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A consistent renormalization of a quantum theory of axion-electrodynamics requires terms beyond the
minimal coupling of two photons to a neutral pseudoscalar field. This procedure is used to determine
the self-energy operators of the electromagnetic and the axion fields with an accuracy of second-order in the
axion-diphoton coupling. The resulting polarization tensor is utilized for establishing the axion-modified
Coulomb potential of a static pointlike charge. In connection, the plausible distortion of the Lamb-shift in
hydrogenlike atoms is established and the scopes for searching axionlike particles in high-precision atomic
spectroscopy and in experiments of Cavendish-type are investigated. Particularly, we show that these
hypothetical degrees of freedom are ruled out as plausible candidates for explaining the proton radius
anomaly in muonic hydrogen. A certain loophole remains, though, which is linked to the nonrenormaliz-
able nature of axion-electrodynamics.
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I. INTRODUCTION

That the path integral measure in quantum chromody-
namics (QCD) is not invariant under an axial chiral
Uð1ÞA-transformation provides a clear evidence that this
classical symmetry does not survive the quantization
procedure. As a consequence of this anomaly, QCD
should not be a charge-parity (CP)-preserving framework.
However, with astonishing experimental accuracy, no CP-
violation event is known within the theory of the strong
interactions. This so-called “strong CP-problem” finds a
consistent theoretical solution by postulating a global
Uð1ÞPQ-invariance in the standard model (SM), which
compensates the CP-violating term via its spontaneous
symmetry breaking [1]. While this mechanism seems to be
the most simple and robust among other possible routes
of explanation, it is accompanied by a new puzzle linked to
the nonobservation of the associated Nambu-Goldstone
boson, i.e., the QCD axion [2,3]. As a consequence,
constraints resulting from this absence indicate a feeble
interplay between this hypothetical particle and the
well-established SM branch, rendering its detection a
very challenging problem to overcome. Still, various

experimental endeavors are currently oriented to detect
this elusive degree of freedom or, more generally, an
associated class of particle candidates sharing its main
features, i.e., axionlike particles (ALPs). Some of them
being central pieces in models which attempt to explain the
dark matter abundance in our Universe [4–8], whereas
others are remnant features of string compactifications
[9–12].
The problematic associated with the ALPs detection

demands both to exploit existing high-precision techniques
and to develop new routes along which imprints of these
hypothetical particles can be observed [13,14]. Descriptions
of the most popular detection methods can be found in
Refs. [15–19]. A vast majority of these searches relies on
the axion-diphoton coupling encompassed within axion-
electrodynamics [20]. Correspondingly, many photon-
related experiments such as those searching for light
shining through a wall [21–28] and the ones based on
polarimetry detections [29–33] have turned out to be
particularly powerful.
Contrary to that, precision tests of the Coulomb’s law

via atomic spectroscopy and experiments of Cavendish-
type have not been used so far in the search for ALPs,
although they are known to constitute powerful probes
for other well-motivated particle candidates [34–37]. In
particular, these setups provide the best laboratory bounds
on minicharged particles in the sub μeV mass range.
Simultaneously, by investigating the role of ALPs in atomic
spectra, one might elucidate whether the quantum vacuum
of these hypothetical degrees of freedom may be the source
for the large discrepancy > 5σ between the proton radius
that follows from the Lamb-shift in muonic hydrogen
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versus the established value based on electron scattering
and the Lamb-shift in ordinary hydrogen [38–41]. Various
theoretical investigations have been put forward seeking for
a satisfactory explanation for this anomaly [42–46], some
of them including hypothetical scalar particles.
Against the background of these circumstances, it is

relevant to derive modifications of the Coulomb potential
due to quantum vacuum fluctuations of axionlike fields
and to study their potential consequences. The former are
encompassed in the corresponding vacuum polarization
tensor whose calculation, however, is not a straightforward
task as far as axion quantum electrodynamics (QEDA) is
concerned. This is because it requires—first of all—a
meaningful implementation of the corresponding perturba-
tive expansion in this nonrenormalizable framework. In
analogy to quantum gravity [47–53], the expansion in terms
of the axion-diphoton coupling gives rise to an infinite
number of divergencies that cannot be reabsorbed in the
renormalization constants associated with the parameters
and fields of the theory. Unless a similar amount of counter-
terms is added, this feature spoils the predictivity of the
corresponding scattering matrix, preventing the construc-
tion of a consistent quantum theory of axion-electrodynam-
ics. Hence, the perturbative renormalizability of this
theory demands unavoidably the incorporation of higher
dimensional operators. This, in turn, comes along with the
presence of a large number of free parameters which have to
be fixed from experimental data. It is, however, known that
this formal aspect relaxes because many of these higher-
dimensional terms are redundant, in that the ultimate
scattering matrix is not sensitive to their coupling constants
[54–57]. As a matter of fact, all contributions of this nature
can be formally eliminated while the effective Lagrangian
acquires counterterms which allow for the cancellation of
the loop divergences. Besides, when working at a certain
level of accuracy, only a finite number of counterterms is
needed and the cancellations of the involved infinities can be
carried out pretty much in the same way as in conventional
renormalizable field theories.
In this paper, axion-electrodynamics is regarded as a

Wilsonian effective theory parametrizing the leading order
contribution of an ultraviolet completion linked to physics
beyond the SM. Its quantization is used for determining the
self-energy operator of the electromagnetic field with an
accuracy of second-order in the axion-diphoton coupling.
This result is utilized then for obtaining the modified
Coulomb potential of a static pointlike charge. In con-
nection, the plausible distortion of the Lamb-shift in
hydrogenlike atoms is established. Particular attention is
paid to a limitation caused by the nonrenormalizable
feature of axion electrodynamics which prevents us from
having a precise and clear picture of the axion physics at
distances smaller than the natural cutoff imposed by the
axion-diphoton coupling. In contrast to previous studies of
the Lamb-shift involving minicharged particles and hidden

photon fields, this property introduces an unknown uncer-
tainty that cannot be determined, unless the ultraviolet
completion of axion-electrodynamics is found. We argue
that—up to this uncertainty—axionlike particles are ruled
out as plausible candidates for explaining the proton radius
anomaly in muonic hydrogen (Hμ). Parallelly, spectro-
scopic results linked to a variety of transitions in hydrogen
are exploited to probe the sensitivity of this precision
technique in the search for ALPs. We show that, as a
consequence of the mentioned feature, high-precision
spectroscopy lacks of sufficient sensitivities as to improve
the existing laboratory constraints on the parameter space
of ALPs.
Our treatment is organized as follows. Firstly, in Secs. II

A and II B, techniques known from effective field theories
are exploited for establishing the vacuum polarization
tensor within an accuracy of the second order in the
axion-diphoton coupling. There we show that, despite
the electrically neutral nature of ALPs, the polarization
tensor closely resembles the one obtained in QED. The
similarity is stressed even further in Secs. III A and III B,
where various asymptotes of the polarization tensor are
established and the general expression for the axion-
Coulomb potential is determined. The latter outcome is
presented in such a way that a direct comparison with the
Uehling potential can be carried out. Also in Sec. III B, we
derive the correspondingmodification to the Lamb-shift and
emphasize the problematic introduced by both the effective
scenario and the use of atomic s-states. In Sec. III C we give
some estimates and discuss the advantages and disadvantages
of testing ALPs via excited states in Hμ, whereas in Sec. IV
our conclusions are exposed. Some details about the particle-
ghost content of the theory are provided in Appendix A.
Finally, in Appendix B the sensitivity levels associated with
precision tests of the axion-modified Coulomb law via
experiments of Cavendish-type are presented.

