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We explore the phase structure of a four dimensional SOð4Þ invariant lattice Higgs-Yukawa model
comprising four reduced staggered fermions interacting with a real scalar field. The fermions belong to
the fundamental representation of the symmetry group while the three scalar field components transform
in the self-dual representation of SOð4Þ. The model is a generalization of a four fermion system with the
same symmetries that has received recent attention because of its unusual phase structure comprising
massless and massive symmetric phases separated by a very narrow phase in which a small bilinear
condensate breaking SOð4Þ symmetry is present. The generalization described in this paper simply
consists of the addition of a scalar kinetic term. We find a region of the enlarged phase diagram which
shows no sign of a fermion condensate or symmetry breaking but in which there is nevertheless evidence
of a diverging correlation length. Our results in this region are consistent with the presence of a single
continuous phase transition separating the massless and massive symmetric phases observed in the
earlier work.
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I. INTRODUCTION

The motivation for this work comes from recent numeri-
cal studies [1–8] of a particular lattice four fermion theory
constructed using reduced staggered fermions [9]. In three
dimensions this theory appears to exist in two phases—a
free massless phase and a phase in which the fermions
acquire a mass [1–4]. What is unusual about this is that no
local order parameter has been identified which distin-
guishes between these two phases—the massive phase does
not correspond to a phase of broken symmetry as would be
expected in a conventional Nambu–Jona-Lasinio scenario.
Furthermore, the transition between these two phases is
continuous but is not characterized by Heisenberg critical
exponents.
When this theory is lifted to four dimensions, how-

ever, a very narrow symmetry broken phase reappears
characterized by a small bilinear condensate [5–8]. In
Ref. [10] two of us constructed a continuum realization of
this lattice theory and argued that topological defects may
play an important role in determining the phase structure.
This calculation suggests that the addition of a kinetic
term for the auxiliary scalar field σþ used to generate the

four fermion interaction may allow access to a single
phase transition between massless (paramagnetic weak-
coupling, PMW) and massive (paramagnetic strong-
coupling, PMS) symmetric phases. In this paper we
provide evidence in favor of this from direct numerical
investigation of the lattice Higgs-Yukawa model. This
development presents the possibility of new critical
behavior in a four-dimensional lattice theory of strongly
interacting fermions, which would be very interesting
from both theoretical and phenomenological viewpoints,
and also connects to recent activity within the condensed
matter community [11,12].
The plan of the paper is as follows: in the next section we

describe the action and symmetries of the lattice theory,
followed by a discussion of analytical results in certain
limits in Sec. III. We present numerical results for the phase
structure of the theory in Sec. IV, and extend this inves-
tigation in Sec. V by adding symmetry-breaking source
terms to the action in order to search for spontaneous
symmetry breaking in the thermodynamic limit. These
investigations reveal significant sensitivity to the hopping
parameter κ in the scalar kinetic term, with an antiferro-
magnetic (AFM) phase separating the PMW and PMS
phases for κ ≤ 0 but an apparently direct and continuous
transition between the PMWand PMS phases for a range of
positive κ1 < κ < κ2. Our current work constrains 0 <
κ1 < 0.05 and 0.085 < κ2 < 0.125. We collect these results
to present our overall picture for the phase diagram of the
theory in Sec. VI. We conclude in Sec. VII by summarizing
our findings and outlining future work.
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II. ACTION AND SYMMETRIES

