativity issues at low scales [27,28].
Taking into account that with respect to SUð3ÞL the left-

handed fermions are arranged into triplets/antitriplets,
while the right-handed fermions are singlets, the fermionic
multiplets are defined as follows. For the quarks we have
two antitriplets—containing the left-handed quarks corre-
sponding to the first two generations—and one triplet, plus
the corresponding right-handed components in singlets,

QaL ≡
0
B@

daL
−uaL
DaL

1
CA

L

∼ ð3; 3�; 0Þ; Q3L ≡
0
B@

u3L
d3L
UL

1
CA ∼

�
3; 3;

1

3

�
;

u0nR ¼ ðuiR; URÞ ∼ ð3; 1; 2=3Þ; d0mR ¼ ðdiR;DaRÞ ∼ ð3; 1;−1=3Þ; ð2Þ

where a ¼ 1, 2, n ¼ 1, 2, 3, 4 and m ¼ 1, 2, 3, 4, 5. For the leptons we have three triplets, three right-handed singlets
carrying electric charge, plus three right-handed neutral singlets,
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ΨiL ≡
0
B@

νiL

e−iL
NiL

1
CA ∼

�
1; 3;−

1

3

�
;

SiR ∼ ð1; 1; 0Þ; e−iR ∼ ð1; 1;−1Þ; ð3Þ

where i ¼ 1, 2, 3. The numbers in parentheses above
describe how these objects transform under the SUð3ÞC,
SUð3ÞL and Uð1ÞX gauge symmetries, respectively.

The introduction of the right-handed neutral singlets SiR
is not mandatory for canceling the gauge anomalies, and
were not present in the first versions of the model [1–4].
However, as we will see, such singlets play an important
role here in the double seesaw mechanism for generating
small masses for the active neutrinos.
The set of scalar fields we consider to break the

symmetries contains three triplets of SUð3ÞL, as in the
first versions of the model,

η≡
0
B@

η01
η−2
η03

1
CA ∼

�
1; 3;−

1

3

�
; χ ≡

0
B@

χ01
χ−2
χ03

1
CA ∼

�
1; 3;−

1

3

�
; ρ≡

0
B@

ρþ1
ρ02
ρþ3

1
CA ∼

�
1; 3;

2

3

�
; ð4Þ

plus a singlet

σ ∼ ð1; 1; 0Þ: ð5Þ

The scalar singlet σ plays two important roles in our model.
First, it allows the implementation of the solution to the
strong CP problem through the Peccei-Quinn mechanism,
hosting the axion as a dark matter candidate. Second,
through its vev, hσi ¼ vσ=

ffiffiffi
2

p
, it takes part in the suppres-

sion mechanism leading to hierarchical fermion masses.
In order to break the SUð3ÞL ⊗ Uð1ÞX symmetry down

to the electromagnetic factor Uð1ÞQ, along with a consis-
tent mass generation for the fermions, we consider that the
components χ03, η

0
1, and ρ02 acquire different nonvanishing

vevs. The vev hχ03i ¼ w=
ffiffiffi
2

p
leads to the symmetry break-

down SUð3ÞL ⊗ Uð1ÞX → SUð2ÞL ⊗ Uð1ÞY , while the
vevs hη01i ¼ v=

ffiffiffi
2

p
and hρ02i ¼ u=

ffiffiffi
2

p
perform the sym-

metry breakdown SUð2ÞL ⊗ Uð1ÞY → Uð1ÞQ. Although
both the scalar triplets η and χ have each two neutral
components, we can consider that only χ03 and η01 get
nonzero vevs. One vev of the neutral components in χ can
be eliminated by reparametrization freedom, as discussed
in Ref. [20], and the second neutral component vev in η
vanishes from the minimization conditions.

It will be shown that in our scheme u is an effective vev,
coming from interactions between the triplet ρ and the other
scalar fields in the potential. Thus, we can assume a
hierarchy among vevs: w ≫ v ≫ u, with v ≈ 246 GeV
being the electroweak breaking scale. As we will discuss
later, the smallness of u arises from the fact that the field ρ
is taken very massive from the beginning, having a mass
Mρ ≫ w. In this way this field can be integrated out, and its
degrees of freedom will be too heavy to be produced at any
ongoing or near-future particle accelerator reaching up to
energies of no more than a few TeVs. A direct consequence
of this consideration in our construction is that we are left,
in principle, with a reduced number of scalar fields at low
energies compared to other 3-3-1 models.
The SUð3ÞL ⊗ Uð1ÞX gauge symmetry gives rise to nine

gauge bosons forming physical states defined through the
quadratic terms in L ¼PϕjDμhϕij2, for ϕ ¼ η, χ, ρ, with
the covariant derivative Dμ¼∂μ− igTaWa− igXBμ, where
Ta, with a ¼ 1;…; 8, are the SUð3ÞL generators,2 and g, gX
the gauge coupling constants of SUð3ÞL and Uð1ÞX,
respectively. Four of these gauge bosons correspond to
those of the SM: the photon, Z, andW�. The remaining five
gauge bosons, denoted by Z0, V0, V0†, U� are supposedly
heavier, with their masses related to the scale w.
The non-Hermitian gauge bosons can be written as

Wþ
μ ¼ W1μ − iW2μffiffiffi

2
p ; V0

μ ¼
W4μ − iW5μffiffiffi

2
p and U−

μ ¼ W6μ − iW7μffiffiffi
2

p ; ð6Þ

and their masses are

M2
W� ≃

g2v2

4
; M2

V0 ¼ M2
ðV0Þ† ¼

g2

4
ðv2 þ w2Þ and M2

U� ≃
g2w2

4
; ð7Þ

2In the fundamental representation Ta ¼ λa
2
, where λa are the Gell-Mann matrices.
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where contributions coming from u ≪ v, w have been
neglected. This implies a peculiar tree-level relation
M2

V0 −M2
U� ≃M2

W� . We can see that this mass splitting
coincides with the one in Ref. [20], but the ordering is
opposite: here V0 is heavier. This fact could be used to
distinguish both models if, eventually, the new gauge
bosons were discovered.
The massless field Aμ, associated with the photon, is

given by

Aμ ¼
ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4t2

p
�
tW3

μ −
tffiffiffi
3

p W8
μ þ Bμ

�
:

Finally, the last two physical fields in the gauge sector
spectrum are the massive neutral gauge bosons Z1

μ and Z2
μ.