II. THE MODIFIED PHOTON PROPAGATOR IN
AXION-ELECTRODYNAMICS

A. Effective field theory approach

Axion-electrodynamics relies on an effective action
characterized by a natural ultraviolet scale ΛUV at which
the Uð1ÞPQ-symmetry is broken spontaneously. It combines
the standard Maxwell Lagrangian, the free Lagrangian
density of the pseudoscalar field ϕ̄ðxÞ and an interaction
term coupling two photons and an axion. Explicitly,

Sḡ ¼
Z

d4x

�
−
1

4
fμνfμν þ

1

2
∂μϕ̄∂μϕ̄

−
1

2
m̄2ϕ̄2 þ 1

4
ḡ ϕ̄ f̃μνfμν

�
: ð1Þ

Here, fμν ¼ ∂μāν − ∂νāμ stands for the electromagnetic
field tensor, whereas its dual reads f̃μν ¼ 1

2
ϵμναβfαβ with
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ϵ0123 ¼ 1. Hereafter, we use a metric with signature
diagðgμνÞ ¼ ð1;−1;−1;−1Þ, and a unit system in which
the speed of light, the Planck constant and the vacuum
permitivity are set to unity, c ¼ ℏ ¼ ϵ0 ¼ 1. As the axion-
diphoton coupling ḡ ¼ Λ−1

UV has an inverse energydimension,
this effective theory belongs to the class of perturbatively
nonrenormalizable frameworks. In the following we will
suppose that ΛUV is a very large parameter in order to extend
integrals over the momentum components to an infinite-
volume Fourier space. Whenever no problem of convergence
arises, the integrals over the spacetime coordinates will also
be extended to the whole Minkowski space.
We want to use Eq. (1) to derive radiative corrections up

to second-order in the axion-diphoton coupling ∼ḡ2. For
this, we shall use well-established effective field theory
techniques which have been applied extensively within the
context of quantum gravity [47–53] and chiral perturbation
theory [58–61] (see also Refs. [62–64] for their application
in nonlinear QED). In connection, we will suppose that Sḡ
characterizes—at energies substantially lower than ΛUV—
the leading order contribution of its UV-completion
which is Lorentz and gauge invariant. Hence, all higher-
dimensional operators which are consistent with these
fundamental symmetries should be included in Eq. (1),
implying that an infinite number of counterterms is
necessary to cancel out the divergences linked to one-
particle irreducible Feynman diagrams [65]. However, to
extract quantitative predictions from the radiative correc-
tions in the second-order approach in the axion-diphoton
coupling, it is sufficient to incorporate the next-to-leading
order term of Sḡ. Combining the described method with a
dimensional analysis, we find that the renormalization of
the self-energy operators in QEDA should be handled by
two local operators of dimension 6:

Sḡ2 ¼
Z

d4x

�
1

2
ḡ2b̄2að∂μfμλÞð∂νfνλÞ

þ 1

2
ḡ2b̄2ϕð∂μϕ̄Þ□ð∂μϕ̄Þ þ � � �

�
: ð2Þ

Various local operators sharing both the symmetry of the
theory and the same dimensionality can be found. However,
it can be easily verified that all of them reduce to those
given in Eq. (2) through integrations by parts. The Wilson
parameters b̄a;ϕ determine the strength of the contributions
above. They might be determined by a matching procedure
provided the UV-completion of Sḡ is known. Since we
ignore the precise form of the latter, they will be considered
as arbitrary. We emphasize that the appearance of the square
of the Wilson parameters in Sḡ2 guarantees that—at least at
tree level—the theory is causal [i.e., free of tachyons; see
also discussion below].
It is worth remarking that the action resulting from the

combination of Eqs. (1) and (2) cannot be considered as an

ordinary action containing higher-order derivatives. Within
a quantum effective theory approach, higher-dimensional
operators—like those exhibited in Eq. (2)—are suppressed
by higher powers of ḡ, so that their consequences at low
energies relative to ΛUV ¼ ḡ−1 are tiny when compared
with the effects resulting directly from Sḡ [65,66]. To all
effects, they must be treated as perturbations, otherwise
a violation of the unitarity takes place due to the occurrence
of Pauli-Villars ghosts. While this problem has been noted
in previous studies (see for instance [67,68] and references
therein), it is instructive to review it once again in the
present context. To this end, we first note that the
appearance of ghosts emerges quite straightforwardly when
investigating the axion Green function that results from
combining the corresponding kinetic term and the second
line of Eq. (2):

Gðp2Þ ¼ 1

p2 − m̄2
−

1

p2 − m̄2
s
: ð3Þ

At the pole p ¼ m̄2, the residue of this Green function is
ResGðp2Þjp2¼m̄2 ¼ 1,1 whereas at p2 ¼ m̄2

s ¼ ðḡb̄ϕÞ−2 it
turns out to be ResGðp2Þjp2¼m̄2

s
¼ −1. Hence, the vacuum

excitations linked to the former pole have a positive definite
norm in the Hilbert space, as should correspond to
asymptotically single-particle states. Conversely, the square
of the norm associated with the remaining massive exci-
tations is nonpositive and no physical state can be asso-
ciated with them (ghost states), leading parallely to a
violation of unitarity [67]. Noteworthy, as the associated
higher-dimensional operator [see Eq. (2)] contains the
square of b̄ϕ, the ghost mass is real and its fictitious
propagation does not involve a speed faster than the speed
of light. The term written in the first line of Eq. (2) leads
to a similar scenario,2 but with a different ghost mass
m̄2

gh¼ðḡb̄aÞ−2 [for details, see Appendix A]. The described
situation provides evidences that symmetry arguments are
not enough to obtain a well-behaved quantum theory of the
fields involved in S ¼ Sḡ þ Sḡ2 . However, if the scattering
matrix linked to its UV-completion is unitary, it is natural
to expect that the one associated with S, covering
quantum processes at lower energies ≪ ΛUV, is unitary
too. This idea justifies the restriction given above Eq. (3).
We remark that these “ghost-providing” contributions
are redundant operators which can be dropped from
the effective Lagrangian without changing observables
[54–56]. Later on, this outcome is used to remove them

1Although the exposition is made in terms of bare parameters,
the idea extends straightforwardly when renormalized quantities
are considered instead.

2The origin of the electromagnetic theory that results from
combining the Maxwell theory with the higher-derivative oper-
ator written in the first line of Eq. (2) dates back to the work of P.
Podolsky [69]. For further developments see Refs. [70–77].
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conveniently while the effective Lagrangian acquires coun-
terterms which allow for the cancellation of the divergences
associated with the loops that are calculated here [see
below Eq. (7)].
Now, to carry out the renormalization program, the set of

“bare” quantities ðm̄; ḡ; m̄gh; m̄s; āμ; ϕ̄Þ should be replaced
by the respective renormalized parameters ðm; g;mgh; ms;
aμR;ϕRÞ. In connection, each term inS ¼ Sḡ þ Sḡ2 þ � � � has
to be parametrized by a renormalization constant so that the
action to be considered from now on is

S¼SRþSctþ���;

SR¼
Z

d4x

�
−
1

4
f2Rþ

1

2
ð∂ϕRÞ2−

1

2
m2ϕ2

R

þ1

4
gϕRf̃RfRþ

1

2m2
gh

ð∂fRÞ2− 1

2m2
s
ϕR□

2ϕR

�
;

Sct¼
Z

d4x

�
−
1

4
ðZ3−1Þf2Rþ

1

2
ðZϕ−1Þð∂ϕRÞ2

−
1

2
m2ðZm−1Þϕ2

Rþ
1

2m2
gh

ðZgh−1Þð∂fRÞ2

þ1

4
ðZg−1ÞgϕRf̃RfR−

1

2m2
s
ðZs−1ÞϕR□

2ϕR

�
: ð4Þ

Here, fR ≡ fμνR ¼ ∂μaνR − ∂νaμR is the renormalized electro-
magnetic tensor with aμRðxÞ ¼ Z−1=2

3 āμðxÞ. Likewise, the
renormalized axion fieldϕRðxÞ and its bare counterpart ϕ̄ðxÞ
are connected via ϕRðxÞ ¼ Z−1=2

ϕ ϕ̄ðxÞ, where Zϕ is the
corresponding wavefunction renormalization constant.
Any other bare parameter relates to its respective renormal-
ized quantity following multiplicative renormalizations
according to

m̄ ¼ m

ffiffiffiffiffiffiffi
Zm

Zϕ

s
; ḡ ¼ g

Zg

Z3

ffiffiffiffiffiffiffi
Zϕ

p ;

m̄gh ¼ mgh

ffiffiffiffiffiffiffiffi
Z3

Zgh

s
; m̄s ¼ ms

ffiffiffiffiffiffiffi
Zϕ

Zs

s
: ð5Þ

It is worth remarking that in Eq. (4) the shorthand notations
f2R ≡ fRμνf

μν
R , f̃RfR ≡ f̃Rμνf

μν
R , ð∂ϕRÞ2 ≡ ð∂μϕRÞð∂μϕRÞ

have been used. When inserting the expressions for the
ghost masses [see below Eq. (3)] in those relations given in
the second line of Eq. (5), we link the bare and renormalized
Wilsonian parameters:

b̄a¼ ba
1

Zg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3ZghZϕ

q
; b̄ϕ ¼ bϕ

Z3

Zg

ffiffiffiffiffiffi
Zs

p
; ð6Þ

where the connection between ḡ and g has been used.
Noteworthy, within our second-order approximation in the
coupling constant, no modification on the renormalized

axion-diphoton coupling g can be expected, i.e., Zg would
not deviate from its classic tree-level value Zg ¼ 1. Hence,
from now on, no distinction between the renormalized and
physical coupling is needed. However, we emphasize that its
bare counterpart ḡ is still subjected to a renormalization due
to the wave functions renormalization constantsZ3 andZϕ.
At the quantum level, the dynamical information of the

system described by Eq. (4) is rooted within the Green
functions. They can be obtained from the generating
functional

