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The optimal observables with the best ratio of signal to statistical uncertainty are proposed for a bunch of
popular models of the Z0 boson. They are the cross sections integrated over the phase space of the final
particles with proper weight functions. It is shown that the proposed observables are completely equivalent
to the χ2 fit of the differential cross section, so they could be used as an alternative of aggregating events
into bins with further minimization of the χ2 function, especially in preliminary analysis of experimental
data. Application of the observables to the maximum likelihood estimate of the Z0 mass and the Z–Z0

mixing angle as well as to the exclusion reach and statistical efficiency of the signal is investigated in
details.
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I. INTRODUCTION

The International Linear Collider (ILC) is discussed in
the literature as a future experiment in high-energy physics
[1]. This engine is expected to collide partially polarized
electrons and positrons at the center-of-mass energies up to
1 TeV. The ILC will allow performing precise tests of the
Standard Model (SM) and beyond, being a natural per-
spective for the current experiments on the CERN LHC.
The combined analysis of future data from the ILC with the
data obtained at the LHC is also a point of interest (e.g.,
see Ref. [2]).
Searches for new particles beyond the SM is one of the

basic parts of the ILC experimental program. In this paper,
we focus on the Z0 boson arising in a bunch of popular
models. We consider the eþe− → μþμ− process with the
simplest annihilation kinematics at the center-of-mass
energies 250 GeV, 500 GeV, and 1 TeV. Taking into
account the actual bounds on the Z0 mass (∼4 TeV) derived
from various experiments [3,4], we conclude that the
energy of collisions at the ILC will be significantly
below the Z0 resonance. This means the Z0 boson could
manifest itself through tiny contact couplings between
fermionic currents induced by intermediate Z0 virtual states.
Therefore, amplification of the corresponding signal is of
great interest.
Usual observables, such as the total cross section σT and

the forward-backward asymmetry AFB, might be essentially

upgraded to increase statistical resolution as much as
possible. To achieve the goal, we propose an observable
constructed by integration of the differential cross section
over the scattering angle with a properly chosen weight
function. Such a scheme generalizes the idea of well-known
forward-backward or center-edge cross sections based on
steplike weights for different scattering angles. In our
approach, the weight function is calculated to reach the
strongest Z0 signal with respect to the statistical noise. The
corresponding integrated cross section is called the optimal
observable. In a model-independent approach, amplifica-
tion of signals of the Z0 boson by means of the weighted
integrated cross section was discussed in Ref. [5].
The optimal observables are known in the high-energy

physics, although they are unfortunately paid no attention
in searching for the Z0 boson. They were initially applied
to the analysis of the magnetic and electric dipole
moments of the t quark [6] and to the measurement of
triple gauge boson couplings at the CERN Large Electron-
Positron Collider [7,8]. The recent usage of the optimal
observables is the investigation of the CP invariance
in vector-boson fusion production of the Higgs boson
at the LHC [9]. The optimal observables were actually
rediscovered in Ref. [5]. So, the present paper could be
also considered as an introduction to the optimal observ-
ables in application to the Z0 boson phenomenology. The
resulting weight functions to integrate the differential
cross section coincides with the general theory given in
Refs. [6,7].
We will discuss that the optimal observable is an

equivalent replacement of the χ2 fit of the differential cross
section. This means that there is a unique weight function
in the phase space to integrate the cross section without
losses of information encoded in the differential cross
section. In other words, instead of collecting events into
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bins and further χ2 analysis, all the events could be summed
up directly with the predefined weights dependent on the
scattering angle. This gives a signal of the highest quality
allowed by the luminosity. So, the proposed scheme might
be considered as a convenient alternative of the analysis of
the differential cross section in searches for the Z0 boson.
Moreover, it can be applied even in the case in which the
statistics is not rich enough to collect and publish the
differential cross section.
Many models of the “new physics” beyond the SM have

been developed, and the Z0 boson is a usual ingredient of
them. In practical searches for the Z0 boson, a pool of
models is traditionally selected. The earlier set included the
models related to different branches of the grand unification
theory based on the E6 gauge group [10–13]. Then, it was
enlarged by the alternative left-right model, the littlest
Higgs model, etc. At the moment, the LHC collaborations
discuss about ten Z0 models in data analysis. We consider
the models discussed in the ILC Technical Design Report
[1] and some others:

(i) In the sequential Standard Model (SSM), the Z0
couplings to fermions coincide with the SM Z
couplings. There is no unification of interactions
in this test model. However, it is useful to clarify the
definitions of Z0 couplings.

(ii) E6models [14] arebasedon thegaugebreaking scheme
E6 → SOð10Þ×Uð1Þψ → SUð5Þ×Uð1Þχ ×Uð1Þψ →
SUð3ÞC×SUð2ÞL×Uð1ÞY ×Uð1ÞθE6 . The model

contains a free parameter: the mixing angle β
between the ψ and χ symmetry states. The angles
β ¼ 0, π=2 and arctanð− ffiffiffiffiffiffiffiffi

5=3
p Þ correspond to the

models called χ, ψ , and η.
(iii) The left-right model (LR) [15] is related to the gauge

breaking scheme SOð10Þ → SUð3ÞC × SUð2ÞL×
Uð1ÞY × Uð1Þχ → SUð3ÞC × SUð2ÞL × SUð2ÞR×
Uð1ÞB−L. There is a free model parameterffiffiffiffiffiffiffiffi
2=3

p
≤ α ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2W=s

2
W − 1

p
. The minimal value α ¼ffiffiffiffiffiffiffiffi

2=3
p

coincides with the χ model. The maximal
value α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2W=s

2
W − 1

p
corresponds to the left-right

symmetric model (LRS).
(iv) The alternative left-right model (ALR) [16] provides

the gauge breaking scheme SOð10Þ → SUð3ÞC ×
SUð2ÞL × Uð1ÞY × Uð1Þχ → SUð3ÞC × SUð2ÞL×
SUð2ÞR × Uð1ÞB−L. The ALR model is also dis-
cussed in Ref. [17].

(v) The littlest Higgs model (LH) [18] considers the
gauge breaking scheme SUð5Þ→ ½SUð2Þ1×Uð1Þ1�×
½SUð2Þ2×Uð1Þ2�→SUð2ÞL×Uð1ÞY . The model is
also discussed in Ref. [19].

(vi) The simplest little Higgs model (SLH) [20] is based
on the gauge breaking scheme SUð3Þw × Uð1ÞX →
SUð2Þw × Uð1ÞY . Two alternatives are proposed
within the model: the universal SLH (USLH) and
the anomaly-free SLH (AFSLH). However, both the

alternatives lead to equal leptonic couplings. The
model is also discussed in Ref. [21].