These fields can be conveniently written in terms of Zμ and
Z0
μ, where the former is the SM Z boson, and the latter is

associated with the 3-3-1 symmetry breaking down to the
SM group,

�
Z1

Z2

�
¼
�
cosφ − sinφ

sinφ cosφ

��
Z

Z0

�
: ð8Þ

The mixing matrix above diagonalizes the following mass
matrix, written in the basis ðZμ; Z0

μÞ,

MZ ¼
 

M2
Z M2

ZZ0

M2
ZZ0 M2

Z0

!
; ð9Þ

where

M2
Z ¼ g2v2

4cos2ðθWÞ
; M2

ZZ0 ¼ −M2
Z

cosð2θWÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4sin2ðθWÞ

p ;

M2
Z0 ¼ M2

Z cosð2θWÞ þ g2w2cos2ðθWÞ
3 − 4sin2ðθWÞ

; ð10Þ

with sin2ðθWÞ ≈ 0.231. Thus, the mixing angle φ between
the SM Z boson and Z0 is

tanð2φÞ ¼ 2M2
ZZ0

M2
Z0 −M2

Z
: ð11Þ

For w ¼ 10 TeV (MZ0 ≈ 4 TeV), e.g., we obtain φ ≈
−10−4 in such a way that for most analyses it is enough
to take Z1

μ ¼ Zμ and Z2
μ ¼ Z0

μ.

III. FERMION MASSES

In this section, we explore the generation of mass to all
fermions in the model. We divide it in three main steps.
First, we consider the renormalizable interactions of the
fermion fields with two scalar triplets only: η and χ.
Second, after showing that this configuration is not enough

to render all fermions massive, we include effective
operators coming from the integration of the heavy scalar
triplet ρ and show that all fermions become massive. At this
point, although no massless fermion remains, the mass
hierarchies provided by the model do not reproduce
naturally the experimental results. This issue is then
dealt with in the third step with the imposition of a dis-
crete symmetry along with the introduction of the scalar
singlet σ.
We start by writing down all renormalizable Yukawa

terms allowed by the gauge symmetries involving all
fermions and two scalar triplets, η and χ,

−LY ¼ hνijΨiLηSjR þ hNijΨiLχSjR þ 1

2
μijSciRSjR

þ hdamQaLη
�d0mR þ hDamQaLχ

�d0mR

þ hunQ3Lηu0nR þ hUn Q3Lχu0nR þ H:c:; ð12Þ

where hνij, h
N
ij and μij, or simply hν, hN , μ, are 3 × 3

complex matrices; hdam, hDam (hd, hD) are 2 × 5 matrices;
and hun, hUn (hu, hU) are 1 × 4 matrices. As shown
previously in different 3-3-1 versions, when considering
a minimal scalar sector containing only two triplets, some
fermions remain massless due to the presence of a residual
Peccei-Quinn-like (PQL) symmetry [20,29]. In the current
case, considering the operators in Eq. (12) with the first
component of η and the third component of χ acquiring
nonvanishing vevs, one can see that the charged leptons, the
up-type quarks of the first two families, and the down-type
quark of the third family do not get mass terms.
In order to generate masses to all fermions, the global

PQL symmetry must be broken explicitly. This step can be
achieved with the introduction of the following nonrenor-
malizable dimension-5 operators, suppressed by an energy
scale Λ ≫ w:

−L5 ¼
yνij
Λ

½ΨiLΨc
jL�½χη� þ

yeij
Λ

ΨiL½χη��ejR

þ ydm
Λ

Q3L½χη��d0mR þ yuan
Λ

QaL½χη�u0nR þ H:c:; ð13Þ

where the terms between brackets should be understood as
the antisymmetric product of the respective SUð3ÞL triplets,
whose components are, e.g., ½χη�p ≡ ϵpqrχqηr, with p, q,
r ¼ 1, 2, 3. The coupling matrices in the Lagrangian above
can be classified as 3 × 3 matrices: yνij, y

e
ij (y

ν, ye); a 2 × 4

matrix: yuan (yu); and a 1 × 5 matrix: ydm (yd). Additionally,
yν is antisymmetric.3 Similarly to the mechanism proposed
in Ref. [20], in Sec. IV we show that the effective operators
in Eq. (13) can eventually emerge considering that, differ-
ently from the triplets η and χ, the scalar triplet ρ defined in

3As an effective operator, a symmetric piece could be present
but it will not arise from integrating out ρ; see Sec. IV B.
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Eq. (4) has a mass term L ⊃ −M2
ρρ

†ρ, withMρ ≫ w. Thus,
at lower energies (∼w) we have that ρ ≃ ½χη�=Λ so that this
field can be integrated out leading to the effective operators
in Eq. (13). The energy scale Λ is related to the mass
Mρ and the vev vσ of the scalar singlet as we will see. A
small effective vev is then generated for the neutral
component of ρ,

hρ02i ¼
vw
2Λ

¼ uffiffiffi
2

p : ð14Þ

When the Lagrangians in Eqs. (12) and (13) are taken
into account, and the scalar triplets acquire nonvanishing
vevs, the mass matrices below are generated making all
fermions massive.

(i) 3 × 3 charged lepton mass matrix:

Me ¼ uffiffiffi
2

p ye: ð15Þ

If we identify the energy scale u with the mass
of the heaviest charged lepton, the tau, we have
u ∼mτ ∼ 1 GeV, implying that Λ ∼ 106 GeV with
v ∼ 102 GeV and w ∼ 104 GeV. To obtain the cor-
rect masses for the lighter charged leptons, the muon
and the electron, suppressed couplings in ye are
required. When comparing to the SM case, where
the charged fermion masses are proportional to vEW,
instead of u, our model requires less suppression of
the Yukawa constants.

(ii) 4 × 4 up-type quark mass matrix written in the basis
(ua, u3, U):

M̃u ¼ 1ffiffiffi
2

p

0
B@

−uyu

vhu

whU

1
CA: ð16Þ

For the up-type quarks, we see that the first two SM
families get masses proportional to u, the mass of the
top quark is proportional to v, and the new quark
mass is proportional to w. Thus, the present model
provides a more natural way of explaining the mass
hierarchy between the third and the other two
families than the SM.