Z½j; j� ¼
R
DϕRDaRe

iSþi
R

d4x½− 1
2ζð∂μaμRÞ2þaμRjμþϕRj�R

DϕRDaReiS
; ð7Þ

where jðxÞ and jμðxÞ denote the external currents associ-
ated with the axion ϕRðxÞ and the gauge field aμRðxÞ. The
contribution in the exponent of Eq. (7) which is propor-
tional to the parameter 1ζ guarantees a covariant quantization
of aμRðxÞ. At this point it turns out to be convenient to bring
the renormalized Lagrangian in SR [see Eq. (4)] to a
canonical form in which the terms linked to the Pauli-
Villars ghosts are dropped. This can be achieved by
performing the following local field redefinitions within
the path integral [see Eq. (7)]:

ϕR → ϕR −
□

2m2
s
ϕR; aμR → aμR −

□

2m2
gh

aμR; ð8Þ

and by keeping the accuracy to the order g2. As these
transformations are linear in ϕRðxÞ and aμRðxÞ, the asso-
ciated Jacobian leads to a decoupling between the corre-
sponding Fadeev-Popov ghosts and the fundamental fields.
The equivalence theorem [54,56] generalizes this fact by
dictating that no change is induced on the scattering matrix
through shifts of this nature; still they modify the initial
parameters of the theory. Indeed, in our problem the
redefinition of ϕRðxÞ leads to a kinetic term of the form
1
2
ð1 − m2

m2
s
Þð∂ϕRÞ2. The additional factor contained in this

expression can be reabsorbed in Sct [see Eq. (4)] by
redefining the wavefunction renormalization constant for
the axion field Zϕ − m2

m2
s
→ Z0

ϕ. Similarly, we redefine

Zgh−Z3→Z0
gh, Zs−Zϕ→Z0

s, Z3 → Z0
3 and Zm → Z0

m

to reabsorb terms arising when transforming Sct. Therefore,
apart from this unobservable effect, the Pauli-Villars ghosts
have no result other than to remove the divergences that
might arise from the respective one-particle irreducible
graphs.

B. Renormalized photon propagator in a
modified minimal subtraction scheme

We pursue our investigation by determining the modi-
fication to the photon propagatorDð0Þ

αβ ðx; x̃Þ due to quantum
vacuum fluctuations of a pseudoscalar axion field ϕRðxÞ.
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The use of Eq. (7) allows us to express the modified photon
propagator Dαβðx; x̃Þ as

Dαβðx; x̃Þ ¼
1

i2
δ2Z½j; j�

δjαðxÞδjβðx̃Þ
����
j;j¼0

: ð9Þ

We then expand Eq. (7) up to the order g2 and insert the
resulting expression into the formula above. As a conse-
quence, the corrected photon propagator reads

Dαβðx; x̃Þ ¼ Dð0Þ
αβ ðx; x̃Þ þ

Z
d4yd4ỹDð0Þ

αμ ðx; yÞ

× iΠμνðy; ỹÞDð0Þ
νβ ðỹ; x̃Þ þOðg4Þ: ð10Þ

HereΠμνðy; ỹÞ encompasses the expression for the unrenor-
malized polarization tensor [see Fig. 1] as well as counter-
terms that allow for the cancellation of the divergences
associated with this loop. Analytically, it reads

Πμνðy; ỹÞ ¼ ig2ϵμαϵτϵνβσρ½∂ ỹ
σ∂y

ϵΔð0Þ
F ðỹ; yÞ�½∂y

τ∂ ỹ
ρD

ð0Þ
αβ ðy; ỹÞ�

þ
�
Z0

3 − 1þ □

m2
gh

ðZ0
gh − 1Þ

�

× ½□gμν − ∂μ∂ν�δ4ðy − ỹÞ; ð11Þ

where Δð0Þ
F ðx; x̃Þ ¼ R

đ4p i
p2−m2þi0 e

ipðx−x̃Þ, with đ4p≡
d4p=ð2πÞ4 refers to the unperturbed ALP propagator,

whereas Dð0Þ
αβ ðx; x̃Þ ¼

R
đ4p −igαβ

p2þi0 e
ipðx−x̃Þ denotes the pho-

ton propagator in Feynman gauge [ζ ¼ 1]. It is worth
remarking that, in momentum space the polarization tensor
Πμνðp1; p2Þ ¼

R
d4xd4x̃e−ip1xΠμνðx; x̃Þeip2x̃ reads

Πμνðp1; p2Þ ¼ δp1;p2

�
ig2ϵμταβϵνσγρgστp2βp2ρKαγ

−
�
Z0

3 − 1 −
p2
2

m2
gh

ðZ0
gh − 1Þ

�
ðp2

2g
μν − pμ

2p
ν
2Þ
�
; ð12Þ

where the shorthand notation δp1;p2
≡ ð2πÞ4δ4ðp1 − p2Þ

has been introduced and

Kαγ ¼
Z

đ4qqαqγ
q2½ðq − p2Þ2 −m2� ; ð13Þ

which diverges quadratically as jqj → ∞. The regulariza-
tion of Πμνðp1; p2Þ is then carried out by using a standard
Feynman parametrization [ 1ab ¼

R
1
0

ds
½bþða−bÞsÞ�2] and by con-

tinuing the loop integral to D ¼ 4 − ϵ, ϵ → 0þ dimensions
via the replacementZ

đ4q… → ðCμÞϵ
Z

đDq…; ð14Þ

where C ¼ e
1
2
ðγ−1Þ=ð4πÞ1=2 and γ ¼ 0.5772… is the Euler-

Mascheroni constant. In this context, μ denotes a dimen-
sionful parameter, i.e., the substracting point that follows
when rescaling the renormalized axion-diphoton coupling
g → gμϵ=2 in D-dimensions so that its mass dimension −1
is kept. Also, when going from four to D-dimensions,
the Wilsonian parameters [see Eqs. (2) and (6)] rescale
bi → biμ−ϵ=2 with i ¼ a;ϕ while their dimensionless fea-
ture is retained.
Now, we integrate over q and Taylor expand the resulting

expression in ϵ. As a consequence, Eq. (12) becomes

Πμνðp1; p2Þ ¼ δp1;p2
ðgμνp2

2 − pμ
2p

ν
2Þπðp2

2Þ;

πðp2Þ ¼ g2

16π2

Z
1

0

dsΔðsÞ
�
2

ϵ
− ln

�
ΔðsÞ
μ2

	�

− ðZ0
3 − 1Þ þ p2

m2
gh

ðZ0
gh − 1Þ ð15Þ

with ΔðsÞ ¼ m2s − p2sð1 − sÞ. Manifestly, the term asso-
ciated with the factor ϵ−1 is singular as ϵ → 0. In contrast to
QED, such a divergence cannot be reabsorbed fully in the
wavefunction renormalization constant of the electromag-
netic field Z0

3 by enforcing that the radiative correction
should not alter the residue of the photon propagator at
p2 ¼ 0 [65,78]. We solve this problem, by choosing the
counterterms in the following form

Z0
3 − 1 ¼ lim

ϵ→0

g2m2

16π2ϵ
; Z0

gh − 1 ¼ lim
ϵ→0

g2m2
gh

48π2ϵ
: ð16Þ

Notice that the ratio of scales mg acts like a dimensionless
coupling constant. Thus, the one-loop renormalized polari-
zation tensor in a modified minimal subtraction scheme
(MS) scheme reads

Πμν

MS
ðp1; p2Þ ¼ δp1;p2

½p2
2g

μν − pμ
2p

ν
2�πMSðp2

2Þ;

πMSðp2Þ ¼ −
g2

16π2

Z
1

0

dsΔðsÞ ln
�
ΔðsÞ
μ2

	
: ð17Þ

FIG. 1. Feynman diagram depicting the axion-modified vac-
uum polarization tensor. While the dashed line represents the free
axion propagator, the internal wavy line denotes the free photon
propagator Dð0Þ

μν ðx; x̃Þ. Here, the external wavy lines represent
amputated photon legs.
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Noteworthy, this expression satisfies the transversality
condition p1μΠ

μν

MS
ðp1; p2Þ ¼ Πμν

MS
ðp1; p2Þp2μ ¼ 0.

Some comments are in order. First, when the QED action
is extended with those terms belonging to QEDA, the
expression for Z0

3 − 1 found in Eq. (16) will be added to
the corresponding one-loop QED-expression [Z3ðQEDÞ].

3

This operation allows us to define the standard renormal-
ized U(1)-charge as usual eR ¼ Z̃1=2

3ð1 loopÞē, with the bare

charge ē and Z̃3ð1 loopÞ ¼ Z0
3 þ Z3ðQEDÞ. Finally, taking

into account Eqs. (16) and (17), the Fourier transform of
Eq. (10) is, up to an unessential longitudinal term,

Dμν

MS
ðp1; p2Þ ¼ δp1;p2

Dμν

MS
ðp2Þ;

Dμν

MS
ðpÞ ¼ −igμν

p2
½1þ πMSðp2Þ�: ð18Þ

This formula constitutes the starting point for further
considerations. In the next section it will be used to
establish the axion-modified Coulomb potential.