The action we consider takes the form

S ¼
X
x

ψa½η:Δab þGσþab�ψb þ 1

4

X
x

ðσþabÞ2

−
κ

4

X
x;μ

½σþabðxÞσþabðxþ μÞ þ σþabðxÞσþabðx − μÞ� ð1Þ

where repeated indices are to be contracted and ημðxÞ ¼
ð−1Þ

P
μ−1
i¼1

xi are the usual staggered fermion phases. The
discrete derivative is given by

Δab
μ ψb ¼ 1

2
δab½ψbðxþ μÞ − ψbðx − μÞ�: ð2Þ

The self-dual scalar field σþab is defined as

σþab ¼ Pþ
abcdσcd ¼

1

2

�
σab þ

1

2
ϵabcdσcd

�
ð3Þ

with Pþ projecting the antisymmetric matrix field σðxÞ to
its self-dual component.
The second line in Eq. (1) is essentially a kinetic operator

for the σþ field. With κ set equal to zero we can integrate
out the auxiliary field and recover the pure four fermion
model studied in Ref. [7]. The rationale for including such a
bare kinetic term for the auxiliary field is provided by
arguments set out for a related continuummodel inRef. [10].
More concretely, it should be clear that κ > 0 favors
ferromagnetic ordering of the scalar field and associated
fermion bilinear. This is to be contrasted with the preferred
antiferromagnetic ordering observed in Refs. [5,8] for the
κ ¼ 0 theory.1 The competition between these two effects
raises the possibility that the κ ¼ 0 antiferromagnetic
fermion bilinear condensate may be suppressed as κ is
increased.
In contrast to similar models studied by Refs. [13–21] we

fix the coefficient of the ððσþÞ2 − 1Þ2 term in the action to
be λ ¼ 0. Without this term to provide a constraint on the
magnitude of the scalar field, we will encounter instabilities
when the magnitude of κ is too large. We discuss these
instabilities in more detail in the next section.
In addition to the manifest SOð4Þ symmetry the action is

also invariant under a shift symmetry

ψðxÞ → ξρψðxþ ρÞ ð4Þ

with ξμðxÞ ¼ ð−1Þ
P

d
i¼μ

xi and a discrete Z2 symmetry:

σþ → −σþ ð5Þ

ψa → iϵðxÞψa: ð6Þ

Both the Z2 and SOð4Þ symmetries prohibit local bilinear
fermion mass terms from appearing as a result of quantum
corrections. Non-local SOð4Þ-symmetric bilinear terms can
be constructed by coupling fields at different sites in the
unit hypercube but such terms break the shift symmetry.
Further discussion of possible bilinear mass terms is
presented in detail in Ref. [7].

III. ANALYTICAL RESULTS

Before we present numerical results we can analyze the
model in certain limits. For example, since the action is
quadratic in σþ we can consider the effective action
obtained by integrating over σþ. The scalar part of the
action may be rewritten

1

4
σþð−κ□þm2Þσþ ð7Þ

where m2 ¼ ð1 − 2dκÞ is an effective mass squared for the
σþ field in d dimensions and □ is the usual discrete scalar
Laplacian. Integrating out σþ yields an effective action for
the fermions

S ¼
X

ψðη:ΔÞψ − G2
X

Σþ½−κ□þm2�−1Σþ ð8Þ

where Σþ
ab ¼ ½ψaψb�þ is the self-dual fermion bilinear. For

κ small we can expand the inverse operator in powers of
κ=m2 and find

S ¼
X

ψðη:ΔÞψ −
G2

m2
Σþ

�
I þ κ

m2
□þ…

�
Σþ: ð9Þ

To leading order the effect of nonzero κ is to renormalize
the Yukawa coupling G → G

m ¼ Gffiffiffiffiffiffiffiffiffiffi
1−2κd

p . At next to leading

order we obtain the term

G2

m4

X
Σþ½−κ□�Σþ: ð10Þ

For κ > 0 and sufficiently large G this term favors a
ferromagnetic ordering of the fermion bilinear hΣþi ≠ 0.
Conversely it suggests an antiferromagnetic ordering with
hϵðxÞΣþðxÞi ≠ 0 for κ < 0. This can be seen more clearly if
one rewrites the action in the alternative form

S ¼
X

ψðη:ΔÞψ − G2
X

Σþ½−κBþ I�−1Σþ ð11Þ

where BΣ ¼ P
μ½Σðxþ μÞ þ Σðx − μÞ�. Clearly changing

the sign of κ can be compensated by transforming
Σþ → ϵðxÞΣþ since ϵðxÞ anticommutes with B. Two of