(iii) 5 × 5 down-type quark mass matrix in the basis
(da, d3, Da):

M̃d ¼ 1ffiffiffi
2

p

0
B@

vhd

uyd

whD

1
CA: ð17Þ

In this case, however, we notice an inverted hier-
archy, since the first two down-quark families have

masses proportional to v, while the third, which
should be heavier, gets a mass proportional to u.

Having two neutral fermion fields in each lepton triplet
ΨiL plus three fermionic neutral singlets SiR, the model can
feature a double seesaw mechanism for neutrino mass
generation [7–9].

(i) The neutrino mass matrix, in the flavor basis
ðνiL; NiL; SciRÞ with convention ψLψ

c
L, is given by

M̃ν ¼

0
B@

0 mL mν
D

ðmLÞT 0 mN
D

ðmν
DÞT ðmN

DÞT μ

1
CA; ð18Þ

with
ffiffiffi
2

p
mL ¼ −2uyν,

ffiffiffi
2

p
mν

D ¼ vhν,
ffiffiffi
2

p
mN

D ¼
whN and μ was defined in (12), all of which are
3 × 3 matrices. With this texture, the double seesaw
takes place naturally when μ ≫ w ≫ v, u, where μ is
the order of magnitude of μ. The lightest neutrinos,
i.e., the active ones, will get the following dominant
contribution to its mass matrix:

Mν ≃mL½ðmN
DÞT �−1μðmN

DÞ−1mL
T

∼ 2yν½ðhNÞT �−1μðhNÞ−1ðyνÞT × 10−8: ð19Þ

Therefore, to get down to the sub-eV scale for the
active neutrino masses, with μ ≫ w ∼ 104 GeV, a
large amount of suppression of the Yukawa cou-
plings will be required. When assuming that
μ ¼ 108 GeV, e.g., one way of getting light enough
neutrinos is to take the coefficients in yν to be no
larger than 10−4, for hN of order one. Note that one
neutrino is automatically massless within this
approximation because of the antisymmetry of yν.

In the next subsections, we implement the third step: the
imposition of a discrete symmetry and the introduction
of the scalar singlet σ that breaks it down spontaneously.
With these new ingredients, in Sec. III A, we show how to
obtain hierarchical masses to all charged fermions and, in
Sec. III B, how suppressed Yukawa couplings naturally
arise to generate the correct mass scale for active neutrinos.
As added bonuses, we observe that the model now counts
with an invisible axion which solves the strongCP problem
and plays the role of cold dark matter.

A. Hierarchical quark masses

We start this section by assuming that in addition to the
gauge symmetries, our model is also invariant under a
discrete Z9 symmetry. Under this discrete symmetry, the
fermion and scalar fields, including the scalar singlet σ
defined in Eq. (5), transform as described in Table I.
Such a discrete symmetry forbids some of the previous

Yukawa interactions, e.g., the term hdabQaLη
�dbR in

Eq. (12) which attributed to the first two families of
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down-type quarks a mass term proportional to v, leading to an inverted hierarchy with the third family. The terms that
survive in Eqs. (12) and (13) are

−L ¼ hNijΨiLχSjR þ hDa;3þbQaLχ
�DbR þ hu3Q3Lηu3R þ hU4 Q3LχUR þ yeij

Λ
ΨiL½χη��ejR

þ ydj
Λ
Q3L½χη��djR þ yuab

Λ
QaL½χη�ubR þ H:c:; ð20Þ

where hNij and y
e
ij are the same as before: 3 × 3 matrices; hDa;3þb and y

u
ab are 2 × 2 matrices; ydj is a 1 × 3 matrix; hu3 and hU4

are complex numbers.
The operators forbidden with the imposition of the discrete symmetry can now reappear multiplied by the appropriate

power of σ (or σ�):

−LðσÞ ¼ 1

2
h̃SijσS

c
iRSjR þ h̃νij

�
σ

Λ0

�
3

ΨiLηSjR þ ỹνij
Λ

�
σ

Λ0

�
2

½ΨiLΨc
jL�½χη� þ h̃daj

�
σ

Λ0

�
QaLη

�djR þ h̃da;3þb

�
σ�

Λ0

�
3

QaLη
�DbR

þ h̃Daj

�
σ

Λ0

�
4

QaLχ
�djR þ ỹd3þa

Λ

�
σ�

Λ0

�
4

Q3L½χη��DaR þ h̃ua

�
σ�

Λ0

�
Q3LηuaR þ h̃u4

�
σ

Λ0

�
3

Q3LηUR

þ h̃Ua

�
σ�

Λ0

�
4

Q3LχuaR þ h̃U3

�
σ�

Λ0

�
3

Q3Lχu3R þ ỹua3
Λ

�
σ

Λ0

�
QaL½χη��u3R þ ỹua4

Λ

�
σ

Λ0

�
4

QaL½χη��UR þ H:c:; ð21Þ

where Λ0 is a large mass scale, the largest appearing in our
model, suppressing the higher-dimensional operators, and
the Yukawa couplings assume the following forms: h̃Sij, h̃

ν
ij

and ỹνij (h̃
S, h̃ν and ỹν) are 3 × 3 matrices; h̃daj and h̃Daj are

2 × 3matrices; h̃da;3þb is a 2 × 2matrix; ỹd3þa, h̃
u
a and h̃

U
a are

1 × 2matrices; ỹua3 and ỹ
u
a4 are 2 × 1matrices; h̃u4 and h̃

U
3 are

complex numbers. Except for the first operator, all the others
have mass dimension superior to 4 and, consequently,
σ (or σ�) appears suppressed by Λ0, with vσ=Λ0 ≪ 1.
Upon analyzing Eqs. (20) and (21), it is possible to see

that three Abelian symmetries are present. Two of them are
the gauged Uð1ÞX and the global Uð1ÞB associated with the
Baryon number. The other one is a Peccei-Quinn symmetry
Uð1ÞPQ under which the fields have the charges shown in
Table II.
The solution to the strong CP problem in our model is

provided by the anomalous feature of the Uð1ÞPQ symmetry
above, given by the nonvanishing of the color anomaly
coefficient. Taking into account the PQ charges in Table II,
such coefficient is Cag¼

P
i¼quarksðXiL−XiRÞ¼2, and also

enters in the definition of the axion decay constant4

fa ≈ vσ=jCagj. The Uð1ÞPQ symmetry is spontaneously

broken when the scalar singlet gets a vev hσi ¼ vσ=
ffiffiffi
2

p
.