(vii) The Uð1ÞX model [22] was introduced recently as a
minimal U(1) extension of the SM with conformal
invariance at the classical level. We choose the Z0
coupling and the free model parameters in accor-
dance with Ref. [23], which ensures the vacuum
stability in the model.

In every Z0 model mentioned, the Z0 couplings are
known, whereas the Z0 mass and the Z–Z0 mixing angle
remain arbitrary parameters to be fitted in experiment. The
Z–Z0 mixing angle is bounded experimentally at least as
j sin θ0j < 10−3 [24] and usually neglected in data analysis
[1,10–13,25]. In this paper, we discuss the Z–Z0 mixing
separately.
The paper is organized as follows. In Sec. II, we consider

the differential cross section of the eþe− → μþμ− process
and group the Z0 models into four different pools in
dependence on the Z0 couplings to leptons. In Sec. III,
the optimal observable for the Z0 signal is derived as an
analytic solution by maximization of the signal-to-uncer-
tainty ratio. In Sec. IV, we show that the optimal observable
is equivalent to the χ2 fit of the differential cross section and
can be used to derive confidential intervals for the Z0
parameters. Effects of the Z–Z0 mixing are considered in
detail in Sec. V. In the discussion section, we estimate the
exclusion reach for the Z0 mass and compare the optimal
observables with the popular approach of data fitting based
on the forward-backward asymmetry.

II. DIFFERENTIAL CROSS SECTIONS

The expected scale of the grand unification as well as the
Z0 mass is much larger than the ILC center-of-mass
energies. So, the Z0 boson phenomenology at the ILC
can be described by contact interactions between fermionic
currents. We use the Lagrangian of neutral currents in the
standard notations [10–13,17,19,21],

−LNC ¼ eAβJA;β þ gZZβJZ;β þ gZ0Z0
βJZ0;β;

JA;β ¼
X
f

f̄ γβvð0Þf f;

JZ;β ¼
X
f

f̄ γβðvf − γ5afÞf;

JZ0;β ¼
X
f

f̄ γβðv0f − γ5a0fÞf; ð1Þ

where all the SM fermions f appear in the sum, A is the
photon, Z is the SM neutral vector boson, Z0 is the new
heavy neutral vector boson, e ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4παem
p

is the positron
charge, gZ and gZ0 are the couplings to the corresponding
boson (see Table I, gZ ¼ gZ0;SSM), vð0Þf is the fermion
electric charge in e units, vf and af are the vector and
axial-vector coupling of the fermion to the Z boson, and v0f
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and a0f are the couplings to the Z0 boson. The Z0 boson
couplings are collected in Table II.
The differential cross section of the process eþe− →

μþμ− consists of the SM part and the Z0 contribution. Since
we assume the energies significantly below the threshold of
Z0 decoupling,

ffiffiffi
s

p
≪ MZ0 , it can be expanded by a small

parameter,

dσ
dz

¼ dσSM

dz
þ
X∞
n¼1

μnFnðs; z; a0; v0Þ; ð2Þ

μ ¼ M2
Z

s −M2
Z0
; ð3Þ

where z is the cosine of the scattering angle of the charged
lepton in the center-of-mass frame, M means the mass of
the corresponding particle, F are factors measured in the
same units as the cross section, and

ffiffiffi
s

p
is the center-of-

mass energy. The magnitude of the expansion parameter μ
is about 10−4 for

ffiffiffi
s

p ¼ 1 TeV and MZ0 ¼ 4 TeV. Heavier
Z0 masses and lower collision energies give smaller μ. As is
seen, the Z0 mass, measured in units ofMZ, plays the role of
an unknown dimensionless parameter of the model,
whereas other components of (2) can be calculated numeri-
cally. We neglect the widths of vector bosons, since they are
a few percent of the boson mass in the considered models
and the energies are aside from the Z and Z0 peaks.
In our paper, the SM differential cross section is

calculated by two complementary approaches. First, we
use FEYNARTS [26], FORMCALC [27], and LOOPTOOLS
[27] up to one-loop radiative corrections for the weak
sector. Effects of the quantum electrodynamics is taken into
account in accordance with Ref. [28]: the soft photon
bremsstrahlung is included analytically, whereas the hard
photon bremsstrahlung is included by numerical integration
in the phase space of the final state. The domain in the
phase space is determined by the event selection ruleffiffiffiffiffiffiffiffi
s0=s

p
> 0.85, where s0 is the Mandelstam variable of

the final pair μþμ− and s is the Mandelstam variable of the
final state with the photon μþμ−γ. Second, the SM differ-
ential cross section is computed by ZFITTER software [29].
The discrepancy between the results is less than 2%. So, we

add 2% systematic error to the SM differential cross section
obtained in the first approach (Fig. 1). This systematic error
covers also four-fermion final states with leptons missed in
the beams, the contribution of which is estimated to be less
than 1% [5].
The leading-order (LO) Z0 factor F1 in (2) arises from the

interference between the SM amplitude and the Z0
exchange amplitude. For our purposes, it is calculated in
the improved Born approximation with the running con-
stants. The factor can be written in the form

F1ðs;z;a0;v0Þ ¼
αemg2Z0

32sin2θWcos2θWM2
Z

×

�
zfðs;a0e;v0eÞþ

1þ z2

2
fðs;v0e;a0eÞ

�
; ð4Þ

TABLE I. The Z0 coupling in the models. The cosine and sine
of the Weinberg angle are denoted by cW, sW .

gZ0

SSM e=ðsWcWÞ
E6, LR e=cW
ALR e=ðsWcW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2s2W

p
Þ

LH e=sW
USLH, AFSLH e=ðcW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
Þ

Uð1ÞX e=ð4cWÞ

TABLE II. The Z0 couplings to fermions. The sine of the
Weinberg angle is denoted by sW. For the E6 models, A ¼ cos β

2
ffiffi
6

p ,

B ¼
ffiffiffiffi
10

p
sin β

12
. The special values of the mixing angle β ¼ 0, π=2,

and arctanð− ffiffiffiffiffiffiffiffi
5=3

p Þ correspond to χ, ψ , and η models. In the LR

model,
ffiffiffiffiffiffiffiffi
2=3

p
≤ αLR ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2W=s

2
W − 1

p
. The LRS model corre-

sponds to α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2W=s

2
W − 1

p
. The LH model includes the

parameter 1
10
≤ c

s ≤ 2, and we choose c
s ≡ 1 [19]. In the Uð1ÞX,

we choose xΦ ¼ 2 and x ¼ xH=xΦ ¼ 1 or −1.25.