1Although Ref. [7] observed a strong response to an anti-
ferromagnetic external source, evidence of spontaneous ordering
in the zero-source thermodynamic limit was not found until the
follow-up Ref. [8].
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us investigated the case κ ¼ 0 in Ref. [8] and observed a
narrow phase with antiferromagnetic ordering. Since κ > 0
produces ferromagnetic terms we expect the tendency
toward antiferromagnetic ordering to be reduced as κ is
increased. The numerical results described in the following
section confirm this.
For κ > 1

2d ¼ 1
8
the squared mass changes sign and one

expects an instability to set in with the model only being
well defined for κ < 1

8
. Actually there is also a lower bound

on the allowed values of κ. To see this return to Eq. (7) and
perform the change of variables

σþabðxÞ → ϵðxÞσþabðxÞ
κ → −κ: ð12Þ

This implies that the partition function ZðκÞ is an even
function of κ at G ¼ 0. We can show that this is also
true in the strong coupling limit G → ∞. In this limit we
can drop the fermion kinetic term from the action in
Eq. (1) and expand the Yukawa term in powers of the
fermion field

Z¼
Z

DψDσþð1−Gψσþψþ1

2
ðGψσþψÞ2ÞeSðσþÞ: ð13Þ

The only terms that survive the Grassmann integrations
contain even powers of σþ. Using the same transformation
Eq. (12) allows us to show that the partition function is once
again an even function of κ. Thus we expect that at least for
weak and strong coupling the partition function is onlywell
defined in the strip − 1

8
< κ < 1

8
.

It is also instructive to compute the effective action for
the scalar fields having integrated out the fermions. This
takes the form2

Seff ¼ −
1

4
Tr ln ð−Δ2

μ þM2 þ GημðxÞϵðxÞΔμσ
þÞ ð14Þ

where M2 ¼ −G2ðσþÞ2. To zeroth order in derivatives the
resultant effective potential is clearly of symmetry breaking
form. The first nontrivial term in the derivative or large
mass M expansion of this action is

−
G2

8M4

X
ðΔμσ

þÞ2: ð15Þ

Thus even the pure four fermion model will produce
kinetic terms for the scalar field through loop effects
confirming the need to include such terms in the classical

action.3 In Ref. [10] it was argued that an additional term
should also be generated which is quartic in derivatives in
the continuum limit. This term only arises for a self-dual
scalar field and leads to the possibility that topological field
configurations called Hopf defects may play a role in
understanding the massive symmetric phase.

IV. PHASE STRUCTURE

One useful observable we can use to probe the phase
structure in the ðκ; GÞ plane is hσ2þi. This is shown for three
different values of κ on a 84 lattice in Fig. 1. At κ ¼ 0 this
observable served as a proxy for the four fermion con-
densate and we observe this to be the case also when κ ≠ 0.
Thus we see that a four fermion phase survives at strong
Yukawa coupling G even for nonzero values of κ.
Of course the key issue is what happens for intermediate

values of G. At κ ¼ 0 a narrow intermediate phase was
observed for 0.95≲G≲ 1.15 in two different ways: from
the volume scaling of a certain susceptibility [5] and by
examining fermion bilinear condensates as functions of
external symmetry breaking sources [8]. This susceptibility
is defined as

χstag ¼
1

V

X
x;y;a;b

hϵðxÞψaðxÞψbðxÞϵðyÞψaðyÞψbðyÞi ð16Þ

where V ¼ L4 and the subscript “ stag” refers to the presence
of the parity factors ϵðxÞ associated with antiferromagnetic
ordering. It is shown in Fig. 2 for three different lattice
volumes at κ ¼ 0. The linear dependence of the peak height
on the lattice volume is consistent with the presence of a
condensate hϵðxÞψaðxÞψbðxÞi ≠ 0.
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FIG. 1. hσ2þi vs G for L ¼ 8, comparing κ ¼ �0.05 and 0.

