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We construct a model based on the electroweak gauge group SUð2ÞL × SUð2ÞR × Uð1ÞB-L augmented
by an S3 symmetry. We assign nontrivial S3 transformation properties to the quarks, and consequently we
need two scalar bidoublets. Despite the extra bidoublet, we have only six Yukawa couplings thanks to the
discrete symmetry. Diagonalization of the quark mass matrices shows that at the leading order only the first
two generations mix, resulting in a block diagonal CKM matrix, and the first generation quarks are
massless. Inclusion of subleading terms produces an acceptable CKMmatrix up to corrections ofOðλ4Þ. As
for the first generation quark masses, we obtain a satisfactory value for mu=md. The masses themselves,
though in the same ballpark, turn out to be somewhat smaller than the accepted range.
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I. INTRODUCTION

One very compelling extension of the standard model
(SM) is the left-right symmetric (LRS) model [1,2] based on
the electroweak gauge group SUð2ÞL × SUð2ÞR × Uð1ÞB-L.
Unlike the SM, the left-chiral and right-chiral fermions are
treated similarly in these models.
In the minimal LRS model, the left-chiral and right-

chiral quarks are assigned the following representations
under the gauge group:

QiL∶
�
2; 1;

1

3

�
; QiR∶

�
1; 2;

1

3

�
; ð1Þ

where the index i runs from 1 to 3 to accommodate three
generations. At a high scale where the SUð2ÞR is sponta-
neously broken by the vacuum expectation values (VEVs)
of (1,2,1) or (1,3,2) scalar multiplets of the gauge group, the
quarks do not acquire any mass because they do not have
any Yukawa couplings with these scalars. Allowing the
Yukawa couplings for the quarks requires the presence of a
scalar bidoublet:

Φ∶ ð2; 2; 0Þ: ð2Þ

It has two neutral components and, therefore, two possible
VEVs. These VEVs break the standard model symmetry
group and also provide masses to the quarks. The mass
matrix has many free parameters. There are nine Yukawa
couplings involving Φ that relate three generations of left-
chiral quarks with three generations of right-chiral quarks.
Besides, since the representation of Φ under the gauge
group is real, there are nine more couplings where Φ is
replaced by its complex conjugate,

Φ̃ ¼ τ2Φ�τ2; ð3Þ

suitably sandwiched by the antisymmetric Pauli matrix so
that its transformation property is exactly the same as that
ofΦ. Because of this large number of parameters, the quark
mass matrices do not have much of a predictive power.
In this article, we impose an S3 symmetry between the

generations and show that the number of Yukawa couplings
is drastically reduced to the extent that predictions are
possible. Such a symmetry has been explored extensively
in the context of the SM gauge group [3–39]. However, to
our knowledge, this discrete symmetry in the context of the
left-right symmetric gauge group [40,41] has not been
explored very much. We will show that the enhanced gauge
symmetry, along with the discrete symmetry, leads to
relations between the quark masses and mixings.

II. THE MODEL WITH A HORIZONTAL
S3 SYMMETRY

We extend the minimal LRS model with an extra S3
symmetry that acts between different generations of fer-
mions. This S3 symmetry has three different irreducible
representations, 1, 10, and 2, where the numbers signify the
dimension of the representation matrices. The group has
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one order-two and one order-three generator. In the 2
representation, we take them to be

g2 ¼
"

1
2

p
3

2p
3

2
− 1

2

#
; g3 ¼

"
− 1

2

p
3

2

−
p
3

2
− 1

2

#
: ð4Þ

For this choice of basis, we assign the following repre-
sentations to the fermions,

�
Q1

Q2

�
∶2; Q3∶1; ð5Þ

following the same rule for left and right chiral quarks.
In order to obtain an acceptable mass pattern, we now need
scalars to be in the 2 representation of S3. This means that
we need to add an extra bidoublet over and above what was
shown in Eq. (2) [42]. Calling the two scalar multiplets Φ1

and Φ2, we assign them the representation

�Φ1

Φ2

�
∶2 ð6Þ

under the S3 symmetry. Keeping in mind the fact that for
any term in the Lagrangian where there is a Φ, there is
another term containing Φ̃, we can write down the most
general Yukawa couplings involving quarks as