f ν e u d

SSM
2v0f

1
2

2s2W − 1
2

1
2
− 4

3
s2W

2
3
s2W − 1

2

2a0f
1
2

− 1
2

1
2

− 1
2

E6

2v0f 3Aþ B 4A 0 −4A
2a0f 3Aþ B 2ðAþ BÞ 2ðB − AÞ 2ðAþ BÞ

LR
2v0f

1
2α

1
α −

α
2

α
2
− 1

3α − 1
3α −

α
2

2a0f
1
2α

α
2

− α
2

α
2

ALR
2v0f s2W − 1

2
5
2
s2W − 1 1

2
− 4

3
s2W

1
6
s2W

2a0f s2W − 1
2

− 1
2
s2W s2W − 1

2
− 1

2
s2W

LH
2v0f

c
4s − c

4s
c
4s − c

4s

2a0f
c
4s − c

4s
c
4s − c

4s

USLH
2v0f

1
2
− s2W

1
2
− 2s2W

1
2
þ 1

3
s2W

1
2
− 2

3
s2W

2a0f
1
2
− s2W

1
2

1
2
− s2W

1
2

AFSLH
2v0f

1
2
− s2W

1
2
− 2s2W − 1

2
þ 4

3
s2W

1
3
s2W − 1

2

2a0f
1
2
− s2W

1
2

− 1
2

s2W − 1
2

Uð1ÞX
2v0f −xH − xΦ −3xH − xΦ 5

3
xH þ 1

3
xΦ − 1

3
xH þ 1

3
xΦ

2a0f −xH xH −xH xH
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with

fðs; x; yÞ ¼ x2ð1 − ϵÞð3þ ϵÞ þ ðyþ ϵxÞ2 s
s −M2

Z
; ð5Þ

where θW is the Weinberg angle and ϵ ¼ 1 − 4 sin2 θW . The
small parameter ϵ is less than a few percent at the
considered center-of-mass energies, so it can be set to
zero in qualitative analysis. Since both the Z0 couplings a0
and v0 are of the same order, the contribution of the first
term in f is approximately 2.5–3 times larger than the
contribution from the second term (at the ILC energies).
So, the second argument in f dominates over the third
argument. This means that

(i) the z-odd part of F1 is mainly related to the axial-
vector Z0 coupling a0e;

(ii) the z-even part of F1 is mainly related to the vector
Z0 coupling v0e;

(iii) the factor F1 weakly depends on the collision
energy.

The next-to-leading-order (NLO) factor F2 in (2) is
mainly determined by the squared amplitude with an
intermediate Z0 state. Its improved Born approximation is

F2ðs;z;a0;v0Þ ¼
g4Z0s

32πM4
Z
× ½8a02e v02e zþða02e þv02e Þ2ð1þ z2Þ�:

ð6Þ

To estimate the NLO contribution to the cross section, we
compare F1 and μF2 at the highest ILC energy (1 TeV) and
the lowest Z0 mass (4 TeV). The corresponding value of the
expansion parameter μ ¼ −6.7 × 10−4. These settings give
the maximal possible contribution beyond the LO. The
comparison between F1 and μF2 is shown in Fig. 2, in
which the lines cover different values of z. The dots show
the maximal values of F1 (at z ¼ 1) used to set the level of

systematic errors. In the Uð1ÞX;x¼1 and Uð1ÞX;x¼−1.25
models, the NLO term is below 4% of the leading term.
For other models, it is below 1.5%. Of course, energies
below 1 TeV and MZ0 > 4 TeV give smaller relative
contributions from F2.
The fine structure constant αem is determined by the

photon polarization operator (see Fig. 3). The Weinberg
angle is taken in accordance with Ref. [30], so it is higher
than the value at the Z peak used, e.g., in Ref. [31]. The
numeric values can be found in Table III. As is seen from
Eq. (4), the systematic error from the fine structure constant
is factorized and irrelevant for the angular behavior of the
Z0 factor. On the other hand, the systematic error of the
Weinberg angle has to be taken into account during angular

FIG. 2. Estimation of the NLO contribution in μ to the cross
section. The Z0 mass and the collision energy correspond to the
maximal influence from F2, μ ¼ −6.7 × 10−4. The dots show the
maximal values of F1 used to set the level of systematic errors. In
Uð1ÞX;x¼1 and Uð1ÞX;x¼−1.25 models (marked as X1 and X−1.25),
the NLO term is below 4% of F1. For other models, this term is
below 1.5%. Lower energies and higherMZ0 suppress the relative
contribution from F2. The plotted factors for the Uð1ÞX model
must be multiplied by 2.5. The factors are in picobarns.

FIG. 1. The SM differential cross section (unpolarized) in
picobarns with 2% systematical error used in numeric calcula-
tions. The results of ZFITTER are plotted as lines.
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integrations. We can estimate it by means of the first
(leading) term in (5):

���� δsystF1

F1

����≃
���� δsystff

���� ≃ 0.7jδsystϵj: ð7Þ

Comparing the values in Table III with the effective
leptonic Weinberg angle at the Z peak (≃0.23), we
conclude that the nonfactorizable radiative corrections in
F1 are up to 4%. Thus, all the systematic errors (including
radiative corrections and the expansion in μ) are estimated
below 4%. In further calculations, we will use the LO factor
F1 and add the systematic error of order 5% of the maximal
value of F1ðzÞ to take into account effects beyond the
approximation used.
The Z0 factors in the models are shown in Fig. 4 for the

center-of-mass energy 250 GeV only, since there are no
dramatic changes in their shapes for higher energies. We
can select four different groups of models:

(i) SSM, ψ , LRS and SLH.—In these models, the Z0
vector coupling to charged leptons is suppressed.
This can be seen by substitution s2W ≃ 1=4, A ¼ 0,
α ≃

ffiffiffi
2

p
in Table II. The Uð1ÞX model with xH=xΦ ¼

−1=3 also belongs to this class. Thus, the Z0 factors

depend mainly on the axial-vector coupling and,
consequently, on the z-odd term in (5). The factors
are approximately proportional and odd with respect
to z, so one could naively expect that the best signal
would be described by the forward-backward cross
section.