2To facilitate the computation we have traded the original
ferromagnetic Yukawa coupling ψσþψ in Eq. (1) for an anti-
ferromagnetic coupling ϵðxÞψσþψ while simultaneously trading
κ → −κ as in Eq. (12). This allows us to simplify the expression
for the effective action by using the fact that ϵðxÞ anticommutes
with Δμ.

3A similar argument suggests that a quartic term λððσþÞ2 − 1Þ2
will also be produced. As mentioned in the previous section we
fix λ ¼ 0 in the calculations reported here. In addition to
simplifying the parameter space to be considered, this step is
also motivated by observations [20,21] that λ seems to have little
effect on the large-scale features of the phase diagram in similar
Higgs-Yukawa models.
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Since κ < 0 generates additional antiferromagnetic terms
in the effective fermion action we expect this bilinear phase
to survive in the κ < 0 region of the phase diagram. This is
confirmed in our calculations. Figure 3 shows a similar
susceptibility plot for κ ¼ −0.05, in which the width of the
broken phase increases while the peak height continues to
scale linearly with the volume indicating the presence of an
antiferromagetic bilinear condensate.
The situation changes for κ > 0. Figure 4 shows the

susceptibility χstag for κ ¼ 0.05. While a peak is still
observed for essentially the same value of G the height
of this peak no longer scales with the volume. Since κ > 0
induces ferromagnetic terms in the action we also examine
the associated ferromagnetic susceptibility

χf ¼
1

V

X
x;y;a;b

hψaðxÞψbðxÞψaðyÞψbðyÞi: ð17Þ

This is plotted in Fig. 5 for κ ¼ 0.05, which shows no
evidence of ferromagnetic ordering at this value of κ. In the
Appendix we show that κ ¼ 0.1 is sufficiently large to
produce a ferromagnetic phase.

The lack of scaling of the χstag peak with volume at κ ¼
0.05 might suggest that the system is no longer critical at
this point. This is not the case. Figure 6 shows the number
of conjugate gradient (CG) iterations needed for Dirac
operator inversions at κ ¼ 0 and κ ¼ 0.05 as a function of
G for L ¼ 8. This quantity is a proxy for the fermion
correlation length in the system. The peak at κ ¼ 0.05 is
significantly greater than at κ ¼ 0. Furthermore we have
observed that it increases strongly with lattice size render-
ing it very difficult to run computations for L ≥ 16. Our
conclusion is that there is still a phase transition around
G ≈ 1.05 for small positive κ but no sign of a bilinear
condensate. We will reinforce this conclusion in the next
section where we will perform an analysis of bilinear vevs
versus external symmetry breaking sources.
It is interesting to investigate the phase diagram away

from the critical region. Figure 7 shows the four fermion
condensate vs κ at G ¼ 2, which vanishes at jκj ¼ 1

8
as

expected by stability arguments. The structure of the curve
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FIG. 2. χstag vs G at κ ¼ 0 for L ¼ 4, 8 and 12.
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FIG. 3. χstag vs G at κ ¼ −0.05 for L ¼ 6, 8 and 12.
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FIG. 4. χstag vs G at κ ¼ 0.05 for L ¼ 6, 8 and 12.
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FIG. 5. The ferromagnetic susceptibility χf vsG at κ ¼ 0.05 for
L ¼ 6, 8 and 12. Unlike the other susceptibility plots, the y-axis
scale is not logarithmic.
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suggests that there may be a phase transition at κ ≈ 0.085
from a four fermion condensate to a ferromagnetic con-
densate. This is illustrated by Fig. 8 where for κ > 0 we
show the magnetization

M ¼ 1

V

�����
X
x

X
a<b

σþabðxÞ
����
	
: ð18Þ

The behavior near κ ≈ −0.085 in Fig. 8 shows a similar
transition from four fermion condensate to antiferromag-
netic phase. For κ < 0we add the usual parity factor ϵðxÞ to
define the staggered magnetization Ms.