−LY ¼AðQ̄1LΦ1þQ̄2LΦ2ÞQ3RþCQ̄3LðΦ1Q1RþΦ2Q2RÞ
þB½ðQ̄1LΦ2þQ̄2LΦ1ÞQ1RþðQ̄1LΦ1−Q̄2LΦ2ÞQ2R�
þ ÃðQ̄1LΦ̃1þQ̄2LΦ̃2ÞQ3Rþ C̃Q̄3LðΦ̃1Q1RþΦ̃2Q2RÞ
þ B̃½ðQ̄1LΦ̃2þQ̄2LΦ̃1ÞQ1RþðQ̄1LΦ̃1−Q̄2LΦ̃2ÞQ2R�
þH:c:: ð7Þ

After symmetry breaking, both Φ1 and Φ2 develop VEVs:

hΦai ¼
�
κa 0

0 κ0a

�
; a ¼ 1; 2: ð8Þ

The resulting mass matrices for the quarks are of the form

Mu ¼ Fκ1 þGκ2 þ F̃κ01 þ G̃κ02; ð9aÞ

Md ¼ F̃κ1 þ G̃κ2 þ Fκ01 þ Gκ02; ð9bÞ

where

F ¼

0
B@

0 B A

B 0 0

C 0 0

1
CA; G ¼

0
B@

B 0 0

0 −B A

0 C 0

1
CA; ð10Þ

and F̃ and G̃ are matrices which have exactly the same
form, except that they involve the Yukawa couplings with

tilde marks. We will assume that all Yukawa couplings are
real, and so are the VEVs. Our task is now to perform the
diagonalization of the mass matrices given in Eq. (9) and
show that, under some reasonable assumptions, the diag-
onalization can be performed and the quark mixing matrix
can be obtained in a form that is consistent with the
present data.
Of course, the matrices shown in Eq. (9) cannot be

diagonalized in general with the help of unitary trans-
formations. One needs bi-unitary transformations, which
induces different transformations on the left-chiral and
right-chiral quarks. For the sake of the CKM matrix,
we need only the mixing of the left-chiral fermions.
The relevant mixing matrices can be obtained by consid-
ering the diagonalization of MqM

†
q, where the index q

takes two values, u and d, to distinguish the up-sector
quarks from the down-sector quarks. Let us write

UqMqM
†
qU

†
q ¼ D2

q; ð11Þ

whereD2
q is a diagonal matrix whose diagonal elements are

the mass-squared values of the quarks of type q (i.e., u or
d). Then the CKM matrix will be given by

VCKM ¼ UuU
†
d: ð12Þ

We, therefore, need to find the diagonalizing matrices Uu
andUd. For this, we need to proceed in steps, making some
assumptions which we now describe.

III. LARGE AND SMALL TERMS

In order to perform the diagonalization, we will first
make some assumptions about the relative magnitudes of
different parameters. The first thing we assume is that the
primed VEVs are much smaller compared to the unprimed
ones:

κ01; κ
0
2 ≪ κ1; κ2: ð13Þ

The opposite assumption κ01, κ
0
2 ≫ κ1, κ2 will serve as well

and amounts to fixing a convention. Such an assumption
can naturally suppress the mixing between the gauge
bosons in the left and right sectors. The terms in Eq. (9)
proportional to the unprimed VEVs will, therefore, be
considered dominant, and the other terms, proportional to
the primed VEVs, will be considered as perturbations.
In this section, we consider diagonalization of the quark
mass matrices in the limit κ01 ¼ κ02 ¼ 0, i.e., in the zeroth
order of smallness.
There are only two VEVs at this level of approximation,