This, in turn, will give rise to the axion field, the pseudo
Nambu-Goldstone boson of the Uð1ÞPQ symmetry, which
gets mass via nonperturbative effects. When considering
vσ ≫ w ≫ v, the axion will be invisible—due to the
suppression of its couplings by 1=vσ—and mostly com-
posed of the imaginary part of σ, as in the original invisible
axion models [13–16]. For the singlet vev in the interval
109 GeV≲ fa ≲ 1013 GeV the axion could also play the
role of dark matter [31].
Let us now discuss the fermion masses in our model

by turning our attention back to Eqs. (20) and (21). The
operator behind the charged lepton masses has not been
altered by the discrete symmetry, therefore, their masses
are still given by Eq. (15), and the discussion below
such an equation remains valid. The new ingredients
have consequences to the quark masses, and their new
mass matrices are shown below. In summary, we
now have

TABLE I. Zn transformations with ω ¼ expð2πin Þ.
Fields η χ QaL Q3L uaR u3R UR djR DaR eiR SiR ΨiL σ

Z9 ω−4 ω2 ω2 ω−2 ω4 ω2 ω−4 ω4 ω−4 ω−1 ω−1 ω1 ω2

4The axion decay constant is defined through the normalization of the axion kinetic term, and in the present model it is

fa¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
ηv2þX2

χw2þX2
σv2σ

q
=jCagj≈vσ=jCagj, since vσ ≫ w ≫ v. The model has a domain wall number equal to NDW ¼ jCagj ¼ 2. One

can see this by computing Cag in the normalization where all theUð1ÞPQ charges are integers and observing that although in this case the
axion potential is invariant under a discrete Z4 ⊂ Uð1ÞPQ symmetry there is a discrete Z2 subgroup acting trivially on the vacuum. For
more details see, e.g., the Appendix of Ref. [30].
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(i) a 5 × 5 down-type quark mass matrix:

Md ¼ 1ffiffiffi
2

p

0
BBBBBBBB@

κvh̃d11 κvh̃d12 κvh̃d13 κ3vh̃d14 κ3vh̃d15
κvh̃d21 κvh̃d22 κvh̃d23 κ3vh̃d24 κ3vh̃d25
uyd1 uyd2 uyd3 κ4uỹd4 κ4uỹd5

κ4wh̃D11 κ4wh̃D12 κ4wh̃D13 whD14 whD15
κ4wh̃D21 κ4wh̃D22 κ4wh̃D23 whD24 whD25

1
CCCCCCCCA
; with κ ¼ vσffiffiffi

2
p

Λ0 : ð22Þ

We see now that the hierarchy has changed. Instead
of being proportional to v, the 2 × 2 upper block
appears multiplied by the suppression factor κ. We
have the freedom to choose κv ∼ms ∼ 10−1 GeV,
where ms is the mass of the strange quark, in such a
way that κ ∼ 10−3. Furthermore, as before, the
bottom quark mass is already proportional to the
natural scale, i.e., mb ∼ u ∼ 1 GeV. The new quarks
become heavy with masses at the w scale, and their
mixing with the standard down-type quarks are
suppressed by powers of κ. Thus, our model now
accounts for the correct mass hierarchy among the
SM down-type quarks, and, in addition, it effectively
decouples the standard quarks from the exotic ones.

(ii) a 4 × 4 up-type quark mass matrix:

Mu¼ 1ffiffiffi
2

p

0
BBBBB@

−uyu11 −uyu12 −κuỹ13u −κ4uỹu14
−uyu21 −uyu22 −κuỹ23u −κ4uỹu24
κvh̃u1 κvh̃u2 vhu3 κ3vh̃u4

κ4wh̃U1 κ4wh̃U2 κ3wh̃U3 whU4

1
CCCCCA:

ð23Þ

The previous mass hierarchy presented in Eq. (16) is
preserved: the first two SM families get masses
proportional to u, the mass of the top quark is
proportional to v, and the new quark mass is
proportional to w. The main difference lies on the
fact that the mixing between the standard and the
new up-type quarks becomes negligible due to
the suppression bymany powers of κ. Once again, our
model provides a more natural hierarchy among the
up-type quark masses than the SM case.

Keeping track only of the orders of magnitude, we can
represent the structure of the mass matrices for the quarks
in Eqs. (22) and (23) as

Md=u ∼

0
B@

0.1 0.1 10−7

1 1 10−12

10−8 10−8 104

1
CA;

Mu=u ∼

0
B@

1 10−3 10−12

0.1 102 10−7

10−8 10−8 104

1
CA; ð24Þ

where the upper-left block always refers to the first two
families and the central block to the third family. This
structure clearly shows that the mixing amongst the
standard and new quarks is very suppressed by powers
of κ ∼ 10−3. Such matrices, therefore, are effectively block
diagonal, and flavor changing effects related to this mixing
are expected to be negligible; see Sec. V.

B. Neutrino masses: Double seesaw mechanism

Let us now discuss the mechanism behind the neutrino
mass generation in our model. The texture of the mass
matrix in Eq. (18) remains valid but now some of the 3 × 3
matrices are modified as

ffiffiffi
2

p
mL ¼ −2κ2uỹν;

ffiffiffi
2

p
mν

D ¼ κ3vh̃ν;
ffiffiffi
2

p
μ¼ vσh̃

S:

ð25Þ

The matrix mN
D remains the same. We can see that the first

two matrices have their magnitudes greatly suppressed by
powers of κ for order one couplings, and the scale μ is
linked to the PQ breaking scale.
As μ ≫ mN

D ≫ mL;mν
D, a double seesaw takes place.

The physical spectrum is comprised of three very heavy
neutrinos whose main contribution comes from SiR and
with masses now proportional to the PQ breaking scale,

MS ≃ μ; ð26Þ

TABLE II. Uð1ÞPQ charges.