V. FERMION BILINEARS

In this section we add source terms to the action that
explicitly break both the SOð4Þ and Z2 symmetries and, by
examining the volume dependence of various bilinear vevs
as the sources are sent to zero, address the question of
whether spontaneous symmetry breaking occurs in the
system. The source terms take the form

δS ¼
X
x;a;b

ðm1 þm2ϵðxÞÞ½ψaðxÞψbðxÞ�Σabþ ð19Þ
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FIG. 7. Four fermion condensate at G ¼ 2 vs κ for L ¼ 8.
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where the SOð4Þ symmetry breaking source Σabþ is

Σabþ ¼
�
iσ2 0

0 iσ2

�
: ð20Þ

For κ ¼ 0 we find evidence in favor of antiferromag-
netic ordering consistent with the volume scaling of
the susceptibility χstag. The antiferromagnetic bilinear
vev hϵðxÞψaðxÞψbðxÞi plotted in Fig. 9 (with m1 ¼ 0)
picks up a nonzero value in the limit m2 → 0, L → ∞
signaling spontaneous symmetry breaking. The data
correspond to runs at the peak in the susceptibility
G ¼ 1.05, and similar results are found throughout
the region 0.95≲ G≲ 1.15. This confirms the presence
of the condensate inferred from the linear volume
scaling of the susceptibility reported in the previous
section.
For κ < 0 the picture is similar with Fig. 10 showing

the same vev vs m2 ¼ m1 for κ ¼ −0.05 at the same
G ¼ 1.05. (Recall from Figs. 2–4 that the center of the
peak in χstag moves only very slowly for jκj ≤ 0.05.) The
increase in vev with larger volumes at small m2 is again
very consistent with the presence of a nonzero con-
densate in the thermodynamic limit. The magnitude of
this condensate at κ ¼ −0.05 is clearly larger than
at κ ¼ 0.
The situation for κ > 0 is quite different. Figure 11

shows plots of both antiferromagnetic and ferromagnetic
bilinear vevs at ðκ; GÞ ¼ ð0.05; 1.05Þ for several lattice
volumes. These plots show no sign of a condensate as the
source terms are removed in the thermodynamic limit.
Broken phases thus seem to be evaded for small κ > 0. In
the appendix we include results for larger κ ≥ 0.085.
While we observe a similar absence of bilinear conden-
sates at κ ¼ 0.085, the expected ferromagnetic phase does
clearly appear for κ ≈ 0.1 and we are able to set loose
bounds on the range κ1 < κ < κ2 within which there

appears to be a direct PMW–PMS transition, namely 0 <
κ1 < 0.05 while 0.085 < κ2 < 0.125.

VI. RESULTING PHASE DIAGRAM

Putting this all together we sketch the phase diagram
in Fig. 12. For small G the system is disordered and the
fermions massless. For large G and small κ we see a four
fermion condensate as before. As κ increases in magni-
tude one expects a transition to either a ferromagnetic
(κ > 0) or antiferromagnetic (κ < 0) phase for sufficiently
large G. However, for small positive κ close to G ¼ 1.05,
while we observe no sign of a bilinear condensate there
are strong indications of critical slowing down and a
large fermion correlation length. Since the weak and
strong coupling phases cannot be analytically connected
(one is massless while in the other the fermions acquire a
mass) there must be at least one phase transition between
them. Unlike the situation for κ ≤ 0 we see no evidence
for an intermediate broken-symmetry phase in this region
and hence the simplest conclusion is that a single phase
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FIG. 12. Sketch of the phase diagram in the ðκ; GÞ plane.
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transition separates the two symmetric phases. Thus far
we have seen no sign of first order behavior so this
transition appears to be continuous.