κ1 and κ2. Since the other VEVs have been assumed to be
negligible, we can write

κ21 þ κ22 ¼ v2; ð14Þ
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where v ¼ 174 GeV is the breaking scale of the SM. We
also define

tan β ¼ κ2
κ1

: ð15Þ

Henceforth, instead of using κ1 and κ2 directly, we will use
the parameters v and β.
Thus, in this zeroth-order approximation, the mass

matrices of the quarks are of the form

Mð0Þ
q ¼ v

0
B@

Bq sin β Bq cos β Aq cos β

Bq cos β −Bq sin β Aq sin β

Cq cos β Cq sin β 0

1
CA; ð16Þ

where, for the ease of notation, we have renamed the
Yukawa couplings by a subscript q according to the mass
matrix to which they contribute:

Au ¼ A; Bu ¼ B; Cu ¼ C; ð17aÞ

Ad ¼ Ã; Bd ¼ B̃; Cd ¼ C̃: ð17bÞ

The kind of mass matrix shown in Eq. (16) was obtained
in our earlier work [39] in the context of the SUð2ÞL ×
Uð1ÞY model. In order to perform a diagonalization of the
mass matrices at this level of approximation, we note that

j detðMð0Þ
q Þj ¼ v3AqBqCq sin 3β: ð18Þ

Since the first generation quark masses are very small, we
assume that they are zero at this level and arise entirely
from smaller corrections to the mass matrices. Then the
determinant must vanish at this level. Without arbitrarily
making some of the Yukawa couplings vanish, this can be
achieved, in both up and down sectors, if we have

sin 3β ¼ 0: ð19Þ

This value can be nontrivially obtained by setting

β ¼ π=3: ð20Þ

We assume that this is indeed the value of β that comes out
of the minimization of the Higgs potential at this level of
approximation, i.e., on assuming κ01 ¼ κ02 ¼ 0. Then, taking

Uð0Þ
q ¼

0
BB@

−
p
3

2
sin θq 1

2
sin θq cos θq

p
3

2
cos θq − 1

2
cos θq sin θq

1
2

p
3

2
0

1
CCA ð21Þ

with

tan θq ¼
Cq

Bq
; ð22Þ

one finds

Uð0Þ
q Mð0Þ

q Mð0Þ†
q Uð0Þ†

q ¼ v2

0
B@

0 0 0

0 B2
q þ C2

q 0

0 0 A2
q þ B2

q

1
CA:

ð23Þ

At this stage, then, the CKM matrix is given by

Vð0Þ
CKM ¼ Uð0Þ

u Uð0Þ†
d ¼

0
B@

cosðθu − θdÞ − sinðθu − θdÞ 0

sinðθu − θdÞ cosðθu − θdÞ 0

0 0 1

1
CA:

ð24Þ

This shows that, at the zeroth order, we have only the
Cabibbo angle that mixes the first two generations of
quarks, whereas the third generation is unmixed. This state
of affairs is certainly consistent with the fact that the
Cabibbo angle in the largest angle in the CKM matrix, and
all others are much smaller. In Sec. IV, we will see how the
small angles can arise from the small corrections that we
have left out so far.
Before that, we want to summarize the information that

we have already obtained about the masses and conse-
quently about the Yukawa couplings. From Eq. (23), we see
that, at the zeroth level of approximation,

m2
t ¼ ðA2

u þ B2
uÞv2; m2

c ¼ ðB2
u þ C2

uÞv2; ð25aÞ

m2
b ¼ ðA2

d þ B2
dÞv2; m2

s ¼ ðB2
d þ C2

dÞv2: ð25bÞ

Although these masses will receive some corrections which
will be introduced later, such modifications are expected to
be small, and therefore we can use Eq. (25) as a very good
approximation to the actual masses. Knowledge of the
hierarchy of quark masses then tells us that

A2
u ≫ B2

u; C2
u; A2

d ≫ B2
d; C

2
d; ð26Þ

so that the third generation is much heavier than the second,
and further,

A2
u ≫ A2

d; ð27Þ

to ensure that the top mass is much bigger than the bottom
mass. Using Eq. (26) and the definition of Eq. (22), we can
write the Yukawa couplings in the form

Aq≈
m3q

v
; Bq≈

m2q

v
cosθq; Cq≈

m2q

v
sinθq; ð28Þ
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where m3q and m2q denote the masses of the third- and
second-generation quarks in the sector marked by q, i.e.,

m3u ¼ mt; m2u ¼ mc; m3d ¼ mb; m2d ¼ ms:

ð29Þ

At this point, perhaps it is worth reemphasizing the main
conclusion of this section. Here, we have considered an
approximate reality where mu ¼ md ¼ 0 and Vi3 ¼ V3i ¼
0 (i ¼ 1; 2) as well. The vanishing of V3i (i ¼ 1; 2) will
follow automatically from the vanishing of Vi3 (i ¼ 1; 2)
due to the unitarity of the CKM matrix. We are, thus, left
with four zeros, viz., mu ¼ 0, md ¼ 0, and Vi3 ¼ 0
(i ¼ 1; 2), which are disconnected in the SM; i.e., they
are four different accidents in the framework of the SM.
But, in our model, one needs only one accident, given by
Eq. (19), to achieve all these zeros, i.e., the four zeros are
connected. Therefore, concerning the small parameters in
the quark Yukawa sector, our construction provides a sense
of aesthetic connection that is absent in the SM. Moreover,
this approximate reality with κ0a ¼ 0 forbids WL-WR
mixing. In the next section, we will see that turning on
small values of κ0a leads to small CKM elements as well as
the first generation quark masses. Therefore, in our
scenario, these small masses and mixings in the quark
sector owe their origin to the same parameters which
govern the smallness of the WL-WR mixing.

IV. INCLUDING THE SMALLER TERMS

We now try to see the effects of nonzero values of κ01 and
κ02. The extra contributions that appear in the mass matrices
will be denoted by M0, i.e.,

Mq ¼ Mð0Þ
q þM0

q: ð30Þ

These contributions will come from two sources. First,
there are terms proportional to κ01 and κ

0
2 in Eq. (9). Second,

the minimization of the Higgs potential will now not give
Eq. (20), but rather

sin 3β ¼ 3δ; ð31Þ

with some small value of δ.
All correction terms in the mass matrices will have

one factor of some Yukawa coupling. Motivated by the
hierarchy among the Yukawa couplings noted in Sec. III,
we will keep only the terms proportional to Au as the

dominant corrections to Mð0Þ
q defined in Eq. (16), with the

understanding that the contribution from other terms are
proportional to much smaller Yukawa couplings, and are
negligible at the level of accuracy that we seek for. Keeping
these in mind, we can write the dominant corrections are
as follows:

M0
u ≈ vAu

0
B@

0 0
p
3

2
δ

0 0 − 1
2
δ

0 0 0

1
CA; M0

d ≈ Au

0
B@

0 0 κ01
0 0 κ02
0 0 0

1
CA

ð32Þ

In order to set up a uniform notation for both up and down
sectors, let us introduce some shorthands through the
relations

ðM0
uÞ13 ¼ mtϵu cos χu; ðM0

uÞ23 ¼ mtϵu sin χu; ð33aÞ

ðM0
dÞ13 ¼ mtϵd cos χd; ðM0

dÞ23 ¼ mtϵd sin χd; ð33bÞ

so that

ϵu ¼ δ; χu ¼ −π=6; ð34aÞ

ϵd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ021 þ κ022

q
=v; tan χd ¼ κ02=κ

0
1: ð34bÞ

We now need to examine the mass matrices including
these corrections, and the diagonalization procedure.
The first thing that we notice is that, after the inclusion of

M0, the determinant of the mass matrix is no more zero and
is given by

j detMqj ¼ v2BqCqmtϵq sin

�
π

3
− χq

�
: ð35Þ

This quantity should be equal to the product of the three
mass eigenvalues. Therefore, the mass of the first gener-
ation quark will be given by

m1q ¼
mtm2q

m3q
sin θq cos θqϵq sin

�
π

3
− χq

�

¼ ϵ0qm2q sin θq cos θq; ð36Þ
where we have substituted Bq and Cq using Eq. (28) and
defined

ϵ0q ¼
mt

m3q
ϵq sin

�
π

3
− χq

�
: ð37Þ

In a less cluttered but lengthier way, we can break up
Eq. (36) as

mu ¼ ϵ0umc sin θu cos θu; ð38aÞ
md ¼ ϵ0dms sin θd cos θd: ð38bÞ

We now look at the diagonalization of the matrices
MqM

†
q. Referring back to Eq. (11) and its zeroth level

analog, Eq. (23), we propose to incorporate the correction
to the diagonalizing matrix by writing
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Uq ¼ XqU
ð0Þ
q ; ð39Þ

where Xq is supposed to inflict small corrections on Uð0Þ
q .