Fields σ η χ QaL Q3L uaR u3R UR djR DaR eiR SiR ΨiL

XPQ 1 0 3 0 −4 −3 −4 −7 −1 3 11=2 −1=2 5=2
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three intermediate scale neutrinos whose main contribution
comes from NiL and with masses

MN ≃ −mN
Dμ

−1ðmN
DÞT; ð27Þ

and, finally, the active neutrinos νiL are required to have
sub-eV masses naturally,

Mν ≃ −mLMN
−1mL

T ∼ 0.1 eV: ð28Þ

Considering that μ≲vσ∼1010GeV,mN
D ≲ w ∼ 104 GeV,

mL ≲ κ2u ∼ 10−6 GeV, mν
D ≲ κ3v ∼ 10−7 GeV, we can

choose as representative scales

MS ∼ 108 GeV; MN ∼ GeV; ð29Þ

which is valid for mN
D ∼ w and implies mL ∼ 10−5 GeV,

which is still natural by choosing κ slightly larger than 10−3

and ỹν larger than unity. In contrast, we have to choose μ to
be somewhat lower than vσ ¼ 1010 GeV by suppressing
the coupling h̃S ∼ 10−2 to increase the scale of the
intermediate neutrinos close to the GeV scale. Much lighter
intermediate neutrinos that mix with νe may lead to
problems during big bang nucleosynthesis (BBN) and
direct detection constraints [32]. We briefly detail these
aspects below. The choice of PQ scale is dictated so that the
axion solves the strong CP problem and is also a dark
matter candidate.
Let us discuss the constraints on GeV and sub-GeV

intermediate neutrinos. Many effects depend on the mixing
between these neutrinos and active neutrinos which can be
quantified as [33]

UνN ≃mLM−1
N UPMNS ∼ 10−5; ð30Þ

for UPMNS ∼ 1. The last number follows from our choice in
Eq. (29). For sterile neutrinos that mix with νe the strongest
constraints come from the limit of neutrinoless double beta
decay which prefers lower mixing and BBN constraints in
standard cosmological scenarios [34–36] which prefer

larger mixing. For example, for a 0.7 GeV neutrino, the
mixing needs to be restricted to 10−5–10−4 [32]. For larger
masses, the interval widens and our choice is phenomeno-
logically viable. If the mixing with the e flavor is further
suppressed, these constraints become much weaker.
Lepton flavor violating processes are also very sup-

pressed. For example, the branching ratio for the flavor
changing decay μ → eγ induced by Ni exchange is given
by [37]

Brðμ→eγÞ¼ α3ws2w
256π2

m4
μ

m4
W

mμ

Γμ

����Xi
UeNi

U�
μNi

GγðxNi
Þ
����2; ð31Þ

where Gγ is a loop function and xNi
¼ M2

Ni
=m2

W . The
prefactor contributes 4 × 10−3 while the loop functionGγ ∼
xNi

=4 ∼ 4 × 10−5 for our GeV Ni, and then, taking into
account the tiny mixing between these intermediate scale
neutrinos and the active ones given in Eq. (30), the
branching ratio is far below the current bound of
6 × 10−13. Another contribution from a similar diagram
with Uþ and N in the loops is even more suppressed.
At last, the small tuning to get a small scale μmay be not

necessary in nonstandard cosmological scenarios, such as
the low reheating scenarios of Ref. [38]. In this case we can
have sub-GeVor MeV neutrinos in our model with μ ∼ vσ.

IV. THE SCALAR SECTOR

We consider here the scalar potential made out of all the
scalar fields: three SUð3ÞL triplets η, χ and ρ, as defined in
Eq. (4), plus the scalar singlet σ from Eq. (5). Some of the
scalar fields will become massive, while others will be
absorbed by the gauge sector via the Higgs mechanism.
These features are studied in this section, and the scalar
spectrum is presented.
In order to find the scalar spectrum, we decompose the

complex neutral fields that acquire a nonvanishing vev into
their scalar, Sφ, and pseudoscalar, Aφ, components

χ ¼

0
B@

χ01
χ−2

1ffiffi
2

p ðwþ Sχ þ iAχÞ

1
CA; η ¼

0
B@

1ffiffi
2

p ðvþ Sη þ iAηÞ
η−2
η03

1
CA; ρ ¼

0
B@

ρþ1
1ffiffi
2

p ðuþ Sρ þ iAρÞ
ρþ3

1
CA; ð32Þ

and

σ ¼ 1ffiffiffi
2

p ðvσ þ Sσ þ iAσÞ: ð33Þ

The hierarchy of vevs obeys vσ ≫ w ≫ v ≫ u.
Taking into account that the heavy triplet ρ transforms trivially under the imposed discrete symmetry, while the other

fields transform according to Table I, we can write down the most general renormalizable scalar potential as
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V ¼ μ2ηjηj2 þM2
ρjρj2 þ μ2χ jχj2 þ μ2σjσj2 þ ληjηj4 þ λρjρj4 þ λχ jχj4 þ λσjσj4

þ ληρjηj2jρj2 þ ληχ jηj2jχj2 þ λησjηj2jσj2 þ λρχ jρj2jχj2 þ λρσjρj2jσj2 þ λχσjχj2jσj2
þ ληρ2jη†ρj2 þ ληχ2jη†χj2 þ λρχ2jρ†χj2 þ ðλ4ðσρ½χη�Þ þ H:c:Þ; ð34Þ

with ληρ2; ληχ2; λρχ2 > 0, M2
ρ ≫ w2 ≫ v2 ≫ 0 and λ4 < 0 is real after appropriate rephasing.

Upon substituting the field decompositions in Eqs. (32) and (33) into the potential above, the minimum conditions
below follow

λ4uwvσ þ vðληρu2 þ 2ληv2 þ ληχw2 þ λησv2σ þ 2μ2ηÞ ¼ 0;

λ4vwvσ þ uðληρv2 þ 2λρu2 þ λρχw2 þ λρσv2σ þ 2M2
ρÞ ¼ 0;

λ4uvvσ þ wðλρχu2 þ 2λχw2 þ ληχv2 þ λχσv2σ þ 2μ2χÞ ¼ 0;

λ4uvwþ vσðλρσu2 þ 2λσv2σ þ λησv2 þ λχσw2 þ 2μ2σÞ ¼ 0; ð35Þ

which allow us to eliminate the quadratic mass parameters,
μ2η, μ2χ ,M2

ρ and μ2σ , by writing them as functions of the vevs
and dimensionless couplings.5 These conditions also in-
dicate that the coupling constants λtσ, with t ¼ η, ρ, χ,
governing the interactions between the scalar singlet σ with
the other scalars, are naturally suppressed.