VII. SUMMARY AND CONCLUSIONS

In this paper we have reported on investigations of the
phase diagram of a four-dimensional lattice Higgs-Yukawa
model comprising four reduced staggered fermions inter-
acting with a scalar field transforming in the self-dual
representation of a global SOð4Þ symmetry. This extends
recent work on a related four fermion model in which a
massless symmetric phase is separated from a massive
symmetric phase by a narrow broken symmetry phase
characterized by a small antiferromagnetic bilinear fermion
condensate [5–8].
Our main result is evidence that this broken phase

may be eliminated in the generalized phase diagram by
tuning the hopping parameter in the scalar kinetic term.
This should not be too surprising since the ferromag-
netic ordering favored by κ > 0 counteracts the anti-
ferromagnetic ordering observed for κ ≤ 0. There is
then a range of positive κ1 < κ < κ2 throughout which
the massless and massive symmetric phases appear to
be separated by a single phase transition. Since no
order parameter distinguishes the two phases this tran-
sition is not of a conventional Landau-Ginzburg type.
Reference [10] argues in a related continuum model that
the transition may be driven instead by topological
defects. It would be fascinating to investigate whether
these topological defects could be seen in numerical
calculations.
Future work will also focus on better constraining the

values of κ1 and κ2 between which we observe the direct
PMW–PMS transition. Our current results suffice to
establish that these two points are well separated, 0 <
κ1 < 0.05 while 0.085 < κ2 < 0.125, but neither is very
precisely determined yet. It is also important to measure

more observables in order to search for nontrivial scaling
behavior associated with this transition. The lack of
scaling that we observe for the susceptibility χstag at
the phase boundary in Fig. 4 currently suggests that the
scaling dimension of the bilinear fermion operator would
be greater than two at any putative new critical point.
Clearly the possibility of realizing new fixed points in

strongly interacting fermionic systems in four dimensions
is of great interest and we hope our results stimulate further
work in this area.
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APPENDIX: ADDITIONAL SUPPORTING
RESULTS

In this Appendix we collect some additional results
for larger κ > 0.05, both to strengthen our conclusions
that there is no bilinear phase for a range of positive κ
and to confirm that a ferromagnetic phase does appear
once κ and G are sufficiently large. First, in Fig. 13 we
consider κ ¼ 0.085, around the potential transition iden-
tified in Figs. 7 and 8. Whereas those earlier figures
considered G ¼ 2, here we use the same G ¼ 1.05 as
Fig. 11 for κ ¼ 0.05. We again observe an absence of
spontaneous symmetry breaking, with the antiferromag-
netic and ferromagnetic bilinear condensates both van-
ishing as the symmetry-breaking source terms are
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removed, with no visible dependence on the lattice
volume.
The situation is qualitatively different in Fig. 14,

which considers κ ¼ 0.1 (at G ¼ 1.1) and shows clear
signs of a nonzero ferromagnetic condensate in the

L → ∞ limit. In Fig. 15 we compare the ferromagnetic
susceptibility χf for three different κ ¼ 0, 0.05 and 0.1.
While this susceptibility is uniformly small for κ ¼ 0
and 0.05, the larger κ ¼ 0.1 produces a strong jump to a
large value for G≳ 1.1, suggesting a first-order tran-
sition into the ferromagnetic phase.
Finally, Fig. 16 compares the four-fermion condensate

vs G for κ ¼ 0.05 and 0.1. Although the larger value of κ
significantly reduces the four-fermion condensate for
large G≳ 1.2 (as previously shown in Fig. 7), there is
a very narrow peak around G ≈ 1.05. This may suggest
that the system still transitions directly from the PMW
phase into the PMS phase before undergoing a second
transition into the ferromagnetic phase. We are therefore
not yet able to set tighter constraints than 0.085 < κ2 <
0.125 on the upper boundary of the direct PMW–PMS
transition. This region of the phase diagram appears
rather complicated, though Fig. 15 makes it clear that
the ferromagnetic phase persists to large G rather than
being a narrow intermediate phase of the sort we see for
κ ≤ 0. This is reflected in our sketch of the phase
diagram, Fig. 12.
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