We now parametrize Xq by writing

Xq ¼

0
B@

1 0 αq

0 1 γq

−αq −γq 1

1
CA; ð40Þ

ignoring higher-order terms in αq and γq. We have checked
that including a rotation in the 12 sector as well contributes
only at a subleading order. Therefore, for our purposes,
Eq. (40) constitutes a reasonable approximation for the

correction to Uð0Þ
q .

If we now evaluate the left side of Eq. (11), using
Eq. (39) for Uq and Mq as the sum of the expression of
Eq. (16) with β ¼ π=3 and the corrections from Eq. (32),
we should obtain a diagonal matrix, to the accuracy
employed in defining the small parameters. From this
condition, one should be able to determine the relevant
parameters of Xq.
First, we check the diagonal elements. The lower two

diagonal elements will pick up small corrections to the
formulas of the second and third generation quarks given in
Eq. (25), and are unimportant for our purpose. The first
diagonal element should give the mass squared of the first
generation quark. Evaluation of Eq. (11) gives

m2
1q ¼ ðm2

2qcos
2θq þm2

3qÞα2q − 2mtm3qϵq sin

�
π

3
− χd

�
αq

þm2
t ϵ

2
qsin2θqsin2

�
π

3
− χd

�
: ð41Þ

But the mass value has already been found in Eq. (36) from
the consideration of the determinant. Putting in the value
from there and neglecting terms which provide corrections
of order m2

2q=m
2
3q, we can determine αq as:

αq ¼
mt

m3q
ϵq sin θq sin

�
π

3
− χq

�
≡ ϵ0q sin θq: ð42Þ

Quite nicely, the 13 element of the left side of Eq. (11) also
vanishes at the leading order under the same condition,
confirming the consistency of the approximation. Further,
the vanishing of the 23 element at the leading order gives
the expression for γq as

γq ¼ −
mt

m3q
ϵq cos θq sin

�
π

3
− χq

�
≡ −ϵ0q cos θq: ð43Þ

V. THE CKM MATRIX

Using Eq. (12) in conjunction with Eq. (39), we can now
write the CKM matrix as

VCKM ¼ XuU
ð0Þ
u Uð0Þ

d
†X†

d ¼ XuV
ð0Þ
CKMX

†
d ≈

0
BB@

cos θC − sin θC −ðϵ0d − ϵ0uÞ sin θu
sin θC cos θC ðϵ0d − ϵ0uÞ cos θu

ðϵ0d − ϵ0uÞ sin θd −ðϵ0d − ϵ0uÞ cos θd 1

1
CCA; ð44Þ

where Vð0Þ
CKM has been defined already in Eq. (24) and the

Cabibbo angle, θC, is defined as

θC ¼ θu − θd: ð45Þ
In writing Eq. (44), we have also used the definition of
Xq given in Eq. (40) along with the solutions of Eqs. (42)
and (43).
In the Wolfenstein parametrization [45] of the CKM

matrix, the off-diagonal 12 and 21 elements are of OðλÞ,
where λ is a small parameter that is roughly equal to the