C. Axion self-energy operator, renormalized
mass vs physical mass

Our aim in this section is to determine the axion self-
energy operator. Its associated Feynman diagram is
depicted in Fig. 2. This object encloses the way in which
the quantum vacuum fluctuations of the electromagnetic
field correct the axion propagator. To show this analytically,
we expand the generating functional for the Green function
[see Eq. (7)] up to first order in g2. Once this step has been
carried out, the resulting expression is twice differentiated
functionally with respect to the axion source jðxÞ leading to

ΔFðx; x̃Þ ¼
1

i2
δ2Z½j; j�

δjðxÞδjðx̃Þ
����
j;j¼0

¼ Δð0Þ
F ðx; x̃Þ −

Z
d4yd4ỹΔð0Þ

F ðx; yÞ

× iΣðy; ỹÞΔð0Þ
F ðỹ; x̃Þ þOðg4Þ: ð19Þ

Here, Σðy; ỹÞ comprises the expression of the unrenormal-
ized axion self-energy operator as well as some possible
counterterms. Explicitly,

Σðy; ỹÞ¼−
i
2
g2ϵμντσϵαβργ½∂y

σ∂ ỹ
γD

ð0Þ
μα ðy; ỹÞ�

× ½∂y
τ∂ ỹ

ρD
ð0Þ
βν ðỹ;yÞ�−

�
□ðZ0

ϕ−1Þ

þ□
2

m2
s
ðZ0

s−1Þþm2ðZ0
m−1Þ

�
δ4ðy− ỹÞ: ð20Þ

Next, we Fourier transform Σðy; ỹÞ and regularize its
divergent integral via dimensional regularization as made in
Sec. II B. However, in contrast to the case treated there, the
associated divergence at ϵ → 0 is fully reabsorbed here in a
renormalization constant

Z0
s − 1 ¼ lim

ϵ→0

g2m2
s

32π2ϵ
; ð21Þ

whereas Z0
m does not deviate from its classic tree-level

value [Z0
m ¼ 1]. This feature extends beyond the one-loop

approximation because the axion-photon vertex prevents
the proliferation of self-interacting terms for ALPs con-
taining no derivatives [66]. Despite this, the bare mass m̄
still is subject to a finite renormalization due to the axion
wavefunction renormalization constant [see Eq. (5)], which
does not deviate from the classical value Z0

ϕ ¼ 1. Keeping

in mind all these details, we find that—in a MS scheme—
the renormalized axion self-energy operator is given by

ΣMSðp1;p2Þ¼ δp1;p2
ΣMSðp2

2Þ;

ΣMSðp2Þ¼ 3g2p2

32π2

Z
1

0

dsΔm→0ðsÞ ln
�
Δm→0ðsÞ

μ2

	
; ð22Þ

where Δm→0ðsÞ ¼ −p2sð1 − sÞ [see below Eq. (15)]. As
we could have anticipated, this expression is independent
of the renormalized axion mass. It is, perhaps, worth
stressing that—in a MS-scheme—the square of the physi-
cal mass m2

phy is the value of p
2 for which the real part of

the two-points irreducible function4:

Γðp1; p2Þ ¼ δp1;p2
½p2

2 −m2
phy�;

m2
phy ¼ m2 − ΣMSðm2

phyÞ ð23Þ

vanishes. Whenever the subtracting parameter satisfies
μ ≫ mphy exp½−32π2=ðg2m2

phyÞ�, mphy ≈ m holds. Hence,

FIG. 2. Diagrammatic representation of the axion self-energy
operator mediated by quantum vacuum fluctuations of the
electromagnetic field. In contrast to Fig. 1, the external dashed
lines represent amputated ALPs legs, whereas the internal wavy
lines represent photon propagators Dð0Þ

μν ðx; x̃Þ.

3An explicit expression for Z3ðQEDÞ, in dimensional regulari-
zation, can be found in Eq. (19.37) of Ref. [65].

4This expression can be established from the identityR
đ4qΓðp1; qÞΔFðq; p2Þ ¼ −iδp1;p2

, where ΔFðq; p2Þ stands for
the Fourier transform of Eq. (19).
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the expression for the polarization tensor [see Eq. (17)] as a
function of m2

phy would not differ from the one given in
terms of the renormalized mass.
At this point we find it interesting to make a comparison

between Eq. (22) and the polarization tensor given in
Eq. (17). To this end, it is convenient to reexpress the latter
as follows:

Πμν

MS
ðp1; p2Þ ¼ δp1;p2

ϰMSðp2Þ
�
gμν −

pμ
2p

ν
2

p2
2

�
;

ϰMSðp2Þ ¼ p2πMSðp2Þ: ð24Þ

In this formula, ϰMSðp2Þ represents the only nontrivial
eigenvalue of the polarization tensor [79,80], which—in the
limit under consideration—turns out to be smaller than
ΣMSðp2Þ by a factor −2=3.
Let us finally remark that, in addition to the axion-

diphoton interplay, axion self-coupling [81] as well as
effective interactions with electron, proton and neutron
might occur [16,82–84]. In such a case further one-loop
contributions to the axion self-energy operator might arise.
However, these contributions depend on coupling constants
other than the one mediating the interaction between an
axion and two photons.

III. AXION-COULOMB POTENTIAL

A. Screening of the electric charge and finite
renormalization: Setting the subtracting parameter

Hypothetical distortions of Coulomb’s law can always be
determined through the temporal component of the electro-
magnetic four-potential (hereafter, to simplify notation,
aμðxÞ has to be understood as aμRðxÞ)

aαðxÞ ¼ −i
Z

Dαβ

MS
ðx; x̃Þjβðx̃Þd4x̃;

Dαβ

MS
ðx; x̃Þ ¼

Z
đ4p1đ4p2eip1xDαβ

MS
ðp1; p2Þe−ip2x̃ ð25Þ

where Dαβ

MS
ðp1; p2Þ is given in Eq. (18). Here jβðx̃Þ ¼

qδβ0δ
3ðx̃Þ denotes the four-current density of a pointlike

static charge q placed at the origin x̃ ¼ 0 of our reference
frame. Particularizing the expression above for α ¼ 0, we
end up with

a0ðxÞ ¼ q
Z

đ3p
p2

½1þ πMSðp2Þ�e−ip·x: ð26Þ

At this point it is worth emphasizing that, while the
expression for πMSðp2Þ [see Eq. (17)] is finite, its depend-
ence on the subtracting point μ introduces an arbitrariness.
To remove it, we consider the expression of the electrostatic
energy between two electrons in momentum spaceUðpÞ. It

can be established easily by taking the integrand above,
with q → eR. After multiplying the resulting expression by
eR, we find

UðpÞ ¼ −eRa0ðpÞ ¼ −
e2scrðpÞ
p2

; ð27Þ

where the screened charge e2scrðpÞ ¼ e2R½1þ πMSðp2Þ� has
been defined.
As we still have freedom of performing finite renorm-

alizations, we can demand that πMSðp2Þ vanishes as
jpj → 0. Since the corresponding length scale jxj → ∞,
e2scrðjxj → ∞Þ can be identified with the electrostatic
charge that is measured in experiments at low energies.
This natural renormalization condition [πMSð0Þ ¼ 0] holds
for the subtracting parameter μ ¼ m exp½−1=4�. The renor-
malized polarization tensor then reads

Παβ
R ðp1; p2Þ ¼ δp1;p2

½p2
2g

αβ − pα
2p

β
2�πRðp2

2Þ;

πRðp2Þ ¼ −
g2m2

64π2

�
1 −

1

3

p2

m2

�

−
g2

16π2

Z
1

0

dsΔðsÞ ln
�
ΔðsÞ
m2

	
; ð28Þ

whereas the axion self-energy operator [see Eq. (22)]
reduces to

ΣRðp1; p2Þ ¼ δp1;p2
ΣRðp2

2Þ;

ΣRðp2Þ ¼ −
g2p4

64π2

�
ln

�
−
p2

m2

	
−
7

6

�
: ð29Þ

The results obtained so far are summarized inFig. 3,which
displays the behavior of πRðp2Þ [left panel] and ΣRðp2Þ
[right panel] as a function of p2=m2. In both panels the
respective real and imaginary parts are shown in green and
red, manifesting by themselves the non-Hermitian feature
of the polarization tensor and the axion self-energy operator.
To support this numerical evaluation from an analytic
viewpoint, we first determine an exact expression for the
imaginary parts. To this end, we restore the i0-prescription
[m2 → m2 − i0] in Eq. (28) and apply the formula
lnð−A − i0Þ ¼ lnðjAjÞ − iπ with A > 0. Explicitly,