A. The spectrum

We analyze now the quadratic terms of the potential to
obtain the scalar particle spectrum. For the charged fields,
we find that ηþ2 and ρþ1 mix and, after diagonalization, give
rise to a physical charged scalar field, ϕþ

1 , and a charged
Goldstone boson, Gþ

1 . The physical fields are obtained
from their relation with the symmetry states

�
Gþ

1

ϕþ
1

�
¼
�

cosθ1 sinθ1
−sinθ1 cosθ1

��
ηþ2
ρþ1

�
; with

tanð2θ1Þ¼
2uv

u2−v2
≈−2

u
v
; ð36Þ

and the mass of ϕþ
1 is

m2
1 ¼

u2 þ v2

2

�
ληρ2 −

λ4vσw
uv

�
≈ −

λ4vσwv
2u

; ð37Þ

with λ4 < 0. This mass scale, which is much larger than w,
is basically the effective mass scale of the triplet ρwhen it is
integrated out; see (52) and the discussion around it.
Similarly, χþ2 and ρþ3 are mixed and can be written in
terms of the independent states: ϕþ

2 and Gþ
2 , another

charged scalar and Goldstone boson respectively,

�
Gþ

2

ϕþ
2

�
¼
�

cos θ2 sin θ2
− sin θ2 cos θ2

��
χþ2
ρþ3

�
; with

tanð2θ2Þ ¼
2uw

u2 − w2
≈ −2

u
w
; ð38Þ

where ϕþ
2 gets a mass given by

m2
2 ¼

u2 þ w2

2

�
λρχ2 −

λ4vσv
uw

�
≈m2

1 þ
1

2
λρχ2w2: ð39Þ

When it comes to the neutral scalars, we have that χ01 and
η03 mix to form a Goldstone boson G0 and a non-Hermitian
neutral field ϕ0 with normalized states written as

�
G0

ϕ0

�
¼
�

cos θ0 sin θ0
− sin θ0 cos θ0

��
χ01

ðη03Þ†
�
; with

tanð2θ0Þ ¼
2vw

v2 − w2
≈ −2

v
w
: ð40Þ

The mass of the non-Hermitian neutral field ϕ0 is given by

m2
0 ¼

v2 þ w2

2

�
ληχ2 −

λ4uvσ
vw

�
≈
u2

v2
m2

1 þ
1

2
ληχ2w2: ð41Þ

We can see that the mass of the neutral ϕ0 lies much lower
than the masses of the charged scalars ϕþ

1;2, and it may be at
the TeV scale.
Since the angles θi are all small due to the hierarchical

vevs, the charged and the neutral non-Hermitian physical
scalar states are essentially given by the components in the
triplets, i.e., ϕþ

1 ≈ ρþ1 , ϕ
þ
2 ≈ ρþ3 , ϕ

0 ≈ η03.
Considering the pseudoscalars Aη, Aρ, Aχ and Aσ that

mix with each other, we find upon diagonalizing their 4 × 4
mass matrix that only one independent field combination
gets a mass after spontaneous symmetry breaking,

5We have checked that retaining a vev for χ01 and solving the
minimization equations allow for a solution with the pattern
in (32).
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m2
A ¼ −λ4

u2v2v2σ þ u2v2w2 þ u2w2v2σ þ v2w2v2σ
2uvwvσ

≈m2
1

�
1þ u2

v2

�
; ð42Þ

and the physical state associated with it is given by

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðvσ=uÞ2 þ ðvσ=vÞ2 þ ðvσ=wÞ2

p ��
vσ
u

�
Aρ þ

�
vσ
v

�
Aη þ

�
vσ
w

�
Aχ þ Aσ

�
: ð43Þ

Since vσ=u is the largest coefficient, the pseudoscalar in the
particle spectrum is mostly composed of Aρ. It is worth
pointing out that in the limit λ4 → 0, the potential in
Eq. (34) displays an additional global symmetry which
prevents the pseudoscalar A to become massive. This
symmetry in the absence of λ4 would, however, be
spontaneously broken by u and, as a consequence, A
would become a massless Goldstone boson. Thus, because
the vanishing of λ4 is intimately related with the appearance
of a new symmetry, we expect jλ4j to be naturally small.
Although three pseudoscalars remain massless after the

spontaneous symmetry breaking, one of them will get a tiny
mass from nonperturbative effects as well as gravitational
corrections. This field is the axion, a, the pseudo-Goldstone
boson associated with the spontaneous breaking of the PQ
symmetry, and it can be defined as

a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ v2σ

p ½−vAη þ vσAσ�: ð44Þ

As expected, the invisible axion is mostly made of the
imaginary part of the scalar singlet σ. Through nonpertur-
bative QCD effects the axion field gets a potential and,
consequently, a mass given by (see Ref. [31] and references
therein)

ma ≃ 5.7 ×

�
109 GeV

fa

�
meV ð45Þ

with the axion decay constant fa ≈ vσ=2 as defined above.
The remaining pseudoscalars are Goldstone bosons

which will be absorbed by the vector sector

GA1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ w2
p ½uAρ − wAχ �;

GA2 ¼ cA2½vv2σðu2 þ w2ÞAη − uw2ðv2 þ v2σÞAρ − u2wðv2 þ v2σÞAχ þ v2vσðu2 þ w2ÞAσ�;
with cA2 ¼ fðu2 þ w2Þ2ðv2 þ v2σÞv2v2σ þ ðu2 þ w2Þðv2 þ v2σÞ2u2w2g−1=2: ð46Þ

Finally, we look at the mixing amongst the real scalars Sη, Sρ, Sχ and Sσ from where the SMHiggs field should emerge. In
the symmetry basis ðSη; Sρ; Sχ ; SσÞ, the following squared mass matrix is generated:

M2
S ¼

0
BBBBB@

2ληv2 −
uvσwλ4

2v uvληρ þ vσwλ4
2

vwληχ þ uvσλ4
2

vvσλησ þ uwλ4
2

uvληρ þ vσwλ4
2

2λρu2 −
vvσwλ4
2u uwλρχ þ vvσλ4

2
uvσλρσ þ vwλ4

2

vwληχ þ uvσλ4
2

uwλρχ þ vvσλ4
2

2λχw2 − uvvσλ4
2w vσwλχσ þ uvλ4

2

vvσλησ þ uwλ4
2

uvσλρσ þ vwλ4
2

vσwλχσ þ uvλ4
2

2λσv2σ −
uvwλ4
2vσ

1
CCCCCA: ð47Þ

As the diagonalization of the mass matrix above is clearly
not as straightforward as in the previous cases, let us consider
some simplifications. First, we remind ourselves that the
couplings λtσ ≪ 1, with t ¼ η, ρ, χ, following the relations in
Eq. (35). Second, as discussed below Eq. (42), λ4 is expected
to be small since in the limit that it goes to zero a new global
symmetry shows up. These features, together with Eq. (47),
tell us that the scalar Sσ is effectively decoupled from the
other fields, and its mass is proportional to vσ .
The SM symmetry breakdown is effectively governed by

v and, thus, we expect the main contribution to the Higgs
boson, with a mass of 125 GeV, to come from Sη. When

taking vσ ¼ 1010 GeV, w ¼ 104 GeV, v ¼ 246 GeV and
u ¼ 1 GeV, as before, the correct Higgs mass can be
obtained with, e.g., λ4 ¼ −10−4, λη ¼ 0.3641, and the
remaining coupling constants of the order of 10−1. In such
an instance, the physical state is given by

h ¼ −ð0.999ÞSη − ð4 × 10−3ÞSρ þ ð3.7 × 10−2ÞSχ ; ð48Þ

the absolutely dominant contribution coming from Sη, as
expected. The other two massive scalar fields get the
following masses:
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mH1
≃ 4.47 × 103 GeV and mH2

≃ 1.1 × 106 GeV;

ð49Þ
where H1 is similarly dominated by Sχ and H2 by Sρ. For
the sake of completeness, using this particular solution, we
obtain the masses of the other scalars in the theory
according to Eqs. (37), (39), (41) and (42). The two
charged scalars ϕ�

1;2 and the pseudoscalar A get quite
degenerate masses m1 ≃m2 ≃mA ≃ 1.1 × 106 GeV as
expected while we find m0 ≃ 5.0 × 103 GeV for the non-
Hermitian neutral scalar ϕ0.
Turning back to Eq. (45) if we take into account the value

vσ ¼ 1010 GeV, used in the Sec. III B to exemplify the
neutrino mass generation mechanism, the corresponding
axion mass is ma ≈ 1.1 meV. It is still possible to have
other values for this mass without affecting significantly the
mass hierarchy pattern for the fermions in Sec. III. As an
example, we could have vσ ¼ 1011 GeV, which implies
ma ≈ 1.1 × 10−4 eV, without modifying the entries of the
neutrino mass matrix with a mild tuning of h̃S ¼ 10−3 in
Eq. (25) and keeping the same value for κ (which requires
just a rescaling of Λ0).
Axions with mass at the meV scale could be the

dominant component of cold dark matter of the Universe
in post-inflationary PQ symmetry breaking scenarios as
studied in Ref. [39]. There it was shown that for some types
of Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) models,
which have domain wall number NDW ¼ 6, an axion with
a massma ≈ ð0.6–4Þ meV can be a dominant component of
cold dark matter. For the Kim-Shifman-Vainshtein-
Zakharov (KSVZ) models, which haveNDW ¼ 1, the axion
mass would be ma ≈ ð0.8–1.3Þ × 10−4 eV [39]. The model
we are dealing with in this work is a sort of DFSZ-KSVZ
hybrid model having NDW ¼ 2 and a precise determination
whether the mass in Eq. (45) allows the axion to account for
all the dark matter in the Universe, or a significant part of it,
requires additional investigation. In any case we expect that
the axion in this model can play the role of dark matter,
once the model here allows for the axion mass in Eq. (45) to
be in a relatively interesting range.

B. On the integration of the heavy triplet
and its effective vev

In order to find the fermion spectrum, no operator
containing ρ explicitly was used in Sec. III. Instead, we
have made use of effective operators with the form given by
Eq. (14). We want to show in this section that these
operators emerge from the integration of the ρ, which is
taken to be heavy compared to the other triplets. If we add ρ
and consider renormalizable operators only, instead of the
operators in Eq. (13), we would have

−Lρ ¼ yνij½ΨiLΨc
jL�ρ� þ yeijΨiLρejR þ ydmQ3Lρd0mR

þ yuanQaLρ
�u0nR þ H:c: ð50Þ

At low energies, meaning energies up to the w ¼ 104 GeV
scale, the scalar singlet, whose vev is vσ ≫ Mρ,w, v, can be
effectively replaced in the potential by its vev. Furthermore,
in the case that the triplet ρ is much heavier than the other
two, i.e., Mρ ≫ w, v, it can be integrated out and its
dominant contribution substituted back in the Lagrangian.
From Eq. (34), replacing σ → vσ=

ffiffiffi
2

p
, ρ can be integrated

out, and its dominant low energy contribution will be

ρ ¼ ½χη��
Λ

þ � � � with Λ ¼
ffiffiffi
2

p
M2

eff

jλ4jvσ
; ð51Þ

where

M2
eff ¼ M2

ρ þ λρσ
v2σ
2
þ… ð52Þ

is the ρ effective mass, and the ellipsis represents the
subdominant contributions which are neglected here. This
result can be compared to Eq. (14) where we defined the
effective vev u for the first time. The scaleΛ is therefore not
a free parameter but a function of effective mass of the
heavy triplet, the vevs of the scalar fields, and some of the
dimensionless couplings present in the scalar potential of
our model. It is now easy to see that when replacing ρ as
given by Eq. (51) into Eq. (50), we obtain Eq. (13).
Furthermore, we can use (51) to derive constraints on

some parameters of the model. As we take u ¼ 1 GeV, we
need that Λ ¼ 106 GeV which, in turn, implies that
ðMeff= GeVÞ ≈ 103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijλ4jðvσ= GeVÞp
. If we assume again

that vσ ¼ 1010 GeV and jλ4j ¼ 10−4, the following con-
straints follow:

Mρ ≤ 106 GeV and λρσ ≤ 10−8: ð53Þ

As previously discussed, all couplings of the form λtσ, with
t varying amongst the triplets, are expected to be very
suppressed, and the strong upper bound on λρσ found above
only confirms that. Finally, the effective mass being of the
order of 106 GeV agrees with the masses found for the
scalar fields associated with the ρ triplet in the previous
subsection and justifies the integration of ρ, since
Meff ≫ w; v.