(ii) η.—The suppressed Z0 axial-vector coupling to
charged leptons is a feature of the model. The
axial-vector coupling vanishes exactly at A ¼ −B
in Table II [β ¼ arctanð− ffiffiffiffiffiffiffiffi

3=5
p Þ ≃ −0.21π]. For

the η model, β ¼ arctanð− ffiffiffiffiffiffiffiffi
5=3

p Þ ≃ −0.29π, and
A ≃ −B. The Z0 factor depends mainly on the vector
coupling and, consequently, on the z-even term in
(5). One could naively expect that the best signal
would be described by the total cross section.

(iii) LH.—The vector and the axial-vector couplings to
charged leptons are equal. This means interactions
with the left-handed chiral states only. The E6 model
with A ¼ B (β ¼ arctan

ffiffiffiffiffiffiffiffi
3=5

p
, the so-called I

model), the LR model with α ¼ 1, and the Uð1ÞX

FIG. 3. The fine structure constant αem determined by the
photon polarization operator in a wide interval of energies. The
values at mZ as well as at the supposed ILC energies are shown
separately.

FIG. 4. The unpolarized factors F1ð
ffiffiffi
s

p
; zÞ in picobarns for

models at 250 GeV. The factors are calculated up to 5%
systematic error. The plotted factors for the Uð1ÞX model must
be multiplied by 2.5.

TABLE III. The running couplings used to calculate the Z0
contribution to the cross section.

250 GeV 500 GeV 1 TeV

1=αem 126.414 125.839 124.823
sin2 θW 0.2368 0.2407 0.2446
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model with xH=xΦ ¼ −1=4 also belong to this class.
The angular dependence in this case is F ∼ ð1þ zÞ2,
so the factor contains a dominant contribution from
the forward scattering angles. One could naively
expect that the best signal would be described by the
forward cross section.

(iv) χ, LRαmin
, Uð1ÞX;x¼−1.25, ALR, Uð1ÞX;x¼1.—These

models show mixed angular dependence of the
Z0 factor.

As we will see in the next section, naive expectations
about observables to amplify Z0 signals do not correspond
to the best choice. This is because the statistical error is
not uniform over the scattering angle and has to be also
taken into consideration to find the strongest signal of the
particle.

III. OPTIMAL OBSERVABLE

The optimal observable to select the Z0 signal is defined
by weighted integration of the cross section,

I ¼
Z
Ω
dzwðzÞ dσ

dz
; ð8Þ

where wðzÞ is the weight function and Ω is the interval of
available scattering angles. The complete phase space is
given by z ∈ ½−1; 1�. We will specify Ω when it influences
the result.
The standard deviation of the observable can be calcu-

lated from the Poisson distribution of events (see Ref. [5]),

δI ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Leff

Z
Ω
dzw2ðzÞ dσ

SM

dz

s
: ð9Þ

where L is the luminosity, and the cross section is
substituted by its SM part, since the Z0 contribution is
tiny and leads to higher-order corrections in the inverse Z0
mass. The SM cross section can be redefined to take into
account the acceptance rate of events. We introduce the
“effective” luminosity corrected by the polarization of the
input beams: Leff ¼ ð1þ PþP−ÞL. In numeric estimates,
the following integrated luminosities in inverse femtobarns
are assumed: L250GeV ¼ 250 fb−1, L500GeV ¼ 500 fb−1,
and L1TeV ¼ 1000 fb−1 [1]. The polarizations of the
initial electron and positron states are P− ¼ ηe−L − ηe−R
and Pþ ¼ ηeþR − ηeþL , where η is the fraction of the corre-
sponding particles. The definition of polarization is in
accordance with Ref. [31].
The optimal observable satisfies the condition

absðsignalÞ
uncertainty

¼ absðI − ISMÞ
δI

→ max; ð10Þ

where the Z0 signal is the deviation from the SM; i.e., the
SM is considered the background. The uncertainty is the
statistical error (the standard deviation of the observable).
This condition is actually a functional of the weight
function w. Its maximum in the Hilbert space of w
determines uniquely the weight function and the optimal
observable.
In the considered Z0 models, the theoretical prediction of

the signal is

I − ISM ≃ μ

Z
Ω
dzwðzÞF1ðzÞ: ð11Þ

As is seen, the unknown parameter factorizes, and the
weight function is independent of μ:

abs

2
64

R
Ω dzwðzÞF1ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Ω dzw2ðzÞ dσSMdz

q
3
75 → max : ð12Þ

The target functional (12) is quite simple, and the exact
analytic solution can be written. Since the SM cross section
is strictly positive, let us define the following scalar product
in the Hilbert space:

hf1; f2i ¼
Z
Ω
dz f1ðzÞf2ðzÞ

dσSM

dz
: ð13Þ

Then, the denominator of Eq. (12) is just the norm of the
weight function, kwk, whereas the numerator is the scalar
product between w and the function

F̃ðzÞ ¼ F1ðzÞ
dσSM=dz

: ð14Þ

The function F̃ does not depend on w. Dividing Eq. (12) by
kF̃k, we obtain

abs

� hw; F̃i
kwk · kF̃k

�
→ max : ð15Þ

Thus, the target functional is the cosine between vectors w
and F̃, and we immediately write the solution (up to a
normalization factor C):

wðzÞ ¼ CF̃ðzÞ ¼ C
F1ðzÞ

dσSM=dz
: ð16Þ

This solution reproduces exactly the general theory of the
optimal observables [6–8]. We have additionally confirmed
the result by numeric optimization described in details in
Ref. [5], but the numeric approach contains no interesting
details concerning the subject of the present paper to
discuss it here. We have also cross-checked that the exact
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solution (16) describes the numeric results obtained in
Ref. [5].
To compare different Z0 models, it is convenient to set the

universal normalization of the weight function:Z
1

−1
w2dz ¼ 1; C ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

1
−1 ½ F1ðzÞ

dσSM=dz�
2dz

q : ð17Þ

The universally normalized weight functions are plotted in
Fig. 5. As is seen, the weight functions are stable with
respect to systematic errors and weakly depend on the
center-of-mass energy. In the computation of systematic
errors, possible destructive interference between the weight
function and the uncertainties of the SM and Z0 factor is not
taken into account. So, the actual systematic error might be
less by up to several times. Of course, more accurate
calculation of the cross section could also reduce the error.
Some remnants of the “naive observables” for the Z0

signal can be still found in the weight functions. For the
SSM-like pool of models, we see the smoothed forward-
backward cross section, but the weight function is not the
step function anymore. In the LH model, the observable
selects mainly the forward bins (z ≥ −0.5). Other models
are closer to the total cross section with increased weight of
backward scattering angles.