Im½πRðp2Þ� ¼ −
g2p2

96π

�
1 −

m2

p2

�
3

Θðp2 −m2Þ;

Im½ΣRðp2Þ� ¼ g2ðp2Þ2
64π

Θðp2 −m2Þ; ð30Þ

where ΘðxÞ denotes the unit step function. We note that
for an on-shell photon [p2 ¼ 0], the imaginary part
of Πμν

R vanishes, which implies—according to the optical
theorem—that the emission of an ALP from a photon
accompanied by the radiation of another photon is
forbidden. This fact agrees with the outcome resulting
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from an analysis of the corresponding energy-momentum
balance.
The expression for the imaginary part of the one-loop

self-energy operator Im½ΣRðp2Þ� [second line in Eq. (30)]
coincides with the result found previously in Ref. [85]
through a direct application of the cutting rules. Its on-shell
evaluation [p2 ¼ m2] should allow us to determine the
total rate of the decay process ϕ → γγ via the relation
Im½ΣRðm2Þ� ¼ mΓϕ→γγ , provided the optical theorem is
valid. With accuracy to first order in g2, this formula is
indeed verified because an expression for Γϕ→γγ—relying
on the corresponding S-matrix amplitude—can be inferred
directly from the corresponding neutral pion decay rate [see
for instance Eq. (19.119) in Ref. [86]]. This fact evidences
that the unitarity is preserved, at least within the second
order approximation in the axion-diphoton coupling g.
Further asymptotic expressions of Eq. (28) are eluci-

dated. For m2 ≫ p2, we find that πRðp2Þ approaches to

πRðp2 ≪ m2Þ ≈ g2p2

144π2

�
1 −

3

8

p2

m2

�
: ð31Þ

Conversely, for jp2j ≫ m2, its asymptotic behavior turns
out to be dominated by the following function

πRjjp2j≫m2 ≈
g2p2

96π2

�
ln

�jp2j
m2

	
− iπΘðp2Þ − 7

6

�
: ð32Þ

Notably, when p is timelike ½p2 > 0�, the expression
above gets an imaginary contribution Im½πRðp2 ≫ m2Þ� ≈
−g2p2=ð96πÞ, which coincides with the leading order

term of Eq. (30) when the condition p2 ≫ m2 is
considered.

B. Electrostatic potential and modified Lamb-shift

The first contribution in Eq. (26) can be integrated
straightforwardly, leading to the unperturbed Coulomb
potential aCðxÞ ¼ q=ð4πjxjÞ. The second one, on the other
hand, will be computed by using πRðp2Þ rather than
πMSðp2Þ. With all these details in mind we write

a0ðxÞ ¼ aCðxÞ þ δaðxÞ;

δaðxÞ ¼ q
Z

đ3p
p2

πRðp2Þe−ip·x: ð33Þ

For evaluating δaðxÞ explicitly, it is convenient to integrate
by parts in Eq. (28) and use an equivalent representation of
πRðp2Þ instead:

πRðp2Þ ¼ g2p2

144π2

�
1 −

3

2
p2

Z
1

0

dss3

m2 − p2ð1 − sÞ
�
: ð34Þ

Observe that, for applying this formula in Eq. (33), p0 must
be set to zero. Taking this into account, the integral over the
momentum can be carried out with relative ease. After
developing the change of variable u ¼ 1=ð1 − sÞ1=2, the
axion-modified potential turns out to be

a0ðxÞ ¼
q

4πjxj
�
1þ g2m2

48π2

Z
∞

1

du
u5

½u2 − 1�3e−mjxju
�
: ð35Þ

4 2 0 2 4 6
2

1

0

1

2

p 2 m 2

R
g

2
m

2
64

2

4 2 0 2 4 6
2

1

0

1

2

p 2 m 2

R
g

2
m

4
64

2

FIG. 3. In the left panel, the behavior of the form factor of the vacuum polarization tensor πRðp2Þ [see Eq. (28)] is shown as a function
of p2=m2. The right panel depicts the corresponding dependence of the axion self-energy operator ΣRðp2Þ [see Eq. (29)]. The respective
real and imaginary parts are displayed in green and red.
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We remark that spurious contributions containing Dirac
deltas δ3ðxÞ have been ignored since the theory is predictive
only for distances jxj ≫ g. Although the integral involved
in this formula can be calculated analytically, we will keep
it as it stands. Mainly, because it will allow us to establish
compact expressions for the energy shifts that atomic
transitions undergo.
Asymptotic formulas for the modified potential can be

extracted from Eq. (35) without much efforts. For instance,
at distances larger than the Compton wavelength λ ∼m−1

of the axion, i.e., for jxj ≫ λ, the region u ∼ 1 dominates in
the integral involved in Eq. (35), and the axion-modified
Coulomb potential approaches to

a0ðjxj ≫ λÞ ≈ q
4πjxj

�
1þ g2m2

π2
e−mjxj

ðmjxjÞ4
�
: ð36Þ

However, at short distances [jxj ≪ λ], the main contribu-
tion to the integral in Eq. (35) results from the region
1 ≤ u ≤ ðmjxjÞ−1, and the integrand can be approached by
its most slowly decreasing function in u, which is
∼ue−mjxju. Consequently,

a0ðjxj ≪ λÞ ≈ q
4πjxj

�
1þ g2m2

48π2
1

ðmjxjÞ2
�
: ð37Þ

This expression is independent of the axion mass.
Observe that the distance jxj must satisfy the condition
jxj ≫ g=ð4 ffiffiffi

3
p

πÞ, otherwise our perturbative approach
breaks down. Incidentally, the corresponding energy scale
μp ∼ jxj−1 ∼ 4

ffiffiffi
3

p
π=g coincides—up to a numerical factor

of the order of one—with the Landau pole linked to QEDA:
μL ≈ 4

ffiffiffi
6

p
π=g [for details see Ref. [66]].

The distortion of the Coulomb potential due to ALPs
[see Eq. (35)] allows us to infer the induced modifications
in the spectrum of a nonrelativistic hydrogenlike atom.
Since so far no large deviations from the standard QED
predictions have been observed, we will assume that these
energy shifts are very small and, consequently, apply
standard time-independent perturbation theory. When con-
sidering a first order approximation, the energy shift δε
follows by averaging the correction to the electrostatic
energy δUðxÞ ¼ −eRδaðxÞ [see Eq. (33) and the Feynman
diagram depicted in Fig. 4] over the 0th order wave-
functions jψn;l;ji. Explicitly,

δεð1Þn;l;j ¼ hψn;l;jjδUðxÞjψn;l;ji: ð38Þ

We wish to exploit this formula to predict a plausible
axion Lamb-shift for the 2s1=2 − 2p1=2 transition in atomic
hydrogen. For this case, Eq. (38) leads to

δε ¼ δεð1Þ2s1=2
− δεð1Þ2p1=2

;

¼
Z

∞

0

drr2δUðrÞ½R2
2sðrÞ − R2

2pðrÞ�; ð39Þ

where r≡ jxj and Rnl stands for a radial hydrogen wave
function. In particular,

R2sðrÞ ¼
1ffiffiffi
2

p 1

a3=2B

�
1 −

r
2aB

�
e−

r
2aB ;

R2pðrÞ ¼
1

2
ffiffiffi
6

p r

a5=2B

e−
r

2aB : ð40Þ

Here aB ¼ ðαmeÞ−1 is the Bohr radius with α ¼ 1=137 the
fine structure constant and me ¼ 0.511 MeV the elec-
tron mass.
Observe that the integration in Eq. (39) covers the region

½0;∞Þ. However, since QEDA does not provide a precise
information about the form of the axion-Coulomb potential
for distances smaller than g, the integral over rmust be splitR
∞
0 dr… ¼ R g

0 dr…þ R
∞
g dr…. In the following we will

assume that the contribution from the outer region ½g;∞Þ
dominates over the inner region ½0; g�, which we ignore.5 As
we will see very shortly, the yet undiscarded values for g
turn out to be much smaller than any characteristic atomic
scale. With all these details in mind we integrate over r and
arrive at

δε ≈ −
αg2

96π2
m4aB

Z
∞

1

du
u3

½u2 − 1�3
½1þ uaBm�4 e

−gmu: ð41Þ

Let us study the asymptotes of this expression. We first
consider the case in which aB ≫ λ. Under this condition,

FIG. 4. Pictorial correction to the Coulomb potential due to
quantum vacuum fluctuations of axion and electromagnetic
fields. Leaving aside the electron (proton) legs [external lines
with arrows in the right (left)], the remaining pieces of this
diagram are described in Fig. 1.