V. FLAVOR CHANGING EFFECTS

Tree-level flavor changing neutral currents (FCNCs)
are well-known signatures of 3-3-1 models with generic
β [40–46], owing to the fact that one of the quark families
transforms differently from the other two. More often than
not, neutral currents mediated by the heavy Z0 boson are the
most relevant flavor changing interactions at tree level.
However, other sources of FCNCs can also be present,
e.g., those mediated by the Z boson through its small
mixing with the Z0, as seen in Eq. (11), or those mediated
by scalar fields.
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The version considered here with β ¼ −1=
ffiffiffi
3

p
(as well as

that with β ¼ þ1=
ffiffiffi
3

p
) is yet a more abundant source

of FCNCs for two reasons. Firstly, it contains new quarks
with electric charges of −1=3 and 2=3, inducing new flavor
changing contributions through their mixing with the
SM quarks. Secondly, in addition to Z and Z0, the gauge
spectrum presents another neutral field, V0.
Similar to the case with β ¼ 1=

ffiffiffi
3

p
studied in Ref. [20],

the present scalar sector contains only one scalar doublet
around or below the TeV scale so that the only FCNC
mediated by scalars at tree level is due to the small
mixing between the heavy and the SM quarks. Such a
mixing however, being proportional to several powers of
the suppression factor κ, as discussed in Sec. III, can be
safely disregarded. Concerning the FCNCs mediated by
the gauge bosons, we have again a similar situation to
that in Ref. [20]. Due to the hierarchy among the different
mass scales: κv, u, v and w, the expected flavor changing
effects are in good agreement with current experimental
constraints, such as those coming from meson mass dif-
ferences. A thorough analysis on the effects of FCNCs to
investigate, for instance, anomalies in B physics is worth
the attention in a future work.
Given that our PQ symmetry with charges in Table II

is not flavor universal, constraints coming from meson
decays emitting axions may be relevant [47]. Considering
our PQ scale of vσ ∼ 1010 GeV and the quark mass matrix
structure in Eq. (24), we expect a s → d transition to occur
with axion emission with strength proportional to jVd

sdj≈
j4Ud�

L3sU
d
L3dj ∼ j4VCKM

ts VCKM
td j ∼ 10−3, where we only

retained the dominant contribution of left-handed d-type
quarks. This means that we can evade current bounds [47]
but future bounds can constrain the naturality of our mass
matrix structure.

VI. CONCLUSIONS

In this work we have investigated a version of the 3-3-1
model defined by β ¼ −1=

ffiffiffi
3

p
and augmented by an

additional Z9 symmetry. This scenario leads to an acci-
dental Peccei-Quinn symmetry which is spontaneously
broken at a high energy scale by the vev of a gauge-singlet
scalar field, giving rise to an invisible axion, which can play
the role of dark matter, as well as allowing for a solution to
the strong CP problem via the PQ mechanism. The 3-3-1
gauge symmetry, on the other hand, is broken effectively in
two steps by the vevs of two SUð3ÞL scalar triplets that
transform identically under the 3-3-1 gauge symmetry. The
first breaking takes place at the TeV scale, and the second
occurs at the electroweak symmetry breaking scale. A third
scalar triplet is however required to break a residual
symmetry that prevents some of the fermions to become
massive. The scalar spectrum, up to the TeV scale, is
compact and presents the interesting feature of being
completely composed of neutral fields: a light axion, the

SM Higgs boson, and three TeV scale neutral bosons. The
remaining scalars can become very heavy (≫ 103 TeV)
and are therefore not expected to be observed by any
near-future experiments. In the gauge boson sector, in
addition to the SM vector bosons, the following heavy
fields are present: V0, ðV0Þ†, U� and Z0. The mixing
between Z0 and Z, the SM neutral gauge boson, for Z0
masses around the TeV scale has been shown to be very
suppressed φ ≃ 10−4.
The quark sector of the model contains a new up-type

and two new down-type quarks, all of which get masses
around the TeV scale. When considering the SM quarks,
we have seen that due to the PQ symmetry and its
associated scalar singlet σ, a suppression mechanism takes
place leading to natural mass hierarchies between the third
and the other two families. In the leptonic sector we have
introduced six new neutral fields, three of which are gauge
singlets. The Yukawa couplings required to describe the
charged lepton masses are less suppressed than in the SM,
and neutrinos become massive through the double seesaw
mechanism whose implementation relies also on the PQ
symmetry. Three (sub-eV) active, three GeV and three
super-heavy (∼108 GeV) neutrinos make up the neutrino
particle spectrum. As for the GeV neutrinos, we have
shown that their mixing with the active neutrinos is small
enough to evade experimental constraints, such as the one
coming from the radiative muon decay μ → eγ or neu-
trinoless double beta decay, but large enough to allow them
to decay sufficiently earlier than the BBN epoch.
A common feature in 3-3-1 models like ours, built with

one quark family transforming differently from the other
two under the gauge symmetries, is the presence of tree-
level FCNCs. In the present case however the flavor
changing effects are well within the experimental limits
due to the hierarchy among the different vevs as well as the
suppressed interactions as a result of the PQ symmetry.
Finally, we would like to mention that the model has a

potentially interesting phenomenology involving the new
particles, such as the scalars H1 and ϕ0, at the TeV scale.
For example, the production of H1 through gluon fusion
through the new quarks might furnish distinct signals such
as the diphoton decay gg → H1 → γγ, and a pair of Higgs
bosons gg → H1 → hh.
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