IV. RELATION TO THE χ 2 FIT
OF THE DIFFERENTIAL

CROSS SECTION

Let us consider the fit of the Z0 mass from the differential
cross section. The observed events are aggregated into bins.
Each bin is described by the following quantities:

(i) Δzi is the width of the ith bin.
(ii) σi, σSMi are the observed cross section integrated in

the bin and the correspondent SM value:

σi ≃
�
dσ
dz

�
zi

Δzi:

(iii) δi is the statistical error in the bin. In accordance
with the Poisson distribution of events,

δ2i ≃ L−1σi ≃ L−1σSMi :

(iv) F1;i is the Z0 factor integrated in the bin:

F1;i ≃ F1ðziÞΔzi:

The χ2 function is

χ2ðμÞ ¼
X
i

�
σi − σSMi − μF1;i

δi

�
2

: ð18Þ

FIG. 5. The weight functions −wð ffiffiffi
s

p
; zÞ to amplify the Z0

signal and to measure MZ0 at the ILC energies. The uncertainty
arises from the systematic errors on the SM cross section and Z0
factors. The universal normalization

R
1
−1 w

2dz ¼ 1 is used to
compare different models. The negative sign at w is chosen to
obtain positive values at z ¼ 1. The actual systematic error might
be significantly less, accounting for possible destructive inter-
ference between the weight function and the uncertainties of the
SM and Z0 contribution to the cross section. The lines correspond
to the SM from ZFITTER.
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The minimum of χ2 can be found explicitly. It gives the
maximum likelihood (ML) estimate of the parameter:

μML ¼
P

i
ðσi−σSMi ÞF1;i

δ2iP
i
F2
1;i

δ2i

: ð19Þ

In the continuous limit,

μML ¼
Z
Ω
dzwMLðzÞ

�
dσ
dz

−
dσSM

dz

�
;

wMLðzÞ ¼
F1ðzÞ

dσSM=dzR
Ω dz F2

1
ðzÞ

dσSM=dz

: ð20Þ

As is seen, the ML estimate is described by the sameweight
function as the optimal observable described in the pre-
vious section. The only difference is the normalization of
wðzÞ, which is not arbitrary in this case. The normalization
condition can be written as follows:

Z
Ω
dzwMLðzÞF1ðzÞ ¼ 1: ð21Þ

Thus, the weight function in Fig. 5 must be rescaled to be
used as theML estimator of the Z0 mass. The corresponding
conversion constants are summarized in Table IV. For
realistic detectors, some cuts occur for the scattering angle
near the beam direction. In this case, the conversion
constant is larger, since the weight function is distributed
over a smaller volume. Note that the shape of the weight
function (up to the normalization factor) does not depend
on the cuts in accordance with Eq. (16).
The χ2 function also allows us to derive the confidence

interval for the Z0 mass. It is given by

χ2ðμÞ − χ2min < χ21;CL ¼ N2
CL; ð22Þ

where NCL is the symmetric confidence level (CL) for the
standard normal distribution; the interval ½−NCL; NCL�
corresponds to probability pCL. In other words, NCL is
the CL measured in units of the standard deviation (in the
so-called sigmas). The χ2 distribution with 1 degree of
freedom is used, since a single linear parameter appears in
the fit.
Calculating (22) explicitly, we obtain the confidence

interval for μ:

ðμ − μMLÞ2
X
i

F2
1;i

δ2i
< N2

CL: ð23Þ

Taking one standard deviation, NCL ¼ 1, we derive the
statistical error of the Z0 signal:

δμ ¼ absðμNCL¼1 − μMLÞ ¼ 1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

F2
1;i

δ2i

s
: ð24Þ

We can also calculate the quality of the Z0 signal. The
signal means that μ ¼ 0 is excluded at some CL. Taking
μ ¼ 0 in Eq. (23), we obtain

NCL;signal ¼ jμMLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

F2
1;i

δσ2i

s
¼ jμMLj

δμ
ð25Þ

or, in the continuous limit,

NCL;signal ¼ jμMLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L
Z
Ω
dz

F2
1ðzÞ

dσSM=dz

s
: ð26Þ

The right-hand side of Eq. (25) is just the signal-to-
uncertainty ratio (10). In accordance with the previous
section, it is maximal for the considered fit. Thus, the χ2 fit
of the differential cross section coincides again with the
optimal observable, since both the approaches are actually
the same ML estimate. It is well known that the ML fit is a
sort of estimate with the best statistical efficiency.

TABLE IV. The conversion constants in inverse picobarns to
obtain weight functions wML for the ML estimator (20), (43) from
the weight functions normalized as

R
1
−1 w

2dz ¼ 1 (plotted in
Fig. 5). The SM from ZFITTER is assumed. The complete phase
space and realistic kinematic cuts are considered.

250 GeV 500 GeV 1 TeV

z ∈ ½−1; 1�
SSM 0.229 335 0.223 967 0.222 132
χ 0.255 427 0.251 687 0.248 24
ψ 0.876 493 0.839 409 0.817 898
η 0.782 297 0.750 646 0.729 826
LRS 0.436 601 0.432 227 0.434 998
ALR 0.144 713 0.146 662 0.150 483
LH 0.5007 0.524 721 0.535 442
SLH 1.9879 1.895 37 1.835 67
Uð1ÞX;x¼1 0.050 278 9 0.048 122 9 0.046 780 4
Uð1ÞX;x¼−1.25 0.097 267 3 0.093 882 5 0.091 362 6

z ∈ ½−0.9848; 0.9848�, (10° < θ < 170°)
SSM 0.237 948 0.232 167 0.230 131
χ 0.261 228 0.257 191 0.253 523
ψ 0.909 494 0.870 178 0.847 366
η 0.800 892 0.767 772 0.746 045
LRS 0.452 973 0.448 038 0.450 659
ALR 0.148 165 0.150 018 0.153 834
LH 0.512 453 0.536 649 0.547 246
SLH 2.062 56 1.964 77 1.901 78
Uð1ÞX;x¼1 0.0514 954 0.049 240 2 0.047 839 4
Uð1ÞX;x¼−1.25 0.099 511 7 0.095 963 4 0.093 332 3
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The expected signal-to-uncertainty ratio NCL;signal is
shown in Table V for MZ0 ¼ 4 TeV and the ILC canonical
luminosities (250, 500, and 1000 fb−1 for 0.25, 0.5, and
1 TeV). It is easy obtain this ratio for other Z0 masses and
luminosities, since NCL;signal ∼

ffiffiffiffi
L

p
=ðs −M2

Z0 Þ. The condi-
tion NCL;signal > 5 means the discovery of the particle.