5Strictly speaking, in accordance with the treatment applied in
Sec. II [read also below Eq. (35)], the splitting of the integral
should be carried out at a certain point d fulfilling the condition
d ≫ g. However, in order to avoid uncertainties stemming from
this additional parameter, we set d ¼ g. Our corresponding
results should be considered as order-of-magnitude estimates,
accordingly.
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the term of the integrand ½1þ uaBm�4 is dominated by
u4a4Bm

4. The integral resulting from this approximation can
be computed exactly. After a Taylor expansion in mg ≪ 1,
we find the compact expression

δε ≈
αg2

96π2a3B

�
ln ðgmÞ þ γ þ 11

12

�
: ð42Þ

As in Eq. (14), γ ¼ 0.5772… refers to the Euler-Mascheroni
constant. In the opposite case aB ≪ λ, the integrand in
Eq. (41) turns out to be a function that decreases monoton-
ically with the growing of u. It is then justified to approach
it through its most slowly decreasing part which is
∼u3e−mgu=ð1þ uaBmÞ4. As a result, the corresponding
integral can be computed analytically by using (3.353.1)
in Ref. [87]. In the limit ofmg ≪ 1, it allows us to approach

δε ≈
αg2

96π2a3B

�
ln

�
g
aB

	
þ γ þ 11

6

�
: ð43Þ

Notice that, the equation above is a good approximation
whenever the condition aB ≫ g holds. Moreover, although
Eqs. (41)–(43) apply for ordinary atomic hydrogen, they can
be adapted conveniently for studying the same transition in
other hydrogenlike atoms. When hydrogenlike ions with
atomic number Z > 1 are considered, for instance, the
correction to the Lamb-shift will be given by Eqs. (41)–
(43), scaled by the factor Z and aB → aB=Z. If a muonic
hydrogen atom is investigated instead, a replacement of the
electron mass me by the reduced mass of the system mr ≈
186me would be required.

C. Precision spectroscopy in Hμ and the proton
radius anomaly

Before continuing with the physics of virtual ALPs, we
will estimate the contribution to the Lamb-shift by a meson
whose interaction with the electromagnetic field resembles
the one exhibited byALPs [see Eq. (1)], i.e., the neutral pion
π0. We should however emphasize that its effect should be
understood as a consequence of the quantum vacuum
fluctuations of its constituent quark fields. When thinking
of the axion as π0, m → mπ¼ 135 MeV and the coupling
constant g → α=ðπfπÞ turns out to be determined by α and
the pion decay constant fπ ≈ 92 MeV [65]. Observe that the
corresponding value of g ≈ 4.97 × 10−3 fm is two orders of
magnitude smaller than the proton radius rproton ≈ 0.876 fm
[38]. The corresponding correction to the 2s1=2 − 2p1=2

Lamb-shift in hydrogen atoms is δε ¼ −1.07 × 10−12 meV.
This value turns out to be five orders of magnitude smaller
than the experimental uncertainty jδε2σj ¼ 2 × 10−7 meV,
established at 2σ confidence level [35,37]. If the previous
evaluation is carried out by considering a muonic hydrogen
instead [me → mr], we find that the correction to the energy
due to the neutral pion field is δε ¼ −6.81 × 10−6 meV.

Since this is five orders of magnitude smaller than the
existing discrepancy between the experimental measure-
ment and the theoretical prediction δε¼ 0.31 meV
[38,42,45], virtual neutral pions are excluded as possible
explanation for the proton radius puzzle.
Now, we wish to investigate whether the Lamb-shift

induced by quantum vacuum fluctuations of axionlike
fields might cure this anomaly. To this end, we will evaluate
Eq. (41) considering a mass region in which reliable results
can be extracted. Within a pure spectroscopy context,
this occurs for ALP wavelengths smaller or of the order
of the Bohr radius of Hμ, i.e., λ≲ aμ with aμ ≈ 285 fm,
otherwise interactions of other nature must be included.
Correspondingly, we can formally explore ALP masses
fulfilling the condition 1 MeV≲m. However, in the range
1 MeV≲m≲ 100 MeV the axion-diphoton coupling g
has been constrained severely from various results,
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FIG. 5. Summary of exclusion areas for a pseudoscalar ALP
coupled to two photons. Compilation adapted from Refs. [15–19].
The picture includes [inclined yellow band] the predictions of the
axion models jE=N − 1.95j ¼ 0.07–7 (the notation of this for-
mula is in accordance with Ref. [90]). Colored in orange and
black appear the regions ruled out by particle decay experiments.
While the portion discarded by investigating the energy loss in
the horizontal branch (HB) stars are shown in blue, the excluded
area resulting from the solar monitoring of a plausible ALP flux
(CASTþ SUMICO) has been added in green. In purple the
portion discarded by measuring the duration of the neutrino signal
of the supernova SN1987A is depicted, whereas the dark gray area
results from cosmological studies. The excluded area in dark
turquoise has been established from beam dump experiments.
Besides, the light gray zone has been excluded from electron-
positron collider (LEP) investigations. Finally, the colored sectors
in olive and red show the exclusion regions corresponding to
OSCAR and PVLAS collaborations, respectively.
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including those dealing with electron beam fixed-target
setups [see compilation of bounds in Refs. [88,89]].
Conversely, the sensitivities in experiments where ALPs
masses 100 MeV≲m≲ 10 GeV are probed turn out to be
much weaker [white sector in the right hand side of Fig. 5].
A recent investigation based on electron-positron colliders
has constrained g to lie below g < 10−2 GeV−1 [89].
A numerical assessment of the axion-modified Lamb-

shift has been carried out by considering this yet undiscarded
region. The outcome of this evaluation is summarized in the
left panel of Fig. 6. Observe that the energy shift has been
plotted in the form of log10ð−δε½meV�Þ. The highest
value achieved for δε ∼ −10−6 meV corresponds to g ∼
10−2 GeV−1 and m ∼ 10−2 GeV. Toward higher axion
masses m ∼ 10 GeV and lower axion-diphoton couplings
g ∼ 10−6 GeV−1 the correction to the Lamb-shift tends to
decrease significantly [δε ∼ −10−14 meV]. Both estimates
coincide with the values resulting from Eq. (42). The
smallness of these outcomes as compared with the afore-
mentioned discrepancy rules out the corresponding virtual
ALPs as candidates to explain the Hμ anomaly. As we have
anticipated above Eq. (41), the chosen values for 10−7 fm ≲
g≲ 10−4 fm are much smaller than rproton ≈ 0.876 fm.
Clearly, the previous statements cannot be considered

conclusive as our estimation undergoes theoretical uncer-
tainties arising from both the internal limitation of QEDA
at short distances as well as the finite proton size. The
latter being closely related to the fact that the s-states
penetrate the nucleus deeply even for the chosen g. This
last problem can be relaxed if transitions between excited
states with nonzero angular momentum are considered
instead. Although the problem of their relatively short
lifetimes constitutes a major issue for their experimental
investigation, their measurements seem to be a priori a
reliable way to have a cleaner picture of whether a
certain ALP is the cause of the aforementioned

discrepancy or not. Inspired by these arguments, we
consider as an example the 3p1=2 − 3d1=2 transition. In
this case, the required wave functions are

R3pðrÞ ¼
4

ffiffiffi
2

p

9

1

ð3aBÞ3=2
�

r
aB

	�
1 −

r
6aB

�
e−

r
3aB ;

R3dðrÞ ¼
2

ffiffiffi
2

p

27
ffiffiffi
5

p 1

ð3aBÞ3=2
�

r
aB

	
2

e−
r

3aB : ð44Þ

An adequate replacement of the radial wave functions in
Eq. (39) by those above allows us to determine the
corresponding modification of the transition energy:

δε ≈ −
αg2m2

108π2aB

Z
∞

1

du
u5

½u2 − 1�3
½1þ 3

2
uaBm�4

×

�
1 −

2

1þ 3
2
uaBm

þ 1

½1þ 3
2
uaBm�2

�
: ð45Þ

In the limit aB ≫ λ, the expression above is well approached
by δε ≈ −αg2=ð4374π2m2a5BÞ. The expressions associated
with Hμ can be read off from the previous one by replacing
aB → aB=ð186Þ. Taking as a reference the undiscarded
region used previously, 100 MeV≲m≲ 10 GeV with
g < 10−2 GeV−1, Eq. (45) has been evaluated. The result
of this assessment is shown in the right panel of Fig. 6. As in
the2s1=2 − 2p1=2 transition, the highest energy-shift linked to
the 3p1=2 − 3d1=2 transition in Hμ arises from the combina-
tion of g ∼ 10−2 GeV−1 andm ¼ 10−2 GeV. In such a case
δε ∼ −10−11 meV,which is five orders ofmagnitude smaller
than the outcome associated with the axion 2s1=2 − 2p1=2

Lamb-shift. It is worth emphasizing that, while the uncer-
tainty introduced by the use of spherically symmetric orbitals
could be circumvented as described above, the one linked to
the physics at distances shorter than g remains.