Cabibbo angle. The 23 and 32 elements are Oðλ2Þ,
whereas the 13 and 31 elements are Oðλ3Þ. Since we
have already produced the Cabibbo mixing of OðλÞ at the
zeroth order, the perturbations ϵ0q should be at least of
Oðλ2Þ. Taking ϵ0q ∼Oðλ2Þ and sin θq ∼OðλÞ, we can see
that Eq. (44) reproduces the correct orders of magnitudes
for the different CKM elements. For easy comparison,
we summarize below the current experimental values for
the magnitudes of the elements of the CKM matrix
[46,47]:

jVexp
CKMj ¼

0
B@

0.97446� 0.00010 0.22452� 0.00044 0.00365� 0.00012

0.22438� 0.00044 0.97359� 0.00011 0.04214� 0.00076

0.00896� 0.00024 0.04133� 0.00074 0.999105� 0.000032

1
CA: ð46Þ
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While comparing with the experimental values, we should
keep in mind that the inherent uncertainty of Oðλ4Þ in
Eq. (44) is much larger than the experimental uncertainties
in Eq. (46). Therefore, for the ij-th element of the CKM
matrix, we take

Vij ¼ Vcen
ij � λ4; ð47Þ

where the central values are taken from Eq. (46). We
assume that sin θC ≡ −λ ≈ −0.225 has been measured quite
accurately and use Eq. (45) to express θu in terms of θd. Our
goal is to see, using Eq. (47), whether there exists a
common region in the sin θd vs jϵ0d − ϵ0uj plane, which is
allowed by jVubj, jVcbj, jVtsj and jVtdj simultaneously. We
display our result in Fig. 1 where we see that there is indeed
some common solution region. Note that there are two
different allowed regions from jVubj, which correspond to
different signs for sin θu.
With jϵ0d − ϵ0uj and sin θd nearly fixed from Fig. 1, now

we have only one parameter, namely ϵ0u (or equivalently ϵ0d)
to play around. Thus, using Eq. (38), we still need to
reproduce two light quark masses, mu and md, with only
one parameter remaining at our disposal. As a matter of
fact, the cyan region on the left in Fig. 1, is disfavored
because it gives too small values for the down-quark mass.
Keeping this in mind, we choose the following values

ϵ0d ¼ 0.072; ϵ0u ¼ 0.028; sin θd ¼ 0.26; ð48Þ

which correspond to a benchmark point somewhere in the
cyan region on the right in Fig. 1. Using these values we
find

jVubj ≈ 0.002; jVcbj ≈ 0.044;

jVtdj ≈ 0.011; jVtsj ≈ 0.042: ð49aÞ

We see that these values of the CKM elements are
acceptable within an error bar of Oðλ4Þ. As commented
earlier, we also obtain the light quark masses from this
exercise. Taking ms ¼ 110 MeV and mc ¼ 1.2GeV, and
the values of the parameters in Eq. (48), we obtain using
Eq. (49)

mu ≈ 1.2 MeV; md ≈ 2.0 MeV: ð49bÞ

The values of mu as well as the ratio mu=md are within
tolerable ranges, but the absolute value of md comes out to

be a bit too low. Having only one free remaining parameter
prevents us from obtaining a good fit for both the up and
down quark masses. We have checked that, as long as the
down quark mass is concerned, the values given in Eq. (49)
reflects the best case scenario.

VI. SUMMARY

We have considered a model where the left-right
symmetric gauge group SUð2ÞL × SUð2ÞR × Uð1ÞB-L is
augmented by an S3 symmetry. The discrete symmetry
drastically reduces the number of Yukawa couplings in the
model. In fact, there are only six Yukawa couplings.
Because of the small number of parameters, we can relate
many aspects of quark masses and mixings satisfactorily in
our model. We have demonstrated that the smallness of the
first generation quark masses is related to the smallness of
the 13 and 23 elements of the CKM matrix as well as to the
smallness of the WL-WR mixing. We have also shown that,
under some reasonable assumptions about the relative
magnitudes of the VEVs, the CKM matrix can be repro-
duced within an accuracy of Oðλ4Þ. The only sore point
seems to be the light quark masses that we obtain from the
model, which, although being in the same ballpark, turn out
to be a bit smaller than expected. Yet the model deserves
careful attention since we believe that the successes of the
model with the CKM matrix outweigh the dissatisfaction
with the light quark masses.

FIG. 1. Shaded areas in yellow, orange, green and gray
represent allowed regions from jVubj, jVcbj, jVtsj and jVtdj
respectively. The area shaded in cyan represents the common
solution region.
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