V. EFFECTS OF Z–Z0 MIXING

The Z–Z0 mixing angle θ0 arises from the diagonaliza-
tion of the mass matrix of neutral vector bosons. For a
bunch of Z0 models, it was discussed in details in Ref. [32].
In general, θ0 depends on the couplings and the vacuum
expectation values of scalar fields responsible for the
spontaneous breakdown of gauge symmetries. Because
of different possibilities to introduce the scalar sector,
additional parameters like the ratios of vacuum expectation
values occur, and the mixing angle cannot be reduced to the
couplings in Table II exclusively. So, it has to be considered
as a free parameter in the Z0 models.
The Z–Z0 mixing angle θ0 can be written in the form

θ0 ¼ C
gZ0

gZ

M2
Z

M2
Z0
: ð27Þ

where C ∼ 1 is a model-dependent factor. Explicit factors C
can be found in Ref. [32].

In the presence of Z–Z0 mixing, the Lagrangian (1)
becomes more complicated. Namely, the Z and Z0 cou-
plings must be substituted by

gZvf → gZvf cos θ0 þ gZ0v0f sin θ0;

gZaf → gZaf cos θ0 þ gZ0a0f sin θ0;

gZ0v0f → gZ0v0f cos θ0 − gZvf sin θ0;

gZ0a0f → gZ0a0f cos θ0 − gZaf sin θ0: ð28Þ
Since both the parameters θ0 and μ behave like ∼M−2

Z0 ,
only the linear in θ0 term in the cross section could correct
the results from the previous sections:

dσ
dz

≃
dσSM

dz
þ μF1ðs; z; a0; v0Þ þ θ0Fmixðs; z; a0; v0Þ: ð29Þ

Let us notice that the current constraint on θ0 (≤10−4)
means θ0 ≤ μ for the ILC energies. Using the same
notations as in Eqs. (4) and (6), we can write Fmix in
the form

Fmixðs;z;a0;v0Þ ¼−
α3=2em gZ0

ffiffiffi
π

p
32sin3θWcos3θWðs−M2

ZÞ

×
�
zfmix½s;a0e;2ϵðv0eþa0eϵÞ�

þ1þ z2

2
fmix½s;v0eϵ;ða0eþv0eϵÞð1þ ϵ2Þ�

	
;

ð30Þ

with

fmixðs; x; yÞ ¼ xð1 − ϵÞð3þ ϵÞ þ y
s

s −M2
Z
: ð31Þ

For qualitative analysis, the small parameter ϵ can be
omitted:

Fmix ∼
�
zfmixðs; a0e; 0Þ þ

1þ z2

2
fmixðs; 0; a0eÞ

�
: ð32Þ

As is seen, the contribution from the Z–Z0 mixing is related
to the axial-vector coupling. This fact is explained as
follows. In the SM, the Z vector coupling to charged
leptons is suppressed (it is ∼ϵ; see the SSM couplings with
s2W ≃ 1=4). On the other hand, only the Z exchange
Feynman diagram contributes to Fmix (the Z0 exchange
Feynman diagram ∼μϵ).
To estimate effects from Z–Z0 mixing, let us compare

Eq. (32) with Eq. (4). First of all, for v0e ¼ 0, both the
factors F1 and Fmix contain the same angular dependency
(up to ϵ2). This means that in the models with suppressed
vector coupling v0e the mixing angle corrects the estimated
parameter μ and cannot be separated in the leading order in
M−2

Z0 . Thus, for the SSM, LRS, ψ , and SLH models, all the

TABLE V. The expected signal-to-uncertainty ratio NCL;signal ¼
I−ISM

δI corresponding to the optimal observables at MZ0 ¼ 4 TeV
and the canonical ILC integrated luminosities 250, 500, and
1000 fb−1 for 0.25, 0.5, and 1 TeV.

250 GeV 500 GeV 1 TeV

z ∈ ½−1; 1�
SSM 1.50 4.31 12.92
χ 1.24 3.60 10.93
ψ 0.39 1.15 3.51
η 0.44 1.29 3.95
LRS 0.79 2.23 6.59
ALR 2.38 6.62 19.19
LH 0.50 1.40 4.13
SLH 0.17 0.51 1.56
Uð1ÞX;x¼1 6.97 20.48 62.80
Uð1ÞX;x¼−1.25 3.36 9.88 30.33

z ∈ ½−0.9848; 0.9848�, (10° < θ < 170°)
SSM 1.48 4.23 12.69
χ 1.23 3.56 10.81
ψ 0.39 1.13 3.45
η 0.43 1.27 3.90
LRS 0.77 2.19 6.48
ALR 2.35 6.54 18.98
LH 0.49 1.38 4.08
SLH 0.17 0.50 1.54
Uð1ÞX;x¼1 6.88 20.25 62.10
Uð1ÞX;x¼−1.25 3.32 9.78 30.01
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results from the previous sections remain unchanged after
updating μ:

μ → μ� ¼ μþ θ0

ffiffiffiffiffiffi
πα

p
M2

Z

a0egZ0 sin θW cos θWðM2
Z − sÞ : ð33Þ

The effective parameter μ� is shown in Table VI for
different ILC energies. In what follows, we will ignore
these models discussing the Z–Z0 mixing.
Second, in the models with suppressed axial-vector

coupling a0e ≃ 0, the Z–Z0 mixing may be ignored.
Indeed, in accordance with (32), θ0 ≃ 0. The model from
the considered list closest to this case is the η model.
The factors in the cross section have universal behavior

with respect to the collision energy:

Fmix ∼ s−1; F1 ∼ const; MZ ≪
ffiffiffi
s

p
< MZ0 :

Fmix is less than 2.5% of F1 at
ffiffiffi
s

p ¼ 1 TeV.
For

ffiffiffi
s

p ¼ 500 GeV, it exceeds 5% of F1 only for the
LH model. These magnitudes are comparable with
the systematic error for F1, so Z-Z0 mixing does not
influence the results obtained in the previous sections
for

ffiffiffi
s

p
≥ 500 GeV.

The angular dependence FmixðzÞ is shown in Fig. 6. The
odd shape is not surprising, since the effects of Z–Z0 mixing
cannot be separated from F1 in the models with odd F1.