FIG. 6. Energy-shift induced by hypothetical quantum vacuum fluctuations of axionlike fields on the 2s1=2 − 2p1=2 (left panel) and the
3p1=2 − 3d1=2 (right panel) atomic transitions in Hμ. The ALPs parameters used in these numerical evaluations are still undiscarded.
While the results exhibited in the left panel rely on Eq. (41), the outcomes depicted in the right panel follow from Eq. (45). Observe that
the energy shift is plotted in the form of log10ð−δε½meV�Þ.
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D. Sensitivity to ALPs in high-precision
hydrogen spectroscopy

In this section we want to investigate whether the current
sensitivity in atomic hydrogen can improve the existing
bounds on the axion parameter space. To do this we
will analyse the respective energy-shift in both 2s1=2 −
2p1=2 and 1s1=2 − 2s1=2 transitions. An expression for
the latter δε ¼ R∞

0 drr2δUðrÞ½R2
1sðrÞ − R2

2sðrÞ� can be
easily determined by taking into account the formula for
R2sðrÞ in Eq. (40) and the radial part of the 1s1=2-state:

R1sðrÞ ¼ 2 exp½−r=aB�=a3=2B . Explicitly,

δε ¼ −
αg2m2

48π2aB

Z
∞

1

du
u5

½u2 − 1�3e−gmu

�
1

½1þ 1
2
uaBm�2

−
1

2

1

½1þ uaBm�2
�
1−

2

1þ uaBm
þ 3

2½1þ uaBm�2
	�

:

ð46Þ

While the left panel in Fig. 7 shows the energy shift for
2s1=2 − 2p1=2 [see Eq. (41)], the one in the right depicts
the result associated with the 1s1=2 − 2s1=2 transition [see
Eq. (46)]. Both evaluations have been carried out by
considering the region of the coupling 10−6 GeV−1 < g <
10−2 GeV−1. In contrast to Hμ, reliable predictions from
high-precision spectroscopy in ordinary hydrogen require
to deal with ALPs masses m≳ 10−5 GeV, corresponding
to wavelengths λ≲ aB. The highest mass shown in both
panels [m ¼ 10 GeV] has been set in order to preserve the
perturbative condition mg ≪ 1.
When comparing the energy shifts resulting from each

panel in Fig. 7 with the corresponding experimental
uncertanities (jδε2σj ¼ 2 × 10−7 meV for 2s1=2 − 2p1=2

and jδε1σj ¼ 1 × 10−6 meV for 1s1=2 − 2s1=2 transition
[37]) we conclude that, in order to improve the current

bounds on the axion parameter space, an enhancement in
sensitivity of at least five orders of magnitude is required. It
is worth remarking that this sensitivity gap also manifests in
other high-precision experiments searching for potential
deviations of the Coulomb’s law as those of Cavendish-
type. For further details we refer the reader to Appendix B.
This lack of sufficient sensitivity in the context of ALPs is
significant when taking into account that these setups have
allowed for constraining severely the parameter spaces of
other weakly interacting sub-eV particles, including para-
photons and minicharged particles. However, we should
emphazise that—in contrast to our investigation—these
particle candidates have been treated within renormalizable
frameworks and, thus, the bounds have been established on
dimensionless coupling constants. Likewise, we have
already indicated below Eq. (16) that in the axion theory
the quantity playing the corresponding role combines two
unknown parameters ∼gm. Hence, the axion mass m
suppresses the limits that can be inferred for g.

IV. CONCLUSION

Within the effective framework of axion quantum
electrodynamics, terms beyond the minimal coupling of
two photons to a neutral pseudoscalar field have been used
to renormalize the polarization tensor and the axion self-
energy operator. The former outcome was used to establish
the photon propagator distorted by the quantum vacuum
fluctuations of axionlike fields, a piece essential for
determining the modification of the Coulomb potential
induced by both virtual photons and ALPs. This result
allowed us to evaluate the way in which atomic spectra
could change. Particular attention has been paid to the
2s1=2 − 2p1=2 transition in hydrogenlike atoms as it
might constitute the most natural way of verifying our
predictions experimentally. Likewise, this sort of axion-
modified Lamb-shift has been considered in attempting

FIG. 7. Projected sensitivities for the 2s1=2 − 2p1=2 [see Eq. (41)] and 1s1=2 − 2s1=2 [see Eq. (46)] atomic transitions in hydrogen are
depicted in the left and the right panel, respectively. In contrast to Fig. 6, the region for the axion mass m is wider, covering from
10−5 GeV to 10 GeV. As previously, 10−6 GeV−1 < g < 102 GeV−1 and the energy-shift is given in the form of log10ð−δε½meV�Þ.
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to explain the proton radius anomaly in muonic hydrogen.
By contrasting the experimental result with our theoretical
prediction, it was found that—up to the uncertainties
caused by the nature of the transition and the internal
limitations of axion-electrodynamics—ALPs can be
excluded as plausible candidates for solving the aforemen-
tioned problem.
Our investigation has revealed explicitly that neither

atomic spectroscopy nor experiments of Cavendish-type
allow us to infer bounds that improve the existing con-
straints on the axion parameter space. This fact contrasts
with analogous outcomes linked to scenarios containing
minicharged particles and hidden photon fields, in which
both precision techniques have turned out to be particularly
valuable [34–37]. The loss of sensitivity within the axion
context is conceptually rooted in the nonrenormalizable
character of QEDA and manifests—at the level of the
modified Coulomb potential Eq. (35)—through the dimen-
sionless factor ∼gm. This ratio of scales accomplishing
somewhat a role similar to the coupling strengths of
the photon-paraphoton mixing χ and the parameter ϵ in
the minicharged particles scenario. To a certain extent the
described problem justifies the existing demand for new
laboratory-based routes looking for ALPs [13,14] by using
strong electromagnetic fields [15–18], e.g., those offered by
high-intensity lasers [91–101].
Let us finally remark that the expression for

Πμν
R ðp1; p2Þ [see Eq. (28)] constitutes an essential piece

for a more general class of polarization tensors which
result when external electromagnetic fields polarize the
vacuum [80,91].
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APPENDIX A: PARTICLE-GHOST CONTENT OF
THE GAUGE SECTOR AND AN ALTERNATIVE

FOUR-FIELDS FORMULATION OF
AXION-ELECTRODYNAMICS

Asmentioned in Sec. II A, the photon sector also contains
Pauli-Villars ghosts. In order to show this, let us consider the
corresponding Green function resulting from a covariant
quantization of āμðxÞ via a path integral representation.
When fixing the gauge viaLgauge ¼ − 1

2
½ð1þ ḡ2b̄2a□Þ∂μāμ�2

it turns out to be [102,103]:

Gαβðp2Þ ¼
�
−

1

p2
þ 1

p2 − m̄2
gh

�
gαβ; ðA1Þ

where m̄2
gh ¼ ðḡb̄aÞ−2 is the corresponding bare ghost mass.

Here, a longitudinal contribution∼pαpβ has been ignored on

the grounds that, if the photons couple to a conserved current
jμðxÞ, i.e., pμjμðpÞ ¼ 0, a term of this nature does not
contribute to the S-matrix elements. Manifestly, the photon
Green function in Eq. (A1) resembles Eq. (3). However, the
particle-ghost content linked to this expression is somewhat
blurred owing to the presence of the metric tensor gαβ. To
highlight the emergence of the Pauli-Villars ghost—leaving
aside those unphysical states linked to the quantization
procedure that eventually must cancel each other—we will
follow a method that has been used previously within the
context of quantum gravity [68,104,105].6 Rather than
dealing with the expression above directly, one introduces
the saturated Green function Gðp2Þ ¼ jαGαβðp2Þjβ and
investigates its residues at each pole: p2¼0 and p2¼ m̄2

gh.
As for anym ≥ 0 the relation j2jp2¼m2 < 0 holds—see proof
of Lemma 1 in Ref. [68]—a physical particle is linked to
a nonnegative residue of Gðp2Þ, whereas a ghost emerges
when the contrary occurs. For the case under consideration
then follows that ResGðp2Þjp2¼0 > 0 (photon) and
ResGðp2Þjp2¼m̄2

gh
< 0 (ghost).