Visible effects of Z–Z0 occur at the lower ILC energyffiffiffi
s

p ¼ 250 GeV only. In this case, there are optimal
observables to select either μ or θ0. The easiest way to
derive them is either to adopt general formulas form
Refs. [6,7] or to write the χ2 fit with several parameters.
Let us denote the set of fitted parameters as γi, the
corresponding factors in the differential cross section as
Fi, and the weight function as wi. In our case,

γi ¼ ½μ; θ0�;
Fi ¼ ½F1; Fmix�;
wi ¼ ½wμ; wθ0 �: ð34Þ

The result is

γi;ML ¼
Z
Ω
dzwi;MLðzÞ

�
dσ
dz

−
dσSM

dz

�
;

wi;ML ¼
X
j

c̃−1ij
FjðzÞ

dσSM=dz
; ð35Þ

where c̃−1ij is the inverse matrix for

c̃ij ¼
Z
Ω
dz

FiðzÞFjðzÞ
dσSM=dz

: ð36Þ

The numerical values of c̃−1ij are given in Table VII. It is
easy to see that Eq. (35) gives Eq. (20) for the single
parameter μ.

FIG. 6. The unpolarized factors Fmixð
ffiffiffi
s

p
; zÞ in picobarns at

250 GeV for the models with the mixing angle as a separate
parameter. The factors are calculated up to 5% systematic error.
The plotted factors for the Uð1ÞX model must be multiplied by 2.5.

TABLE VI. The effective parameter μ� in the models with
suppressed v0e.

250 GeV 500 GeV 1 TeV

SSM μ − 0.31θ0 μ − 0.07θ0 μ − 0.02θ0
LRS μþ 0.42θ0 μþ 0.09θ0 μþ 0.02θ0
ψ μþ 0.60θ0 μþ 0.13θ0 μþ 0.03θ0
SLH μþ 0.90θ0 μþ 0.20θ0 μþ 0.05θ0

TABLE VII. The numeric values of matrix c̃−1ij in inverse
picobarns. The complete phase space is suggested (z ∈ ½−1; 1�).

c̃−111 c̃−112 c̃−122

250 GeV
χ 0.057 661 7 −0.176493 2.322 41
η 0.355 642 −0.0730611 13.4809
ALR 0.015 201 2 0.097 004 2.975 55
LH 0.631 465 1.142 3.64662
Uð1ÞX;x¼1 0.001 439 55 0.007 556 2 1.539 29
Uð1ÞX;x¼−1.25 0.006 093 76 0.008 429 94 0.956 269

500 GeV
χ 0.013 021 3 −0.157882 11.0761
η 0.084 174 5 0.054 396 4 63.7052
ALR 0.003 678 1 0.083 681 2 14.2823
LH 0.149 855 1.1523 16.9333
Uð1ÞX;x¼1 0.000 334 045 0.003 702 35 7.177 84
Uð1ÞX;x¼−1.25 0.001 457 13 0.011 784 5 4.567 11

1 TeV
χ 0.002 961 17 −0.131345 44.4095
η 0.019 889 5 0.206 536 254.214
ALR 0.000 909 918 0.065 510 9 56.9887
LH 0.035 551 7 1.082 69 67.0021
Uð1ÞX;x¼1 0.000 077 959 9 −0.000906613 28.3105
Uð1ÞX;x¼−1.25 0.000 346 823 0.015 299 9 18.4215
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In terms of the Hilbert space from Sec. III,

c̃ij ¼



Fi

dσSM=dz
;

Fj

dσSM=dz

�
;



wi;ML;

Fj

dσSM=dz

�
¼

�
1; i ¼ j;

0; i ≠ j:
ð37Þ

The last equation corresponds to Eq. (21). First of all, it
means that the weight function for a given parameter must
be orthogonal to all the remaining Z0 factors in the
differential cross section,Z

Ω
dzwi;MLðzÞFj≠iðzÞ ¼ 0: ð38Þ

With this projection of Fi to the axis orthogonal to any
other factor, we obtain the result exactly corresponding to
the one-dimensional optimization from Sec. III. This is the
definition of the optimal observable through conditional
maximization of the signal-to-uncertainty ratio (10) with
the additional constraints to exclude contributions from
other unknown parameters [5].
The weight functions to measure separately μ and θ0 atffiffiffi
s

p ¼ 250 GeV are shown in Fig. 7. If the weight function
for μ is close to the total cross section in the absence of the
Z–Z0 mixing, we see no qualitative changes of the shape of
wμ with θ0 taken into account. This can be explained by the
fact that such models have initially approximately orthogo-
nal factors F1 (even) and Fmix (odd). However, the common
tendency is the growing weight of the backward bins.
The weight function to measure the Z–Z0 mixing angle

always has an approximately odd shape. It is close to the
weight function for μ� in the models with suppressed vector
coupling of the Z0 boson to charged leptons.
For the models with the Z0 couplings to left-handed

chiral states of charged leptons only (the LH model), the
situation becomes more interesting. In this case, we have
three completely different optimal observables: two observ-
ables to measure μ with either the absence or presence of
the Z–Z0 mixing and one observable to measure the mixing
angle. Their application to data would allow us to obtain a
lot of information about the Z–Z0 mixing angle.
Another possibility to account for the Z–Z0 mixing is

some model-independent definitions of θ0. For instance, let
us consider the Abelian Z0 boson [33] including, in
particular, the χ, LR, and Uð1ÞX models. In this case, there
is a relation inspired by the renormalization group equa-
tions below the threshold of Z0 decoupling:

θ0 ≃
2gZ0a0e sin θW cos θWffiffiffiffiffiffiffiffiffiffiffiffi

2παem
p M2

Z

M2
Z0
: ð39Þ

The optimal observables to measure Abelian Z0 couplings
were discussed in Ref. [5]. It was also shown in Ref. [34]
for the Abelian Z0 boson that the mixing angle plays an

important role in calculations at the Z0 peak. Since θ0 is
expressed in terms of the Z0 couplings, no additional
parameters occur. However, factor F1 has to be corrected
to include contribution from the Z–Z0 mixing:

F1 → F1 −
2gZ0a0e sin θW cos θWffiffiffiffiffiffiffiffiffiffiffiffi

2παem
p Fmix: ð40Þ

The corresponding weight functions are compared with the
case of absent mixing in Fig. 8. As is seen, the mixing angle
affects the weight function up to 10% at

ffiffiffi
s

p ¼ 250 GeV.
For higher collision energies, the contribution from θ0
decreases essentially.
Finally, let us remind the reader that there is no chance to

separate and measure the Z–Z0 mixing angle in the models
with suppressed vector Z0 couplings to charged leptons
(SSM, ψ , LRS, and SLH) nor for collision energies

ffiffiffi
s

p
≥

500 GeV within ILC experiments. Thus, the role of mixing
is important at energies ∼250 GeV.

FIG. 7. Theweight functions ηwð ffiffiffi
s

p
; zÞ tomeasureMZ0 and θ0 at

the ILC energies. The universal normalization
R
1
−1 w

2dz ¼ 1 is used
to compare different models. The sign η ¼ −1 for the χ and
Uð1ÞX;x¼1 models and η ¼ 1 otherwise. The lines correspond to
theSMfromZFITTER.The complete phase space z ∈ ½−1; 1� is used.
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VI. DISCUSSION

In the paper, we have considered a set of popular Z0
models in the annihilation leptonic process. We have
investigated weighted integrated cross sections with the
best ratio of the Z0 signal to statistical uncertainty (the
optimal observables). They uniquely define the weight of
every event in the phase space of the final particles. Then,
all the available events can be summed up with the weights
without intermediate aggregation into bins with respect to
the scattering angle. The CL of the signal corresponds to
the highest possible level allowed by the integrated
luminosity.
We have shown that the optimal observables are equiv-

alent to the χ2 fit of the differential cross section. In this
regard, it is a unique integration scheme of the cross section
that leads to no losses of information encoded in the
differential cross section. The optimal observables can
be implemented as a simple and convenient alternative
to the complete analysis of the differential cross section: it
could simply accumulate events from the start of an
experiment without additional manipulation of data leading
directly to the ML estimator for the Z0 mass.
It is interesting to compare the estimates based on the

optimal observables with the popular approach taking into
consideration the forward-backward asymmetry AFB. Such
an analysis can explain a lot of details of application of AFB
within the Z0 models. In Ref. [31], the 95% exclusion
reaches for the Z0 mass were calculated by means of AFB
assuming polarizations P− ¼ 0.8, Pþ ¼ 0.3 at 0.5 TeVand
P− ¼ 0.8, Pþ ¼ 0.2 at 1 TeV. We choose the same settings
and calculate exclusion reaches based on the optimal
observables. First of all, substituting the deviation from
the SM in (20) by the value predicted by the Z0 model,

dσ
dz

−
dσSM

dz
≃

M2
Z

s −M2
Z0
F1ðzÞ; ð41Þ

we obtain the obvious ML estimate of the model parameter
(3). Then, specifying the 95% confidence level, NCL ¼ 2,
and solving (26) for the Z0 mass, we obtain the exclusion
reach,

M2
Z0;95% ≃ sþM2

Z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L
Z
Ω
dz

F2
1ðzÞ

dσSM=dz

s
; ð42Þ

since any lower value of the Z0 mass will be detected as the
signal at the considered CL.
In Table VIII, we compare the exclusion reaches

from the optimal observables and from the forward-
backward asymmetries [31]. We take the same interval
of scattering angles 10° < θ < 170°, which corresponds to
z ∈ ½−0.9848; 0.9848�. The exclusion reaches from the
optimal observables are always higher than in any other
scheme, since this approach is more efficient from the
statistical point of view. However, the difference is not
uniform over the Z0 models. In case of the SSM, ψ , and
LRS models, the weight function is closer to the forward-
backward integration scheme, so the exclusion reach
increases up to 10%. Actually, the forward-backward
asymmetry might be good to search for these models.
On the other hand, the weight functions of the χ and η
models are far away from odd shapes. The exclusion
reaches from AFB are weak in this case, and the for-
ward-backward asymmetry seems to be insufficient to fit
data. Indeed, the optimal observables increase the exclusion
reaches up to 200%.

FIG. 8. The weight functions −wð ffiffiffi
s

p
; zÞ to measure μ in the

Abelian models with θ0 from Eq. (39). The universal normali-
zation

R
1
−1 w

2dz ¼ 1 is used to compare different models. The
shorthand notations X1 and X−1.25 are used for Uð1ÞX;x¼1 and
Uð1ÞX;x¼−1.25 models.

TABLE VIII. The exclusion reach on MZ0 (TeV) at 95% CL
from the optimal observable. The correspondent exclusion reach
from the forward-backward asymmetry from Ref. [31] is also
presented. The polarizations P− ¼ 0.8, Pþ ¼ −0.3 at 500 GeV
and P− ¼ 0.8, Pþ ¼ −0.2 at 1 TeV are assumed. The results in
Ref. [31] are rounded up to 0.5 TeV.

250 GeV 500 GeV 1 TeVffiffiffi
s

p
Eq. (42) Ref. [31] Eq. (42) Ref. [31] Eq. (42)

SSM 3.4 5.5 5.8 9.8 9.8
ψ 1.8 2.7 3.0 4.7 5.2
LRS 2.5 3.7 4.2 6.5 7.0
SLH 1.2 � � � 2.0 � � � 3.5
χ 3.1 1.6 5.3 3 9.1
η 1.9 1.7 3.2 3 5.5
ALR 4.3 � � � 7.2 � � � 12.0
LH 2.0 � � � 3.3 � � � 5.6
Uð1ÞX;x¼1 7.4 � � � 12.6 � � � 21.6
Uð1ÞX;x¼−1.25 5.2 � � � 8.8 � � � 15.0
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For a concluding remark, we note that the optimal
observable shows the best fit of data. It allows us to obtain
the ML estimator of the Z0 mass, taking into account the
distributionof events over the phase spaceof the final particles
with no loss of information. The approach can be applied to
treat experimental data even for small samples when the
aggregation of events into a detailed differential cross section
is practically impossible. Such a feature would be very useful
at the start of experiment. Indeed, Eq. (20) can be rewritten as

1

s −M2
Z0;ML

≃
X

i∈events

wML;i

M2
ZL

−
Z

1

−1
dz

wMLðzÞ
M2

Z

dσSM

dz
; ð43Þ

where the sum runs over all the observed events, wML;i
corresponds to the measured scattering angle, L means the

actual luminosity taking into account the event acceptance
rate, and the integral is the SM background calculated,
for instance, by the event generator for the actual detector.
Thus, the optimal observable can be considered as a technique
of continuous accumulation of events with on the fly fit
of the Z0 mass from the implied differential cross section
without actual construction of the differential cross section.
No signal from the optimal observable would mean that there
is no sense in further searching for the Z0 model in the
collected data.
Introducing the acceptance rates in the phase space

and other minor technical improvements are beyond the
scope of this paper. They could be revisited at the stage of
practical implementation of the optimal observables at
future lepton colliders.
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