Noteworthy, the decompositions of the axion and photon
Green functions [see Eqs. (3) and (A1)] suggest that
the effects of the higher-dimensional operators can be
formulated in terms of auxiliary—fictitious—fields. In this
context, the action of interest reads

Seff ¼
Z

d4x

�
−
1

4
fμνfμν þ

1

2
∂μϕ̄∂μϕ̄ −

1

2
m̄2ϕ̄2 −Φ□ϕ̄

þ 1

2
m̄2

sΦ2 −
1

2
m̄2

ghA
2 þ 1

2
fμνFμν þ 1

4
ḡ ϕ̄ f̃μνfμν

�
;

ðA2Þ

whereFμν ¼ ∂μAν − ∂νAμ and m̄2
s ¼ ðḡb̄ϕÞ−2. We remark

that the equations of motion for the auxiliary fields are exact

Φ ¼ 1

m̄2
s
□ϕ̄; Aλ ¼ −

1

m̄2
gh

∂μfμλ: ðA3Þ

Hence,when integrating out bothΦðxÞ andAλðxÞ classically,
i.e., by removing them from Seff using their equations of
motion, we reproduce the action of axion-electrodynamics
extended by terms proportional to ḡ2, i.e.,Seff →S¼SḡþSḡ2
[see Eqs. (1) and (2)].
Observe that, as a consequence of the shift ā → aþA

and ϕ̄ → ϕ −Φ, the functional action in Eq. (A2) can be
written as

6We precise that higher-derivate operators in combination with
nonlocal terms emerge in many other interesting theoretical
scenarios, e.g., in construction of effective quantum field theories
accounting for quantum conformal and chiral anomalies (see e.g.,
[106] and references therein).
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Seff ¼
Z

d4x

�
−
1

4
fμνfμν þ

1

4
FμνFμν −

1

2
m̄2

ghA
2

þ 1

2
∂μϕ∂μϕ−

1

2
m̄2ðϕ−ΦÞ2 − 1

2
∂μΦ∂μΦþ 1

2
m̄2

sΦ2

þ 1

4
ḡðϕ−ΦÞ½f̃μνfμν þ 2F̃μνfμν þ F̃μνFμν�

�
:

Clearly, the first term contained in this formula is the
Maxwell Lagrangian, while the combination of the two
remaining contributions in the first line somewhat looks
like the Proca Lagrangian, with the exception that the sign
of its kinetic term is not the usual one. Likewise, the kinetic
portion linked to the ΦðxÞ field manifests an opposite sign
to the corresponding contribution of ϕðxÞ. Owing to the
described feature the associated Hamiltonian is not positive
defined leading—upon quantization—to the absence of a
ground state. The particle-ghost content of the theory is
elucidated in this alternative formulation to the requirement
that free fields of particles (ghosts) have positive (negative)
energy.

APPENDIX B: SENSITIVITY TO ALPS IN
EXPERIMENTS OF CAVENDISH-TYPE

Precision tests of Coulomb’s law via Cavendish-type
experiments have severely constricted the parameter space
of hidden photons in the μeV mass regime [34,107]. Today,
these setups also provide the best laboratory bounds on
mini-charged particles in the sub-μeV range [36]. Here, we
want to estimate the sensitivity of this type of experiments in
the context of ALPs. To this end, we consider a setup
containing two concentric spheres: an outer charged con-
ducting sphere—characterized by a radius b—and an
uncharged conducting inner sphere with a radius a. Only
if the electrostatic potential follows the r−1 law, the potential
difference between the spheres vanishes and the cavity is free
of electromagnetic field. However, deviations from the
Coulomb potential like those induced by loop corrections
[compare Eq. (35)] could lead to a nontrivial relative voltage
difference γab ¼ j½uðQ; b; bÞ − uðQ; a; bÞ�=uðQ; b; bÞj that
can be detected. This observable depends on the potential of
the charged sphere evaluated on its surfaceuðQ; b; bÞ aswell
as on the surface of the inner sphere uðQ; a; bÞ.
In general, the electrostatic potential of a sphere with

radius b and charge Q evaluated at a distance r from its
center has the form

uðQ; r; bÞ ¼ Q
2br

½fðrþ bÞ − fðjr − bjÞ�;

fðrÞ ¼
Z

r

0

sA0ðsÞds; ðB1Þ

where A0ðsÞ is an arbitrary potential in which the charge
of the pointlike particle must be set to unity [108]. Now, to
determine γab resulting from QEDA we insert the axion-

modified Coulomb potential a0ðs; q ¼ 1Þ [see Eq. (35)]
into the expression above. Notice that, similarly to the case
analyzed in Sec. III B, the integral over s must be split into
two parts:

R
r
0 ds… ¼ R g

0 ds…þ R
r
g ds…. Ignoring the

contribution coming from the region ½0; g� we obtain

γab ≈
���� g2m96π2

Z
∞

1

du
u6

½u2 − 1�3
�
e−2bmu − e−gmu

b

þ 2

a
e−bmu sinhðamuÞ

�
þOðg4m2Þ

����: ðB2Þ

The integral that remains in this formula can be calculated
analytically by using (3.351.4) in Ref. [87]. Since both b
and a are macroscopic quantities, the conditions a; b; b −
a ≫ g hold and we can approximate the expression
above by

γab ≈
���� g2m
96π2b

Z
∞

1

du
u6

½u2 − 1�3e−gmu

����: ðB3Þ

Notice that Eq. (B3) is independent of the radius a of the
inner sphere. When considering the limit mg ≪ 1 we
obtain

γab ≈
g

96π2b
; ðB4Þ

which does not depend on the axion mass m either.
With γab to our disposal, we can proceed to estimate the

sensitivity of this setup in the search for ALPs. For such a
purpose, we use the benchmark parameters of the experi-
ment performed by Plimpton and Lawton [a¼ 38 cm,
b ¼ 46 cm] in which a margin for γab exists, provided it
lies below jγabj≲ 3 × 10−10 [109]. By making use of
Eq. (B4) we find

g≲ 6.7 × 107 GeV−1: ðB5Þ

We emphasize that—as a consequence of the perturbative
condition [see below Eq. (B3)]—this result applies for
m ≪ 15 eV. Besides, it is trustworthy for axion wave-
lengths smaller than the typical length scale of the spheres
∼0.1 m, i.e., for axion masses m ≫ 10−6 eV. We note that
the constraint in Eq. (B5) for the mass region 10−6 eV ≪
m ≪ 15 eV has already been discarded by combining the
experimental outcomes of collaborations such as PVLAS
and OSCAR [see Fig. 5]. Hence, the sensitivity in this
experiment of Cavendish-type is not high enough to
improve the existing bounds on the axion parameter space.
It is worth remarking that a more accurate version of this

kind of experiments has been carried out by using four
concentric icosahedrons [110]. For obtaining first esti-
mates, they may be treated approximately as four concen-
tric spheres. In contrast to the setup of Plimpton and

S. VILLALBA-CHÁVEZ, A. GOLUB, and C. MÜLLER PHYS. REV. D 98, 115008 (2018)

115008-14



Lawton, here a very high voltage is applied between the
outer two spheres with radii d ¼ 127 cm and c ¼ 94.7 cm.
The voltage difference is measured between the two
internal ones, with radii b ¼ 94 cm and a ¼ 60 cm, which
are uncharged. This setup allows us to infer bounds for the
ALPs parameters via the ratio between the voltage
differences:

γabcd¼
����uðQ;c;bÞ−uðQ;d;bÞ−uðQ;c;aÞþuðQ;d;aÞ

2uðQ;c;dÞ−uðQ;d;dÞ−uðQ;c;cÞ
����:
ðB6Þ

We insert Eq. (35) into (B1) and evaluate the resulting
formula in the various parameters contained in Eq. (B6). As
a consequence, we end up with

γabcd¼
���� g2mc
48π2δ

Z
∞

1

du
�
1−

1

u2

�
3

e−mdu

×

�
1−

d
c
e−mδu

��
sinhðmbuÞ

b
−
sinhðmauÞ

a

�����; ðB7Þ

where δ≡ c − d and terms of the order of ∼g4m2 have been
disregarded. Notice that, in contrast to Eq. (B2), the
integrand above lacks terms involving ∼e−mgu. This could
be anticipated because the numerator of γabcd [see Eq. (B6)]
does not contain a potential evaluated at the surface of
the spheres [compare with γab given above Eq. (B1)].

Consequently, when the condition md ¼ d=λ ≪ 1 is sat-
isfied, the asymptotic expression for γabcd becomes inde-
pendent of the axion mass and quadratic in g:

γabcd ≈
���� g2

96π2
c

bðc − dÞðd − bÞ

×

�
1 −

bðd − bÞ
aðd − aÞ −

dðd − bÞ
cðc − bÞ þ

dbðd − bÞ
acðc − aÞ

	����:
ðB8Þ

Since this formula applies for axion wavelengths larger
than the typical length scale of the experiment, the out-
comes resulting from it can be considered reliable as long
as the interactions between ALPs and plausible fields/
matter existing outside of the external icosahedron are
negligible. Next, the aforementioned experiment achieves a
precision jγabcdj≲2×10−16 [36,110]. Combining this value
with Eq. (B8) we constraint g to lie below

g≲ 9.8 × 107 GeV−1 for m ≪ 10−7 eV: ðB9Þ
Noteworthy, despite the improvement in the experimental
accuracy, the resulting upper limit turns out to be
comparable to the one found from the results of
Plimpton and Lawton [see Eq. (B5)] and so, no improve-
ment is found as compared with the existing constraints.
The lack of sensitivity is understood here as a direct
consequence of the quadratic dependence of γabcd on g
[see Eq. (B8)].
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